
f ig-FORTH

INSTALLATION MANUAL

GLOSSARY

MODEL

EDITOR

RELEASE 1

WITH COMPILER SECURITY

AND

VARIABLE LENGTH NAMES

BY

WILLIAM F. RAGSDALE

November 1980

Provided through the courtesy of the FORTH INTEREST GROUP, PO Box 1105,
San Carlos, CA 94070

Further distribution of this public domain publication must include this
notice.

FORTH INTEREST GROUP.... PO BOX 1105.... San Carlos, CA 94070

fig-FORTH INSTALLATION MANUAL

1 .0 INTRODUCTION

2.0 DISTRIBUTION

3.0 MODEL ORGANIZATION

4 . 0 INSTALLATION

5.0 MEMORY MAP

6.0 DOCUMENTATION SUMMARY

1.0 INTRODUCTION 3.0 MODEL ORGINIZATION

The fig-FORTH implementation project occurred
because a key group of Forth fanciers wished
to make this valuable tool available on a
personal computing level. In June of 1978,
we gathered a team of nine systems level
programmers, each with a particular target
computer. The charter of the group was to
translate a common model of Forth into assem
bly language listings for each computer. It
was agreed that the group's work would be
distributed in the public domain by FIG. This
publication series is the conclusion of the
work.

2.0 DISTRIBUTION

The fig-FORTH model deviates a bit from the
usual loading method of Forth. Existing
systems load about 2k bytes in object form
and then self-compile the resident system
(6 to 8 k bytes). This technique allows
customization within the high level portion,
but is impractical for new Implementors.

Our model has 4 to 5 k bytes written as assem
bler listings. The remainder may be compiled
typing in the Forth high-level source, by
more assembly source, or by disc compilation.
This method enhances transportability,
although the larger portion in assembly code
entails more effort. About 8k bytes of memory
is used plus 2 to 8k for workspace.

All publications of the Forth Interest Group
are public domain. They may be further
reproduced and distributed by inclusion
of this credit notice:

This publication has been made available
by the Forth Interest Group,
P. 0. Box 1105, San Carlos, Ca 94070

We intend that our primary recipients of the
Implementation Project be computer users
groups, libraries, and commercial vendors.
We expect that each will further customize for
particular computers and redistribute. No
restrictions are placed on cost, but we

3.1 MODEL OVER-VIEW

The model consists of 7 distinct areas. They
occur sequentially from low memory to high.

Boot-up parameters
Machine code definitions
High level utility definitions
Installation dependent code
High level definitions
System tools (optional)
RAM memory workspace

expect faithfulness to the model. FIG does
not intend to distribute machine readable
versions, as that entails customization,
revision, and customer support better reserved
for commerical vendors.

Of course, another broad group of recipients
of the work is the community of personal
computer users. We hope that our publications
will aid in the use of Forth and increase
the user expectation of the performance of
high level computer languages.

FORTH INTEREST GROUP ••••• R 0. Box 1 1 0 5 San Carlos, Ca. 94070

3.2 MODEL DETAILS

Boot-up Parameters

This area consists of 34 bytes containing a
jump to the cold start, jump to the warm
re-start and initial values for user variables
and registers. These values are altered as
you make permanent extensions to your
installation.

Machine Code Definitions

When each of these words is executed, the
intepreter vectors from the definition
header to these code sequences. On
specific implementations it may be necessary
to preseve certain registers and observe
operating system protocols. Understand the
implementors methods in the listing before
p roceeding i

This area consists of about 600 to 800 bytes
of machine executable code in the form of
Forth word def int ions # Its purpose is to
convert your computer into a standard Forth
stack computer. Above this code, the balance
of Forth contains a pseudo-code compiled of
’execution-addresses" which are sequences
of the machine address of the "code-fields"
of other Forth definitions. All execution
ultimately refers to the machine code
definitions.

High-level Utility Definitions

These are colon-definitions, user variables,
constants, and variables that allow you to
control the "Forth stack computer". They
comprise the bulk of the system, enabling
you to execute and compile from the terminal.
If disc storage (or a RAM simulation of disc)
is available, you may also execute and compile
from this facility. Changes in the high-level
area are infrequent. They may be made thru
the assembler source listings.

Installation Dependent Code

This area is the only portion that need
change between different installations of the
same computer cpu. There are four code
f ragraents:

(KEY) Push the next ascii value (7 bits)
from the terminal keystroke to the
computation stack and execute NEXT.
High 9 bits are zero. Do not echo this
character, especially a control character.

jEMIT) Pop the computation stack
(16 bit value). Display the low 7 bits
on the terminal device, then execute
NEXT. Control characters have their
natural functions.

(?TERMINAL) For terminals with a break
key, wait till released and push to
the computation stack 0001 if it was
found depressed; otherwise 0000.
Execute NEXT. If no break key is avail
able, sense any key depression as a
break (sense but don't wait for a key).
If both the above are unavailable,
simply push 0000 and execute NEXT.

(CR) Execute a terminal carriage
return and line feed. Execute NEXT.

R/W This colon-definition is the
standard linkage to your disc. It
requests the read or write of a disc
sector. It usually requires supporting
code definitions. It may consist of
self-contained code or call ROM monitor
code. When R/W is assembled, its code
field address is inserted once in
BLOCK and once in BUFFER.

An alternate version of R/W is
included that simulates disc storage
in RAM. If you have over 16 k bytes
this is practical for startup and
limited operation with cassette.

High-level Definitions

The next section contains about 30 definit
ions involving user interaction: compiling
aids, finding, forgetting, listing, and
number formating. These definitions are
placed above the installation dependent code
to facilitate modification. That is, once
your full system is up, you may FORGET part
of the high-level and re-compile altered
definitions from disc.

Sy t s em Tools

A text editor and machine code assembler are
normally resident. We are including a sample
editor, and hope to provide Forth assemblers.
The editor is compiled from the terminal
the first time, and then used to place the
editor and assembler source code on disc.

It 18 essential that you regard the assembly
listing as just a way to get Forth installed
on your system. Additions and changes must
be planned and tested at the usual Forth high
level and then the assmbly routines updated.
Forth work planned and executed only at an
assembly level tends to be non-portable, and
confusing.

RAM Workspace

For a single user system, at least 2k bytes
must be available above the compiled system
(the dictionary). A 16k byte total system
is most typical•

The RAM workspace contains the computation
and return stacks, user area, terminal input
buffer, disc buffer and compilation space
for the dictionary.

FORTH INTEREST GROUP ••••• R 0. Box 1105 ••••• San Carlos, Ca. 94070

4.0 INSTALLATION

We see the following methods of getting a
functioning fig-FORTH system:

1. Buy loadable object code from
a vendor who has customized.

2. Obtain an assembly listing with
the installation dependent code
supplied by the vendor.
Assemble and execute.

3. Edit the FIG assembly listing
on your system, re-write the
1-0 routines, and assemble.

4. Load someone else's object code
up to the installation dependent
code. Hand assemble equivalents
for your system and poke in with
your monitor. Begin execution
and type in (self-compile) the
rest of the system. This takes

dbout two hours once you under
stand the structure of Forth (but
that will take much more time!).

Let us examine Step 3, above, in fuller
detail. If you wish to bring up Forth only
from this model, here are the sequential
s t e p s :

4.1 Familiarize yourself with the model
written in Forth, the glossary, and specific
assembly listings.

4.2 Edit the assembly listings into your
system. Set the boot-up parameters at origin
offset 0A, OB (bytes) to 0000 (wa r n i ng =»0 0) .

4.3 Alter the terminal support code
(KEY, EMIT, etc,) to match your system.
Observe register protocol specific to your
implementation!

4.4 Place a break to your monitor at the end
of NEXT, just before indirectly jumping via
register W to execution. W is the Forth name
for the register holding a code field address,
and may be differently referenced in your
listings.

4.5 Enter the cold start at the origin. Upon
the break, check that the interpretive pointer
IP points within ABORT and W points to SP».
If COLD is a colon-definition, then the IP
has been initialized on the way to NEXT and
your testing will begin in COLD. The
purpose of COLD is to initialize IP, S P , R P ,
UP, and some user variables from the start-up
parameters at the origin.

4.7 Execution errors may be localized by
observing the above pointers when a crash
occurs.

4.8 After the word QUIT is executed
(incrementally), and you can input a "return"
key and get OK printed, remove the break.
You may have some remaining errors, but a
reset and examination of the above registers
will again localize problems.

4.9 When the system is interpreting from the
keyboard, execute EMPTY-BUFFERS to clear
the disc buffer area. You may test the disc
access by typing: 0 BLOCK 64 TYPE
This should bring sector zero from the disc
to a buffer and type the first 64 characters.
This sector usually contains ascii text of the
disc directory. If BLOCK (and R/W) doesn't
function— happy hunting!

5.0 If your disc driver differs from the
assembly version, you must create your own
R/W. This word does a range check (with
error message), modulo math to derive sector,
track, and drive and passes values to a
sector-read and sector-write routine.

RAM DISC SIMULATION

If disc is not available, a simulation of
BLOCK and BUFFER may be made in RAM. The
following definitions setup high memory as
mass storage. Referenced 'screens' are then
brought to the 'disc buffer' area. This is
a good method to test the start-up program
even if disc may be available.

HEX
4000 CONSTANT LO (START OF BUFFER AREA)
6800 CONSTANT HI (10 SCREEN EQUIVALENT)
: R/W >R (save boolean)

B/BUF * LO + DUP
HI > 6 ?ERROR (range check)
R> IF (read) SWA? ENDIF
B/BUF CMOVE ;

Insert the code field address of R/W into
BLOCK and BUFFER and proceed as if testing
disc. R/W simulates screens 0 thru 9 when
B/BUF is 128, in the memory area $4000 thru
$6BFF.

4.6 Continue execution one word at a time.
Clever individuals could write a simple trace
routine to print IP, W, S P , RP and the top of
the stacks. Run in this single step mode
until the greeting message is printed. Note
that the interpretation is several hundred
cycles to this stage!

FORTH INTEREST GROUP ••••• R 0. Box 1105 ••••• San Carlos, Ca. 94070

fig-FORTH VARIABLE NAME FIELD

A major FIG innovation in this model, is
the introduction of variable length defin
ition names in compiled dictionary entries.
Previous methods only saved three letters and
the character count.

The user may select the letter count saved,
up to the full natural length. See the
glossary definition for WIDTH.

In this model, the following conventions
have been established.

1. The first byte of the name field has the
natural character count in the low 5 bits.

2. The sixth bit = 1 when smudged, and will
prevent a match by (FIND).

3. The seventh bit *= 1 for IMMEDIATE defin
itions; it is called the precedence bit.

4. The eighth or sign bit is always = 1.
5. The following bytes contain the names'

letters, up to the value in WIDTH.
6. In the byte containing the last letter

saved, the sign bit = 1.
7. In word addressing computer, a name may

be padded with a blank to a word boundary.

The return stack grows downward from the user
area toward the terminal buffer. Forty-eight
bytes are sufficient. The origin is in RO
(R-zero) and is loaded from a boot-up literal.

The computation stack grows downward from the
terminal buffer toward the dictionary, which
grows upward. The origin of the stack is
is in variable SO (S-zero) and is loaded from
a boot-up literal.

After a cold start, the user variables contain
the addresses of the above memory assignments.
An advanced user may relocate while the
system is running. A newcomer should alter
the startup literals and execute COLD. The
word +0RIGIN is provided for this purpose.
-fORIGIN gives the address byte or word rel
ative to the origin depending on the computer
addressing method. To change the backspace
to contol H type:

HEX 08 0E +0RIGIN I (byte addresses)

The above methods are implemented in CREATE.
Remember that -FIND uses BL WORD to bring
the next text to HERE with the count preceed-
ing. All that is necessary, is to limit by
WIDTH and toggle the proper delimiting bits.

5.0 MEMORY MAP

The following memory map is broadly used.
Specific installations may require alterations
but you may forfeit functions in future FIG
off erings.

The disc buffer area is at the upper bound of
RAM memory. It is comprised of an integral
number of buffers, each B/BUF+4 bytes.
B/BUF is the number of bytes read from the
disc, usually one sector. B/BUF must be a
power of two (64, 128, 256, 512 or 1024).
The constant FIRST has the value of the
address of the start of the first buffer.
LIMIT has the value of the first address
beyond the top buffer. The distance between
FIRST and LIMIT must be N*(B/BUF+4) bytes.
This N must be two or more.

Constant B/SCR has the value of the number of
buffers per screen; i.e. 1024 / B/BUF.

The user area must be at least 34 bytes; 48
is more appropriate. In a multi-user system,
each user has his own user area, for his copy
of system variables. This method allows re
entrant use of the Forth vocabulary.

The terminal input buffer is decimal 80 bytes
(the hex 50 in QUERY) plus 2 at the end. If a
different value is desired, change the limit
In QUERY. A parameter in the boot-up
literals locates the address of this area for
TIB. The backspace character is also in the
boot-up origin parameters. It is universally
expected that "rubout" is the backspace.

FORTH INTEREST GROUP ••••• R0. Box 1105 San Carlos, Ca. 94070

ST
AN

DA
RD

65

02

fi
g-

FO
R

TH

M
EM

O
RY

M

AP

fi
g-

FO
R

TH

M
EM

O
RY

M

A
P

o
<

Z
o
BCo
+

CL. 8CN

tn O
2 * 2
<* u u

M

X n

-I

3
of
LUU-

U.U.
3
CO

>-ee< 2UJ

58
U.
3CO b

Zooc
LU
LO
D

H
23H-

O
f Ga ?»-o

2

\ 1 f t

Q _ Q_OO O'

to

toZ>

t t
t z
2

r ~

<
to

a
<

z
o
a:
O
4-
O

oo

t t i t

Q.3

FORTH INTEREST GROUP RO. Box 1105 San Carlos, Ca. 94070 ^

fig-FORTH GLOSSARY

This glossary contains all of the word def
initions in Release 1 of fig-FORTH. The
definitions are presented in the order of
their ascii sort.

The first line of each entry shows a symbolic
description of the action of the proceedure on
the parameter stack. The symbols Indicate the
order in which input parameters have been
placed on the stack. Three dashes "---"
indicate the execution point; any parameters
left on the stack are listed. In this
notation, the top of the stack is to the
r iph t.

The symbols Include:

addr memory address
b 8 bit byte (i.e. hi 8 bits zero)
c 7 bit ascii character (hi 9 bits zero)
d 32 bit signed double integer,

most significant portion with sign
on top of stack,

f boolean flag. 0~false, non-zero»true
ff boolean false flag-0
n 16 bit signed integer number
u 16 bit unsigned integer
tf boolean true f1ag«non-zero

The capital letters on the right show defin
ition characteristics:

C May only be used within a colon defin
ition. A digit indicates number
of memory addresses used, if other
than one.

E Intended for execution only.
LO Level Zero definition of FORTH-78
LI Level One definition of FORTH-78
P Has precedence bit set. Will execute

even when compiling.
U A user variable.

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On
8 bit data bus computers, the high byte of
a number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithemetlc is implicitly 16 bit signed
integer math, with error and under-flow
indication unspecified.

FORTH INTEREST GROUP RO. Box 1105 ••••• San Carlos, Ca. 94070

! C SP

*

t >

is

(

(•")

(;CODE)

n ad d r ---
Store 16 bits of n
Pronounced "store".

at address.
LO (+LOOP) n — — C2

The run-time proceedure compiled
by +LOOP, which increments the loop
index by n and tests for loop comple
tion. See +LOOP.

Save the stack position in CSP. Used
as part of the compiler security.

dl --- d2 LO
Generate from a double number dl, the
next ascii character which is placed
in an output string. Result d2 is
the quotient after division by BASE,
and is maintained for further pro
cessing. Used between <# and #>.
See #S.

(ABORT)

(DO)

Executes after an error when WARNING
is — 1. This word normally executes
ABORT, but may be altered (with care)
to a user's alternative proceedure.

The run-time proceedure compiled by
DO which moves the loop control para
meters to the return stack. See DO.

d --- add r count LO
Terminates numeric output conversion
by dropping d, leaving the text
address and character count suitable
for TYPE.

dl --- d 2 LO
Generates ascii text in the text out
put buffer, by the use of # , until
a zero double number n2 results.
Used between <# and #>.

--- add r P ,LO
Used in the form:

nnnn
Leaves the parameter field address
of dictionary word nnnn. As a comp
iler directive, executes in a colon-
definition to compile the address
as a literal. If the word is not
found after a search of CONTEXT and
CURRENT, an appropriate error mess
age is given. Pronounced "tick".

P , LO
Used in the form:

(cccc)
Ignore a comment that will be
delimited by a right parenthesis
on the same line. May occur during
execution or in a colon-definition.
A blank after the leading parenthesis
is required.

(FIND) addrl addr2 --- pfa b tf (ok)
addrl addr2 --- ff (bad)

Searches the dictionary starting at
the name field address addr2, match
ing to the text at addrl. Returns
parameter field address, length
byte of name field and boolean true
for a good match. If no match is
found, only a boolean false is left.

(LINE) nl n2 --- addr count
Convert the line number nl and tha
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

(LOOP) C2
The run-time proceedure compiled by
LOOP which increments the loop index
and tests for loop completion.
See LOOP.

(NUMBER) dl addrl --- d2 addr2
Convert the ascii text beginning at
addrl+1 with regard to BASE. The new
value is accumulated into double
number dl, being left as d2. Addr2
is the address of the first uncon-
vertable digit. Used by NUMBER.

nl n2 --- prod
Leave the signed product of two
signed numbers.

LO

C+
The run-time proceedure, compiled by
." which transmits the following
in-line text to the selected output
device. See

The run-time proceedure, compiled by
5 CODE, that rewrites the code field
of the most recently defined word to
point to the following machine code
sequence. See ;CODE.

*/

* /MOD

nl n2 n3 --- n4 LO
Leave the ratio n4 - nl*n2/n3
where all are signed numbers. Ret
ention of an intermediate 31 bit
product permits greater accuracy than
would be available with the sequence:

nl n2 * n3 /

nl n2 n3 --- n4 n5 LO
Leave the quotient n5 and remainder
n4 of the operation nl*n2/n3
A 31 bit intermediate product is
used as for */.

FORTH INTEREST GROUP ••••• RO. Box 1105 San Carlos, Ca. 94070 y

+ !

+ BUF

n 1 n 2 --- sum
Leave the sum of nl+n2.

LO -DUP

n addr --- LO
Add n to the value at the address.
Pronounced "plus-store".

nl n 2 --- n 3
Apply the sign of n2 to nl, which
is left as n3.

addl --- addr2 f
Advance the disc buffer address addrl
to the address of the next buffer
addr2. Boolean f is false when addr2
is the buffer presently pointed to
by variable PREV.

-FIND

nl -- nl (if zero)
nl -- nl nl (non-zero) LO

Reproduce nl only if it is non-zero.
This is usually used to copy a value
just before IF, to eliminate the need
for an ELSE part to drop it.

--- pfa b tf (found)
--- f f (not found)

Accepts the next text word (delimited
by blanks) in the input strean to
HERE, and searches the CONTEXT and
then CURRENT vocabularies for a
matching entry. If found, the
dictionary entry's parameter field
address, its length byte, and a
boolean true is left. Otherwise,
only a boolean false is left.

+L00P nl --- (run)
addr n2 --- (compile) P,C2,L0

Used in a colon-definition in the
form:

DO ... nl +LOOP
At run-time, +LOOP selectively
controls branching back to the cor
responding DO based on nl, the loop
index and the loop limit. The signed
increment nl is added to the index
and the total compared to the limit.
The branch back to DO occurs until
the new index is equal to or greater
than the limit (nl>0), or until the
new index is equal to or less than
the limit (nl<0). Upon exiting the
loop, the parameters are discarded
and execution continues ahead.

At compile time, +LOOP compiles
the run-time word (+LOOP) and the
branch offset computed from HERE to
the address left on the stack by
DO. n2 is used for compile time
error checking.

n --- LO
Store n into the next available dict
ionary memory cell, advancing the
dictionary pointer. (comma)

nl n 2 --- diff
Leave the difference of nl-n2.

— > P , LO
Continue interpretation with the
next disc screen, (pronounced
next-screen).

-TRAILING addr nl .--- addr n2
Adjusts the character count nl of a
text string beginning address to
suppress the output of trailing
blanks. i.e. the characters at
addr+nl to addr+n2 are blanks.

n --- LO
Print a number from a signed 16 bit
two's complement value, converted
according to the numeric BASE.
A trailing blanks follows.
Pronounced "dot1'.

P , LO
Used in the form:

. " cccc "
Compiles an in-line string cccc
(delimited by the trailing ") with an
execution proceedure to transmit the
text to the selected output device.
If executed outside a definition, .11
will immediately print the text until
the final ". The maximum number of
characters may be an installation
dependent value. See (.").

line scr ---
Print on the terminal device, a line
of text from the disc by its line and
screen number. Trailing blanks are
8 uppressed.

. R nl n 2
Print the number nl right aligned in
a field whose width is n2. No
following blank is printed.

/ nl n2 ---------- quot LO
Leave the signed quotient of nl/n2.

nl n2 --- rem quot LO
Leave the remainder and signed
quotient of nl/n2. The remainder has
the sign of the dividend.

■fORIGIN n --- addr
Leave the memory address relative -.LINE
by n to the origin parameter area,
n is the minimum address unit, either
byte or word. This definition is used
to access or modify the boot-up
parameters at the origin area.

LO

/MOD

FORTH INTEREST GROUP ••••• RO. Box 1105 ••••• San Carlos, Ca. 94070

0 1 2 3

0<

0-

OBRANCH

1 +

2+

;CODE

--- n ; S
These small numbers are used so often
that is is attractive to define them
by name in the dictionary as const
ants.

n --- f LO
Leave a true flag if the number is <
less than zero (negative), otherwise
leave a false flag.

P ,L0
Stop interpretation of a screen.
;S is also the run-time word compiled
at the end of a colon-definition
which returns execution to the
calling proceedure.

nl n2 --- f LO
Leave a true flag if nl is less than
n2; otherwise leave a false flag.

n --- f LO
Leave a true flag is the number is
equal to zero, otherwise leave a
false flag.

£ — C 2
The run-time proceedure to condition
ally branch. If f is false (zero),
the following in-line parameter is
added to the interpretive pointer to
branch ahead or back. Compiled by
IF, UNTIL, and WHILE.

nl --- n2 LI
Increment nl by 1.

nl --- n2
Leave nl incremented by 2.

P ,E,L0
Used in the form called a colon-
definition:

: c c c c ... ;
Creates a dictionary entry defining
cccc as equivalent to the following
sequence of Forth word definitions

until the next or ';C0DE'.
The compiling process is done by
the text interpreter as long as
STATE is non-zero. Other details
are that the CONTEXT vocabulary is
set to the CURRENT vocabulary and
that words with the precedence bit
set (P) are executed rather than
being compiled.

P ,C ,L0
Terminate a colon-definition and
stop further compilation. Compiles
the run-time ;S.

<# LO

<BUILDS

>R

Setup for pictured numeric output
formatting using the words:

<# # #S SIGN #>
The conversion is done on a double
number producing text at PAD.

C , LO
Used within a colon-definition:

: cccc <BUILDS
D OES > ... }

Each time cccc is executed, <BUILDS
defines a new word with a high-level
execution proceedure. Executing cccc
in the form:

cccc nnnn
uses <BUILDS to create a dictionary
entry for nnnn with a call to the
D0ES> part for nnnn. When nnnn is
later executed, it has the address of
its parameter area on the stack and
executes the words after D0ES> in
cccc. <BUILDS and D0ES> allow run
time proceedures to written in high-
level rather than in assembler code
(as required by ;C0DE).

nl n 2 --- f LO
Leave a true flag if nl*n2; other
wise leave a false flag.

nl n2 --- f LO
Leave a true flag if nl is greater
than n2; otherwise a false flag.

n --- C , LO
Remove a number from the computation
stack and place as the most access-
able on the return stack. Use should
be balanced with R> in the same
def init ion.

P , C , LO
Used in the form:

: cccc ;C0DE
assembly mnemonics

Stop compilation and terminate a new
defining word cccc by compiling
(;C0DE). Set the CONTEXT vocabulary
to ASSEMBER, assembling to machine
code the following mnemonics.

? COMP

addr — LO
Print the value contained at the
address in free format according to
the current base.

Issue error message if not compiling.

When cccc later executes in the form:
cccc nnnn

the word nnnn will be created with
its execution proceedure given by
by the machine code following cccc.
That is, when nnnn is executed, it
does so by jumping to the code after
nnnn. An existing defining word
■ust exist in cccc prior to ;C0DE.

?CSP
Issue error message if stack position
differs from value saved in CSP.

FORTH INTEREST GROUP ••••• R0. Box 1105 San Carlos, Ca. 94070

TERROR f n ---
Issue an error message number n, if
the boolean flag is true#

B/BDF --- n
This constant leaves the number of
bytes per disc buffer, the byte count
read from disc by BLOCK.

? EXEC
Issue an error message if not exec— B/SCR
u ting.

’LOADING
Issue an error message if not loading

This constant leaves the number of
blocks per editing screen. By con
vention, an editing screen is 1024
bytes organized as 16 lines of 64
characters each.

? PAIRS nl n 2 ---
Issue an error message if nl does not
equal n2. The message indicates that
compiled conditionals do not match.

BACK addr ---
Calculate the backward branch offset
from HERE to addr and compile into
the next available dictionary memory
a ddress.

? STACK
Issue an error message is the stack
is out of bounds. This definition
may be installation dependent.

? T ERMINAL --- f
Perform a test of the terminal key
board for actuation of the break key.
A true flag indicates actuation.
This definition is installation
dependent.

addr --- n LO
Leave the 16 bit contents of address.

ABORT

ABS

AGAIN

ALLOT

AND

LO
Clear the stacks and enter the exec
ution state. Return control to the
operators terminal, printing a mess
age appropriate to the installation.

n --- u
Leave the absolute value of n as

LO

addr n --- (compiling) P,C2,L0
Used in a colon-definion in the form:

BEGIN ... AGAIN
At run-time, AGAIN forces execution
to return to corresponding BEGIN.
There is no effect on the stack.
Execution cannot leave this loop
(unless R> DROP is executed one
level below).

At compile time, AGAIN compiles
BRANCH with an offset from HERE to
addr. n is used for compile-time
error checking.

n --- LO
Add the signed number to the diction-
ary pointer DP. May be used to
reserve dictionary space or re-origin
memory. n is with regard to coaputer
address type (byte or w o rd).

nl n2 --- n2 LO
Leave the bitwise logical and of nl
and n2 as n3.

BASE

BEGIN

BL

BLANKS

BLK

BLOCK

--- addr U,L0
A user variable contaning the current
number base used for input and out
put conversion.

addr n (compiling) P,L0
Occurs in

BEGIN
BEGIN
BEGIN

At run-time,

colon-definition in form:
UNTIL
AGAIN
WHILE ... REPEAT

BEGIN marks the start
of a sequence that may be repetitive
ly executed. It serves as a return
point from the correspoinding UNTIL,
AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur
if the top of the stack is false;
for AGAIN and REPEAT a return to
BEGIN always occurs.

At compile time BEGIN leaves its ret
urn address and n for compiler error
checking.

A constant that leaves the ascii
value for "blank".

addr count ---
Fill an area of memory begining at
addr with-blanks.

--- addr U,L0
A user variable containing the block
number being interpreted. If zero,
input is being taken from the term
inal input buffer.

n --- addr LO
Leave the memory address of the block
buffer containing block n. If the
block is not already In memory, it is
transferred from disc to which ever
buffer was least recently written.
If the block occupying that buffer
has been marked as updated, it is re
written to disc before block n is
read into the buffer. See also
BUFFER, R/W UPDATE FLUSH

FORTH INTEREST GROUPRO. Box 1105 San Carlos, Ca. 94070

BLOCK-
BLOCK-

BRANCH

BUFFER

C i

C ,

C@

C FA

CMOVE

COLD

READ
WRITE These are Che preferred names

for the installation dependent code
to read and write one block to the
disc.

C 2 , LO
The run-time proceedure to uncondit
ionally branch. An in-line offset
is added to the interpretive pointer
IP to branch ahead or back. BRANCH
is compiled by ELSE, AGAIN, REPEAT.

n --- addr
Obtain the next memory buffer, ass
igning it to block n. If the con
tents of the buffer is marked as up
dated, it is written to the disc
The block is not read from the disc.
The address left is the first cell
within the buffer for data storage.

COMPILE C2
When the word containing COMPILE
executes, the execution address of
the word following COMPILE is copied
(compiled) into the dictionary.
This allows specific compilation
situations to be handled in additon
to simply coupling an execution
address (which the interpreter
already does).

CONSTANT n --- LO
A defining word used in the form:

n CONSTANT cccc
to create word cccc, with its para
meter field containing n. When cccc
is later executed, it will push
the valqe of n to the stack.

CONTEXT --- addr U,L0
A user variable containing a pointer
to the vocabulary within which dict
ionary searches will first begin.

b addr --- COUNT
Store 8 bits at address. On word
addressing computers, further spec
ification is necessary regarding byte
addressing.

b ---
Store 8 bits of b into the next
available dictionary byte, advancing
the dictionary pointer. This is only
available on byte addressing comp
uters, and should be used with
caution on byte addressing mini
computers.

CR

CREATE

addr --- b
Leave the 8 bits contents of memory
address. On word addressing comput
ers, further specification is needed
regarding byte addressing.

pfa --- cfa
Convert the parameter field address
of a definition to its code field CSP
address.

from to count -—
Move the specified quantity of bytes
beginning at address from to address D+
to. The contents of address from
is moved first proceeding toward high
memory. Further specification is
necessary on word addressing comp
uters. DH—

addrl -— addr2 n LO
Leave the byte address addr2 and byte
count n of a message text beginning
at address addrl. It is presumed
that the first byte at addrl contains
the text byte count and the actual
text starts with the second byte.
Typically COUNT is followed by TYPE.

LO
Transmit a carriage return and line
feed to the selected output device.

A defining word used In the form:
CREATE cccc

by such words as CODE and CONSTANT
to create a dictionary header for
a Forth definition. The code field
contains the address of the words
parameter field. The new word is
created in the CURRENT vocablary.

---- addr U
A user variable temporarily storing
the stack pointer position, for
compilation error checking.

dl d2 ---ds um
Leave the double number sum of two
double numbers.

d 1 n --- d 2
Apply the sign of n to the double
number dl, leaving it as d2.

The cold start proceedure to adjust
the dictionary pointer to the min
imum standard and restart via ABORT.
May be called from the terminal to
remove application programs and
restart.

D. d --- LI
Print a signed double number from a
32 bit two's complement value. The
high-order 16 bits are most access-
able on the stack. Conversion is
performed according to the current
BASE. A blank follows. Pronounced
D-dot.

FORTH INTEREST GROUPRO. Box 1105 San Carlos, Ca. 94070

D. R

DABS

DECIMAL

d n ---
Print a signed double number d right
aligned in a field n characters wide.

d --- ud
Leave the absolute value ud of a
double number.

DO

LO
Set the numeric conversion BASE for
decimal input-output.

DEFINITIONS LI
Used in the form:

cccc DEFINITIONS
Set the CURRENT vocabulary to the
CONTEXT vocabulary. In the example,
executing vocabulary name cccc made
it the CONTEXT vocabulary and exec
uting DEFINITIONS made both specify
vocabulary cccc.

DIGIT

DLIST

c nl --- n2 tf (ok)
c nl --- ff (bad)

Converts the ascii character c (using
base nl) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only
a false flag.

List the names of the dictionary
entries in the CONTEXT vocabulary.

DQES>

DLITERAL d --- d (executing)
d --- (compiling) P

If compiling, compile a stack double
number into a literal. Later execut
ion of the definition containing the
literal will push it to the stack. If
executing, the number will remain on
the stack.

DMINUS dl --- d2
Convert dl to its double number two's
complement.

DP

nl d 2
addr n

Occurs in a
DO ...
DO ...

At run time,

(execute)
(compile) P , C2', LO

colon-definition in form:
LOOP
+LOOP
DO begins a sequence

with repetitive execution controlled
by a loop limit nl and an index with
initial value n2. DO removes these
from the stack. Upon reaching LOOP
the index is incremented by one.
Until the new index equals or exceeds
the limit, execution loops back to
just after DO; otherwise the loop
parameters are discarded and execut
ion continues ahead. Both nl and n2
are determined at run-time and may be
the result of other operations.
Within a loop 'I' will copy the

urrent value of the index to the
S/tack. See I, LOOP, +LOOP, LEAVE.

When compiling within the colon-
definition, DO compiles (DO), leaves
the following address addr and n for
later error checking.

LO
A word which defines the run-time
action within a high-level defining
word. DOES> alters the code field
and first parameter of the new word
to execute the sequence of compiled
word addresses following DOES>. Used
in combination with <BUILDS. When the
DOES> part executes it begins with
the address of the first parameter
of the new word on the stack. This
allows interpretation using this
area or its contents. Typical uses
include the Forth assembler, multi-
diminsional arrays, and compiler
generation.

U,L---- addr
A user variable, the dictionary
pointer, which contains the address
of the next free memory above the
dictionary. The value may be read by
HERE and altered by ALLOT.

DPL ---- addr U,L0
A user variable containing the number
of digits to the right of the decimal
on double integer Input. It may also
be used hold output column location
of a decimal point, in user generated
formating. The default value on
single number input is -1.

DRG Installation dependent commands to
DR1 select disc drives, by preseting

OFFSET. The contents of OFFSET is
added to the block number in BLOCK
to allow for this selection. Offset
ie aupreased for error text so that
ia may always originate from drive 0.

FORTH INTEREST GROUP ••••• R0. Box 1105 ••••• San Carlos, Ca. 94070

DROP

DUMP

LO
Drop the number from the stack.

DUP

ELSE

EMIT

addr n --- LO
Print the contents of n memory
locations beginning at addr. Both
addresses and contents are shown in
the current numeric base.

n -— n n LO
Duplicate the value on the stack.

addrl nl --- addr2 n2
(compiling) P,C2,L0

Occurs within a colon-definition
in the form:

IP ... ELSE ... ENDIF
At run-time, ELSE executes after the
true part following IF. ELSE forces
execution to skip over the following
false part and resumes execution
after the ENDIF. It has no stack
effect.

At compile-time ELSE emplacea BRANCH
reserving a branch offset, leaves
the address addr2 and n2 for error
testing. ELSE also resolves the
pending forward branch from IF by
calculating the offset from addrl to
HERE and storing at addrl.

c --- LO
Transmit ascii character c to the
selected output device. OUT is
incremented for each character
output.

addr n
Occurs in

IF
IF

ENDIF addr n --- (compile) P,CO,LO
colon-definition in form:
ENDIF
ELSE ... ENDIF

At run-time, ENDIF serves only as the
destination of a forward branch from
IF or ELSE. It marks the conclusion
of the conditional structure. THEN
is another name for ENDIF. Both
names are supported in fig-FORTH. See
also IF and ELSE.

At compile-time, ENDIF computes the
forward branch offset from addr to
HERE and stores it at addr. n is
used for error tests.

ERASE addr n ---
Clear a region of memory to zero from
addr over n addresses.

ERROR line --- in blk
Execute error notification and re
start of system. WARNING is first
examined. If 1, the text of line n,
relative to screen 4 of drive 0 is
printed. This line number may be
positive or negative, and beyond just
screen 4. If WARNING-0, n is just
printed as a message number (non disc
installation). If WARNING is -1,
the definition (ABORT) is executed,
which executes the system ABORT. The
user may cautiously modify this
execution by altering (ABORT).
fig-FORTH saves the contents of IN
and BLK to assist in determining the
location of the error. Final action
is execution of QUIT.

EMPTY-BUFFERS LO
Mark all block-buffera as empty, not
necessarily affecting the contents.
Updated blocks are not written to the
disc. This is also an initialisation
proceedure before first use of the
disc.

ENCLOSE addrl c ---
ddrl nl n2 n3

The text scanning primitive used by
WORD. From the text address addrl
and an ascii delimiting character c,
is determined the byte offset to the
first non-delitnlter character nl,
the offset to the first delimiter
after the text n2, and the offset
to the first character not Included.
This proceedure will not process past
an ascii 'null', treating it as an
unconditional delimiter.

EXECUTE addr —
Execute the definition whose code
field address is on the stack. The
code field address is also called
the compilation address.

EXPECT addr count --- LO
Transfer characters from the terminal
to address, until a "return" or the
count of characters have been rec
eived. One or more nulls are added
at the end of the text•

FENCE --- addr t
A user variable containing an
address below which FORGETting is
trapped. To forget below this point
the user must alter the contents of
FENCE.

END P,C2,L0
This is an 'alias' or duplicate
definition for UNTIL.

FILL addr quan b ---
Fill memory at the address with the
specified quantity of bytes b.

FIRST --- n
A constant that leaves the address
of the first (lowest) block buffer.

FORTH INTEREST GROUP RO. Box 1105 San Carlos, Ca. 94070

FLD

FORGET

FORTH

HERE

HEX

HLD

HOLD

I

ID.

--- addr U IF
A user variable for control of number
output field width. Presently un
used In fig-FORTH.

E,L0
Executed in the form:

FORGET cccc
Deletes definition named cccc from
the dictionary with all entries
physically following it. In fig-
FORTH, an error message will occur if
the CURRENT and CONTEXT vocabularies
are not currently the same.

f --- (run-time)
--- addr n (compile) P,C2,L0

Occurs is a colon-deflnition in form:
IF (tp) ... ENDIF
IF (tp) ... ELSE (fp) ... ENDIF

At run-time, IF selects execution
based on a boolean flag. If f Is
true (non-zero), execution continues
ahead thru the true part. If f is
false (zero), execution skips till
just after ELSE to execute the false
part. After either part, execution
resumes after ENDIF. ELSE and its
false part are optional.; if missing,
false execution skips to just after
ENDIF.

P,L1
The name of the primary vocabulary.
Execution makes FORTH the CONTEXT
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will exec
ute during the creation of a colon-
definition, to select this vocabulary
a t comp ile t ime.

--- addr LO
Leave the address of the next avail
able dictionary location.

LO
Set the numeric conversion base to
sixteen (hexadecimal).

At compile-time IF compiles OBRANCH
and reserves space for an offset
at addr. addr and n are used later
for resolution of the offset and
error testing.

IMMEDIATE
Mark the most resently made definit
ion so that when encountered at
compile time, it will be executed
rather than being compiled, i.e. the
precedence bit in its header is set.
This method allows definitions to
handle unusual compiling situations,
rather than build them Into the
fundamental compiler. The user may
force compilation of an immediate
definition by preceedlng it with
[COMPILE].

--- addr LO
A user variable that holds the addr
ess of the latest character of text
during numeric output conversion.

c --- LO
Used between <# and #> to insert
an ascii character into a pictured
numeric output string,
e.g. 2E HOLD will place a
d ecima1 point.

--- n
Used within a DO-LOOP to copy the
loop Index to the stack. Other
use is implementation dependent.
See R .

addr ---
Print a definition's name from its
name field address.

IN

INDEX

C,LO

--- addr LO
A user variable containing the byte
offset within the current input text
buffer (terminal or disc) from which
the next text will be accepted. WORD
uses and moves the value of IN.

from to ---
Print the first line of each screen
over the range from, to. This is
used to view the comment lines of an
area of text on disc screens.

INTERPRET
The outer text interpreter which
sequentially executes or compiles
text from the input stream (terminal
or disc) depending on STATE. If the
word name cannot be found after
a search of CONTEXT and then CURRENT
it is converted to a number according
to the current base® That also fail
ing, an error message echoing the
name with a " ?" will be given.
Text input will be taken according to
the convention for WORD. If a decimal
point Is found as part of a number,
a double number value will be left.
The decimal point has no other pur
pose thaa to force this action.
See NUMBER.

FORTH INTEREST GROUP ••••• RO. Box 1105 ••••• San Carlos, Ca. 94070

KEY

LATEST

LEAVE

LF A

LIMIT

LIST

LIT

LITERAL

LOAD

LO LOOP
Leave the ascii value of the next
terminal key struck.

--- addr
Leave the name field address of the
topmost word in the CURRENT vocabul-
a ry .

C , LO
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of
the Index. The index itself remains
unchanged, and execution prodeeds
normally until LOOP or +LOOP is
encountered.

pfa --- lfa
Convert the parameter field address
of a dictionary definition to its
link field address.

---- n
A constant leaving the address Just
above the highest memory available
for a disc buffer. Usually this is
the highest system memory.

M*

M/

addr n --- (compiling) P,C2,L0
Occurs in a coIon-definition in form:

DO ... LOOP
At run-time, LOOP selectively cont
rols branching back to the correspon
ding DO based on the loop index and
limit. The loop index Is incremented
by one and compared to the limit. The
branch back to DO occurs until the
index equals or exceeds the limit;
at that time, the parameters are
discarded and execution continues
ahead.

At compile-time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. n is used for error testing.

nl n2 --- d
A mixed magnitude math operation
which leaves the double number signed
product of two signed number.

d n 1 --- n 2 n3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double
number dividend and divisor nl. The
remainder takes its sign from the
dividend.

Display the ascii text of screen n
on the selected output device. SCR
contains the screen number during and
after this process.

LO M/MOD udl u2 --- u3 ud 4
An unsigned mixed magnitude math
operation which leaves a double
quotient ud4 and remainder u3, from
a double dividend udl and single
divisor u2.

--- n C2,L0
Within a colon-definition, LIT is MAX
automatically compiled before each
16 bit literal number encountered in
input text. Later execution of LIT
causes the contents of the next MESSAGE
dictionary address to be pushed to
the stack.

n --- (compiling) P,C2,L0
If compiling, then compile the stack
value n as a 16 bit literal. This
definition is Immediate so that it
will execute during a colon defin
ition. The intended use is:

: xxx [calculate] LITERAL ; MIN
Compilation is suspended for the
compile time calculation of a value.
Compilation la reusumed and LITERAL
compiles this value. MINUS

n --- LO
Begin interpretation of screen n.
Loading will terminate at the end of MOD
the screen or at ; S . See ;S and -->.

nl n2 --- max LO
Leave the greater of two numbers.

Print on the selected output device
the text of line n relative to screen
4 of drive 0. n may be positive or
negative. MESSAGE may be used to
print incidental text such as report
headers. If WARNING is rero, the
message will simply be printed as
a number (disc un-ava1 lable).

nl n2 --- min LO
Leave the smaller of two numbers.

nl --- n2
Leave the two's complement of a
nutber.

LO

n l n 2 --- mod LO
Leave the remainder of nl/n2, with
the same sign as nl.

MON
Exit to the system monitor, leaving
a re-entry to Porth, if possible.

FORTH INTEREST GROUPR0. Box 1105 San Carlos, Ca. 94070

MOVE

NEXT

NFA

NUMBER

OFFSET

OR

OUT

OVER

addrl addr2 n ---
Move the contents of n memory cells
(16 bit contents) beginning at addrl
into n cells beginning at addr2.
The contents of addrl is moved first.
This definition is appropriate on
on word addressing computers.

This is the inner interpreter that
uses the interpretive pointer IP to
execute compiled Forth definitions.
It is not directly executed but is
the return point for all code pro-
ceedures. It acts by fetching the
address pointed by IP, storing this
value in register W. It then Jumps
to the address pointed to by the
address pointed to by W. W points to
the code field of a definition which
contains the address of the code
which executes for that definition.
This usage of indirect threaded code
is a major contributor to the power,
portability, and extensibility of
Forth. Locations of IP and W are
computer specific.

pfa --- nfa
Convert the parameter field address
of a definition to its name field.

addr --- d
Convert a character string left at
addr with a preceeding count, to
a signed double number, using the
current numeric base. If a decimal
point is encountered in the text, its
position will be given in DPL, but
no other effect occurs. If numeric
conversion is not possible, an error
message will be given.

PAD

PFA

POP

PREV

PUSH

PUT

QUERY

--- addr U
A user variable which may contain
a block offset to disc drives. The
contents of OFFSET is added to the
stack number by BLOCK. Messages
by MESSAGE are independent of OFFSET.
See BLOCK, DRO, DRI, MESSAGE. QUIT

nl n2 — or LO
Leave the bit-wise logical or of two
16 bit values.

--- addr LO
Leave the address of the text output
buffer, which is a fixed offset above
HERE.

nfa --- pfa
Convert the name field address of
a compiled definition to its para
meter field address.

The code sequence to remove a stack
value and return to NEXT. POP is
not directly executable, but is a
Forth rfe-entry point after machine
code.

---- -addr
A variable containing the address of
the disc buffer most recently ref
erenced. The UPDATE command marks
this buffer to be later written to
disc.

This code sequence pushes machine
registers to the computation stack
and returns to NEXT. It is not
directly executable, but is a Forth
re-entry point after machine code.

This code sequence stores machine
register contents over the topmost
computation stack value and returns
to NEXT. It is not directly exec
utable, but is a Forth re-entry point
after machine code.

Input 80 characters of text (or until
a "return") from the operators
terminal. Text is positioned at the
address contained In TIB with IN
set to zero.

LI
Clear the return stack, stop compil
ation, and return control to the
operators terminal. No message
is given.

--- addr U
A user variable that contains a value
incremented by EMIT. The user may
alter and examine OUT to control
display formating.

nl n2 --- nl n2 nl LO
Copy the second stack value, placing
it as the new top.

R#

--- n
Copy the top of the return stack to
the computation stack.

addr ®
A user variable which may contain
the location of an editing cursor,
or other file related function.

FORTH INTEREST GROUP ••••• R0. Box 1105 ••••• San Carlos, Ca. 94070

SMUDGE

R >

RO

REPEAT

JT

RP i

S - > D

SO

SCR

SIGN

addr blk f ---
The fig-FORTH standard disc read-
write linkage. addr specifies the
source or destination block buffer,
blk is the sequential number of
the referenced block; and f is a
flag for f«0 write and f-1 read.
R/W determines the location on mass
storage, performs the read-write and
performs any error checking.

SP !

Used during word definition to toggle
the "smudge bit'1 in a definitions'
name field. This prevents an un
completed definition from being found
during dictionary searches, until
compiling is completed without error.

A computer dependent proceedure to
initialize the stack pointer from
SO .

--- n LO
Remove the top value from the return
stack and leave it on the computation
stack. See >R and R.

--- addr U
A user variable containing the
initial location of the return stack.
Pronounced R-zero. See R P !

--- (compiling)
i co1on-definition

addr n
Used with in
form:

BEGIN -- WHILE ... REPEAT
At run-time, REPEAT forces an
unconditional branch back to just
after the correspoinding BEGIN.

P , C 2
in the

SP@

SPACE

SPACES

--- addr
A computer dependent proceedure to
return the address of the stack
position to the top of the stack,
as it was before SP@ was executed,
(e.g. 1 2 SP@ @ would
type 2 2 1)

LO
Transmit an ascii blank to the output
d evi c e .

n --- LO
Transmit n ascii blanks to the output
device.

At compile-time, REPEAT compiles
BRANCH and the offset from HERE to
addr. n is used for error testing.

nl n2 n3 --- n2 n3 nl LO
Rotate the top three values on the
stack, bringing the third to the top.

A computer dependent proceedure to
initialize the return stack pointer
from user variable R O .

Sign extend a single number to form
a doub 1 e numb e r .

STATE

SWAP

TASK

--- addr L0,U
A user variable containg the compil
ation state. A non-zero value
indicates compilation. The value
itself may be implementation depend
ent.

nl n2 --- n2 nl LO
Exchange the top two values on the
s tack .

A no-operation word which can mark
the boundary between applications.
By forgetting TASK and re-compiling,
an application can be discarded in
its entirety.

--- addr U
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See S P !

--- addr U
A user variable containing the screen
number most recently reference by
LIST.

n d --- d LO
Stores an ascii sign just before
a converted numeric output string
in the text output buffer when n is
negative. n is discarded, but double
number d is maintained. Must be
used between <1t and //>.

THEN

TIB

TOGGLE

TRAVERSE

An alias for ENDIF.
P,CO,L0

--- addr U
A user variable containing the addr
ess of the terminal input buffer.

addr b -—
Complement the contents of addr by
the bit pattern b.

addrl n --- addr 2
Move across the name field of a
fig-FORTH variable length name field,
addrl is the address of either the
length byte or the last letter.
If n=l, the motion is toward hi mem
ory; if n»-l, the motion is toward
low memory. The addr2 resulting is
address of the other end of the name.

FORTH INTEREST GROUP ••••• R 0. Box 1105 ••••• San Carlos, Ca. 94070

TRIAD

TYPE

U*

U/

UNTIL

UPDATE

USE

USER

scr ---
Display on the selected output device
the three screens which include that
numbered scr, begining with a screen
evenly divisible by three. Output
is suitable for source text records,
and includes a reference line at the
bottom taken from line 15 of screen4.

VARIABLE E , L U
A defining word used in the form:

n VARIABLE cccc
When VARIABLE is executed, it creates
the definition cccc with its para
meter field initialized to n. When
cccc is later executed, the address
of its parameter field (containing n)
is left on the stack, so that a fetch
or store may access this location.

addr count --- LO
Transmit count characters from addr
to the selected output device.

u 1 u 2 --- ud
Leave the unsigned double number
product of two unsigned numbers.

ud u 1 --- u2 u3
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsign
ed double dividend ud and unsigned
d ivi sor u 1.

f --- (run-time)
addr n --- (compile) P,C2,L0

Occurs within a colon-definition in
the f orm:

BEGIN ... UNTIL
At run-time, UNTIL controls the cond
itional branch back to the corres
ponding BEGIN. If f is false, exec
ution returns to just after BEGIN;
if true, execution continues ahead.

At compile-time, UNTIL compiles
(OBRANCH) and an offset from HERE
to addr. n is used for error tests.

LO
Marks the most recently referenced
block (pointed to by PREV) as
altered. The block will subsequently
be transferred automatically to disc
should its buffer be required for
storage of a different block.

--- addr
A variable containing the address of
the block buffer to use next, as the
least recently written.

VOC-LINK --- addr U
A user variable containing the addr
ess of a field in the definition of
the most recently created vocabulary.
All vocabulary names are linked by
these fields to allow control for
FORGETting thru multiple vocabularys.

VOCABULARY E ,L
A defining word used in the form:

VOCABULARY cccc
to create a vocabulary definition
cccc. Subsequent use of cccc will
make it the CONTEXT vocabulary which
is searched first by INTERPRET. The
sequence "cccc DEFINITIONS" will
also make cccc the CURRENT vocabulary
into which new definitions are
placed.

In fig-FORTH, cccc will be so chained
as to include all definitions of the
vocabulary in which cccc is itself
defined. All vocabularys ulitmately
chain to Forth. By convention,
vocabulary names are to be declared
IMMEDIATE. See VOC-LINK.

VL 1ST

WARNING

List the names of the definitions in
the context vocabulary. "Break" will
terminate the listing.

--- addr U
A user variable containing a value
controlling messages. If = 1
disc is present, and screen 4 of
drive 0 is the base location for
messages. If * 0, no disc is present
and messages will be presented by
number. If = -1, execute (ABORT) for
a user specified proceedure.
See MESSAGE, ERROR.

n --- LO WHILE
A defining word used in the form:

n USER cccc
which creates a user variable cccc.
The parameter field of cccc contains
n as a fixed offset relative to
the user pointer register UP for
this user variable. When cccc is
later executed, it places the sum of
its offset and the user area base
address on the stack as the storage
address of that particular variable.

f --- (run-1 ime)
adl nl --- adl nl ad2 n2 P,C2

Occurs in a colon-definition in the
f o r m :

BEGIN ... WHILE (tp) -- REPEAT
At run-time, WHILE selects condition
al execution based on boolean flag f.
If f is true (non-zero), WHILE cont-
intues execution of the true part
thru to REPEAT, which then branches
back to BEGIN. If f is false (zero),
execution skips to just after REPEAT,
exiting the structure.

At compile time, WHILE emplaces
(OBRANCH) and leaves ad2 of the res
erved offset. The stack values will
be resolved by REPEAT.

FORTH INTEREST GROUP ••••• R 0. Box 1105 •— San Carlos, Ca. 94070

WIDTH

WORD

X

XOR

[

^COMPILE]

--- addr U
In fig-FORTH, a user variable cont
aining the maximum number of letters
saved in the compilation of a
definitions' name. It must be 1 thru
31, with a default value of 31. The
name character count and its natural
characters are saved, up to the
value in WIDTH. The value may be
changed at any time within the above
1 imlt s .

c --- LO
Read the next text characters from
the Input stream being interpreted,
until a delimiter c is found, storing
the packed character string begining
at the dictionary buffer HERE. WORD
leaves the character count in the
first byte, the characters, and ends
with two or more blanks. Leading
occurances o f c are ignored. If BLK
is zero, text is taken from the
terminal input buffer, otherwise from
the disc block stored in BLK.
See BLK, IN.

This is pseudonym for the "null"
or dictionary entry for a name of
one character of ascii null. It
is the execution proceedure to term
inate interpretation of a line of
text from the terminal or within
a disc buffer, as both buffers always
have a null at the end.

n l n 2 --- xor LI
Leave the bitwise logical exclusive-
or of two values.

P , L 1
Used in a co1on-definition in form:

: xxx [words] more ;
Suspend compilation. The words after
(are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compil
ation with]. See LITERAL,].

P,C
Used in a co1on-def inition in form:

: xxx [COMPILE] FORTH ;
(COMPILE] will force the compilation
of an immediate defininition,
that would otherwise execute
during compilation. The above
example will select the FORTH
vocabulary when xxx executes, rather
than at compile time.

LI
Resume compilation, to the completion
of a colon-definition. See [.

FORTH INTEREST GROUP RO. Box 1105 San Carlos, Ca. 94070

SCR it 3
0 ********************** fig-FORTH MODEL **********************
1
2 Through the courtesy of
3
4 FORTH INTEREST GROUP
5 P. 0. BOX 1105
6 SAN CARLOS, CA. 94070
7
8
9 RELEASE 1

10 WITH COMPILER SECURITY
1 1 AND
12 VARIABLE LENGTH NAMES
1 3
1 4
15 Further distribution must include the above notice.

SCR If 4
0 (ERROR MESSAGES)
1 EMPTY STACK
2 DICTIONARY FULL
3 HAS INCORRECT ADDRESS MODE
4 ISN'T UNIQUE
5
6 DISC RANGE ?
7 FULL STACK
8 DISC ERROR i
9

1 4
15 FORTH INTEREST GROUP MAY 1, 1979

SCR # 5
0 (ERROR MESSAGES)
1 COMPILATION ONLY, USE IN DEFINITION
2 EXECUTION ONLY
3 CONDITIONALS NOT PAIRED
4 DEFINITON NOT FINISHED
5 IN PROTECTED DICTIONARY
6 USE ONLY WHEN LOADING
7 OFF CURRENT EDITING SCREEN
8 DECLARE VOCABULARY
9

10
1 1
12
13
14
15

FORTH INTEREST GROUP

J o

CODE LIT (PUSH FOLLOWING LITERAL TO STACK *) 1 13
l a b e l PUSH (PUSH ACCUM AS HI-BYTE, ML STACK AS LO-BYTE *) 4 13
LABEL PUT (REPLACE BOTTOM WITH ACCUM. AND ML STACK *) 6 13
LABEL NEXT (EXECUTE NEXT FORTH ADDRESS, MOVING IP *) 8 13
HERE <CLIT> ! HERE 2+ , (MAKE SILENT WORD *) 1 14
LABEL SETUP (MOVE # ITEMS FROM STACK TO 'N' AREA OF Z-PAGE *) A 14
CODS EXECUTE (EXECUTE A WORD BY ITS CODE FIELD *) 9 14

(ADDRESS ON THE STACK *) 10' 14
CODE BRANCH (ADJUST IP BY IN-LINE 16 BIT LITERAL *) 1 15
CODE OBRANCH (IF BOT IS ZERO, BRANCH FROM LITERAL *) 6 1 5
CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL => LIMIT *) 1 16
CODE (+LOOP) (INCREMENT INDEX BY STACK VALUE +/- *) 8 16
CODE (DO) (MOVE TWO STACK ITEMS TO RETURN STACK *) 2 1 7
CODE I (COPY CURRENT LOOP INDEX TO STACK *) 9 1 7
CODE DICIT (CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM *) 1 18

(IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM; *) 0 18
(OTHERWISE FALSE-BOTTOM. *) 3 18

CODE (FIND) (HERE, NFA ... PFA, LEN BYTE, TRUE; ELSE FALSE *) 1 19
C U D E ENCLOSE (ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH *) 1 20

(ADDR-4, AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-1 *) 2 20
CODE EMIT (PRINT ASCII VALUE ON BOTTOM OF STACK *) 5 21
CODE KEY (ACCEPT ONE TERMINAL CHARACTER TO THE STACK *) 7 2 1
CODE ? TERMINAL ('BREAK' LEAVES 1 ON STACK; OTHERWISE 0 *) 9 2 1
CODE CP. (EXECUTE CAR. RETURN, LINE FEED ON TERMINAL *) 1 1 21
CODE CMOVE (WITHIN MEMORY; ENTER W/ FROM-3, TO-2, QUAM-1 *) 1 22
CODE U* (16 BIT MULTIPLICAND-2, 16 BIT MULTIPLIER-1 *) 1 23

(32 BIT UNSIGNED PRODUCT: LO WORD-2, HI WORD-1 *) 2 23
CODE u / (31 BIT DIVIDEND-2, -3, 16 BIT DIVISOR-1 *) 1 24

(16 BIT REMAINDER-2, 16 BIT QUOTIENT-1 *) 2 24
CODE AND (LOGICAL BITWISE AND OF BOTTOM TWO ITEMS *) 2 25
C 0 D E OR (LOGICAL BITWISE 'OR' OF BOTTOM TWO ITEMS *) 6 25
CODE XOR (LOGICAL 'EXCLUSIVE-OR' OF BOTTOM TWO ITEMS *) 10 25
CODE SP@ (FETCH STACK POINTER TO STACK *) 1 26
CODE SP I (LOAD SP FROM 'SO' *) 5 26
CODE RP ! (LOAD RP FROM RO *) 8 26
CODE ;s (RESTORE IP REGISTER FROM RETURN STACK *) 12 26
CODE LEAVE (FORCE EXIT OF DO-LOOP BY SETTING LIMIT *) 1 27

XSAVE STX, TSX, R LDA, R 2+ STA, (TO INDEX *) 2 27
CODE > R (MOVE FROM COMP. STACK TO RETURN STACK *) 5 27
CODE R> (MOVE FROM RETURN STACK TO COMP. STACK *) 8 27
CODE R (COPY THE BOTTOM OF RETURN STACK TO COMP. STACK *) 1 1 27
CODE 0 = (REVERSE LOGICAL STATE OF BOTTOM OF STACK *) 2 28
CODE 0< (LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE *) 6 28
CODE + (LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS *) 1 29
CODE D + (ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE *) 4 29
CODE MINUS (TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *) 9 29
CODE DMINUS (TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *) 1 2 29
CODE OVER (DUPLICATE SECOND ITEM AS NEW BOTTOM *) 1 30
CODE DROP (DROP BOTTOM STACK ITEM *) 4 30
CODE SWAP (EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *) 7 30
CODE DUP (DUPLICATE BOTTOM ITEM ON STACK *) 11 30
CODE +! (.ADD SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM *) 2 31
CODE TOGGLE (BYTE AT ADDRESS-2, BIT PATTERN-1 ... *) 7 31
CODE @ (REPLACE STACK ADDRESS WITH 16 BIT *) 1 32

BOT X) LDA, PHA, (CONTENTS OF THAT ADDRESS *) 2 32
CODE C<? (REPLACE STACK ADDRESS WITH POINTED 8 BIT BYTE *) 5 32
CODE j (STORE SECOND AT 16 BITS ADDRESSED BY BOTTOM *) 8 32

FORTH INTEREST GROUP MAY 1, 19 79

CODE C ! (STORE SECOND AT BYTE ADDRESSED BY BOTTOM *) 12 32
: : (CREATE NEW COLON-DEFINITION UNTIL *) 2 33
• 9 (TERMINATE COLON-DEFINITION *) 9 33
: CONSTANT (WORD WHICH LATER CREATES CONSTANTS *) 1 34
: VARIABLE (WORD WHICH LATER CREATES VARIABLES *) 5 34
: USER (CREATE USER VARIABLE *) 10 34
20 CONSTANT BL CR (ASCII BLANK *) 4 35
40 CONSTANT C/L (TEXT CHARACTERS PER LINE *) 5 35
3BE0 CONSTANT FIRST (FIRST BYTE RESERVED FOR BUFFERS *) 7 35
4000 CONSTANT LIMIT (JUST BEYOND TOP OF RAM *) 8 35

80 CONSTANT B/BUF (BYTES PER DISC BUFFER *) 9 35
8 CONSTANT B/SCR (BLOCKS PER SCREEN = 1024 B/BUF / *) 10 35

: +ORIGIN LITERAL + ; (LEAVES ADDRESS RELATIVE TO ORIGIN *) 13 35
HEX (0 THRU 5 RESERVED, REFERENCED TO $00A0 *) 1 36
(06 USER SO) (TOP OF EMPTY COMPUTATION STACK *) 2 36
(08 USER RO) (TOP OF EMPTY RETURN STACK *) 3 36
OA USER TIB (TERMINAL INPUT BUFFER *) 4 36
OC USER WIDTH (MAXIMUM NAME FIELD WIDTH *) 5 36
OE USER WARNING (CONTROL WARNING MODES *) 6 36
1 0 USER FENCE CR (BARRIER FOR FORGETTINC *) 7 36
1 2 USER DP (DICTIONARY POINTER *) 8 36
14 USER VOC-LINK (TO NEWEST VOCABULARY *) 9 36
1 6 USER BLK (INTERPRETATION BLOCK *) 10 36
18 USER IN (OFFSET INTO SOURCE TEXT *) 11 36
1A USER OUT (DISPLAY CURSOR POSITION *) 12 36
1C USER SCR (EDITING SCREEN *) 13 36
IE USER OFFSET (POSSIBLY TO OTHER DRIVES *) 1 37
20 USER CONTEXT (VOCABULARY FIRST SEARCHED *) 2 37
22 USER CURRENT (SEARCHED SECOND, COMPILED INTO *) 3 37
24 USER STATE (COMPILATION STATE *) 4 37
26 USER BASE CR (FOR NUMERIC INPUT-OUTPUT *) 5 37
28 USER DPL (DECIMAL POINT LOCATION *) 6 37
2 A USER FLD (OUTPUT FIELD WIDTH *) 7 37
2C USER CSP (CHECK STACK POSITION *) 8 37
2E USER R# (EDITING CURSOR POSITION *) 9 37
30 USER HLD (POINTS TO LAST CHARACTER HELD IN PAD *) 10 3 7
: 1 + 1 + ; (INCREMENT STACK NUMBER BY ONE *) 1 38
: 2+ 2 + ; (INCREMENT STACK NUMBER BY TWO *) 2 38
: HERE DP @ ; (FETCH NEXT FREE ADDRESS IN DICT. *) 3 38
: ALLOT DP +! ; (MOVE DICT. POINTER AHEAD *) 4 38
• > HERE ! 2 ALLOT ; CR (ENTER STACK NUMBER TO DICT. *) 5 38
: C, HERE C! 1 ALLOT > (ENTER STACK BYTE TO DICT. *) 6 38
: - MINUS + ; (LEAVE DIFF. SEC - BOTTOM *) 7 38
: = - 0 = » (LEAVE BOOLEAN OF EQUALITY *) 8 38
: < - o< » (LEAVE BOOLEAN OF SEC < BOT *) 9 38
: > SWAP < ; (LEAVE BOOLEAN OF SEC > BOT *) 1 0 38
: RO T >R SWAP R > SWAP > (ROTATE THIRD TO BOTTOM *) 11 38
: SPACE BL EMIT ; CR (PRINT BLANK ON TERMINAL *) 1 2 38
: -DUP DUP IF DUP ENDIF ; (DUPLICATE NON-ZERO *) 13 38
: TRAVERSE (MOVE ACROSS NAME FIELD *) 1 39

(ADDRESS- 2, DIRECTION-1, I.E. -1=R TO L, +1=L TO R *) 2 39
: LATEST CURRENT (? @ ; (NFA OF LATEST WORD *) 6 39
: LF A 4 “ 5 (CONVERT A WORDS PFA TO LFA *) 11 39
: CFA 2 " 5 CR (CONVERT A WORDS PFA TO CFA *) 1 2 39
: NFA 5 - -i TRAVERSE 5 (CONVERT A WORDS PFA TO NFA *) 13 39
: PFA 1 TRAVERSE 5 + J (CONVERT A WORDS NFA TO PFA *) 14 39
: ! CSP SP@ CSP i• > (SAVE STACK POSITION IN 'CSP' *) 1 40

FORTH INTEREST GROUP MAY 1, 19 79

? ERROR
? C OMP
? EXEC
? PAIRS
?CSP
?LOADING
COMPILE
[0
] CO
SMUDGE
HEX
DECIMAL
(; CODE)
; CODE
<BUILDS
DOES>

(BOOLEAN-2, ERROR TYPE-1, WARN FOR TRUE
STATE @ 0= 11 ? ERROR ; (ERROR IF NOT COMPILING
STATE @ 12 ? ERROR ; (ERROR IF NOT EXECUTING

13 ?ERROR ; (VERIFY STACK VALUES ARE PAIRED
SP@ CSP @ - 14 ? ERROR ; (VERIFY STACK POSITION

(VERIFY LOADING FROM DISC
(COMPILE THE EXECUTION ADDRESS FOLLOWING

iSTATE
STATE !
LATEST
10 BASE
OA BASE

IMMEDIATE

20
i
i

TOGGLE

COUNT
TYPE
-TRAILING
(• ")
. " 2 2
EXPECT
X BLK @
F IL L
ERASE
BLANKS
HOLD
PAD

WORD
(NUMBER)
NUMBER
-FIND
(ABORT)
ERROR

WARNING
ID.
CREATE

(STOP COMPILATION
(ENTER COMPILATION STATE
(ALTER LATEST WORD NAME

(MAKE HEX THE IN-OUT BASE
(MAKE DECIMAL THE IN-OUT BASE *)_

(WRITE CODE FIELD POINTING TO CALLING ADDRESS
(TERMINATE A NEW DEFINING WORD

(CREATE HEADER FOR 'DOES>' WORD
(REWRITE PFA WITH CALLING HI-LEVEL ADDRESS

(REWRITE CFA WITH 'DOES>' CODE
(LEAVE TEXT ADDR. CHAR. COUNT

(TYPE STRING FROM ADDRESS-2, CHAR.COUNT-1
(ADJUST CHAR. COUNT TO DROP TRAILING BLANKS

(TYPE IN-LINE STRING, ADJUSTING RETURN
@ (COMPILE OR PRINT QUOTED STRING
(TERMINAL INPUT MEMORY-2, CHAR LIMIT-1

(END-OF-TEXT IS NULL
(FILL MEMORY BEGIN-3 , QUAN-2, BYTE-1

(FILL MEMORY WITH ZEROS BEG IN-2 , QUAN-1
(FILL WITH BLANKS BEG IN-2, QUAN-1

(HOLD CHARACTER IN PAD
44 + ; (PAD IS 68 BYTES ABOVE HERE

(DOWNWARD HAS NUMERIC OUTPUTS; UPWARD MAY HOLD TEXT
(ENTER WITH DELIMITER, MOVE STRING TO 'HERE'

(CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR.
(ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER

(RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE

0 CONSTANT

DUP 1+ SWAP C@

STATE

HERE

GAP

(

[COMPILE]
LITERAL
DLITERAL
? STACK
INTERPRET
IMMEDIATE
VOCABULARY

VOCABULARY FORTH
DEFINITIONS
(
QUIT
ABORT

CODE COLD
CODE S->D
: + - 0 <
: D + -
: ABS DUP

A CURRENT NAME
IMMEDIATE WORD

(

(ABORT) ; (USER ALTERABLE ERROR ABORT
(WARNING: -1=ABORT, 0=NO DISC, 1=DISC

(PRINT TEXT LINE REL TO SCR #4
(PRINT NAME FIELD FROM ITS HEADER ADDRESS

(A SMUDGED CODE HEADER TO PARAM FIELD
(WARNING IF DUPLICATING

(FORCE COMPILATION OF AN
(IF COMPILING, CREATE LITERAL

(IF COMPILING, CREATE DOUBLE LITERAL
QUESTION UPON OVER OR UNDERFLOW OF STACK

INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS
(TOGGLE PREC. BIT OF LATEST CURRENT WORD

(CREATE VOCAB WITH 'V-HEAD' AT VOC INTERSECT.
IMMEDIATE (THE TRUNK VOCABULARY

(SET THE CONTEXT ALSO AS CURRENT VOCAB
SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS

(RESTART, INTERPRET FROM TERMINAL
(WARM RESTART, INCLUDING REGISTERS

(COLD START, INITIALIZING USER AREA
(EXTEND SINGLE INTEGER TO DOUBLE

(APPLY SIGN TO NUMBER BENEATH
(APPLY SIGN TO DOUBLE NUMBER BENEATH

(LEAVE ABSOLUTE VALUE *)

(

IF MI NU S ENDIF

+ -

*) 3 40
*) 6 40
*) 8 40
*) 10 40
*) 12 40
*) 14 40
*) 2 41
*) 5 41
*) 7 41
*) 9 41
*) 11 41
*) 13 41
*) 2 42
*) 6 42
*) 2 43
*) 4 43
*) 5 43
*) 1 44
*) 2 44
*) 5 44
*) 8 44
*) 12 44
*) 2 45
*) 11 45
*) 1 46
*) 4 46
*) 7 46
*) 10 46
*) 13 46
*) 14 46
*) 1 47
*) 1 48
*) 6 48
*) 1 2 48
*) 2 49
*) 4 49
*) 5 49
*) 9 49
*) 2 50
*) 3 50
*) 2 51
*) 5 51
*) 8 51
*) 13 51
*) 2 52
*) 1 53
*) 4 53
*) 9 53
*) 11 53
*) 14 53
*) 2 54
*) 7 54
*) 1 55
*) 1 56
*) 4 56
*) 6 56
*) 9 56

FORTH INTEREST GROUP MAY 1, 19 79

DABS
MIN
MAX
M*
M /

*
/MOD
/
MOD
* /MOD

DUP D+- (DOUBLE INTEGER ABSOLUTE VALUE
(LEAVE SMALLER OF TWO NUMBERS
(LEAVE LARGET OF TWO NUMBERS

U*
>R
/MOD
/MOD

(FROM SIGNED DOUBLE-3-2, SIGNED DIVISOR-1
(LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-1

DROP ; (SIGNED PRODUCT
S->D R> M/ ; (LEAVE REM-2, QUOT-1

SWAP
DROP

DROP
CR

(LEAVE QUOTIENT
(LEAVE REMAINDER

(SELECT DRIVE #1

>R M* R> M/ ; (REM-2, QUOTIENT-1
: */ * /MOD SWAP DROP ; (LEAVE RATIO OF THREE NUMBS
: M/MOD (DOUBLE, SINGLE DIVISOR ... REMAINDER, DOUBLE
FIRST VARIABLE USE (NEXT BUFFER TO USE, STALEST
FIRST VARIABLE PREV (MOST RECENTLY REFERENCED BUFFER
: +BUF (ADVANCE ADDRESS-1 TO NEXT BUFFER. RETURNS FALSE

84 (I.E. B/BUF+4) + DUP LIMIT = (IF AT PREV
UPDATE (MARK THE BUFFER POINTED TO BY PREV AS ALTERED
EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON'T WRITE TO DISC
DRO 0 OFFSET 1 ; (SELECT DRIVE #0
DR 1 07D0 OFFSET
BUFFER
BLOCK (COt
(LINE)
.LINE
MESSAGE
LOAD
- - >

6900 CONSTANT
6901 CONSTANT
: #HL
CODE D/CHAR
: ?DI SC

1 D/CHAR
CODE BL OCK-WRITE

2 # LDA,
CODE BLOCK-READ

(LINE#, SCR#, BUFFER ADDRESS, 64 COUNT
(LINE#, SCR#, ... PRINTED *)

(PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0

R/W

FORGET \
BACK
D.R
D.
.R
a

?
LIST
INDEX
TRIAD
VLIST

CREATE

DATA (CONTROLLER PORT
STATUS (CONTROLLER PORT
(CONVERT DECIMAL DIGIT FOR DISC CONTROLLER
(TEST CHAR-1. EXIT TEST BOOL-2, NEW CHAR-1

(UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL
>R 0“ (EOT, EXCEPT FOR SOH

(SEND TO DISC FROM ADDRESS-2, COUNT-1
SETUP JSR, (WITH EOT AT END

(BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL ;
(C *» I TO READ, 0 TO WRITE

(BUFFER ADDRESS-3, BLOCK #-2, 1-READ 0=WRITE
FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING

(FOLLOWING WORD FROM CURRENT VOCABULARY
SKIP INTERPRETATION OF THE REMAINDER OF LINE

(RESOLVE BACKWARD BRANCH
9 vHERE - ,

(DOUBLE
0 D.R SPACE
>R S->D R>
S->D D. ;
@ ;

D.R
(DOUBLE INTEGER OUTPUT

(ALIGNED SINGLE INTEGER

; (PRINT CONTENTS OF MEMORY
(LIST SCREEN BY NUMBER ON STACK

(PRINT FIRST LINE OF EACH SCREEN FROM-2, TO-1
(PRINT 3 SCREENS ON PAGE, CONTAINING # ON STACK

MON

*) 10 56
*) 12 56
*) 14 56
*) 1 57

*) 3 57
*) 4 57
*) 7 57
*) 8 57
*) 9 57
*) 10 57
*) 11 57
*) 12 57
*) 13 57
*) 14 57
*) 1 58
*) 2 58
*) 4 58
*) 5 58
*) 8 58
*) 11 58
*) 14 58
*) 15 58
*) 1 59
*) 1 60
*) 2 6 1
*) 6 61
*) 9 61
*) 2 62
*) 6 62
*) 1 65
*) 2 65
*) 5 65
*) 1 66
*) 7 66
*) 8 66
*) 1 67
*) 2 67
k) 2 68
*) 3 69
*) 4 69
*) 5 69
*) 2 72
*) 6 72
*) 11 72
*) 1 73
*) 1 76
*) 5 76
*) 7 76
*) 9 76
*) 11 76
*) 2 77
*) 7 77
*) 12 77
*) 2 78
*) 3 79 OK

FORTH MODEL IMPLEMENTATION

This model is presented for the serious student as
both an example of a large FORTH program and as a complete
nucleus of FORTH. That is, it is sufficient to run and
to continue to compile itself.

When compiled, the model requires about 2800 bytes of
memory. An expanded version with formatted output and
compiling aids would require about Z+000 bytes. A 'full'
implementation usually requires 6000 to 7000 bytes
(including editor, assembler, and disk interface).

The following information consists of word definitions
you will find in the CODE definitions. These are dependent
on the micro-computer used, these being for the MOS Technology
5602.

Note that the notation in the CODE definitions is
'reverse Polish' as is all of FORTH. This means that the
operand comes before the operator. Each equivalent of a
'line' of assembly code has a symbolic operand, then
any address mode modifier, and finally the op-code mnemonic.
(Note that words that generate actual machine code end in
a ; i.e. LDA,). Therefor:

BOT 1+ LDA,
LDA 1,X

in FORTH would be:
in usual assembler.

And also:
POINTER)Y STA, in FORTH would be:
STA (POINTER),Y in usual assembler.

It takes a bit of getting used to, but reverse Polish
assembler allows full use of FORTH in evaluation of
expressions and the easy generation of the equivalent of macros.

GLOSSARY OF FORTH MODEL

IP address of the Interpretive Pointer in zero-page.
w address of the code field pointer in zero-page.
N address Of an 8 byte scratch area in zero-page.
XSAVE address Of a temporary register for X in zero-page

UP address of the User Pointer in zero-page.

GLOSSARY OF FORTH MODEL, cont

.A
#

» X

X)
BOT

, Y

)Y

BOT 1 +

SEC and
TSX,

R
R n +

PUT

PUSH

PUSHOA

specify accumulator address mode.
specify immediate mode for machine byte literals.
specify memory indexed address mode.
specify indirect memory reference by a zero-page register.
address of low byte of a 16-bit stack item with

,X address mode. X register locates computation
stack in zero-page, relative to address $0000.

address of the^igh byte of the bottom stack item, with ,X mode preset.
SEC 1+ address the second stack item as for BOT.

move the return stack pointer (which is located in
the CPU machine stack in page-one) to X register.

address of low byte of return stack with ,X mode preset.
address of the n-th byte of the return stack with ,X

mode preset. Note that the low byte is at low
memory, so 1+ gets the high byte, and 3 + gets
the high byte of the second item of return stack.

address of routine to replace the present computation
stack high byte from accumulator, and put from
the machine stack one byte which replaces the
present low stack byte; continue on to NEXT.

address of routine to repeat PUT but creating a new
bottom item on the computation stack,

PUTOA address of routine to place the accumulator
at the low stack byte, with the high byte zero.
PUTOA over-writes, while PUSHOA creates new item.

POP POPTWO address of routine to remove one or two 16-bit
items from computation stack.

BINARY address of routine to pop one item and PUT the accumulator
(high) and ML stack (low) over what was second.

SETUP address of a routine to move 16-bit items to zero-page.
Item quantity is in accumulator.

NEXT address of the inner-interpreter, to which all
code routines must return. NEXT fetches
indirectly referred to IP the next compiled
FORTH word address. It then jumps indirectly
to pointed machine code.

• 0 (p

SCR # 6
0 (INPUT-OUTPUT, TIM WFR-780519
1 CODE EMIT XSAVE STX, BOT 1+ LDA, 7F # AND,
2 72C6 JSR, XSAVE L D X , POP JMP,
3 CODE KEY XSAVE STX, BEGIN, BEGIN, 8 # LDX,
4 BEGIN, 6E02 LDA, .A L S R , CS END, 7320 JSR,
5 BEGIN, 7 3 ID JSR, 0 X) CMP, 0 X) CMP, 0 X) CMP,
6 O X) CMP, 0 X) CMP, 6E02 LDA, .A LSR, PHP, TYA,
7 .A LSR, PLP, CS IF, 80 # ORA, THEN, TAY, DEX,
8 0= END, 7 31D JSR, FF # EOR, 7F # AND, 0- NOT END,
9 7F it CMP, 0- NOT END, XSAVE LDX, PUSHOA JMP,

10 CODE CR XSAVE STX, 728A JSR, XSAVE LDX, NEXT JMP,
1 1
12 CODE ? T ERMINAL 1 it LDA, 6E02 BIT, 0- NOT IF,
13 BEGIN, 7 3 ID JSR, 6E02 BIT, 0= END, INY, THEN,
14 TYA, PUSHOA JMP,
15 DECIMAL :S

SCR it 7
0 (INPUT-OUTPUT, APPLE
1 CODE HOME FC58 JSR, NEXT JMP,
2
o

CODE SCROLL FC70 JSR, NEXT JMP,
J
4 HERE ' KEY 2 - i (POINT KEY
5 FDOC JSR, 7F It AND, PUSHOA JMP,
6 HERE ' EMIT 2 - j (POINT EMIT
7 BOT 1+ LDA, 80 it ORA , FD ED JSR,
8 HERE ' CR 2 - i (POINT CR
9 FD8E JSR, NEXT JMP ,

1 0 HERE ' ? T ERMINAL 2 - ! (POINT
1 1 C000 BIT, 0<
1 2 IF, BEGIN, CO 10 BIT, C000 BI
1 3 THEN, TYA , PUSHOA JMP,
1 4
15 DECIMAL ;S

WFR-78 0 7 30

TO HERE)

TO HERE)
POP JMP,

TO HERE)

? T ERM TO HERE)

T, 0< NOT END, INY,

SCR it 8
0 (INPUT-OUTPUT, SYM-1 WFR-781015
1 HEX
2 CODE KEY 8A58 JSR, 7F It AND, PUSHOA JMP,
3
4 CODE EMIT BOT 1+ LDA, 8A47 JSR, POP JMP,
5
6 CODE CR 834D JSR, NEXT JMP,
7
8 CODE ? TERMINAL (BREAK TEST FOR ANY KEY)
9 8B3C JSR, CS

10 IF, BEGIN, 8B3C JSR, CS NOT END, INY, THEN,
11 TYA, PUSHOA JMP,
1 2

14
15 DECIMAL ;S

FORTH INTEREST GROUP MAY 1, 19 79

SCR
0

12
(COLD AND WARM ENTRY, USER PARAMETERS WFR-79APR29

1 ASSEMBLER OBJECT MEM HEX
2 NOP, HERE JMP, (WORD ALIGNED VECTOR TO COLD)
3 NOP, HERE JMP, (WORD ALIGNED VECTOR TO WARM)
4 0000 , 0001 , (CPU, AND REVISION PARAMETERS)
5 0000 9 (TOPMOST WORD IN FORTH VOCABULARY)
6 7 F 9 (BACKSPACE CHARACTER)
7 3BA0 y (INITIAL USER AREA)
8 009E 9 (INITIAL TOP OF STACK)
9 01FF 9 (INITIAL TOP OF RETURN STACK)

1 0 0100 9 (TERMINAL INPUT BUFFER)
1 1 0 0 1F 9 (INITIAL NAME FIELD WIDTH)
1 2 0001 9 (INITIAL WARNING - 1)
1 3 0200 9 (INITIAL FENCE)
14 0000 9 (COLD START VALUE FOR DP)
1 5 0000 9 (COLD START VALUE FOR VOC-LINK) -->

SCR if 13
0 (START OF NUCLEUS, LIT, PUSH, PUT, NEXT WFR-78DEC26)
1 CODE LIT (PUSH FOLLOWING LITERAL TO STACK *)
2 IP)Y LDA, PHA, IP INC, 0- IF, IP 1+ INC, THEN,
3 IP)Y LDA, IP INC, 0- IF, IP 1+ INC, THEN,
4 LABEL PUSH (PUSH ACCUM AS HI-BYTE, ML STACK AS LO-BYTE *)
5 DEX, DEX,
6 LABEL PUT (REPLACE BOTTOM WITH ACCUM. AND ML STACK *)
7 BOT 1+ STA, PLA, BOT STA,
8 LABEL NEXT (EXECUTE NEXT FORTH ADDRESS, MOVING IP *)
9 1 // LDY, IP) Y LDA, W 1+ STA, (FETCH CODE ADDRESS)

10 DEY, IP)Y LDA, W STA,
11 CLC, IP LDA, 2 # ADC, IP STA, (MOVE IP AHEAD)
12 CS IF, IP 1+ INC, THEN,
13 W 1 - JMP, (JUMP INDIR. VIA W THRU CODE FIELD TO CODE)
14
15 — >

SCR # 14
0 (SETUP WFR-790225)
1 HERE 2+ , (MAKE SILENT WORD *)
2 IP)Y LDA, PHA, TYA, 'T LIT OB + 0“ NOT END,
3
4 LABEL SETUP (MOVE # ITEMS FROM STACK TO ' N ' AREA OF Z-PAGE *)
5 .A ASL, N 1 - STA,
6 BEGIN, BOT LDA, N ,Y STA, INX, INY,
7 N 1 - C P Y , 0- END, 0 # LDY, RTS,
8
9 CODE EXECUTE (EXECUTE A WORD BY ITS CODE FIELD *)

10 (ADDRESS ON THE STACK *)
11 BOT LDA, W STA, BOT 1+ LDA, W 1+ STA,
12 INX, INX, W 1 - JMP,
1 3
14
15 -->

FORTH INTEREST GROUP MAY 1, 1979

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

it 15
(BRANCH, OBRANCH
CODE BRANCH

CLC, IP)Y LDA,
INY, IP)Y LDA,

CODE OBRANCH

W/ 16-BIT OFFSET WFR-79APROI)
(ADJUST IP BY IN-LINE 16 BIT LITERAL *)

IP ADC, PHA,
IP 1+ ADC, IP 1+ STA,

PLA, IP STA, NEXT 2+ JMP,

(IF BOT IS ZERO, BRANCH FROM LITERAL *)
I NX , I NX, FE ,X LDA, FF ,X ORA,
' BRANCH 0“ NOT END, (USE 'BRANCH' FOR FALSE)

LABEL BUMP: (TRUE JUST MOVES IP 2
CLC, IP LDA, 2 # ADC, IP STA,
CS IF, IP 1+ INC, THEN, NEXT JMP,

BYTES *)

SCR it 16
0 (LOOP CONTROL WFR-79MAR20)
1 CODE (LOOP) (INCREMENT LOOP INDEX, LOOP UNTIL «> LIMIT *)
2 XSAVE STX, TSX, R INC, 0- IF, R 1+ INC, THEN,
3 LABEL L 1: CLC, R 2+ LDA, R SBC, R 3 + LDA, R 1+ SBC,
4 LABEL L 2 : XSAVE LDX, (LIMIT-INDEX-1)
5 .A ASL, ' BRANCH CS END, (BRANCH UNTIL D7 SIGN-1)
6 PLA, PLA, PLA, PLA, BUMP: JMP, (ELSE EXIT LOOP)
7
8 CODE (+LOOP) (INCREMENT INDEX BY STACK VALUE + /” *)
9 INX, INX, XSAVE STX, (POP INCREMENT)

10 FF ,X LDA, PHA, PHA, FE ,X LDA, TSX, INX, INX,
11 CLC, R ADC, R STA, PLA, R 1 + ADC, R 1 + STA,
12 PLA, LI: 0< END, (AS FOR POSITIVE INCREMENT)
13 CLC, R LDA, R 2+ SBC, (INDEX-LIMIT-1)
14 R 1+ LDA, R 3 + SBC, L 2 : JMP,
1 5 — >

SCR
0
1
2
3
4
5
6
7
8
9 10

1 1
1 2
13
14
15

it 17
((DO-

CODE (DO)
SEC 1+ LDA,
BOT 1+ LDA,

LABEL POPTWO
LABEL POP

CODE I

PHA,
PHA,

INX,
INX,

WFR-79MAR30)

(MOVE TWO STACK ITEMS TO RETURN STACK *)
SEC LDA, PHA,
BOT LDA, PHA,

INX,
INX, NEXT JMP,

(COPY CURRENT LOOP INDEX TO STACK *)
(THIS WILL LATER BE POINTED TO 'R')

FORTH INTEREST GROUP MAY 1, 19 79

SCR # 18
0 (DIGIT WFR-781202)
1 CODE DIGIT (CONVERT ASCII CHAR-SECOND, WITH BASE-BOTTOM *)
2 (IF OK RETURN DIGIT-SECOND, TRUE-BOTTOM; *)
3 (OTHERWISE FALSE-BOTTOM. *)
4 SEC, SEC LDA, 30 # SBC,
5 0< NOT IF, OA # CMP, (ADJUST FOR ASCII LETTER)
6 0< NOT IF, SEC, 07 # SBC, OA # CMP,
7 G< NOT IF,
8 SWAP (AT COMPILE TIME) THEN, BOT CMP, (TO BASE)
9 0< IF, SEC STA, 1 # LDA,

10 PHA, TYA, PUT JMP,
1 1 (STORE RESULT SECOND AND RETURN TRUE)
12 THEN, THEN, THEN, (CONVERSION FAILED)
13 TYA, PHA, INX, INX, PUT JMP, (LEAVE BOOLEAN FALSE)
I 4
15 -->

SCR # 19
0 (FIND FOR VARIABLE LENGTH NAMES WFR-790225)
1 CODE (FIND) (HERE, NFA ... PFA, LEN BYTE, TRUE; ELSE FALSE *)
2 2 # LDA, SETUP JSR, XSAVE STX,
3 BEGIN, 0 # LDY, N)Y LDA, N 2+) Y EOR, 3F // AND, 0-
4 IF, (GOOD) BEGIN, INY, N)Y LDA, N 2+)Y EOR, .A ASL, 0-
5 IF, (STILL GOOD) SWAP CS (LOOP TILL D7 SET)
6 END, XSAVE LD X , DEX, DEX, DEX, DEX, CLC,
7 TYA, 5 # ADC, N ADC, SEC STA, 0 # LDY,
8 TYA, N 1+ ADC, SEC 1+ STA, BOT 1+ STY,
9 N)Y LDA, BOT STA, 1 # LDA, PHA, PUSH JMP, (FALSE)

10 THEN, CS NOT (AT LAST CHAR?) IF, SWAP THEN,
II BEGIN, INY, N)Y LDA, 0< END, (TO LAST CHAR)
12 THEN, INY, (TO LINK) N)Y LDA, TAX, INY,
13 N)Y LDA, N 1+ STA, N STX, N ORA, (0 LINK ?)
14 0- END, (LOOP FOR ANOTHER NAME)
15 XSAVE LDX, 0 # LDA, PHA, PUSH JMP, (FALSE) — >

SCR # 20
0 (ENCLOSE WFR-780926)
1 CODE ENCLOSE (ENTER WITH ADDRESS-2, DELIM-1. RETURN WITH *)
2 (ADDR-4, AND OFFSET TO FIRST CH-3, END WORD-2, NEXT CH-1 *)
3 2 # LDA, SETUP JSR, TXA, SEC, 8 # SBC, TAX,
4 SEC 1+ STY, BOT 1+ STY, (CLEAR HI BYTES) DEY,
5 BEGIN, INY, N 2+)Y LDA, (FETCH CHAR)
6 N CMP, 0- NOT END, (STEP OVER LEADING DELIMITERS)
7 BOT 4 + STY, (SAVE OFFSET TO FIRST CHAR)
8 BEGIN, N 2+)Y LDA, 0**
9 IF, (NULL) SEC STY, (IN EW) BOT STY, (IN NC)

10 TYA, BOT 4 + CMP, 0-
11 IF, (Y-FC) SEC INC, (BUMP EW) THEN, NEXT JMP,
12 THEN, SEC STY, (IN EW) INY, N CMP, (DELIM ?)
13 0- END, (IS DELIM) BOT STY, (IN NC) NEXT JMP,
14
15 — >

FORTH INTEREST GROUP MAY 1, 1979

,Jo

SCR # 21
0 (TERMINAL VECTORS WFR-79MAR30)
1 (THESE WORDS ARE CREATED WITH NO EXECUTION CODE, YET.)
2 (THEIR CODE FIELDS WILL BE FILLED WITH THE ADDRESS OF THEIR)
3 (INSTALLATION SPECIFIC CODE.)
4
5 CODE EMIT (PRINT ASCII VALUE ON BOTTOM OF STACK *)
6
7 CODE KEY (ACCEPT ONE TERMINAL CHARACTER TO THE STACK *)
8
9 CODE 7TERMINAL ('BREAK' LEAVES 1 ON STACK; OTHERWISE 0 *)

1 0
11 CODE CR (EXECUTE CAR. RETURN, LINE FEED ON TERMINAL *)
1 2
13 -->
14

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
15

*)

)

// 2 2
(CMOVE, WFR-7 9MAR2 0)
CODE CMOVE (WITHIN MEMORY; ENTER W/ FROM-3, TO-2, QUAN-1

3 // LDA, SETUP JSR, (MOVE 3 ITEMS TO 'N' AREA)
BEGIN, BEGIN, N CPY, 0= (DECREMENT BYTE COUNTER AT 'N‘

IF, N 1+ DEC, 0< (EXIT WHEN DONE)
IF, NEXT JMP, THEN, THEN,

N 4 +)Y LDA, N 2+)Y STA, INY, 0=
END, (LOOP TILL Y WRAPS, 22 CYCLES/BYTE)
N 5 + INC, N 3 + INC, (BUMP HI BYTES OF POINTERS)

JMP, (BACK TO FIRST 'BEGIN')

— >

SCR
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(
23
U*, UNSIGNED MULTIPLY FOR 16 BITS

CODE U*
(

SEC LDA,
SEC 1+ LDA,
10 # LDY,
BEGIN, BOT

(16 BIT MULTIPLICAND-2,
32 BIT UNSIGNED PRODUCT:
N STA, SEC STY,
N 1+ STA, SEC 1+ STY,

RS-WFR-80AUG16)
16 BIT MULTIPLIER-1 *)

LO WORD-2, HI WORD-1 *)

(multiplicand to n)

CS

2+ ASL, BOT 3 + ROL, BOT ROL, BOT 1+ ROL,
(double product while sampling D15 of multiplier)
IF, (set) CLC,
(add multiplicand to partial product 32 bits)

N LDA, BOT
N 1+ LDA, BOT

CS IF, BOT INC,
ENDIF, DEY, 0=

UNTIL, NEXT JMP,

2 + ADC, BOT 2 + STA,
3 + ADC, BOT 3 + STA,
0= IF, BOT 1+ INC, ENDIF, ENDIF,
(corrected for carry bug)

c;
— >

FORTH INTEREST GROUP Aug 23, 1980

3/

SCR # 2 4
0 (U/,
1 CODE U/
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
15

UNSIGNED DIVIDE FOR 31 BITS
(31 BIT DIVIDEND-2, -3,
(16 BIT REMAINDER-2, 16

SEC LDY, SEC 2 + STY,
1+ LDY, SEC 3 + STY,

3 +

SEC 2 + LDA,
SEC 3 + LDA, SEC
10 it LDA, N STA,
BEGIN, SEC 2 + ROL, SEC

SEC 2 + LDA, BOT
SEC 3 + LDA, BOT 1+
CS IF, SEC 2+ STY,
SEC ROL, SEC 1+ ROL,
N DEC, 0=

END, POP JMP,

WFR-79APR29)
16 BIT DIVISOR-1 *)
BIT QUOTIENT-1 *)
.A ASL, SEC STA
.A ROL, SEC 1+ STA

— >

ROL,
SBC ,
SBC ,

SEC 3

SEC ,
TAY ,

+ STA, THEN,

SCR # 2 5
0 (LOGICALS
1
2 CODE AND
3 BOT LDA,
4 BOT 1+ LDA,
5
6 CODE OR
7 BOT LDA,
8 BOT 1+ LDA,
9

10 CODE XOR
1 1 BOT
1 2
1 3
14 — >
15

LDA,
BOT 1+ LDA,

WFR-7 9APR2 0)

(LOGICAL BITWISE AND OF BOTTOM TWO ITEMS *)
SEC AND, PHA,
SEC 1+ AND, INX, INX, PUT JMP,

(LOGICAL BITWISE 'OR' OF BOTTOM TWO ITEMS *)
SEC ORA, PHA,
SEC 1 + ORA, INX, INX, PUT JMP,

(LOGICAL 'EXCLUSIVE-OR' OF BOTTOM TWO ITEMS *)
SEC EOR, PHA,
SEC 1+ EOR, INX, INX, PUT JMP,

SCR # 2 6
0 (STACK INITIALIZATION WFR-7 9MAR3 0)
1 CODE SP@ (FETCH STACK POINTER TO STACK *)
2 TX A ,
3
/,

LABEL PUSHOA PHA, 0 # LDA, PUSH JMP ,
H
5 CODE SP! (LOAD SP FROM 'SO' *)
6
7

06 # LDY, UP)Y LDA , TAX, NEXT JMP ,
/
8 CODE R P ! (LOAD RP FROM RO *)
9 XSAVE STX, 08 // LDY , UP)Y LDA, TAX, TXS ,

1 0 XSAVE LDX , NEXT JMP,
1 1
1 2 CODE ; S (RESTORE IP REGISTER FROM RETURN STACK *)
1 3 PLA, IP STA, PLA, IP 1+ STA, NEXT JMP,
1 4
15 -->

FORTH INTEREST GROUP MAY 1, 19 79

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

2 7
(RETURN STACK WORDS
CODE LEAVE (

XSAVE STX, TSX,
R 1+ LDA, R 3 +

FORCE EXIT OF DO-LOOP BY
R LDA, R 2+ STA,

STA, XSAVE LDX, NEXT JMP,

WFR-7 9MAR2 9)
SETTING LIMIT *)

(TO INDEX *)

CODE >R
BOT 14-

CODE R >
DEX ,

CODE R
XSAVE
XSAVE
R

- - >

LDA, PHA,
(MOVE FROM COMP. STACK TO RETURN
BOT LDA, PHA, INX, INX, NEXT

(MOVE FROM RETURN STACK TO COMP.
BOT STA, PLA, BOT 1+ STA, NEXTDEX, PLA,

(COPY THE BOTTOM OF RETURN STACK
STX, TSX, R LDA, PHA, R 1+ LDA,
LDX, PUSH JMP,
-2 BYTE.IN I !

STACK
JMP ,

STACK
JMP ,

TO COMP. STACK *)

SCR # 2 8
0 (TESTS AND LOGICALS WFR-79MAR19)
1
2 CODE 0= (REVERSE LOGICAL STATE OF BOTTOM OF STACK *)
3 BOT LDA, BOT 1+ ORA, BOT 1+ STY,
4 0= IF, INY, THEN, BOT STY, NEXT JMP,
5
6 CODE 0< (LEAVE TRUE IF NEGATIVE; OTHERWISE FALSE *)
7 BOT 1+ ASL, TYA, .A ROL, BOT 1+ STY, BOT STA, NEXT JMP,
8

10 - - >

SCR # 2 9
0 (MATH WFR-7 9MAR 19)
1 CODE + (LEAVE THE SUM OF THE BOTTOM TWO STACK ITEMS *)
2 CLC, BOT LDA, SEC ADC, SEC STA, BOT 1+ LDA, SEC 1+ ADC,
3 SEC 1+ STA, INX, INX, NEXT JMP,
4 CODE D+ (ADD TWO DOUBLE INTEGERS, LEAVING DOUBLE *)
5 CLC, BOT 2 + LDA, BOT 6 + ADC, BOT 6 + STA,
6 BOT 3 + LDA, BOT 7 + ADC, BOT 7 + STA,
7 BOT LDA, BOT 4 + ADC, BOT 4 + STA,
8 BOT 1 + LDA, BOT 5 + ADC, BOT 5 + STA, POPTWO JMP,
9 CODE MINUS (TWOS COMPLEMENT OF BOTTOM SINGLE NUMBER *)

10 SEC, TYA, BOT SBC, BOT STA,
11 TYA, BOT 1+ SBC, BOT 1+ STA, NEXT JMP,
12 CODE DMINUS (TWOS COMPLEMENT OF BOTTOM DOUBLE NUMBER *)
13 SEC, TYA, BOT 2 + SBC, BOT 2 + STA,
14 TYA, BOT 3 + SBC, BOT 3 + STA,
15 1 BYTE.IN MINUS JMP, — >

FORTH INTEREST GROUP MAY 1, 1979

S C R J1/ 3 0
0 (STACK MANIPULATION WFR-79MAR29)
1 CODE OVER (DUPLICATE SECOND ITEM AS NEW BOTTOM *)
2 SEC LDA, PHA, SEC 1+ LDA, PUSH JMP,
3
4 CODE DROP (DROP BOTTOM STACK ITEM *)
5 POP -2 BYTE.IN DROP ! (C.F. VECTORS DIRECTLY TO 'POP')
6
7 CODE SWAP (EXCHANGE BOTTOM AND SECOND ITEMS ON STACK *)
8 SEC LDA, PHA, BOT LDA, SEC STA,
9 SEC 1+ LDA, BOT 1+ LDY, SEC 1+ STY, PUT JMP,

1 0
11 CODE DUP (DUPLICATE BOTTOM ITEM ON STACK *)
12 BOT LDA, PHA, BOT 1+ LDA, PUSH JMP,
1 3
14 -->
1 5

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
1 4
15

31
(MEMORY INCREMENT, WFR-7 9MAR3 0)

CODE +! (ADD SECOND TO MEMORY 16 BITS ADDRESSED BY BOTTOM *)
CLC, BOT X) LDA, SEC ADC, BOT X) STA,
BOT INC, 0= IF, BOT 1+ INC, THEN,
BOT X) LDA, SEC 1+ ADC, BOT X) STA, POPTWO JMP,

CODE TOGGLE (BYTE AT ADDRESS-2, BIT PATTERN-1
SEC X) LDA, BOT EOR, SEC X) STA, POPTWO JMP,

- - >

)

SCR // 3 2
0 (MEMORY FETCH AND STORE WFR-781202)
1 CODE @ (REPLACE STACK ADDRESS WITH 16 BIT *)
2 BOT X) LDA, PHA, (CONTENTS OF THAT ADDRESS *)
3 BOT INC, 0= IF, BOT 1+ INC, THEN, BOT X) LDA, PUT JMP,
4
5 CODE C@ (REPLACE STACK ADDRESS WITH POINTED 8 BIT BYTE *)
6 BOT X) LDA, BOT STA, BOT 1+ STY, NEXT JMP,
7
8 CODE ! (STORE SECOND AT 16 BITS ADDRESSED BY BOTTOM *)
9 SEC LDA, BOT X) STA, BOT INC, 0= IF, BOT 1+ INC, THEN,

10 SEC 1+ LDA, BOT X) STA, POPTWO JMP,
1 1
12 CODE C! (STORE SECOND AT BYTE ADDRESSED BY BOTTOM *)
13 SEC LDA, BOT X) STA, POPTWO JMP,
1 4
15 DECIMAL ; S

FORTH INTEREST GROUP MAY 1, 19 79

SCR // 3 3
0 (;, ;, WFR-7 9MAR3 0)
1
2 : : (CREATE NEW COLON-DEFINITION UNTIL *)
3 ? EXE C !CSP CURRENT <? CONTEXT !
4 CREATE] ; CODE IMMEDIATE
5 IP 1+ LDA, PHA, IP LDA, PHA, CLC, W LDA, 2 # ADC,
6 IP STA, TYA, W 1+ ADC, IP 1+ STA, NEXT JMP,
7
8
9 : ; (TERMINATE COLON-DEFINITION *)

10 ?CSP COMPILE ; S
11 SMUDGE [; IMMEDIATE
1 2

15 -->

SCR # 3 4
0 (CONSTANT, VARIABLE, USER WFR-7 9MAR 3 0)
1 : CONSTANT (WORD WHICH LATER CREATES CONSTANTS *)
2 CREATE SMUDGE , ;CODE
3 I // LDY, W) Y LDA, PHA, INY, W)Y LDA, PUSH JMP,
4
5 : VARIABLE (WORD WHICH LATER CREATES VARIABLES *)
6 CONSTANT ;CODE
7 CLC, W LDA, 2 # ADC, PHA, TYA, W 1+ ADC, PUSH JMP,
8
10 : USER (CREATE USER VARIABLE *)
11 CONSTANT ;CODE
1 2 2 // LDY, CLC, W) Y LDA, UP ADC, PHA,
13 0 // LDA, UP 1 + ADC , PUSH JMP ,
14
1 5 -->

SCR // 35
0 (DEFINED CONSTANTS WFR-78MAR2 2)
1 HEX
2 00 CONSTANT 0 01 CONSTANT 1
3 02 CONSTANT 2 03 CONSTANT 3
4 20 CONSTANT BL (ASCII BLANK *)
5
c.

40 CONSTANT C/L (TEXT CHARACTERS PER LINE *)
b
7 3BE0 CONSTANT. FIRST (FIRST BYTE RESERVED FOR BUFFERS *)
8 4000 CONSTANT LIMIT (JUST BEYOND TOP OF RAM *)
9 80 CONSTANT B/BUF (BYTES PER DISC BUFFER *)

1 0
1 1

8 CONSTANT B/SCR (BLOCKS PER SCREEN = 1024 B/BUF / *)
1 1
12 00 +ORIGIN
1 3 : +ORIGIN LITERAL + ; (LEAVES ADDRESS RELATIVE TO ORIGIN *)
14 -->
15

FORTH INTEREST GROUP MAY 1, 1979

SCR # 3 6
0 (USER VARIABLES
1 HEX (
2 (06 USER SO)
3 (08 USER RO)
4 OA USER TIB
5 OC USER WIDTH
6 OE USER WARNING
7 10 USER FENCE
8 1 2 USER DP
9 14 USER VOC-LINK

1 0 1 6 USER BLK
1 1 18 USER IN
1 2 1A USER OUT
1 3 1C USER SCR
1 4 -->
15

WFR-7 8APR 2 9)
0 THRU 5 RESERVED, REFERENCED TO $00A0 *)

(TOP OF EMPTY COMPUTATION STACK *)
(TOP OF EMPTY RETURN STACK *)

(TERMINAL INPUT BUFFER *)
(MAXIMUM NAME FIELD WIDTH *)

(CONTROL WARNING MODES *)
(BARRIER FOR FORGETTING *)

(DICTIONARY POINTER *)
(TO NEWEST VOCABULARY *)
(INTERPRETATION BLOCK *)

(OFFSET INTO SOURCE TEXT *)
(DISPLAY CURSOR POSITION *)

(EDITING SCREEN *)

SCR // 3 7
0 (USER VARIABLES,
1 IE USER OFFSET
2 20 USER CONTEXT
3 22 USER CURRENT
4 24 USER STATE
5 26 USER BASE
6 28 USER DPL
7 2 A USER FLD
8 2C USER CSP
9 2E USER R#

1 0 30 USER HLD
1 1 -->
1 2
1 3
1 4
15

CONT. WFR-79APR29)
(POSSIBLY TO OTHER DRIVES *)

(VOCABULARY FIRST SEARCHED *)
(SEARCHED SECOND, COMPILED INTO *)

(COMPILATION STATE *)
(FOR NUMERIC INPUT-OUTPUT *)

(DECIMAL POINT LOCATION *)
(OUTPUT FIELD WIDTH *)

(CHECK STACK POSITION *)
(EDITING CURSOR POSITION *)

(POINTS TO LAST CHARACTER HELD IN PAD *)

SCR // 38
0 (HI-LEVEL MI SC
1 1+ 1 +
2 2+ 2 +
3 HERE DP @
4 ALLOT DP +!
5 , HERE ! 2
6 C, HERE C!
7 MINUS +
8 - 0 = 9

9 < - 0< 9

1 0 > SWAP < ;
1 1 ROT > R SWAP
1 2 SPACE BL
1 3 -DUP DUP
1 4
1 5

->

ALLOT
1 ALLOT

R> SWAP ;
EMIT ;
IF DUP ENDIF

WFR-7 9APR2 9)
(INCREMENT STACK NUMBER BY ONE *)
(INCREMENT STACK NUMBER BY TWO

FETCH NEXT FREE ADDRESS IN DICT.
(MOVE DICT. POINTER AHEAD

. (ENTER STACK NUMBER TO DICT.
; (ENTER STACK BYTE TO DICT.

(LEAVE DIFF. SEC - BOTTOM
(LEAVE BOOLEAN OF EQUALITY

(LEAVE BOOLEAN OF SEC < BOT
(LEAVE BOOLEAN OF SEC > BOT

; (ROTATE THIRD TO BOTTOM
(PRINT BLANK ON TERMINAL

; (DUPLICATE NON-ZERO

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

FORTH INTEREST GROUP MAY 1, 19 79

S C R // 39
0 (VARIABLE LENGTH NAME SUPPORT WFR-79MAR30)
1 : TRAVERSE (M0VE ACROSS NAME FIELD *)
2 (ADDRESS-2, DIRECTION-1, I.E. -1=R TO L, + 1=L TO R *)
3 SWAP
A BEGIN OVER + 7F OVER C@ < UNTIL SWAP DROP ;
5
6 : LATEST CURRENT @ @ ; (NFA OF LATEST WORD *)
7
8
9 (FOLLOWING HAVE LITERALS DEPENDENT ON COMPUTER WORD SIZE)

1 0
I 1 L F A 4 9 (CONVERT A WORDS PFA TO LFA *)
1 2 CFA 2 ~ * (CONVERT A WORDS PFA TO CFA *)
1 3 NFA 5 - -1 TRAVERSE ; (CONVERT A WORDS PFA TO NFA *)
1 4 PFA 1 TRAVERSE 5 + ; (CONVERT A WORDS NFA TO PFA *)
1 5 -->

S C R if 4 0
0 (ERROR PROCEEDURES, PER SHIRA WFR- 7 9MAR 2 3)
1 : JCSP SP<3 CSP ! ; (SAVE STACK POSITION IN 'CSP' *)

3 : TERROR (BOOLEAN-2, ERROR TYPE-1, WARN FOR TRUE *)
'4 SWAP IF ERROR ELSE DROP END IF ;
5
6 : ? COMP STATE @ 0= 11 ? ERROR ; (ERROR IF NOT COMPILING *)
7
8 : ? EXEC STATE @ 12 ? ERROR ; (ERROR IF NOT EXECUTING *)
9

10 : ? PA IR S - 13 ? ERROR ; (VERIFY STACK VALUES ARE PAIRED *)
1 1
12 : ? CSP SP@ CSP @ - 14 ? ERROR ; (VERIFY STACK POSITION *)
1 3
L4 : ? LOAD ING (VERIFY LOADING FROM DISC *)
15 BLK @ 0= 16 TERROR ; — >

SCR // 41
0 (COMPILE, SMUDGE, HEX, DECIMAL WFR-7 9APR 2 0)
1
2 : COMPILE (COMPILE THE EXECUTION ADDRESS FOLLOWING *)
3 ? COMP R > DUP 2+ >R @ , ;
4
5 : [0 STATE ! ; IMMEDIATE (STOP COMPILATION *)
6
7 :] CO STATE ! ; (ENTER COMPILATION STATE *)
8
9 : SMUDGE LATEST 20 TOGGLE ; (ALTER LATEST WORD NAME *)

1 0
11 : HEX 10 BASE 1 ; (MAKE HEX THE IN-OUT BASE *)
1 2
13 : DECIMAL OA BASE ! ; (MAKE DECIMAL THE IN-OUT BASE *)
14 -->
1 5

FORTH INTEREST GROUP MAY 1, 1979

37

SCR //
0 (
1
2 :
3
4
5
6 :
7
8
9

1 0
1 1
1 2
1 3
1 4
15

42
; CODE WFR-7 9APR2 0)

(;CODE) (WRITE CODE FIELD POINTING TO CALLING ADDRESS *)
R> LATEST PFA CFA ! ;

; CODE (TERMINATE A NEW DEFINING WORD *)
?CSP COMPILE (; CODE)
[COMPILE] [SMUDGE ; IMMEDIATE

SCR # 4 3
0 (<BUILD, DOES > WFR-7 9MAR2 0)
1
2 : <BUILDS 0 CONSTANT ; (CREATE HEADER FOR 'DOES>' WORD *)
3
4 : D 0 E S > (REWRITE PFA WITH CALLING HI-LEVEL ADDRESS *)
5 (REWRITE CFA WITH 'DOES>' CODE *)
6 R> LATEST PFA ! ;CODE
7 IP 1+ LDA, PHA, IP LDA, PHA, (BEGIN FORTH NESTING)
8 2 // LDY, W) Y LDA, IP STA, (FETCH FIRST PARAM)
9 INY, W)Y LDA, IP 1+ STA, (AS NEXT INTERP. PTR)

10 CLC, W LDA, 4 # ADC, PHA, (PUSH ADDRESS OF PARAMS)
11 W 1+ LDA, 00 // ADC, PUSH JMP,
1 2
13 -->
1 4

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
1 3
1 4
15

44
TEXT

COUNT
TYPE

OUTPUTS
DUP 1 +

-TRAILING
DUP

SWAP C@ ; (
(TYPE STRING

-DUP IF OVER + SWAP
DO I C@ EMIT LOOP

(ADJUST CHAR. COUNT

LEAVE TEXT ADDR
FROM ADDRESS-2,

WFR-7 9APR0 2)
CHAR. COUNT *)

CHAR.COUNT-1 *)

BL
DO

IF

COUNT

OVER
LEAVE
(TYPE

DUP 1 +

IF
22 STATE

COMPILE (,
ELSE

0
")
WORD

ELSE DROP ENDIF ;
TO DROP TRAILING BLANKS *)

OVER + 1 - C@
ELSE 1 - ENDIF LOOP ;
IN-LINE STRING, ADJUSTING RETURN *)
R> + >R TYPE ;

IMMEDIATE

(COMPILE OR PRINT
WORD HERE C@

HERE COUNT TYPE
- - >

QUOTED STRING *)
1+ ALLOT
ENDIF ;

FORTH INTEREST GROUP MAY 1, 19 79

3f

SCR // A 5
0 (TERMINAL INPUT WFR-79APR29)
1
2 : EXPECT (TERMINAL INPUT MEMORY-2, CHAR LIMIT-1 *)
3 OVER + OVER DO KEY DUP OE +ORIG IN (BS)
4 IF DROP 08 OVER I DUP R > 2 + >R
5 ELSE (NOT BS) DUP OD
6 IF (RET) LEAVE DROP BL 0 ELSE DUP
7 I C! 0 I 1+ !
8 ENDIF EMIT LOOP DROP ;
9 : QUERY TIB 0 50 EXPECT 0 IN ! ;
10 8081 HERE
1 I : X BLK @ (END-OF-TEXT IS NULL *)
12 IF (DISC) 1 BLK +! 0 IN ! BLK 0 7 AND 0=
13 IF (SCR END) ?EXEC R> DROP ENDIF (disc dependent)
14 ELSE (TERMINAL) R> DROP
15 ENDIF 5 ! IMMEDIATE — >

SCR it 4 6
0 (FILL, ERASE, BLANKS, HOLD, PAD WFR-7 9APR0 2)
1 : FILL (FILL MEMORY BEG IN-3, QUAN-2, BYTE-1 *)
2 SWAP >R OVER C! DUP 1+ R> 1 - CMOVE ;
3
4 : ERASE (FILL MEMORY WITH ZEROS BEGIN-2, QUAN-1 *)
5 0 FILL ;
6
7 : BLANKS (FILL WITH BLANKS BEGIN-2, QUAN-1 *)
8 BL FILL ;
9

10 : HOLD (HOLD CHARACTER IN PAD *)
11 -1 HLD +! HLD 0 C ! ;
1 2
13 : PAD HERE 44 + ; (PAD IS 68 BYTES ABOVE HERE *)
14 (DOWNWARD HAS NUMERIC OUTPUTS; UPWARD MAY HOLD TEXT *)
1 5 -->

SCR it 4 7
0 (WORD, WFR-7 9APR0 2)
1 : WORD (ENTER WITH DELIMITER, MOVE STRING TO 'HERE' *)
2 BLK 0 IF BLK 0 BLOCK ELSE TIB 0 ENDIF
3 IN 0 + SWAP (ADDRESS-2, DELIMITER- 1)
4 ENCLOSE (ADDRESS-4, START-3, END -2, TOTAL COUNT-1)
5 HERE 22 BLANKS (PREPARE FIELD OF 34 BLANKS)
6 IN +! (STEP OVER THIS STRING)
7 OVER - >R (SAVE CHAR COUNT)
8 R HERE Cl (LENGTH STORED FIRST)
9 + HERE 1 +

1 0 R> CMOVE 5 (MOVE STRING FROM BUFFER TO HERE+1)
1 1
1 2
1 3
1 4

FORTH INTEREST GROUP MAY 1, 19 79

SCR # 4 8
0 ((NUMBER-, NUMBER, -FIND, WFR-79APR29)
1 : (NUMBER) (CONVERT DOUBLE NUMBER, LEAVING UNCONV. ADDR. *)
2 BEGIN 1+ DUP >R C@ BASE @ DIGIT
3 WHILE SWAP BASE @ U* DROP ROT BASE @ U* D+
4 DPL (? 1+ IF 1 DPL +! ENDIF R> REPEAT R> ;
5
6 : NUMBER (ENTER W/ STRING ADDR. LEAVE DOUBLE NUMBER *)
7 0 0 ROT DUP 1+ C@ 2D = DUP >R + -1
8 BEGIN DPL ! (NUMBER) DUP C@ BL
9 WHILE DUP C@ 2E - 0 ? ERROR 0 REPEAT

10 DROP R> IF DMINUS ENDIF ;
1 1
12 : -FIND (RETURN PFA-3, LEN BYTE-2, TRUE-1; ELSE FALSE *)
13 BL WORD HERE CONTEXT @ @ (FIND)
14 DUP 0= IF DROP HERE LATEST (FIND) ENDIF ;
15 — >

SCR
0
1
2
3
4
5
6
7
8
9

1 0
11
1 2
1 3
14
15

4 9
(ERROR HANDLER

: (ABORT) ABORT

WFR-79APR20)

(USER ALTERABLE ERROR ABORT *)

ERROR
WARNING @ 0<
IF (ABORT) ENDIF

(WARNING: -1=ABORT, 0=N0 DISC, 1=DISC *)
(PRINT TEXT LINE REL TO SCR #4 *)
COUNT TYPE ." ? "HERE

MESSAGE SP! IN @ BLK @ QUIT

ID. (
PAD
PAD

■>

PRINT NAME FIELD FROM ITS HEADER ADDRESS *)
020 5 F FILL DUP PFA LFA OVER -
SWAP CMOVE PAD COUNT OIF AND TYPE SPACE

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
15

5 0
(CREATE WFR-79APR28)

CREATE (A SMUDGED CODE HEADER TO PARAM FIELD *)
(WARNING IF DUPLICATING A CURRENT NAME *)

TIB HERE 0A0 + < 2 ?ERROR (6502 only)
-FIND (CHECK IF UNIQUE IN CURRENT AND CONTEXT)
IF (WARN USER) DROP NFA ID.

4 MESSAGE SPACE ENDIF
HERE DUP C@ WIDTH @ MIN 1+ ALLOT
DP C@ OFD = ALLOT (6502 only)

1 - 8 0 TOGGLE (DELIMIT BITS)
i

DUP AO
LATEST
HERE 2+

TOGGLE HERE
CURRENT @

FORTH INTEREST GROUP MAY 1, 19 79

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

5 1
(LITERAL, DLITERAL, [COMPILE], ? STACK

: [COMPILE]
-FIND

: LITERAL

WFR-7 9APR2 9)

(FORCE COMPILATION OF AN IMMEDIATE WORD *)
TERROR DROP CFA IMMEDIATE

(IF COMPILING, CREATE LITERAL *)
STATE @ IF COMPILE LIT

DLITERAL

ENDIF IMMEDIATE

(IF COMPILING, CREATE DOUBLE LITERAL *)
STATE @ IF SWAP [COMPILE] LITERAL

[COMPILE] LITERAL ENDIF ; IMMEDIATE

(FOLLOWING DEFINITION IS INSTALLATION DEPENDENT)
: ? STACK (QUESTION UPON OVER OR UNDERFLOW OF STACK *)

09E SP@ < 1 ? ERROR SP@ 020 < 7 ? ERROR ;
- - >

SCR # 5 2
0 (INTERPRET, WFR-7 9APR18)
1
2 : INTERPRET (INTERPRET OR COMPILE SOURCE TEXT INPUT WORDS *)
3 BEGIN -FIND
4 IF (FOUND) STATE @ <
5 IF CFA , ELSE CFA EXECUTE ENDIF ? STACK
6 ELSE HERE NUMBER DPL @ 1+
7 IF [COMPILE] DLITERAL
8 ELSE DROP [COMPILE] LITERAL ENDIF ? STACK
9 ENDIF AGAIN ;

1 0 - - >
1 1

SCR # 5 3
0 (IMMEDIATE, VOCAB, DEFIN, FORTH, (DJK-WFR-79APR29)
1 : IMMEDIATE (TOGGLE PREC. BIT OF LATEST CURRENT WORD *)
2 LATEST 40 TOGGLE ;
3
4 : VOCABULARY (CREATE VOCAB WITH 'V-HEAD' AT VOC INTERSECT. *)
5 <BU ILD S AO 81 , CURRENT <§ CFA ,
6 HERE VOC-LINK @ , VOC-LINK !
7 DOES> 2+ CONTEXT ! ;
8
9 VOCABULARY FORTH IMMEDIATE (THE TRUNK VOCABULARY *)

1 0
11 : DEFINITIONS (SET THE CONTEXT ALSO AS CURRENT VOCAB *)
12 CONTEXT @ CURRENT ! ;
1 3
14 : ((SKIP INPUT TEXT UNTIL RIGHT PARENTHESIS *)
15 29 WORD ; IMMEDIATE — >

FORTH INTEREST GROUP MAY 1, 19 79

SCR it 5 4
0 (QUIT, ABORT WFR-7 9MAR3 0)
1
2 : QUIT (RESTART, INTERPRET FROM TERMINAL *)
3 0 BLK ! [COMPILE] [
4 BEGIN R P ! CR QUERY INTERPRET
5 STATE <? 0= IF OK" ENDIF AGAIN ;
6
7 : ABORT (WARM RESTART, INCLUDING REGISTERS *)
8 SP! DECIMAL DRO
9 CR FORTH-65 V 4.0"

10 [COMPILE] FORTH DEFINITIONS QUIT ;
1 1

1 3 — >

SCR // 5 5
0 (COLD START WFR-7 9APR 2 9)
1 CODE COLD (COLD START, INITIALIZING USER AREA *)
2 HERE 02 +ORIGIN ! (POINT COLD ENTRY TO HERE)
3 OC +ORIGIN LDA, 'T FORTH 4 + STA, (FORTH VOCAB.)
4 OD +ORIGIN LDA, 'T FORTH 5 + STA,
5 15 it LDY, (INDEX TO VOC-LINK) 0= IF, (FORCED)
6 HERE 06 +ORIGIN ! (POINT RE-ENTRY TO HERE)
7 OF it LDY, (INDEX TO WARNING) THEN, (FROM IF,)
8 10 +ORIGIN LDA, UP STA, (LOAD UP)
9 11 +ORIGIN LDA, UP 1+ STA,

10 BEGIN, OC +ORIGIN ,Y LDA, (FROM LITERAL AREA)
11 UP)Y STA, (TO USER AREA)
12 DEY, 0< END,
13 'T ABORT 100 /MOD it LDA, IP 1+ STA,
14 it LDA, IP STA,
15 6C it LDA, W 1 - STA, 'T RP ! JMP, (RUN) — >

SCR it 56
0 (MATH UTILITY
1 CODE S- >D
2 BOT 1 + LDA ,
3
4 : + - 0< IF MINUS
5
6 : D + -
7 0< IF d m i :
8
9 J ABS DUP + -

1 0 I DABS DUP D+-
1 1
1 2 : MIN
1 3 OVER OVER
1 4 : MAX
1 5 OVER OVER

DJK-WFR-79APR29)
(EXTEND SINGLE INTEGER TO DOUBLE *)

IF ; (APPLY SIGN TO NUMBER BENEATH *)

(APPLY SIGN TO DOUBLE NUMBER BENEATH *)
ENDIF ;

(LEAVE ABSOLUTE VALUE *)
(DOUBLE INTEGER ABSOLUTE VALUE *)

(LEAVE SMALLER OF TWO NUMBERS *)
> IF SWAP ENDIF DROP ;

(LEAVE LARGET OF TWO NUMBERS *)
< IF SWAP ENDIF DROP ; — >

FORTH INTEREST GROUP MAY 1, 19 79

SCR # 5 7
0 (MATH PACKAGE DJK-WFR-7 9APR2 9)
1 : M* (LEAVE SIGNED DOUBLE PRODUCT OF TWO SINGLE NUMBERS *)
2 OVER OVER XOR >R ABS SWAP ABS U* R> D+- ;
3 M/ (FROM SIGNED DOUBLE-3-2, SIGNED DIVISOR-1 *)
4 (LEAVE SIGNED REMAINDER-2, SIGNED QUOTIENT-1 *)
5 OVER >R > R DABS R ABS U /
6 R > R XOR + - SWAP R> +- SWAP ;
7 * U* DROP ; (SIGNED PRODUCT *)
8 /MOD >R S- >D R> M/ ; (LEAVE REM-2, QUOT-1 *)
9 / /MOD SWAP DROP ; (LEAVE QUOTIENT *)

1 0 MOD /MOD DROP ; (LEAVE REMAINDER *)
1 1 * /MOD (TAKE RATION OF THREE NUMBERS, LEAVING *)
1 2 >R M* R> M/ ; (REM-2, QUOTIENT-1 *)
1 3 : */ * /MOD SWAP DROP ; (LEAVE RATIO OF THREE NUMBS *)
1 4 : M/MOD (DOUBLE, SINGLE DIVISOR ... REMAINDER, DOUBLE *)
1 5 >R • 0 R U/ R> SWAP >R U / R> ; — >

SCR # 5 8
0 (DISC UTILITY, GENERAL USE WFR-79APRO 2)
1 FIRST VARIABLE USE (NEXT BUFFER TO USE, STALEST *)
2 FIRST VARIABLE PREV (MOST RECENTLY REFERENCED BUFFER *)
3
4 : +BUF (ADVANCE ADDRESS-1 TO NEXT BUFFER. RETURNS FALSE *)
5 84 (I.E. B/BUF+4) + DUP LIMIT - (IF AT PREV *)
6 IF DROP FIRST ENDIF DUP PREV @ - ;
7
8 : UPDATE (MARK THE BUFFER POINTED TO BY PREV AS ALTERED *)
9 PREV @ @ 8000 OR PREV @ ! ;

1 0
11 : EMPTY-BUFFERS (CLEAR BLOCK BUFFERS; DON'T WRITE TO DISC *)
12 FIRST LIMIT OVER - ERASE ;
13
14 : DRO 0 OFFSET ! ; (SELECT DRIVE # 0 *)
15 : DR 1 07D0 OFFSET ! ; — > (SELECT DRIVE #1 *)

SCR # 59
0 (BUFFER WFR
1 BUFFER (CONVERT BLOCK# TO STORAGE
2 USE @ DUP >R (BUFFER ADDRESS TO BE ASSIGNED
3 BEGIN +BUF UNTIL (AVOID PREV) USE ! (FOR
4 R @ 0< (TEST FOR UPDATE IN THIS BUFFER)
5 IF (UPDATED, FLUSH TO DISC)
6 R 2+ (STORAGE LOC.)
7 R @ 7FFF AND (ITS BLOCK #)
8 0 R/W (WRITE SECTOR TO DISC)
9 ENDIF

1 0 R ! (WRITE NEW BLOCK # INTO THIS BUFFER)
1 1 R PREV ! (ASSIGN THIS BUFFER AS 'PREV')
1 2 R> 2+ (MOVE TO STORAGE LOCATION) ;
1 3
14 — >
15

FORTH INTEREST GROUP MAY 1, 1979

SCR it 60
0 (BLOCK WFR-7 9APR0 2)
1 : BLOCK (CONVERT BLOCK NUMBER TO ITS BUFFER ADDRESS *)
2 OFFSET @ + >R (RETAIN BLOCK # ON RETURN STACK)
3 PREV @ DUP @ R - DUP + (BLOCK - PREV ?)
4 IF (NOT PREV)
5 BEGIN +BUF 0* (TRUE UPON REACHING 'PREV')
6 IF (WRAPPED) DROP R BUFFER
7 DUP R 1 R/W (READ SECTOR FROM DISC)
8 2 - (BACKUP)
9 ENDIF

10 DUP @ R - DUP + 0-
11 UNTIL (WITH BUFFER ADDRESS)
12 DUP PREV !
13 ENDIF
14 R > DROP 2+ ;
15 -->

SCR it 6 1
0 (TEXT OUTPUT FORMATTING WFR-7 9MAY0 3)
1
2 : (LINE) (LINE it , SCR it , ... BUFFER ADDRESS, 64 COUNT *)
3 >R C/L B/BUF */MOD R> B/SCR * +
4 BLOCK + C/L ;
5
6 : .LINE (LINE#, SCR#, ... PRINTED *)
7 (LINE) -TRAILING TYPE ;
8
9 : MESSAGE (PRINT LINE RELATIVE TO SCREEN #4 OF DRIVE 0 *)

10 WARNING @
11 IF (DISC IS AVAILABLE)
12 -DUP IF 4 OFFSET @ B/SCR / - .LINE ENDIF
13 ELSE ." MSG it " . ENDIF ;
14 -->
15

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
1 5

62
LOAD, — >

LOAD
BLK @ >R IN @
INTERPRET R> IN

WFR-79APR0 2)

(INTERPRET SCREENS FROM DISC *)
>R 0 IN ! B/SCR * BLK !
! R> BLK ! ;

?LOADING 0
MOD - BLK +'

(CONTINUE INTERPRETATION ON NEXT SCREEN *)
IN ! B/SCR BLK @ OVER

; IMMEDIATE

FORTH INTEREST GROUP MAY 1, 19 79

SCR it 6 3
0 (INSTALLATION DEPENDENT TERMINAL I-O, TIM WFR-7 9APR2 6)
1 (EMIT) ASSEMBLER
2 HERE -2 BYTE.IN EMIT ! (VECTOR EMITS' CF TO HERE)
3 XSAVE STX, BOT LDA, 7F it AND, 72C6 JSR, XSAVE LDX,
4 CLC, 1A it LDY, UP)Y LDA, 01 it ADC, UP)Y STA,
5 INY, UP) Y LDA, 00 it ADC, UP)Y STA, POP JMP,
6 (AND INCREMENT 'OUT')
7 (KEY)
8 HERE -2 BYTE.IN KEY ! (VECTOR KEYS' CF TO HERE)
9 XSAVE STX, BEGIN, 8 # LDX,

10 BEGIN, 6E02 LDA, .A LSR, CS END, 7320 JSR,
II. BEGIN, 7 31D JSR, 0 X) CMP, 0 X) CMP, 0 X) CMP,
12 0 X) CMP, 0 X) CMP, 6E02 LDA, .A LSR, PHP, TYA,
13 .A LSR, PLP, CS IF, 80 it ORA, THEN, TAY , DEX,
14 0= END, 7 31D JSR, FF it EOR, 7F it AND, 0= NOT END,
15 XSAVE LDX, PUSHOA JMP, -->

SCR it 6 4
0 (INSTALLATION DEPENDENT TERMINAL I-O, TIM WFR-7 9APR0 2)
1
2 (7TERMINAL)
3 HERE -2 BYTE.IN ? TERMINAL ! (VECTOR LIKEWISE)
4 1 // LDA, 6 E 0 2 BIT, 0= NOT IF,
5 BEGIN, 7 3 ID JSR, 6E02 BIT, 0= END, INY, THEN,
6 TYA, PUSHOA JMP,
7
8 (CR)
9 HERE -2 BYTE.IN CR ! (VECTOR CRS' CF TO HERE)

10 XSAVE STX, 728A JSR, XSAVE LDX, NEXT JMP,
1 1
1 2 - - >

SCR
0
1

2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
1 5

it 6 5
(INSTALLATION DEPENDENT DISC
6900 CONSTANT DATA
6901 CONSTANT STATUS

WFR-7 9APR0 2)
(CONTROLIER PORT *)
(CONTROLLER PORT *)

it HL (CONVERT DECIMAL DIGIT FOR DISC CONTROLLER *)
0 OA U/ SWAP 30 + HOLD ;

FORTH INTEREST GROUP MAY 1, 19 79

v r

SCR it 6 6
0 (D/CHAR, ? DIS C , WFR-7 9MAR2 3)
1 CODE D/CHAR (TEST CHAR-1. EXIT TEST BOOL-2, NEW CHAR-1 *)
2 DEX, DEX, BOT 1+ STY, CO it LDA,
3 BEGIN, STATUS BIT, 0= NOT END, (TILL CONTROL READY)
4 DATA LDA, BOT STA, (SAVE CHAR)
5 SEC CMP, 0= IF, INY, THEN, SEC STY, NEXT JMP,
6
7 : ?DISC (UPON NAK SHOW ERR MSG, QUIT. ABSORBS TILL *)
8 1 D/CHAR >R 0= (EOT, EXCEPT FOR SOH *)
9 IF (NOT SOH) R 15 =

10 IF (NAK) CR
11 BEGIN 4 D/CHAR EMIT
12 UNTIL (PRINT ERR MSG TIL EOT) QUIT
13 ENDIF (FOR ENQ, ACK)
14 BEGIN 4 D/CHAR DROP UNTIL (AT EOT)
15 ENDIF R > DROP : — >

SCR it 6 7
0 (BLOCK-WRITE WFR-790103)
1 CODE BLOCK-WRITE (SEND TO DISC FROM ADDRESS-2, COUNT-l *)
2 2 it LDA, SETUP JSR, (WITH EOT AT END *)
3 BECIN, 02 it LDA,
4 BEGIN, STATUS BIT, 0= END, (TILL IDLE)
5 N CPY, 0=
6 IF, (DONE) 04 it LDA, STATUS STA, DATA STA,
7 NEXT JMP,
8 THEN,
9 N 2+)Y LDA, DATA STA, INY,

10 0= END, (FORCED TO BEGIN)
1 1
12 — >

SCR It 6 8
0 (BLOCK-READ, WFR-790103)
1
2 CODE BLOCK-READ (BUF.ADDR-1. EXIT AT 128 CHAR OR CONTROL *)
3 1 It LDA, SETUP JSR,
4 BEGIN, CO it LDA,
5 BEGIN, STATUS BIT, 0= NOT END, (TILL FLAG)
6 50 (B V C , D6=DATA)
7 IF, DATA LDA, N)Y STA, INY, SWAP
8 0< END, (LOOP TILL 128 BYTES)
9 THEN, (OR D6=0, SO D7»l,)

10 NEXT JMP,
1 1
1 2 — >
1 3
14
1 5

FORTH INTEREST GROUP MAY 1979

jJ C

SCR // 6 9
0 (R/W FOR PERSCI 1070 CONTROLLER WFR-79MAY03)
1 OA ALLOT HERE (WORKSPACE TO PREPARE DISC CONTROL TEXT)
2 (IN FORM: C TT SS /D, TT=TRACK, SS “SECTOR, D=DRIVE)
3 (C = I TO READ, 0 TO WRITE *)
4 : R/W (READ/WRITE DISC BLOCK *)
5 (BUFFER ADDRESS-3, BLOCK I t - 2, 1 =READ 0 = WRITE *)
6 LITERAL HLD ! (JUST AFTER WORKSPACE) SWAP
7 0 OVER > OVER 0F9F > OR 6 ? ERROR
8 07D0 (2000 SECT/DR) /MOD it HL DROP 2F HOLD BL HOLD
9 1A /MOD SWAP 1+ #HL It HL DROP BL HOLD (SECTOR 01-26)

1 0 It HL It HL DROP BL HOLD (TRACK 00-76)
1 1 DUP
J 2 IF 49 (I=READ) ELSE 4F (0=WRITE) ENDIF
1 3 HOLD HLD @ OA BLOCK-WRITE (SEND TEXT) ? DIS C
1 4 IF BLOCK -READ EL SE B/BUF BLOCK-WRITE ENDIF
1 5 ? D I S C ; -->

CR it 70
0 (FORWARD REFERENCES WFR-7 9MAR3 0)
1 00 BYTE.IN REPLACED.BY ?EXEC
2 02 BYTE. IN REPLACED.BY !CSP
3 04 BYTE.IN REPLACED.BY CURRENT
4 08 BYTE. IN REPLACED.BY CONTEXT
5 OC BYTE.IN REPLACED.BY CREATE
6 OE BYTE.IN REPLACED.BY]
7 10 BYTE.IN REPLACED.BY (;CODE)
8 .00 BYTE.IN REPLACED.BY ?CSP
9 02 BYTE.IN REPLACED.BY COMPILE

1 0 06 BYTE.IN REPLACED.BY SMUDGE
1 1 08 BYTE.IN 9 REPLACED.BY [
] 2 0 0 BYTE.IN CONSTANT REPLACED.BY CREATE
1 3 02 BYTE. IN CONSTANT REPLACED.BY SMUDGE
1 4 04 BYTE. IN CONSTANT REPLACED.BY ,
1 5 06 BYTE.IN CONSTANT REPLACED.BY (;CODE) -->

CR it 7 1
0 (FORWARD REFERENCES WFR-7 9APR 2 9)
1 02 BYTE.IN VARIABLE REPLACED.BY (;CODE)
2 02 BYTE.IN USER REPLACED.BY (;CODE)
3 06 BYTE.IN ? ERROR REPLACED.BY ERROR
4 OF BYTE.IN tl• REPLACED.BY WORD
5 ID BYTE.IN M REPLACED.BY WORD
6 00 BYTE.IN (ABORT) REPLACED.BY ABORT
7 19 BYTE.IN ERROR REPLACED.BY MESSAGE
8 25 BYTE.IN ERROR REPLACED.BY QUIT
9 OC BYTE.IN WORD REPLACED.BY BLOCK

I 0 IE BYTE.IN CREATE REPLACED.BY MESSAGE
1 1 2 C BYTE.IN CREATE REPLACED.BY MIN
1 2 04 BYTE.IN ABORT REPLACED.BY DRO
1 3 2 C BYTE.IN BUFFER REPLACED.BY R/W
1 4
1 5

30 BYTE.IN BLOCK REPLACED.BY R/W DECIMAL ;S

ORTH INTEREST GROUP MAY 1, 19 79

V1

SCR # 72
0 (', FORGET, DJK-WFR-79DEC02)
1 : ' (FIND NEXT WORDS PFA; COMPILE IT, IF COMPILING *)
2 -FIND 0= 0 TERROR DROP [COMPILE] LITERAL ;
3 IMMEDIATE
4 HEX
5 : FORGET (Dave Kilbridge's Smart Forget)
6 [COMPILE] ' NFA DUP FENCE @ U< 15 ?ERROk
7 >R VOC-LINK @ (start with latest vocabulary)
8 BEGIN R OVER U< WHILE [COMPILE] FORTH DEFINITIONS
9 @ DUP VOC-LINK ! REPEAT (unlink from voc list)

BEGIN DUP 4 - (start with phantom nfa)
BEGIN PFA LFA @ DUP R U< UNTIL
OVER 2 - 1 @ -DUP 0= UNTIL (end of list ?)

10
11
12
13
14
15

R> DP ! — >

SCR # 7 3
0 (CONDITIONAL COMPILER, PER SHIRA
1
2
3

WFR-7 9APR01)

4
5
6
7
8
9

1 0
1 1
1 2
13
14
1 5

BACK

BEGIN

ENDIF

THEN

DO

LOOP

+LOOP

UNTIL

HERE , ; (RESOLVE BACKWARD BRANCH *)

? COMP HERE 1 ; IMMEDIATE

? COMP 2 7PAIRS HERE OVER - SWAP ! ; IMMEDIATE

[COMPILE] ENDIF ; IMMEDIATE

COMPILE (DO) HERE 3 ;

3 ? PAIRS COMPILE (LOOP) BACK

3 7PAIRS COMPILE (+LOOP) BACK

1 7PAIRS COMPILE OBRANCH BACK

IMMEDIATE

IMMEDIATE

IMMEDIATE

IMMEDIATE — >

SCR # 74
0 (CONDITIONAL COMPILER WFR-7 9APR0 1
1
2

; END [COMPILE] UNTIL ; IMMEDIATE

3
lx

: AGAIN 1 ? PAIRS COMPILE BRANCH BACK ; IMMEDIATE
*T
5 : REPEAT >R >R [COMPILE] AGAIN
6
7

R> R> 2 - [COMPILE] ENDIF ; IMMEDIATE
/
8
Q

IF COMPILE OBRANCH HERE 0 , 2 ; IMMEDIATE
y

1 0 : ELSE 2 ? PAIRS COMPILE BRANCH HERE 0 9

i i SWAP 2 [COMPILE] ENDIF 2 ; IMMEDIATE
1 2
13 I WHILE [COMPILE] IF 2+ ; IMMEDIATE
1 4
1 5 —->

FORTH INTEREST GROUP MAY 1, 19 79

SCR it 75
0 (NUMERIC PR
1 : SPACES
2
3 <it PAD
4
5 it> DROP
6
7 SIGN ROT
8
9 it

1 0 BASE
1 1
1 2 : its BEGI
1 3 >
1 4
1 5

0 MAX -DUP IF
WFR-79APR01)

DO SPACE LOOP ENDIF ;

(CONVERT ONE DIGIT, HOLDING IN PAD *)
M/MOD ROT 9 OVER < IF 7 + ENDIF 30 + HOLD ;

BEGIN it OVER OVER OR 0= UNTIL ;

S C R it 76
0 (OUTPUT OPERATORS WFR-7 9APR 2 0)
1
2
3
4
5
6
7
8
9 : .

1 0
1 1 : ?
1 2
1 3
14 -->
1 5

D . R

D .

. R

(DOUBLE INTEGER OUTPUT, RIGHT ALIGNED IN FIELD *)
>R SWAP OVER DABS <it it S SIGN 1t>
R > OVER - SPACES TYPE ;

0 D.R SPACE ;

>R S->D R > D.R

S->D D. :

<?

CFA MESSAGE 2A

(DOUBLE INTEGER OUTPUT *)

(ALIGNED SINGLE INTEGER *)

(SINGLE INTEGER OUTPUT *)

(PRINT CONTENTS OF MEMORY *)

! (PRINT MESSAGE NUMBER)

WFR-7 9APR 2 0)
SCR it 7 7

0 (PROGRAM DOCUMENTATION
1 HEX

LIST (LIST SCREEN BY NUMBER ON STACK *)
DECIMAL CR DUP SCR !

." SCR it " 10 0 DO CR I 3 .R SPACE
I SCR @ .LINE LOOP CR ;

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

INDEX

TRIAD

(PRINT FIRST LINE OF EACH SCREEN FROM-2, TO-1 *)
OC EMIT (FORM FEED) CR 1+ SWAP
DO CR I 3 .R SPACE

0 I .LINE
7TERMINAL IF LEAVE ENDIF LOOP ;

(PRINT 3 SCREENS ON PAGE, CONTAINING it ON STACK *)
OC EMIT (FF) 3 / 3 * 3 OVER
DO CR I LIST LOOP CR
OF MESSAGE CR : DECIMAL — >

FORTH INTEREST GROUP

SWAP

MAY 1, 19 79

SCR
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5

it 7 8
(TOOLS
HEX
: V L 1ST (L I S T C O NT E XT

0 @

W F R - 7 9APR2 0)

V O C A B U L A R Y *)

BEGIN
80 OUT ! C O N T EX T

OUT @ C/L > IF CR 0 OUT 1 ENDIF
DUP ID. SPACE SPACE PFA LFA @
DUP 0= 7T ER M I NA L OR UN TI L DROP ;

SCR # 7 9
0 (TOOLS W F R - 7 9MAY 0 3)
1
9

HEX
z.
3 C R E AT E MON (CALL MO NIT OR , SAVING R E - E N T R Y TO FORTH *)
4
Q 0 C , 4C C, 0 LIT 18 + , SMUDGE
J
6
7
3
9

10 D E C I M A L
1 1 HERE FENCE !
1 2 HE RE 28 ♦ O R I G I N 1 (C OLD START FENCE)
1 3 HERE 30 + 0 R I G I N i (C OLD START DP)
1 4 L A T E S T 12 + O R I G I N ! (T O P M O S T WORD)
1 5 FORTH 6 + 32 + O R I G I N 1 (COLD V O C - L I N K) ;S

SCR o00

0
1

-->

2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
15

FORTH INTEREST GROUP MAY 1, 19 79

So

This is a sample editor, compatable with the fig-FORTH model and simple terminal
devices. The line and screen editing functions are portable„ The code definition
for the string MATCH could be written high level or translated.

SCR # 8 7
0 (TEXT, LINE WFR-7 9MAY 01)
1 FORTH DEFINITIONS HEX
2 : TEXT (ACCEPT FOLLOWING TEXT TO PAD *)
3 HERE C/L 1+ BLANKS WORD HERE PAD C/L 1+ CMOVE ;
4
5 : LINE (RELATIVE TO SCR, LEAVE ADDRESS OF LINE *)
6 DUP FFFO AND 17 ? ERROR (KEEP ON THIS SCREEN)
7 SCR @ (LINE) DROP ;
8 - - >
9

10

1 2
1 3
14

SCR # 88
0 (LINE EDITOR WFR-7 9MAY0 3)
1 VOCABULARY EDITOR IMMEDIATE HEX
2 WHERE (PRINT SCREEN // AND IMAGE OF ERROR *)
3 DUP B/SCR / DUP SCR ! SCR // " DECIMAL
4 SWAP C/L /MOD C/L * ROT BLOCK + CR C/L TYPE
5
6

CR HERE C@ - SPACES 5E EMIT [COMPILE] EDITOR QUIT 9

7 EDITOR DEFINITIONS
8 : //LOCATE (LEAVE CURSOR OFFSET-2, LINE-1 *)
9 R// @ C/L /MOD ;

1 0 : //LEAD (LINE ADDRESS-2, OFFSET-1 TO CURSOR *)
1 1 //LOCATE LINE SWAP ;
1 2 : //LAG (CURSOR ADDRESS-2, COUNT-1 AFTER CURSOR *)
1 3 //LEAD DUP > R + C/L R> - ;
1 4 : -MOVE (MOVE IN BLOCK BUFFER ADDR FROM-2, LINE TO-1 *)
1 5 LINE C/L CMOVE UPDATE ; — >

SCR // 89
0 (LINE EDITING COMMANDS WFR-79MAY0 3)
1 : H (HOLD NUMBERED LINE AT PAD *)
2
3

LINE PAD 1+ C/L DUP PAD C! CMOVE ; '

4 i E (ERASE LINE-1 WITH BLANKS *)
5 LINE C/L BLANKS UPDATE ;
6
7 : S (SPREAD MAKING LINE // BLANK *)
8 DUP 1 - (LIMIT) OE (FIRST TO MOVE)
9 DO I LINE I 1+ -MOVE -1 +L00P E ;

10
11 : D (DELETE LINE-1, BUT HOLD IN PAD *)
12 DUP H OF DUP ROT
13 DO I 1+ LINE I -MOVE LOOP E ;
14
15 -->

FORTH INTEREST GROUP MAY 1, 1979

o /

SCR // 90
0 (L
1
2 : M
3
4
5
6 : T
7
8
9 J L

10
1 1 - ->
1 2
13
14
15

WFR-7 9MAY 0 3)

(MOVE CURSOR BY SIGNED AMOUNT-1, PRINT ITS LINE *)
R// +! CR SPACE //LEAD TYPE 5F EMIT

//LAG TYPE //LOCATE DROP

(TYPE LINE BY //-l, SAVE ALSO IN PAD *)
DUP C/L * R // ! DUP H 0 M ;

(RE-LIST SCREEN *)
SCR @ LIST 0 M ;

SCR # 91
0 (LINE EDITING COMMANDS WFR-790105)
1 : R (REPLACE ON LINE //-I, FROM PAD *)
2 PAD 1+ SWAP -MOVE ;
3
4 : P (PUT FOLLOWING TEXT ON LINE-1 *)
5 1 TEXT R ;
6
7 : 1 (INSERT TEXT FROM PAD ONTO LINE // *)
8 DUP S R ;
9 CR

10 : TOP (HOME CURSOR TO TOP LEFT OF SCREEN *)
1 1 O R / / ! ;
12 - - >
13
14
15

SCR
0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15

// 9 2
(SCREEN EDITING COMMANDS
: CLEAR

SCR ! 10 0 DO FORTH

WFR-7 9APR2 7)
(CLEAR SCREEN BY NUMBER-1 *)
EDITOR E LOOP ;

FLUSH
[LIMIT
LITERAL

FIRST
0 DO 7 FFF

(WRITE ALL UPDATED BLOCKS TO DISC *)
- B/BUF 4 + /] (NUMBER OF BUFFERS)

DROP LOOP ;BUFFER

: COPY
B/SCR * OFFSET
DO DUP FORTH I
DROP FLUSH ;

— >

(DUPLICATE SCREEN-2, ONTO SCREEN-1 *)
3 + SWAP B/SCR * B/SCR OVER + SWAP
BLOCK 2 - ! 1+ UPDATE LOOP

FORTH INTEREST GROUP MAY 1, 19 7 9

SCR # 9 3
0 (DOUBLE NUMBER SUPPORT
1 (OPERATES ON 32 BIT DOUBLE
2 FORTH DEFINITIONS
3
4 : 2DR0P DROP DROP ; (
5
6 : 2DUP OVER OVER ; (
7
8 : 2 SWAP ROT >R ROT
9 (BRING SECOND DOUBLE

10 EDITOR DEFINITIONS -->
11
12
13
14

WFR-80APR2 4)
NUMBERS OR TWO 16-BIT INTEGERS)

DROP DOUBLE NUMBER)

DUPLICATE A DOUBLE NUMBER)

R> ;
TO TOP OF STACK)

SCR # 9 4
0 (STRING MATCH FOR EDITOR PM-WFR-80APR25)
1 : -TEXT (ADDRESS-3, COUNT-2, ADDRESS-1 ---)
2 SWAP -DUP IF (LEAVE BOOLEAN MATCHED=NON-ZERO, NOPE=ZERO)
3 OVER + SWAP (NEITHER ADDRESS MAY BE ZERO!)
4 DO DUP C@ FORTH I C@ -
5 IF 0= LEAVE ELSE 1+ THEN LOOP
6 ELSE DROP 0= THEN ;
7 : MATCH (CURSOR ADDRESS-4, BYTES LEFT-3, STRING ADDRESS-2,)
8 (STRING COUNT-1, --- BOOLEAN-2, CURSOR MOVEMENT-1)
9 >R >R 2 DUP R> R> 2 SWAP OVER + SWAP

10 (CADDR-6, BLEFT-5, $ADDR-4, $LEN-3, CADDR+BLEFT-2, CADDR-1)
11 DO 2DUP FORTH I -TEXT
12 IF >R 2 DROP R> - I SWAP - 0 SWAP 0 0 LEAVE
13 (CADDR BLEFT $ADDR $LEN OR ELSE 0 OFFSET 0 0)
14 THEN LOOP 2DROP (CADDR-2, BLEFT-1, OR 0-2, OFFSET-1)
15 SWAP 0= SWAP ; — >

SCR
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

95
STRING

1LINE
EDITING COMMANDS

(SCAN LINE WITH
(

#LAG PAD COUNT MATCH

WFR-79MAR24)
CURSOR FOR MATCH TO PAD TEXT, *)
UPDATE CURSOR, RETURN BOOLEAN *)
R# +! :

FIND (STRING AT PAD OVER FULL SCREEN RANGE, ELSE ERROR *)
BEGIN 3 FF R# @ <

IF TOP PAD HERE
1 LINE UNTIL :

C/L 1+ CMOVE 0 ERROR ENDIF

: DELETE
>R #LAG + FORTH R
#LAG R MINUS R # +!
#LEAD + SWAP CMOVE
R> BLANKS UPDATE ;

- - >

(BACKWARDS AT CURSOR BY COUNT-1
(SAVE BLANK FILL LOCATION)
(BACKUP CURSOR)

(FILL FROM END OF TEXT)

FORTH INTEREST GROUP NOVEMBER 1980

SCR if 9 6
0 (STRING EDITOR COMMANDS WFR-79MAR24)
1 : N (FIND NEXT OCCURANCE OF PREVIOUS TEXT *)
2 FIND 0 M ;
3
4 : F (FIND OCCURANCE OF FOLLOWING TEXT *)
5 1 TEXT N ;
6
7 : B (BACKUP CURSOR BY TEXT IN PAD *)
8 PAD C@ MINUS M ;
9
10 : X (DELETE FOLLOWING TEXT *)
11 1 TEXT FIND PAD C@ DELETE 0 M ;
1 2
13 : TILL (DELETE ON CURSOR LINE, FROM CURSOR TO TEXT END *)
14 If LEAD + 1 TEXT 1LINE 0- 0 ? ERROR
15 if LEAD + SWAP - DELETE 0 M ; — >

SCR if 9 7
0 (STRING ED IT O R C O M MA ND S W F R - 79MAR2 3)
1 : C (SPREAD AT C U R S O R AND COPY IN THE F O L L O W I N G TEXT *)
2 1 TEXT PAD COUNT
3 if LAG ROT OVER MIN >R
4 FORTH R R if +! (BUMP C U RS O R)
5 R - >R (CHARS TO SAVE)
6 DUP HERE R CMOVE (FROM OLD C U R SO R TO HERE)
7 HERE if LEAD + R> CMOVE (HERE TO C UR S O R L O C A T I O N)
8 R > CMOVE U P D A TE (PAD TO OLD C U RS O R)
9 0 M (LOOK AT NEW LINE) ;

10 FORTH DEFINITIONS DECIMAL
11 LATEST 1 2 +ORIGIN ! (TOP NFA)
1 2 HERE 28 +ORIGIN ! (FENCE)
1 3 HERE 30 +ORIGIN ! (DP)
14 EDITOR 6 + 32 +ORIGIN ! (voc
1 5 HERE FENCE | ;S

SCR if 9 8
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5

FORTH INTEREST GROUP
u

MAY 1, 19 79

EDITOR USER MANUAL

by Bill Stoddart
of PIG, United Kingdom

FORTH organizes its mass storage into "screens" of 1024 characters.
If, for example, a diskette of 250k byte capacity is used entirely
for storing text, it will appear to the user as 250 screens
numbered 0 to 249.

Each screen is organized as 16 lines with 64 characters per line.
The FORTH screens are merely an arrangement of virtual memory and
need not correspond exactly with the screen format of a particular
terminal.

Selecting a Screen and Input of Text

To start an editing session the user types EDITOR to invoke the
appropriate vocabulary.

The screen to be edited is then selected, using either:

n LIST (list screen n and select it for editing) OR
n CLEAR (clear screen n and select for editing)

To input new test to screen n after LIST or CLEAR the P (put)
command is used.

Example:

0 P THIS IS HOW
1 P TO INPUT TEXT
2 P TO LINES 0, 1, AND 2 OF THE SELECTED SCREEN.

FORTH INTEREST GROUP NOVEMBER 1980

Line Editing

During this descirption of the editor, reference is made to PAD.
This is a text buffer which may hold a line of text used by or
saved with a line editing command, or a text string to be found or
deleted by a string editing command.

PAD can be used to transfer a line from one screen to another, as
well as to perform edit operations within a single screen.

Line Editor Commands

n H Hold line n at PAD (used by system more often than by user),

n D Delete line n but hold it in PAD. Line 15 becomes blank
as lines n+1 to 15 move up 1 line.

n T Type line n and save it in PAD.

n R Replace line n with the text in PAD.

n I Insert the text from PAD at line n, moving the old line n
and following lines down. Line 15 is lost.

n E Erase line n with blanks.

n S Spread at line n. n and subsequent lines move down 1
line. Line n becomes blank. Line 15 is lost.

FORTH INTEREST GROUP NOVEMBER 1980

Cursor Control and String Editing

The screen of text being edited resides in a buffer area of
storage. The editing cursor is a variable holding an offset into
this buffer area. Commands are provided for the user to position
the cursor, either directly or by searching for a string of buffer
text, and to insert or delete text at the cursor position.

Commands to Position the Cursor

TOP Position the cursor at the start of the screen.

N M Move the cursor by a signed amount n and print the cursor
line. The position of the cursor on its line is shown by
a (underline).

String Editing Commands

F text

B

N

Search forward from the current cursor position until
string "text" is found. The cursor is left at the end
of the text string, and the cursor line is printed.
If the string is not found an error message is given
and the cursor is repositioned at the top of screen.

Used after P to back up the cursor by the length of
the most recent text.

Pind the next occurrence of the string found by an P
command.

X text Pind and delete the string "text."

C text Copy in text to the cursor line at the cursor position,

TILL text Delete on the cursor line from the cursor till the end
of the text string "text."

NOTE: Typing C with no text will copy a null into the text
at the cursor position. This will abruptly stop later
compiling! To delete this error type TOP X 'return'.

FORTH INTEREST CROUP NOVEMBER 1980

Screen Editing Commands

n LIST

n CLEAR

n1 n2 COPY

L

PLUSH

List screen n and select it for editing

Clear screen n with blanks and select it for editing

Copy screen n1 to screen n2.

List the current screen. The cursor line is relisted
after the screen listing, to show the cursor position

Used at the end of an editing session to ensure that
all entries and updates of text have been transferred
to disc.

FORTH INTEREST GROUP NOVEMBER 1980

Editor Glossary

TEXT c ---
Accept following text to pad. c is text delimiter.

LINE n ---addr
Leave address of line n of current screen. This address will
be in the disc buffer area.

WHERE n1 n2 ---
n2 is the block no., n1 is offset into block. If an error is
found in the source when loading from disc, the recovery
routine ERROR leaves these values on the stack to help the user
locate the error. WHERE uses these to print the screen and
line nos. and a picture of where the error occurred.

R# ---addr
A user variable which contains the offset of th editing cursor
from the start of the screen.

#L0CATE ---n1 n2
Prom the cursor position determine the line-no n2 and the
offset into the line n1 .

#LEAD --- line-address offset-to-cursor

#LAG --- cursor-address count-after-cursor-till-EOL

-MOVE addr line-no -----
Move a line of text from addr to line of current screen.

H n ----
Hold numbered line at PAD.

E n ----
Erase line n with blanks.

S n ----
Spread. Lines n and following move down. n becomes blank.

D n ----
Delete line n, but hold in pad.

M n ----
Move cursor by a signed amount and print its line.

T n ----
Type line n and save in PAD.

L ---
List the current screen.

FORTH INTEREST GROUP NOVEMBER 1980

R n ---
Replace line n with the text in PAD.

n ---
Put the followng text on line n.

I n ---
Spread at line n and insert text from PAD.

TOP ---
Position editing cursor at top of screen.

CLEAR n ---
Clear screen n, can be used to select screen n for editing.

PLUSH ---
Write all updated buffers to disc. This has been modified wo
cope with an error in the Micropolis CPM disc drivers.

COPY n1 n2 ---
Copy screen n1 to screen n2.

-TEXT Addr 1 count Addr 2 — boolean
True if strings exactly match.

MATCH cursor-addr bytes-left-till-EOL str-addr str-count
--- tf cursor-advance-till-end-of-matching-text
--- ff bytes-left-till-EOL
Match the string at str-addr with all strings on the cursor
line forward from the cursor. The arguments left allow the
cursor R# to be updated either to the end of the matching text
or to the start of the next line.

1 LINE ---f
Scan the cursor line for a match to PAD text. Return flag and
update the cursor R# to the end of matching text, or to the
start of the next line if no match is found.

PIND ---
Search for a match to the string at PAD, from the cursor
position till the end of screen. If no match found issue an
error message and reposition the cursor at the top of screen.

DELETE n ---
Delete n characters prior to the cursor.

N
Pind next occurrence of PAD text.

Input following text to PAD and search for match from cursor
position till end of screen.

PORTH INTEREST CROUP NOVEMBER 1980

Backup cursor by text in PAD.
X ---

Delete next occurrence of following text.
TILL ---

Delete on cursor line from cursor to end of the following text.
C ---

Spread at cursor and copy the following text into the cursor
line.

FORTH INTEREST GROUP NOVEMBER 1980

