

950 Rittenhouse Rd., Norristown, PA 19403 • Tel.: 215/666-7950 • TLX 846-100 MOSTECHGY VAFG

MCS6520 PERIPHERAL ADAPTER

DESCRIPTION

The MCS6520 Peripheral Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing significant capability and flexibility in a low cost chip. When coupled with the power and speed of the MCS6500 family of microprocessors, the MCS6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral control/interrupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

- High performance replacement for Motorola/AMI/MOSTEK/Hitachi peripheral adapter.
- N channel, depletion load technology, single +5V supply.
- · Completely Static and TTL compatible.
- · CMOS compatible peripheral control lines.
- Fully automatic "hand-shake" allows very positive control of data transfers between processor and peripheral devices.

Μ	ICS6520	
$\begin{array}{c} V_{SS} \\ PA\emptyset \\ PA1 \\ T \\ $	40 39 38	CA1 CA2 IROA
PA2 4 PA3 5	37	IRQB RSØ
PA4 = 6 PA5 = 7	35	RS1 RES
PA6 8		DØ
		D2
$\begin{array}{c} PB1 \\ PB2 \end{array} \begin{array}{c} 11 \\ 12 \end{array}$	29	D3 D4
PB3 13 PB4 14	28 27	D5 D6
PB5 [] 15 PB6 [] 16	26 25	D7 02
PB7 17	24	$\frac{CS1}{CS2}$
$\begin{array}{c} CB2 \\ CB2 \\$		CSØ R/W
		K/W

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of MCS6520 operation.

CA1/CBI CONTROL

CRA	(CRB)		
Bit 1	<u>Bit O</u>	of Input Signal*	IRQA (IRQB) Interrupt Outputs
0	0	negative	Disableremain high
0	1	negative	Enablegoes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
1	0	positive	Disableremain high
1	1	positive	Enableas explained above

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active transition of the CA1 (CB1) signal. This is independent of the state of Bit 0 in CRA (CRB).

C	RA (CRB	J	CA2/CB2	2 INPUT MODES
<u>Bit 5</u>	Bit 4	<u>Bit 3</u>	Active Transition of Input Signal*	IRQA (IRQB) Interrupt Output
0	0	0	negative	Disableremains high
0	0	1	negative	Enablegoes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	1	0	positive	Disableremains high
0	1	1	positive	Enableas explained above
*Note:	Bit 6 signa	of CRA 1. Thi	(CRB) will be set to s is independent of t) a logic 1 by an active transition of the CA2 (CB2) the state of Bit 3 in CRA (CRB).

	CRA		CA	2 OUTPUT MODES
<u>Bit 5</u>	<u>Bit 4</u>	Bit 3	Mode	Description
1	0	0	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor.
1	0	1	Pulse Output	CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.
1	1	0	Manual Output	CA2 set low
1	1	1	Manual Output	CA2 set high

CB2 OUTPUT MODES

CRB

Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
. 1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
1	1	0	Manual Output	CB2 set low
1	1	1	Manual Output	CB2 set high

MAXIMUM RATINGS				
Rating	Symbol	Value	Unit	
Supply Voltage	V _{CC}	-0.3 to +7.0	V _{dc}	This device contains circuitry
Input Voltage	v_{in}	-0.3 to +7.0	V _{dc}	damage due to high static voltages, however, it is
Operating Temperature Range	T _A	0 to +70	OC	advised that normal precautions be taken to avoid application
Storage Temperature Range	T _{stg}	-55 to +150	°C	of any voltage higher than maximum rated voltages to this circuit.

STATIC D.C. CHARACTERISTICS (V_{CC} = 5.0 V \pm 5%, V_{SS} = 0, T_A = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit

Gharacteri	stit	Symbol	MIN	тур	Max	UNIT
Input High Voltage (Normal Operating	Levels)	VIH	+2.0	_	VCC	Vdc
Input Low Voltage (Normal Operating I	Levels)	VIL	-0.3	-	+.8	Vdc
Input Inreshold Voltage		VIT	0.8	-	2.0	Vdc
Input Leakage Current		IIN				µAdc
$v_{in} = 0$ to 5.0 vac			-	± 1.0	+2.5	
R/W, Reset, RSØ, RSI, LSØ, LSØ, LSØ, LSØ, LSØ, LSØ, LSØ, LSØ	51,C52,CA1,CB1,Φ2					
Inree-State (Off State Input Current	ad the pad page one	¹ TSI				
$(v_{in} = 0.4 \text{ to } 2.4 \text{ Vdc}, v_{CC} = \text{max})$	DØ-D7,PBØ-PB7,CB2		-	+2.0	+10	µAdc
Input High Current		$^{\rm I}$ IH				
$(V_{IH} = 2.4 \text{ Vdc})$	PAØ-PA7,CA2		-100	-250	-	µAdc
Input Low Current		¹ IL				
$(V_{\rm IL} = 0.4 \rm Vdc)$	PAØ-PA7,CA2		-	-1.0	-1.6	mAdc
Output High Voltage		VOH				
$(V_{CC} = \min, 1_{Load} = -100 \mu Adc)$			2.4	-	-	Vdc
Output Low Voltage		VOL				
$(V_{CC} = \min, 1_{Load} = 1.6 \text{ mAdc})$			-	-	+0.4	Vdc
Output High Current (Sourcing)		IOH				
$(V_{OH} = 2.4 \text{ Vdc})$			-100	-1000	-	µAdc
$(V_0 = 1.5 \text{ Vdc}, \text{ the current for drive})$	ving other than		-1.0	-2.5	-	mAdc
TTL, e.g., Darlington Base)	PBØ-PB7.,CB2					
Output Low Current (Sinking)		IOL				
$(V_{OL} = 0.4 \text{ Vdc})$			1.6	-	-	mAdc
Output Leakage Current (Off State)	IRQA, IRQB	loff	-	1.0	10	uAdc
Power Dissipation		PD		200	500	mW
Input Capacitance		Cin				\mathbf{pF}
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$						
DØ-D7, PAØ-PA7, PBØ-	PB7,CA2,CB2		-	-	10	
R/W, Reset, RSØ, RS1, C	SØ,CS1,CS2,		-	-	7.0	
CA1,CB1, 42			-	-	20	
Output Capacitance		Cout				
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$			-	-	10	pF

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

A.C. CHARACTERISTICS

Read Timing Characteristics (Figure 1, Loading 130 pF and one TTL load)

Characteristics	Symbol	Min	Тур	Max	Unit
Delay Time. Address valid to Enable positive transition	TAEW	180	_	-	ns
Delay Time. Enable positive transition to Data valid on bus	TEDR	-	-	395	ns
Peripheral Data Setup Time	TPDSU	300	-	-	ns
Data Bus Hold Time	THR	10	-	-	ns
Delay Time, Enable negative transition to CA2 negative transition	TCA2	-	-	1.0	us
Delay Time, Enable negative transition to CA2 positive transition	TRS1	-	-	1.0	us
Rise and Fall Time for CA1 and CA2 input signals	tr,tf	-	-	1.0	us
Delay Time from CA1 active transition to CA2 positive transition	T _{RS2}	-	-	2.0	us
Rise and Fall Time for Enable input	trE, tfE	-	-	25	us
Write Timing Characteristics (Figure 2)					
Channa ta ni ati an	Symbol	Min	Tyn	Max	Unit
Characteristics	Symbol	min	1)5	110470	Unit U
characteristics	Jy 11001	мти	1) p	man	01120
Enable Pulse Width	TE	0.470	-	25	μs
Enable Pulse Width Delay Time, Address valid to Enable positive transition	TE TAEW	0.470 180		25	μs ns
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition	TE TAEW TDSU	0.470 180 300	- - -	25 - -	μs ns ns
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive	TE TAEW TDSU TWE	0.470 180 300 130	- - - -	25 - - -	μs ns ns ns
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition	TE TAEW TDSU TWE	0.470 180 300 130	- - - -	25 - - -	μs ns ns ns
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time	TE TAEW TDSU TWE THW	0.470 180 300 130 10	- - - -	25 - - -	μs ns ns ns ns
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid	TE TAEW TDSU TWE THW TPDW	0.470 180 300 130 10 -	- - - - -	25 - - - 1.0	μs ns ns ns ns μs
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data Valid, CMOS (Voc - 30%) PAØ-PA7, CA2	TE TAEW TDSU TWE THW TPDW TCMOS	0.470 180 300 130 10 - -	- - - - -	25 - - 1.0 2.0	μs ns ns ns ns μs μs
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data valid, CMOS (V _{CC} - 30%) PAØ-PA7, CA2 Delay Time, Enable positive transition to CB2 negative transition	TE TAEW TDSU TWE THW TCMOS TCB2	0.470 180 300 130 10 - -	- - - - -	25 - - 1.0 2.0 1.0	μs ns ns ns us μs μs μs
 Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data Valid, CMOS (V_{CC} - 30%) PAØ-PA7, CA2 Delay Time, Enable positive transition to CB2 negative transition 	TE TAEW TDSU TWE THW TCMOS TCB2 TDC	0.470 180 300 130 10 - - 0	- - - - - -	25 - - 1.0 2.0 1.0 1.5	μs ns ns ns ns μs μs μs μs μs
 Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data Valid, CMOS (V_{CC} - 30%) PAØ-PA7, CA2 Delay Time, Peripheral Data valid to CB2 negative transition Delay Time, Enable positive transition to CB2 positive transition 	TE TAEW TDSU TWE THW TPDW TCMOS TCB2 TDC TRS1	0.470 180 300 130 10 - - 0		25 - - 1.0 2.0 1.0 1.5 1.0	μs ns ns ns us μs μs μs μs μs
 Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data Valid, CMOS (V_{CC} - 30%) PAØ-PA7, CA2 Delay Time, Enable positive transition to CB2 negative transition Delay Time, Enable positive transition to CB2 positive transition Rise and Fall Time for CB1 and CB2 input signals 	TE TAEW TDSU TWE THW TPDW TCMOS TCB2 TDC TRS1 tr,tf	0.470 180 300 130 10 - - 0 -		25 - - 1.0 2.0 1.0 1.5 1.0 1.0	μs ns ns ns us μs μs μs μs μs μs μs
Enable Pulse Width Delay Time, Address valid to Enable positive transition Delay Time, Data valid to Enable negative transition Delay Time, Read/Write negative transition to Enable positive transition Data Bus Hold Time Delay Time, Enable negative transition to Peripheral Data valid Delay Time, Enable negative transition to Peripheral Data valid, CMOS $(V_{CC} - 30\%)$ PAØ-PA7, CA2 Delay Time, Enable positive transition to CB2 negative transition Delay Time, Enable positive transition to CB2 positive transition Rise and Fall Time for CB1 and CB2 input signals Delay Time, CB1 active transition to CB2 positive transition	TE TAEW TDSU TWE THW TPDW TCMOS TCB2 TDC TRS1 tr,tf TRS2	0.470 180 300 130 10 - - - - -		25 - - 1.0 2.0 1.0 1.5 1.0 1.0 2.0	μs ns ns ns us μs μs μs μs μs μs μs μs