
Document No. U14458EJ1V0AN00 (1st edition)
Date Published November 1999 N CP(K)

Printed in Japan
1998©

Preliminary Application Note

For entire 78K/0 Series
For entire 78K/0S Series

78K/0, 78K/0S Series
8-Bit Single-Chip Microcontrollers

Flash Memory Write

1999

Preliminary Application Note U14458EJ1V0AN002

[MEMO]

Preliminary Application Note U14458EJ1V0AN00 3

Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or

other countries.

Preliminary Application Note U14458EJ1V0AN004

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

License not needed: Mask ROM version

The customer must judge

the need for license: Flash memory version

• The information contained in this document is being issued in advance of the production cycle for the
 device. The parameters for the device may change before final production or NEC Corporation, at its own
 discretion, may withdraw the device prior to its production.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
 the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
 property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
 measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment,
 audio and visual equipment, home electronic appliances, machine tools, personal electronic
 equipment and industrial robots
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
 systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
 for life support)
 Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
 support systems or medical equipment for life support, etc.
 The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
 If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
 they should contact an NEC sales representative in advance.

M5 98. 8

Preliminary Application Note U14458EJ1V0AN00 5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

J99.1

Preliminary Application Note U14458EJ1V0AN006

[MEMO]

Preliminary Application Note U14458EJ1V0AN00 7

INTRODUCTION

Target Readers These application notes are intended for users who wish to understand the functions of

the 78K/0 and 78K/0S Series products and concerns the flash programmer used to

write programs in flash memory versions.

Purpose These application notes are intended for users to understand how to write to 78K/0,

78K/0S Series flash memory versions by providing application sample programs for

these products.

How to Use This Manual In these application notes, it is assumed that the reader has general knowledge in the

fields of electrical engineering, logic circuits, and microcontrollers.

•••• To know the 78K/0 Series instruction function in detail:

→ See 78K/0 SERIES USER'S MANUAL INSTRUCTIONS (U12326E)

•••• To know the 78K/0S Series instruction function in detail:

→ See 78K/0S SERIES USER'S MANUAL INSTRUCTIONS (U11047E)

Conventions Data significance: Higher digits on the left and lower on the right

Active low representation: ××× (over score over pin or signal name)

Note : Footnote for item marked with Note in the text

Caution : Information requiring particular attention

Remark : Supplementary information

Numeric representation: Binary… ×××× or ××××B

Decimal… ××××
Hexadecimal… ××××H

Preliminary Application Note U14458EJ1V0AN008

Related documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

78K/0 Series

Documents Related to Development Tools (User’s Manual)

Document No.Document Name

English Japanese

Operation U11802E U11802J

Assembly Language U11801E U11801J

RA78K0 Assembler Package

Structured Assembly language U11789E U11789J

RA78K Series Structured Assembler Preprocessor U12323E U12323J

for Operation U11517E U11517JCC78K0 C Compiler

for Language U11518E U11518J

CC78K0 C Compiler Application Notes Programming Know-How U13034E U13034J

IE-78K0-NS U13731E U13731J

IE-78001-R-A To be prepared To be prepared

IE-78K0-R-EX1 To be prepared To be prepared

SM78K0 System Simulator WindowsTM Based Reference U10181E U10181J

SM78K Series System Simulator External Part User Open

Interface Specifications

U10092E U10092J

ID78K0-NS Integrated Debugger Windows Based Reference U12900E U12900J

ID78K0 Integrated Debugger EWS Based Reference U11151E U11151J

ID78K0 Integrated Debugger PC Based Reference U11539E U11539J

ID78K0 Integrated Debugger Windows Based Guide U11649E U11649J

Documents Related to Embedded Software (User’s Manual)

Document No.Document Name

English Japanese

Fundamentals U11537E U11537J78K/0 Series Real-Time OS

Installation U11536E U11536J

78K/0 Series OS MX78K0 Fundamental U12257E U12257J

Preliminary Application Note U14458EJ1V0AN00 9

78K/0S Series

Documents Related to Development Tools (User’s Manual)

Document No.Document Name

English Japanese

Operation U11622E U11622J

Assembly Language U11599E U11599J

RA78K0S Assembler Package

Structured Assembly language U11623E U11623J

Operation U11816E U11816JCC78K0S C Compiler

Language U11817E U11817J

SM78K0S System Simulator Windows Based Reference U11489E U11489J

SM78K Series System Simulator External Part User Open

Interface Specifications

U10092E U10092J

ID78K0S-NS Integrated Debugger Windows Based Reference U12901E U12901J

IE-78K0S-NS In-circuit Emulator U13549E U13549J

Documents Related to Embedded Software (User’s Manual)

Document No.Document Name

English Japanese

78K/0S Series OS MX78K0S Basics U12938E U12938J

Common to 78K/0 and 78K/0S Series

Other Documents

Document No.Document Name

English Japanese

SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM) X13769X

Semiconductor Device Mounting Technology Manual C10535E C10535J

Quality Grades on NEC Semiconductor Devices C11531E C11531J

NEC Semiconductor Device Reliability/Quality Control System C10983E C10983J

Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) C11892E C11892J

Guide to Microcomputer-Related Products by Third Party U11416E U11416J

Caution The above documents are subject to change without prior notice. be sure to use the latest

document for designing.

Preliminary Application Note U14458EJ1V0AN0010

[MEMO]

Preliminary Application Note U14458EJ1V0AN00 11

CONTENTS

CHAPTER 1 GENERAL... 17

1.1 System Configuration 17
1.2 Differences between the µµµµPD78F0xxx and the µµµµPD78F9xxx.. 20

CHAPTER 2 BASIC FORMAT.. 21

2.1 Flow Chart of Write Operation 21
2.2 Initial Settings 22
2.3 Ways to Switch to Power On/Write Mode .. 23

2.3.1 Switching to power on/write mode... 23

2.4 Synchronization Detection Processing.. 25
2.4.1 Synchronization detection processing for 3-wire serial and

pseudo 3-wire serial communication methods .. 25

2.4.2 Synchronization detection processing for UART communication method....................................... 26

2.4.3 Synchronization detection processing for IIC communication method.. 27

2.4.4 Initialization wait time .. 28

2.5 Processing of Setting Commands.. 2 9
2.5.1 Oscillation frequency setting command .. 29

2.5.2 Erase time setting command... 29

2.5.3 Baud rate setting command .. 30

2.6 Write Processing 31
2.7 List of Commands 34
2.8 Power Off Processing 35

CHAPTER 3 WRITE SEQUENCE.. 37

3.1 Write Sequence for 3-Wire Serial and Pseudo 3-Wire Serial Communications 38
3.1.1 Reset command .. 38

3.1.2 Oscillation frequency setting command 39

3.1.3 Erase time setting command... 40

3.1.4 Prewrite command .. 41

3.1.5 Erase command .. 42

3.1.6 Write commands ... 43

3.1.7 Internal verify command.. 45

3.1.8 Verify command .. 46

3.1.9 Blank check command .. 47

3.1.10 Silicon signature command ... 48

3.1.11 Status check command... 49

3.2 Write Sequence for IIC Communications... 50
3.2.1 Reset command .. 51

3.2.2 Oscillation frequency setting command 52

3.2.3 Erase time setting command... 54

3.2.4 Prewrite command .. 56

3.2.5 Erase command .. 57

3.2.6 Write commands ... 58

Preliminary Application Note U14458EJ1V0AN0012

3.2.7 Internal verify command ..62

3.2.8 Verify command...63

3.2.9 Blank check command ..65

3.2.10 Silicon signature command ...66

3.2.11 Status check command ...68

3.3 Write Sequence for UART Communications.. 69
3.3.1 Reset command ..70

3.3.2 Oscillation frequency setting command...71

3.3.3 Erase time setting command ...72

3.3.4 Baud rate setting command...73

3.3.5 Prewrite command...74

3.3.6 Erase command ..75

3.3.7 Write commands..76

3.3.8 Internal verify command ..78

3.3.9 Verify command...79

3.3.10 Blank check command ..80

3.3.11 Silicon signature command ...81

3.3.12 Status check command ...82

CHAPTER 4 SAMPLE PROGRAMS... 83

4.1 Description of Configuration for Processing... 83
4.2 Description of ROM 84
4.3 Description of RAM 84

4.3.1 Nomenclature related to processing and RAM..87

4.3.2 Data type definition file ..87

4.4 Description of Modules 88
4.5 Sample Programs 90

4.5.1 Startup routine...90

4.5.2 Hardware initialization processing...91

4.5.3 Main processing ..93

4.5.4 RAM initialization...96

4.5.5 Switch to power on/write mode..99

4.5.6 Synchronization detection processing..102

4.5.7 Oscillation frequency setting command...107

4.5.8 Erase time setting command ...110

4.5.9 Baud rate setting command...113

4.5.10 Get device information command..116

4.5.11 Prewrite command...119

4.5.12 Erase command ..122

4.5.13 High-speed write/continuous write command.. 125

4.5.14 Internal verify command ..130

4.5.15 Verify command...133

4.5.16 Blank check command ..137

4.5.17 Get status command ...140

4.5.18 Power off processing...143

4.6 Other Sample Programs... 145
4.6.1 Subroutines ...145

4.6.2 RAM definitions ...156

Preliminary Application Note U14458EJ1V0AN00 13

4.6.3 RAM declarations.. 157

4.6.4 Wait clock count data table definition.. 159

4.6.5 List of constant value definitions ... 164

4.7 Error Code List 167

CHAPTER 5 SAMPLE INTERFACE.. 169

5.1 Connection Diagram 169
5.2 Sample Program.. 171

Preliminary Application Note U14458EJ1V0AN0014

LIST OF FIGURES (1/2)

Figure No. Title Page

1-1 System Configuration Diagram ...18

1-2 Communication Line Connection Diagram ...19

2-1 Basic Flow Chart ...21

2-2 Timing of Switch to Power On/Write Mode ...23

2-3 Flow of Synchronization Detection Processing for 3-Wire Serial and

Pseudo 3-Wire Serial Communication Methods..25

2-4 Flow of Synchronization Detection Processing for UART Communication Method26

2-5 Communication Protocol ..27

2-6 Method for Setting Slave Address ...27

3-1 Timing of Reset Command ...38

3-2 Timing of Oscillation Frequency Setting Command...39

3-3 Timing of Erase Time Setting Command..40

3-4 Timing of Prewrite Command..41

3-5 Timing of Erase Command ...42

3-6 Timing of High-Speed Write Command..43

3-7 Timing of Continuous Write Command ..44

3-8 Timing of Internal Verify Command ...45

3-9 Timing of Verify Command ...46

3-10 Timing of Blank Check Command ...47

3-11 Timing of Silicon Signature Command...48

3-12 Timing of Status Check Command ..49

3-13 Timing of Reset Command ...51

3-14 Timing of Oscillation Frequency Setting Command...52

3-15 Timing of Erase Time Setting Command..54

3-16 Timing of Prewrite Command..56

3-17 Timing of Erase Command ...57

3-18 Timing of High-Speed Write Command..58

3-19 Timing of Continuous Write Command ..60

3-20 Timing of Internal Verify Command ...62

3-21 Timing of Verify Command ...63

3-22 Timing of Blank Check Command ...65

3-23 Timing of Silicon Signature Command...66

3-24 Timing of Status Check Command ..68

3-25 Timing of Reset Command ...70

3-26 Timing of Oscillation Frequency Setting Command...71

3-27 Timing of Erase Time Setting Command..72

3-28 Timing of Baud Rate Setting Command ...73

3-29 Timing of Prewrite Command..74

3-30 Timing of Erase Command ...75

3-31 Timing of High-Speed Write Command..76

3-32 Timing of Continuous Write Command ..77

Preliminary Application Note U14458EJ1V0AN00 15

LIST OF FIGURES (2/2)

Figure No. Title Page

3-33 Timing of Internal Verify Command ...78

3-34 Timing of Verify Command ...79

3-35 Timing of Blank Check Command...80

3-36 Timing of Silicon Signature Command...81

3-37 Timing of Status Check Command..82

4-1 Overall Flow of Program ..83

5-1 Connection Diagram.. 169

Preliminary Application Note U14458EJ1V0AN0016

LIST OF TABLES

Table No. Title Page

1-1 Communication Line Connections...19

2-1 Selection of Communication Method for Write Operation ...24

2-2 UART Communication Conditions...26

2-3 Oscillation Frequency Data Format...29

2-4 Erase Time Data Format ...29

2-5 Format of Baud Rate Setting Data ..30

2-6 Meaning of Silicon Signature Data..32

2-7 Meaning of Status and Data Bits in Status Check Command ...33

2-8 List of Commands ...34

3-1 Communication Format for UART Communications ...37

4-1 ROM Map ..84

4-2 RAM Specifications ...84

4-3 Description of Modules..88

5-1 Correspondence among SWs, LEDs, and Commands ...170

5-2 Types of Errors Corresponding to Blinking LEDs..170

Preliminary Application Note U14458EJ1V0AN00 17

CHAPTER 1 GENERAL

These application notes describe how to create a flash memory write tool (called a "flash programmer") for 78K/0

and 78K/0S Series microcontrollers that feature on-chip flash memory (below, these microcontrollers are called "flash

microcontrollers").

To write to a flash microcontroller, certain commands must be executed for the flash microcontroller in a certain

predetermined order. See CHAPTER 2 BASIC FORMAT for a description of the flash microcontroller control

commands used to write to flash memory.

3-wire serial communications, IIC communications, UART communications, or pseudo 3-wire serial

communications can be selected as the communication method for transmitting control commands and write data to

a flash microcontroller. See CHAPTER 3 WRITE SEQUENCE for a description of the flash microcontroller

communication timing and write sequence for each communication method.

Also, see CHAPTER 4 SAMPLE PROGRAMS and CHAPTER 5 INTERFACE EXAMPLES for a description of

sample programs that write to flash memory.

1.1 System Configuration

A µPD78P4038Y is used as the control chip for the flash programmer. Write data that is sent to the flash

microcontroller is allocated and stored in external ROM starting at address 20000H in the µPD78P4038Y's external

memory space. Data that has been stored in external ROM is transferred to the flash microcontroller when the flash

microcontroller is accessed for write and verify operations.

The flash programmer supplies the VDD and VPP voltage and the operating clock for the flash microcontroller.

Figures 1-1 and 1-2 illustrate the flash programmer's system configuration. In Figure 1-2, the pins that are used

(for communications) vary depending on the communication method. Table 1-1 lists the correspondences of

communication methods and used pins.

CHAPTER 1 GENERAL

Preliminary Application Note U14458EJ1V0AN0018

Figure 1-1. System Configuration Diagram

Communication lineNote

• 3-wire serial/Pseudo 3-wire
serial communications

• IIC
• UART

External ROM
(allocated starting

at address
20000H)

Flash programmer
 PD78P4038Y

P67

Flash microcontroller

2 R

R

−

+

Triple noninverting amplifier

2 R

R

−

+

Triple noninverting amplifier

RESET

AN01 (VPP)

AN00 (VDD)

GND

P01 (CLKS)
P06 (CLK0)
P07 (CLK1)

74HC15174AC161

A
B
D0
D1
D2
D3

C

WQA
QB
QC
QD

200 Ω

CLK

VDD

1 kΩ

OSC
(20 MHz)

VPP

VDD

VSS

X1

µ

Note See Figure 1-2. Communication Line Connection Diagram for an illustration of the communication line

connections.

CHAPTER 1 GENERAL

Preliminary Application Note U14458EJ1V0AN00 19

Figure 1-2. Communication Line Connection Diagram

Flash programmer
 PD78P4038Y

SCK/SCL

Flash microcontroller

200 Ω

SCL

SI

TXD

SDA

RXD

TXD

VDDVDD

VDD

1 kΩ10 kΩ

VDD

VDD

200 Ω

SO/SDA

RXD

SO (PSO)

SI (PSI)

SCK (PSCK)

10 kΩ 1 kΩ

1 kΩ

µ

Table 1-1. Communication Line Connections

Pins Used for CommunicationsCommunication Method

Flash Programmer Side Flash Microcontroller Side

SCK SCK/PSCKNote

SO SI/PSINote

3-wire serial/Pseudo 3-wire serial communications

SI SO/PSONote

SCL SCLIIC

SDA SDA

TXD RXDUART

RXD TXD

Note PSCK, PSI, PSO: Ports used for the flash microcontroller's pseudo 3-wire serial communications.

CHAPTER 1 GENERAL

Preliminary Application Note U14458EJ1V0AN0020

1.2 Differences between the µµµµPD78F0xxx and the µµµµPD78F9xxx

The differences between writing to the 78K/0 Series flash microcontroller (µPD78F0xxx) and writing to the 78K/0S

Series flash microcontroller (µPD78F9xxx) are listed below.

• Size of write data transmitted using high-speed or continuous write command

(Size range is 1 to 256 bytes for µPD78F0xxx and 1 to 128 bytes for µPD78F9xxx)

• Size of one verify data transfer using verify command

(Size is 256 bytes for µPD78F0xxx and 128 bytes for µPD78F9xxx)

• Number of wait clocks used to adjust communication timing for each communication method (3-wire serial

communications, IIC communications, UART communications, or pseudo 3-wire serial communications)

• Number of wait clocks for flash microcontroller's internal processing when executing various commands.

For details, see CHAPTER 4 SAMPLE PROGRAMS .

Preliminary Application Note U14458EJ1V0AN00 21

CHAPTER 2 BASIC FORMAT

2.1 Flow Chart of Write Operation

The operation of writing to the flash microcontroller proceeds via predetermined steps.

A basic flow chart of the steps required when writing to flash memory is shown below in Figure 2-1.

Figure 2-1. Basic Flow Chart

START WRITE

INITIALIZE See 2.2 Initial Settings

. . . . See 2.3 Ways to Switch to Power On/Write Mode

. . . . See 2.4 Synchronization Detection Processing

. . . . See 2.5 Processing of Setting Commands

. . . . See 2.6 Write Processing

. . . . See 2.6 Write Processing

. . . . See 2.6 Write Processing

. . . . See 2.6 Write Processing

. . . . See 2.8 Power Off Processing

SWITCH TO POWER ON/
WRITE MODE

PROCESSING OF SETTING
COMMANDS

ERASE

WRITE COMMAND

VERIFY

POWER OFF PROCESSING

END

SYNCHRONIZATION DETECTION
PROCESSING

GET SILICON SIGNATURE

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0022

2.2 Initial Settings

The following initial settings must be made before writing to the flash microcontroller.

(1) Initial settings for flash programmer's controller

Typically, a microcontroller is used as the controller for the flash programmer. Therefore, before writing to the

flash microcontroller, initial settings must be made for the flash programmer's controller.

An example of initial settings when using the µPD78P4038Y (an NEC 16-bit microcontroller) as the controller

is shown in CHAPTER 4 SAMPLE PROGRAMS .

(2) Setting of parameters required for write data and write control

The write data (program data) to be written to the flash microcontroller, along with the parameters required for

write control, must prepared for the flash programmer.

The parameters required for controlling write operations to the flash microcontroller are listed below.

• Target series: Select either 78K/0 Series or 78K/0S Series

• Erase time (time required by the flash microcontroller to erase the data in the flash memory)

• Write start address

• Write end address

• CPU clock source: Select the method for supplying the flash microcontroller's operating

clock from the flash programmer

• CPU clock speed: Set the speed of the flash microcontroller's operating clock

• VPP pulse count: Select the communication method to be used with the flash

microcontroller

• CSI communication clock speed: Select speed of communication clock (clock used for 3-wire serial

communication or pseudo 3-wire serial communication between flash

programmer and flash microcontroller)

• Baud rate selection: Select the communication baud rate for UART communication between

the flash programmer and the flash microcontroller

• Slave address: Slave address for flash microcontroller during IIC communications

For details of the above parameters, see 4.3 Description of RAM .

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 23

2.3 Ways to Switch to Power On/Write Mode

To erase and write to the flash microcontroller, the flash programmer sets the flash microcontroller to the flash

memory write mode. You must also select the communication method to be used by the flash programmer (for

details, see Table 2-1. Selection of Communication Method for Write Operation). Select the communication

method immediately after turning on the power to the flash microcontroller. For details, see 2.3.1 Switching to

power on/write mode below.

2.3.1 Switching to power on/write mode

Applying 10-V voltage to the flash microcontroller's VPP pin switches the flash microcontroller from normal

operation mode to flash memory write mode.

The power-on sequence is described below.

<1> Apply power to the VDD pin after the flash microcontroller's RESET pin is connected to a GND potential.

<2> Apply 10-V voltage to the flash microcontroller's VPP pin.

<3> Connect the flash microcontroller's RESET pin to a VDD potential (to clear reset).

<4> Supply a CPU clock to the flash microcontroller.

<5> Send a pulse to the flash microcontroller's VPP pin to select the write communication method.

<6> Maintain application of 10-V voltage to the flash microcontroller's VPP pin.

The flash programmer is supported as a CPU clock supply source. To use this option, do not supply the CPU

clock until after the rise of the VDD signal.

The following is a timing chart of the switch to power on/write mode. The timing for switching to power on/write

mode that is shown in Figure 2-2 is the timing that is used in the sample programs in Chapter 4. For details, see

CHAPTER 4 SAMPLE PROGRAMS .

Figure 2-2. Timing of Switch to Power On/Write Mode

VPP

VDD

GND
VPP

VDD

GND
VDD

VDD

GND
CPU clock

VDD

GND
RESET

2 ms2 ms 2 ms

VPP pulses (15 max.)

60 sNote

60 s × VPP pulse widthµ

µ

Note Detected at the falling edge of the VPP pulse

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0024

The flash microcontroller selects the communication method according to the VPP pulse that is sent from the flash

programmer (i.e., the communication method selected according to the VPP pulse is used to send or receive

communications command and data to and from the flash microcontroller). The VPP pulse counts listed in Table 2-1

are used to select the communication method. However, the list of supported communication methods varies

depending on which flash microcontroller is used.

Table 2-1. Selection of Communication Method for Write Operation

Communication method VPP Pulse Count

3-wire serial I/O (channel 0) 0

3-wire serial I/O (channel 1) 1

3-wire serial I/O (channel 2) 2

3-wire serial I/O (channel 3) 3 (Handshaking support)

(Not supported in example shown in

CHAPTER 4 SAMPLE PROGRAMS).

IIC communications (Channel 0) 4

IIC communications (Channel 1) 5

IIC communications (Channel 2) 6

IIC communications (Channel 3) 7

UART communications (Channel 0) 8

UART communications (Channel 1) 9

UART communications (Channel 2) 10

UART communications (Channel 3) 11

Pseudo 3-wire serial I/O (Port A) 12

Pseudo 3-wire serial I/O (Port B) 13

Pseudo 3-wire serial I/O (Port C) 14 (Handshaking support)

(Not supported in example shown in

CHAPTER 4 SAMPLE PROGRAMS).

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 25

2.4 Synchronization Detection Processing

Synchronization detection processing is a type of processing whose purpose is to confirm whether or not the flash

microcontroller can operate normally after it has been switched to flash memory write mode. The flash programmer

sends a reset command to the flash microcontroller and check whether or not an ACK response is returned. The

maximum number of retries is 16; if an ACK is issued from the flash microcontroller in 16 or fewer tries, it is

determined that the flash microcontroller is in a programmable mode. The format of this reset command is described

in CHAPTER 3 WRITE SEQUENCE.

The synchronization detection method differs depending on the communication method (3-wire serial, pseudo 3-

wire serial, IIC, or UART) selected by the VPP pulse. This means that synchronization detection processing is

required for each communication method.

2.4.1 Synchronization detection processing for 3-wire serial and pseudo 3-wire serial communication

methods

Figure 2-3 shows the flow of synchronization detection processing for the 3-wire serial and pseudo 3-wire serial

communication methods. For details, see 3.1.1 Reset command and 4.5.6 Synchronization detection

processing .

Figure 2-3. Flow of Synchronization Detection Processing for 3-Wire Serial and Pseudo 3-Wire Serial

Communication Methods

3-WIRE SERIAL/
PSEUDO 3-WIRE

SERIAL SYNCHRONIZATION
DETECTION

END

WAIT TIME FOR INITIALIZATION

SEND RESET COMMAND
(00H)

NO

NO

YES
Synchronization
detection ended normally

YES

RECEIVE ACK?Note

RETRY 16 TIMES?

Synchronization detection failed

. . . . See 2.4.4 Initialization wait time

Note ACK: Acknowledge

This signal (3CH) indicates when the flash microcontroller's processing ends normally.

A different signal "NACK" (FFH) indicates when a processing fault has occurred (even if NACK is not FFH,

a "NACK" judgement is made whenever a value other than "3CH" is returned at the timing for receiving the

ACK signal).

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0026

2.4.2 Synchronization detection processing for UART communication method

Synchronization detection for UART communication confirms whether or not an ACK response is received after a

reset command has been sent three times. At that time, the flash microcontroller predicts its own operating

frequency based on the low width of the first two reset commands (00H). It uses this predicted operating frequency

to set a communication baud rate of 9,600 bps. If the third reset command (00H) is received correctly, an ACK is

returned. If the reset command (00H) cannot be received, a NACK (FFH) is returned instead.

Table 2-2. UART Communication Conditions

Communication baud rate 9,600 bps

Parity bit None

Data length 8 bits

Stop bits 1 bit

Figure 2-4 shows the flow of synchronization detection for UART communications.

Figure 2-4. Flow of Synchronization Detection Processing for UART Communication Method

UART COMMUNICATION
SYNCHRONIZATION

DETECTION

END

WAIT FOR PROCESSING BY
TARGET MICROCONTROLLER

NO

NO

YES
Synchronization
detection ended normally

YES

RECEIVE ACK?

RETRY 16 TIMES?

Synchronization detection failed

. . . . See 2.4.4 Initialization wait timeWAIT TIME FOR INITIALIZATION

SEND RESET COMMAND
(00H)

SEND RESET COMMAND
(00H)

SEND RESET COMMAND
(00H)

. . . . See CHAPTER 3 WRITE SEQUENCE

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 27

2.4.3 Synchronization detection processing for IIC communication method

Synchronization detection for IIC communication requires that the flash microcontroller's own slave address be

sent to the flash microcontroller.

Typically, when performing IIC communications, a slave address is required so that the master side can designate

a slave address for the remote side. However, when you switch to write mode, the flash microcontroller's slave

address becomes undefined after the power is turned on. Therefore, when performing actual communications, the

slave address to be set from the flash programmer to the flash microcontroller is sent and the flash microcontroller's

slave address must be determined. The range of specifiable slave address values and the sequence for determining

the flash microcontroller's slave address are described below.

(1) Range of specifiable slave address values: 08H to 77H (data error occurs when out-of-range value is

specified)

(2) Method for setting slave address:

The communication protocol is illustrated in Figure 2-5.

Figure 2-5. Communication Protocol

SCL

SDA

Start condition Stop condition

Slave address
(40H)

ACK
R/W

The slave address's MSB is set to
the same value (81H) as the R/W bit
(transfer directionn bit).

Usually, the high-order seven bits specify the slave address and the eighth bit is the R/W (transfer direction) bit.

However, when setting the slave address, the slave address's MSB is set to the same value as the eighth (R/W) bit

(see Figure 2-6. Method for Setting Slave Address). In the above example, the slave address is 40H, so the MSB

value is "1". Consequently, "1" is also set to the eighth (R/W) bit.

Figure 2-6. Method for Setting Slave Address

A6 A5 A0A1A2A3A4 A6

Slave address

R/W bit

Same value is set to these two bits.

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0028

After the slave address has been set, the slave address is set as usual to the high-order seven bits and the R/W

(transfer direction) bit value is specified for the eighth bit, after which synchronization detection processing is

performed. The synchronization detection method is the same as for 3-wire serial or pseudo 3-wire serial

communication, namely that a reset command is sent and the system checks to see whether or not an ACK response

is returned. For details, see 3.2.1 Reset command and 4.5.6 Synchronization detection processing .

2.4.4 Initialization wait time

After the mode has been switched to flash memory write mode, the flash programmer must wait until the

initialization wait period has elapsed before the write-related firmware in the flash microcontroller can be operated.

This initialization wait time must be at least as long as the flash microcontroller’s oscillation wait time and the time

that write-related firmware must wait while the flash microcontroller self-initializes. After this initialization wait time

has elapsed, synchronization detection processing is performed. In the sample programs shown in Chapter 4, a

margin is added to the initialization wait time so that the total wait time is 100 ms.

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 29

2.5 Processing of Setting Commands

After synchronization detection processing has been completed with the flash microcontroller, the operating

frequency and erase time must be sent to the flash microcontroller. If UART has been selected as the

communication method for the flash microcontroller, the communication baud rate can be changed by issuing a baud

rate setting command.

2.5.1 Oscillation frequency setting command

This command sets the flash microcontroller's operating frequency to the flash microcontroller. The oscillation

frequency data consists of four bytes. The format of this data is shown in Table 2-3.

Table 2-3. Oscillation Frequency Data Format

Offset Description

+0 First column (unpacked BCD)

+1 Second column (unpacked BCD)

+2 Third column (unpacked BCD)

+3 Exponent portion (signed integer; one byte)

Oscillation frequency (kHz) = (0.1 × first column + 0.01 × second column + 0.001 × third column) × 10exponent

Range of specifiable values: 1 MHz to 10 MHz

Example: When oscillation frequency is 5 MHz

Oscillation frequency data to be sent: (4 bytes) [05] [00] [00] [04] : 0.500 × 104 kHz

2.5.2 Erase time setting command

This command sets the flash microcontroller's erase time to the flash microcontroller. The erase time data

consists of four bytes. The format of this data is shown in Table 2-4.

Table 2-4. Erase Time Data Format

Offset Description

+0 First column (unpacked BCD)

+1 Second column (unpacked BCD)

+2 Third column (unpacked BCD)

+3 Exponent portion (signed integer; one byte)

Time (s) = (0.1 × first column + 0.01 × second column + 0.001 × third column) × 10exponent

Example: When erase time is 2 seconds

Erase time data to be sent: (4 bytes) [02] [00] [00] [01] : 0.200 × 101 s

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0030

2.5.3 Baud rate setting command

The baud rate setting command is valid only for UART communications.

Before the baud rate setting command is executed and UART communications are started, communications uses

a rate of 9,600 bps. The baud rate setting command changes this communication rate. The baud rate setting

command is expressed as a single-byte numerical value. The format of this command is shown in Table 2-5.

Once you have used the baud rate setting command to change the communication rate, use the reset command

to double-check that communications will use the newly set baud rate. If this confirmation yields a negative result

(i.e., if ACK is not received), a communication error has occurred and communications are no longer enabled. For

details, see 3.3.4 Baud rate setting command .

Table 2-5. Format of Baud Rate Setting Data

Setting Data Baud Rate (bps)

2 4,800

3 9,600

4 19,200

5 31,250

6 38,400

7 76,800

Other Data error

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 31

2.6 Write Processing

The following three commands are the basic commands used for writing to the flash microcontroller.

(1) Erase command

This command is used to erase the flash microcontroller's flash memory. Before issuing the erase command,

issue the prewrite command to prepare for erasure.

(2) Write command

This command is used to write to the flash microcontroller's flash memory. After the write command has been

executed, issue the internal verify command to check the depth of the write level.

There are two types of write commands, which provide different levels of efficiency during the write operation.

(a) High-speed write command

This command specifies the write size (the number of transferred bytes of write data: for the 78K/0

Series, the maximum number is 256 bytes (00H), for the 78K/0S Series it is 128 bytes (80H)) and the start

address for writing, then performs the write operationNote.

Note Write size is indicated by 1-byte data (00H to FFH), and start address is 3-byte data (000000H to

00EFFFH). When the write size is "00H", it indicates 256 bytes.

(b) Continuous write command

This command performs the write operation for a write size specified by the high-speed write command.

Data is written to the next address after the address last written to by either the high-speed write

command or the continuous write command.

Note Write size is indicated by 1-byte data (00H to FFH), and start address is 3-byte data (000000H to

00EFFFH). When the write size is "00H", it indicates 256 bytes.

(3) Verify command

This command is used to verify the contents of the flash microcontroller's flash memory and the contents of

data sent from the flash programmer (the data transfer size is fixed at 256 bytes for the 78K/0 Series and 128

bytes for the 78K/0S Series).

In addition to the three basic commands described above, there are also the following five types of

commands.

(a) Blank check command

This command is used to confirm that the flash microcontroller's flash memory has been erased.

(b) Prewrite command

This command clears the flash memory contents to "00H" to prepare for erasure by the flash

microcontroller. This command must be executed before executing the erase command.

(c) Internal verify command

This command checks the depth of the write level. This command must be executed after executing the

write command.

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0032

(d) Silicon signature command

This command is used to get the flash microcontroller's silicon signature. The meaning of the silicon

signature data is shown in Table 2-6. The silicon signature data when using the µPD78F9197 as the

target is shown as an example.

The silicon signature data's MSB (bit 7) is the parity (odd parity) bit.

Table 2-6. Meaning of Silicon Signature Data

SIGNETURE DATA

HEX BIN

Meaning

10H 0 001 0000 Vendor Code (NEC)

7FH 0 111 1111 Single chip µcom ID code

49H 0 100 1001 Electrical information

7FH 0 111 1111

BFH 1 011 1111

01H 1 000 0001

Last Address: 05FFFH

Flash memory: 24 KB

C4H 1 100 0100 "D"

37H 0 011 0111 "7"

38H 0 011 1000 "8"

46H 0 100 0110 "F"

39H 1 011 1001 "9"

31H 0 011 0001 "1"

39H 1 011 1001 "9"

37H 0 011 0111 "7"

20H 0 010 0000 "Space"

20H 0 010 0000 "Space"

00H 0 000 0000 "00" is information without block divisions

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 33

(e) Status check command

This command is used to query the flash microcontroller's internal command execution status. Table 2-7

lists the command execution status corresponding to each bit.

Table 2-7. Meaning of Status and Data Bits in Status Check Command

Bit position bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Flag Erase mode Write mode Verify mode Blank check

mode

Erase error Write error Verify error Blank check

error

Erase mode Description

0 Not erasing flash memory

1 Erasing flash memory

Write mode Description

0 Not writing

1 Writing

Verify mode Description

0 Not verifying

1 Verifying

Blank check mode Description

0 Not performing blank check of flash memory

1 Performing blank check of flash memory

Erase error Description

0 No flash memory erase error

1 Flash memory erase error has occurred

Write error Description

0 No write error

1 Write error has occurred

Verify error Description

0 No verify error

1 Verify error has occurred

Blank check error Description

0 No flash memory blank check error

1 Flash memory blank check error has occurred

For timing charts and sample programs related to these commands, see CHAPTER 3 WRITE

SEQUENCE and CHAPTER 4 SAMPLE PROGRAMS .

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN0034

2.7 List of Commands

The flash microcontroller's control commands are listed in Table 2-8.

Table 2-8. List of Commands

Command Code Command Name Description of Processing

00H Reset command This command initializes the flash microcontroller's mode and

confirms synchronization detection as part of synchronization

detection processing.

90H Oscillation frequency setting command This command notifies the flash microcontroller concerning its

operating clock. The flash microcontroller internally receives this

frequency value as the basic frequency value for calculating the write

time, erase time, etc.

95H Erase time setting command This command sets the flash microcontroller's erase time to the flash

microcontroller.

9AH Baud rate setting command This command is used to change the communication rate when UART

communications has been selected.

48H Prewrite command This command clears the flash microcontroller's program area (flash

memory area) to "00H" to prepare for erasure before the erase

command can be used.

20H Erase command This command erases the flash microcontroller's program area (flash

memory).

40H High-speed write command This command writes data to the flash microcontroller's program area

(flash memory). It is used in combination with the status check

command to check for write failures while the write operation is in

progress.

44H Continuous write command This command is used to execute another write operation after the

high-speed write command has been issued. This format eliminates

the need to transfer the "write start address" and "transfer byte count"

from the high-speed write command.

18H Internal verify command This command checks the depth of the write level after a write

command has been executed.

11H Verify command This command compares the contents of the flash microcontroller's

program area (flash memory) with the data received by the flash

microcontroller.

30H Blank check command This command checks whether or not the flash microcontroller's

program area (flash memory) has been erased.

C0H Silicon signature command This command gets the flash microcontroller's device information.

70H Status check command This command gets the flash microcontroller's internal command

execution status.

CHAPTER 2 BASIC FORMAT

Preliminary Application Note U14458EJ1V0AN00 35

2.8 Power Off Processing

After the write operation to the flash microcontroller has been completed, the power to the flash microcontroller is

turned off. The power off sequence is described below.

<1> Set the flash microcontroller's reset pin to low level

<2> Turn off VPP voltage

<3> Turn off VDD voltage

For details of power off processing, see CHAPTER 4 SAMPLE PROGRAMS .

Preliminary Application Note U14458EJ1V0AN0036

[MEMO]

Preliminary Application Note U14458EJ1V0AN00 37

CHAPTER 3 WRITE SEQUENCE

This command indicates the communication timing and processing time related to the execution of commands.

Here, the processing time refers to the flash microcontroller's processing time. The commands and data described

below cannot be sent normally until a wait time consisting of the following number of clocks (i.e., time) has elapsed.

The clock referred to below is the flash microcontroller's operating clock. The waits that are executed in the

examples shown in CHAPTER 4 SAMPLE PROGRAMS are calculated using wait time based on this number of

clocks.

The following commands are issued after completion of the steps described earlier, namely "Switching to power

on/write mode" and "Synchronization Detection Processing" (which uses the reset command). The four supported

communication methods are 3-wire serial, IIC, UART, and pseudo 3-wire serial. For description of how the

communication method is selected, see 2.3 Ways to Switch to Power On/Write Mode .

The communication format for 3-wire serial and pseudo 3-wire serial communications has an 8-bit data length with

MSB first. The serial clock is supplied from the flash programmer side.

The communication format for IIC communications has an 8-bit data length with MSB first. The flash programmer

performs the master operations and the serial clock and slave address are both output from the flash programmer

side.

The communication format for UART communications is shown in Table 3-1.

Table 3-1. Communication Format for UART Communications

Communication baud rate (bps) 4,800, 9,600, 19,200, 31,250, 38,400, 76,800Note

Parity bit None

Data length 8 bits

Stop bits 1 bit

Note Be sure to use 9600 bps for synchronization detection processing.

The write sequence for 3-wire serial and pseudo 3-wire serial communications is described in 3.1 Write

Sequence for 3-Wire Serial and Pseudo 3-Wire Serial Communications , that for IIC communications is described

in 3.2 Write Sequence for IIC Communications , and that for UART communications is described in 3.3 Write

Sequence for UART Communications .

CHAPTER 3 WRITE SEQUENCE

Preliminary Application Note U14458EJ1V0AN0038

3.1 Write Sequence for 3-Wire Serial and Pseudo 3-Wire Serial Communications

The write sequence for 3-wire serial and pseudo 3-wire serial communications is shown below.

The number of wait clocks is represented as "A (B) / C (D)" on the following pages.

A: Number of wait clocks when the target microcontroller is a 78K/0 Series product and the communication

method is the 3-wire serial method

B: Number of wait clocks when the target microcontroller is a 78K/0 Series product and the communication

method is the pseudo 3-wire serial method

C: Number of wait clocks when the target microcontroller is a 78K/0S Series product and the communication

method is the 3-wire serial method

D: Number of wait clocks when the target microcontroller is a 78K/0S Series product and the communication

method is the pseudo 3-wire serial method

3.1.1 Reset command

This command is used to confirm synchronization detection as part of synchronization detection processing.

Figure 3-1. Timing of Reset Command

SCK

SO

SI

COMMAND

"00"

WaitComAck

NACK = "FF"

"FF"

WaitAckCom

COMMAND

"00"

WaitComAck

ACK = "3C"

"3C"

WaitComAck: The number of wait clocks is at least 900 (1630) / 1040 (2580) CPU clocks

The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckCom: The number of wait clocks is at least 170 (790) / 210 (820) CPU clocks

The wait time is the time between receiving an ACK signal and issuing a command.

Caution Once a NACK signal is returned, retries are performed until an ACK signal is returned. The

maximum number of retries is 16. A communication error occurs if 17 or more retries are

attempted. For details, see CHAPTER 4 SAMPLE PROGRAMS.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

39

3.1.2 Oscillation frequency setting command

This command notifies the flash microcontroller concerning its operating clock. The flash microcontroller internally uses this frequency value as the basic

frequency value for calculating the write time, erase time, etc.

Figure 3-2. Timing of Oscillation Frequency Setting Command

"3C"

WaitFrqCalcTimeWaitComAck

Wait Frequency
Calculating Time

ACK = "3C"COMMAND

WaitAckData WaitDataData

ACK = "3C" FREQUENCY
DATA (High)

WaitDataData

FREQUENCY
DATA (Mid)

WaitDataData

FREQUENCY
DATA (Low)

"90" "3C" "06" "00" "00" "04"

DECIMAL POINT
DATA

SCK

SO

SI

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and

receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and

receiving data.

WaitDataData: The number of wait clocks is at least 300 (860)/360 (1,560) CPU clocks. The wait time is the time between receiving two sets of data.

WaitFrqCalcTime: The number of wait clocks is at least 2,200 (3,380)/31,600 (44,200) CPU clocks. The wait time is the time used to calculate the oscillation

frequency setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

40

3.1.3 Erase time setting command

This command sets the flash microcontroller's erase time to the flash microcontroller's program area (flash memory).

Figure 3-3. Timing of Erase Time Setting Command

"3C"

WaitEraseTimeCalcWaitComAck

Wait Erase Time
Calculating Time

ACK = "3C"COMMAND

WaitAckData WaitDataData

ACK = "3C" ERASE TIME
DATA (High)

WaitDataData

ERASE TIME
DATA (Mid)

WaitDataData

ERASE TIME
DATA (Low)

"95" "3C" "02" "00" "00" "01"

DECIMAL POINT
DATA

SCK

SO

SI

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and

receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and

receiving data.

WaitDataData: The number of wait clocks is at least 300 (860)/360 (1,560) CPU clocks. The wait time is the time between receiving erase time data (high)

and receiving erase time data (low).

WaitEraseTimeCalc: The number of wait clocks is at least 1,200 (1,690)/2,000 (27,600) CPU clocks. The wait time is the time used to calculate the erase time

setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

41

3.1.4 Prewrite command

This command must be used to clear the flash microcontroller's program area (flash memory area) to "00H" to prepare for erasure before the erase command can

be used.

Figure 3-4. Timing of Prewrite Command

WaitPreWriteTimeWaitComAck

RETRY Status
Command

COMMAND

WaitPreWriteTime WaitComAck

ACK = "3C"
STATUS CHECK
COMMAND

WaitAckData WaitDataAck

"3C" "70" "3C" "STATUS DATA" "3C"

SCK

SO

SI

"48"

WRITING NOW #6
WRITE ERROR #2

Wait prewrite time

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and

receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and

receiving data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an

ACK signal.

WaitPreWriteTime: The number of wait clocks is at least (230 (330)/216 (340) CPU clocks + flash memory write timeNote) × flash memory capacity (bytes).

Note See CHAPTER 4 SAMPLE PROGRAMS .

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

42

3.1.5 Erase command

This command erases the flash microcontroller's program area (flash memory).

Figure 3-5. Timing of Erase Command

WaitBlankCheckTimeWaitComAck

RETRY Status
Command

COMMAND

WaitEraseTime WaitComAck

ACK = "3C"
STATUS CHECK
COMMAND

WaitAckData WaitDataAck

"3C" "70" "3C" "STATUS DATA" "3C"

SCK

SO

SI

"20"

ERASING NOW #7
ERASING ERROR #3

wait erase time

BLANK CHECK ERROR #0

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and

receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and

receiving data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving

an ACK signal.

WaitEraseTime: The number of wait clocks is at least the erase time set via the erase time setting command + (690 (840)/175 (235) CPU clocks × flash

memory capacity (bytes)). The wait time is equal to the erase time.

WaitBlankCheckTime: The number of wait clocks is at least 690 (840)/175 (235) CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

43

3.1.6 Write commands

This command writes data to the flash microcontroller's program area (flash memory). It is used in combination with the status check command to check for write

failures while the write operation is in progress.

Figure 3-6. Timing of High-Speed Write Command

"55"

WaitDataDataWaitComAck

WRITE DATACOMMAND

WaitAckData WaitDataData

ACK = "3C" ADDRESS
(High)

WaitDataData

ADDRESS
(Mid)

WaitDataData

ADDRESS
(Low)

"40" "3C" "00" "10" "01" "00"

BYTE DATA

SCK

SO

SI

"55"

WaitDataData

RETRY Status
Command

WaitDataAckWaitDataData WaitDataAck WaitWriteTime

ACK = "3C"

WaitComAck WaitAckData

"55" "55" "3C" "70" "3C" "STATUS DATA"

SCK

SO

SI

"3C"

WaitWriteTime

STATUS CHECK COMMAND

WRITING NOW #6
WRITE ERROR #2

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

44

Figure 3-7. Timing of Continuous Write Command

WaitDataAckWaitComAck

COMMAND

WaitAckData WaitDataData

ACK = "3C" WRITE DATA

WaitDataData

"44" "3C" "55" "55" "55" "55"

SCK

SO

SI

"3C"

RETRY Status
Command

WaitWriteTimeWaitWriteTime WaitComAck WaitAckData WaitDataAck

"70" "3C" "STATUS DATA" "3C"

SCK

SO

SI

STATUS CHECK COMMAND

WRITING NOW #6
WRITE ERROR #2

ACK = "3C"

wait write time

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and
receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and
receiving data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an
ACK signal.

WaitDataData: The number of wait clocks is at least 300 (860)/360 (1,560) CPU clocks. The wait time is the time between receiving two sets of data.
WaitWriteTime: The number of wait clocks is at least (1,010 (1,010)/275 (440) CPU clocks × flash memory write timeNote 1 × write data size (bytes))Note 2.

Notes 1. See CHAPTER 4 SAMPLE PROGRAMS .
2. Write data size: 1 to 256 bytes (for 78K/0) or 1 to 128 bytes (for 78K/0S)

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

45

3.1.7 Internal verify command

This command is used after the write command has been executed to check the depth of the write level.

Figure 3-8. Timing of Internal Verify Command

RETRY Status
Command

WaitDataAckWaitComAck

COMMAND

WaitIVerifyTime

ACK = "3C"

WaitComAck WaitAckData

"18" "3C" "70" "3C" "STATUS DATA"

SCK

SO

SI

"3C"

WaitIVerifyTime

wait internal verify time

STATUS CHECK COMMAND

VERIFING NOW #5
VERIFY ERROR #1

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and receiving

an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and receiving

data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an ACK

signal.

WaitVerifyTime: The number of wait clocks is at least 840 (840)/230 (325) CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

46

3.1.8 Verify command

This command compares the contents of the flash microcontroller's program area (flash memory) with the data received by the flash microcontroller.

Figure 3-9. Timing of Verify Command

WaitDataAckWaitComAck

COMMAND

WaitAckData WaitDataData

ACK = "3C" VERIFY DATA

WaitDataData

"11" "3C" "55" "55" "55" "55"

SCK

SO

SI

"3C"

ACK = "3C"

WaitVerifyTime

Status Command

wait verify time

WaitComAckWaitDataData WaitDataData

VERIFY DATA

WaitVerifyTime

"55" "55" "55" "55" "3C" "70"

SCK

SO

SI

"3C" "STATUS DATA"

WaitDataAck

"3C"

ACK = "3C" STATUS CHECK COMMAND

WaitAckData WaitDataAck WaitVerifyTime

RETRY Status
Command

VERIFING NOW #5

VERIFY ERROR #1

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and receiving

an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and receiving

data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an ACK

signal.

WaitDataData: The number of wait clocks is at least 300 (860)/360 (1,560) CPU clocks. The wait time is the time between receiving two sets of data.

WaitVerifyTime: The number of wait clocks is at least 258,600 (258,600)/29,400 (41,800) CPU clocks.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

47

3.1.9 Blank check command

This command checks whether or not the flash microcontroller's program area (flash memory) has been erased.

Figure 3-10. Timing of Blank Check Command

RETRY Status
Command

WaitDataAckWaitComAck

COMMAND

WaitIBlankCheckTime

ACK = "3C"

WaitComAck WaitAckData

"30" "3C" "70" "3C" "STATUS DATA"

SCK

SO

SI

"3C"

WaitIBlankCheckTime

wait blank check time

STATUS CHECK COMMAND

BLANK CHECKING NOW #4
BLANK CHECK ERROR #0

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and

receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and

receiving data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving

an ACK signal.

WaitBlankCheckTime: The number of wait clocks is at least 690 (840)/175 (235) CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

48

3.1.10 Silicon signature command

This command gets the flash microcontroller's device information (silicon signature). For description of the silicon signature data, see Table 2-6. Meaning of Silicon

Signature Data .

Figure 3-11. Timing of Silicon Signature Command

WaitDataDataWaitComAck

COMMAND

WaitAckData WaitDataData

ACK = "3C" SILICON SIGNATURE DATA

WaitDataData

"C0" "3C" "10" "7F" "20" "20"

SCK

SO

SI

"00"

Block count
number

WaitDataAck

ACK = "3C"

"3C"

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and receiving an

ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and receiving

data.

WaitDataData: The number of wait clocks is at least 300 (860)/360 (1,560) CPU clocks. The wait time is the time between receiving two sets of data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an ACK

signal.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

49

3.1.11 Status check command

This command gets the flash microcontroller's internal command execution status and also gets the execution results. The status check command can be

executed any number of times after any command is executed. The status data is 8-bit data in which the bits are assigned values indicating the command's

execution status and execution results. For description of the status data, see Table 2-7. Meaning of Status and Data Bits in Status Check Command .

Figure 3-12. Timing of Status Check Command

WaitComAck

COMMAND

WaitAckData WaitDataAck

ACK = "3C" STATUS DATA ACK = "3C"

"70" "3C" "00" "3C"

SCK

SO

SI

WaitComAck: The number of wait clocks is at least 900 (1,630)/1,040 (2,580) CPU clocks. The wait time is the time between issuing a command and receiving

an ACK signal.

WaitAckData: The number of wait clocks is at least 230 (640)/190 (700) CPU clocks. The wait time is the time between receiving an ACK signal and receiving

data.

WaitDataAck: The number of wait clocks is at least 350 (960)/320 (1,600) CPU clocks. The wait time is the time between receiving data and receiving an ACK

signal.

CHAPTER 3 WRITE SEQUENCE

Preliminary Application Note U14458EJ1V0AN0050

3.2 Write Sequence for IIC Communications

The following are timing charts for each command used during IIC communications.

The number of wait clocks indicated below are represented as:

(Number of wait clocks when the target microcontroller is a 78K/0 Series product)/(Number of wait clocks when the

target microcontroller is a 78K/0S Series product).

In the examples, the slave address is indicated as "40H" (when the transfer direction bit is included, the value is

"80H" when sending and "81H" when receiving).

For details of the slave address, see 2.4.3 Synchronization detection processing for IIC communication

method .

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

51

3.2.1 Reset command

This command is used to confirm synchronization detection as part of synchronization detection processing.

Before sending a reset command, the flash microcontroller's slave address must be set. For a description of how to set the slave address, see 2.4.3

Synchronization detection processing for IIC communication method .

Figure 3-13. Timing of Reset Command

START condition "81" STOP condition

SCL

SDA

Set the flash microcontroller's slave address before sending the reset command.
After that, normal communications are performed.

"START condition" "80" "00"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between a command and an ACK signal.

Caution Once a NACK signal is returned, retries are performed until an ACK signal is returned. The maximum number of retries is 16. A

communication error occurs if 17 or more retries are attempted. For details, see CHAPTER 4 SAMPLE PROGRAMS.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

52

3.2.2 Oscillation frequency setting command

This command notifies the flash microcontroller concerning its operating clock. The flash microcontroller internally uses this frequency value as the basic

frequency value for calculating the write time, erase time, etc.

Figure 3-14. Timing of Oscillation Frequency Setting Command (1/2)

"START condition" "80" "90"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

"START condition" "80" "05"

SCL

SDA

STOP condition

SLAVE ADDRESS

WaitDataData

WaitComAck

"00" "00" "04"

FREQUENCY
DATA (High)

FREQUENCY
DATA (Mid)

FREQUENCY
DATA (Low)

DECIMAL POINT
DATA

Wait erase time
calculating time

WaitDataData WaitDataData

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

53

Figure 3-14. Timing of Oscillation Frequency Setting Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving frequency data (high) and receiving

frequency data (low).

WaitFrqCalcTime: The number of wait clocks is at least 2,350/65,000 CPU clocks. The wait time is the time used to calculate the oscillation frequency setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

54

3.2.3 Erase time setting command

This command sets the flash microcontroller's erase time to the flash microcontroller's program area (flash memory).

Figure 3-15. Timing of Erase Time Setting Command (1/2)

"START condition" "80" "95"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

"START condition" "80" "02"

SCL

SDA

STOP condition

SLAVE ADDRESS

WaitDataData

WaitEraseTimeCalc

"00" "00" "01"

ERASE TIME
DATA (High)

ERASE TIME
DATA (Mid)

ERASE TIME
DATA (Low)

DECIMAL POINT
DATA

Wait erase time
calculating time

WaitDataData WaitDataData

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

55

Figure 3-15. Timing of Erase Time Setting Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving erase time data (high) and receiving

erase time data (low).

WaitEraseTimeCalc: The number of wait clocks is at least 1,200/20,000 CPU clocks. The wait time is the time used to calculate the erase time setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

56

3.2.4 Prewrite command

This command must be used to clear the flash microcontroller's program area (flash memory area) to "00H" to prepare for erasure before the erase command can

be used.

Figure 3-16. Timing of Prewrite Command

"START condition" "80" "48"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitPreWriteTime

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitPreWriteTime

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitPreWriteTime: The number of wait clocks is at least (230/216 CPU clocks + flash memory write timeNote) × flash memory capacity (bytes).

Note See CHAPTER 4 SAMPLE PROGRAMS .

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

57

3.2.5 Erase command

This command erases the flash microcontroller's program area (flash memory).

Figure 3-17. Timing of Erase Command

"START condition" "80" "20"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitEraseTime

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitBlankCheckTime

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an

ACK signal.

WaitEraseTime: The number of wait clocks is at least the erase time set via the erase time setting command + (690/175 CPU clocks × flash memory

capacity (bytes)). The wait time is equal to the erase time.

WaitBlankCheckTime: The number of wait clocks is at least 690/175 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

58

3.2.6 Write commands

This command writes data to the flash microcontroller's program area (flash memory). It is used in combination with the status check command to check for write

failures while the write operation is in progress.

Figure 3-18. Timing of High-Speed Write Command (1/2)

START condition "80" "40"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

START condition "80" "00"

SCL

SDA

STOP condition

SLAVE ADDRESS

WaitDataData

WaitDataAck

"01" "00" "55"

BYTE DATA WRITE DATA

WaitDataData WaitDataData

"10" "55"

ADDRESS (High) ADDRESS (Mid) ADDRESS (Low)

WaitDataData

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

59

Figure 3-18. Timing of High-Speed Write Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C" WaitWriteTime

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitWriteTime

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

60

Figure 3-19. Timing of Continuous Write Command (1/2)

START condition "80" "44"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

SCL

SDA

START condition STOP condition"55" "55"

WRITE DATA WaitDataAck

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

61

Figure 3-19. Timing of Continuous Write Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C" WaitWriteTime

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitWriteTime

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving two sets of data.

WaitDataAck: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitWriteTime: The number of wait clocks is at least (1,010/275 CPU clocks + flash memory write timeNote 1) × write data size (bytes) Note 2.

Notes 1. See CHAPTER 4 SAMPLE PROGRAMS .

2. Write data size: 1 to 256 bytes (for 78K/0) or 1 to 128 bytes (for 78K/0S)

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

62

3.2.7 Internal verify command

This command is used after the write command has been executed to check the depth of the write level.

Figure 3-20. Timing of Internal Verify Command

START condition "80" "18"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitVerifyTime

Wait internal
verify time

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitVerifyTime

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitVerifyTime: The number of wait clocks is at least 840/230 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

63

3.2.8 Verify command

This command compares the contents of the flash microcontroller's program area (flash memory) with the data received by the flash microcontroller.

Figure 3-21. Timing of Verify Command (1/2)

START condition "80" "11"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

SCL

SDA

START condition STOP condition"55" "55"

VERIFY DATA WaitDataAck

"80"

SLAVE ADDRESS

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

64

Figure 3-21. Timing of Verify Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C" WaitVerifyTime

STATUS COMMAND

SCL

SDA

RETRY STATUS COMMAND

WaitVerifyTime

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitVerifyTime: The number of wait clocks is at least 258,600/29,400 CPU clocks.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

65

3.2.9 Blank check command

This command checks whether or not the flash microcontroller's program area (flash memory) has been erased.

Figure 3-22. Timing of Blank Check Command

START condition "80" "30"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitBlankCheckTime

STATUS COMMAND RETRY STATUS COMMAND

WaitBlankCheckTime

SCL

SDA

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitBlankCheckTime: The number of wait clocks is at least 690/175 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

66

3.2.10 Silicon signature command

This command gets the flash microcontroller's device information (silicon signature). For description of the silicon signature data, see Table 2-6. Meaning of

Silicon Signature Data .

Figure 3-23. Timing of Silicon Signature Command (1/2)

START condition "80" "C0"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

START condition "80"

SCL

SDA

STOP condition

WaitDataAck

"7F" "20" "20"

SILICON SIGNATURE
DATA

WaitDataData WaitDataData

"10" ì00î

SLAVE ADDRESS

WaitDataData

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

67

Figure 3-23. Timing of Silicon Signature Command (2/2)

"START condition" "81" "3C"

SCL

SDA

STOP condition

SLAVE ADDRESS ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving two sets of data.

WaitDataAck: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

68

3.2.11 Status check command

This command gets the flash microcontroller's internal command execution status and gets the execution results. The status check command can be executed any

number of times after any command is executed. The status data is 8-bit data in which the bits are assigned values indicating the command's execution status and

execution results. For description of the status data, see Table 2-7. Meaning of Status and Data Bits in Status Check Command .

Figure 3-24. Timing of Status Check Command

START condition "80" "70"

SCL

SDA

STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS COMMAND WaitComAck SLAVE ADDRESS ACK = "3C" WaitAckData

SCL

SDA

START condition "81" STATUS DATA STOP condition START condition "81" "3C" STOP condition

SLAVE ADDRESS WaitDataAck SLAVE ADDRESS ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,030/1,240 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 50/640 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 70/530 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

CHAPTER 3 WRITE SEQUENCE

Preliminary Application Note U14458EJ1V0AN00 69

3.3 Write Sequence for UART Communications

The following are timing charts for each command used during UART communications.

The number of wait clocks indicated below are represented as:

(Number of wait clocks when the target microcontroller is a 78K/0 Series product)/(Number of wait clocks when the

target microcontroller is a 78K/0S Series product).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

70

3.3.1 Reset command

This command is used to confirm synchronization detection as part of synchronization detection processing.

The timing of the reset command during synchronization detection is shown below.

Figure 3-25. Timing of Reset Command

"00" "00" "00""00" "00" "00""FF" "3C"

TxD

RxD

COMMAND

WaitReset1Reset2 WaitReset2Reset3 WaitReset3Ack WaitAckCom WaitReset1Reset2 WaitReset2Reset3 WaitReset3Ack

COMMAND COMMAND NACK = "FFH" COMMAND COMMAND COMMAND ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckCom: The number of wait clocks is at least 170/190 CPU clocks. The wait time is the time between receiving an ACK signal and issuing a command.

WaitReset1Reset2: The number of wait clocks is at least 260/320 CPU clocks. The wait time is the time between the first reset command and the second reset

command.

WaitReset2Reset3: The number of wait clocks is at least 180/230 CPU clocks. The wait time is the time between the second reset command and the third reset

command.

WaitReset3Ack: The number of wait clocks is at least 4,100/14,700 CPU clocks. The wait time is the time between the third reset command and an ACK signal.

Caution Once a NACK signal is returned, retries are performed until an ACK signal is returned. The maximum number of retries is 16. A communication

error occurs if 17 or more retries are attempted. For details, see CHAPTER 4 SAMPLE PROGRAMS.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

71

3.3.2 Oscillation frequency setting command

This command notifies the flash microcontroller concerning its operating clock. The flash microcontroller internally uses this frequency value as the basic frequency

value for calculating the write time, erase time, etc.

Figure 3-26. Timing of Oscillation Frequency Setting Command

"90" "3C" "05" "00""00" "3C"

TxD

RxD

COMMAND

WaitComAck WaitAckData WaitDataData WaitDataData WaitDataData WaitFrqCalcTime

ACK = "3C" FREQUENCY
DATA (High)

FREQUENCY
DATA (Mid)

FREQUENCY
DATA (Low)

DECIMAL POINT
DATA

ACK = "3C"

"04"
wait frequency calculating time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 650/690 CPU clocks. The wait time is the time between receiving frequency data (high) and receiving

frequency data (low).

WaitFrqCalcTime: The number of wait clocks is at least 5,260/46,600 CPU clocks. The wait time is the time used to calculate the oscillation frequency setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

72

3.3.3 Erase time setting command

This command sets the flash microcontroller's erase time to the flash microcontroller's program area (flash memory).

Figure 3-27. Timing of Erase Time Setting Command

"95" "3C" "02" "00""00" "3C"

TxD

RxD

COMMAND

WaitComAck WaitAckData WaitDataData WaitDataData WaitDataData WaitEraseTimeCalc

ACK = "3C" ERASE TIME
DATA (High)

ERASE TIME
DATA (Mid)

ERASE TIME
DATA (Low)

DECIMAL POINT
DATA

ACK = "3C"

"01"
wait erase time calculating time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataData: The number of wait clocks is at least 650/690 CPU clocks. The wait time is the time between receiving erase time data (high) and receiving

erase time data (low).

WaitEraseTimeCalc: The number of wait clocks is at least 1,450/276,000 CPU clocks. The wait time is the time used to calculate the erase time setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

73

3.3.4 Baud rate setting command

This changes the baud rate that is used for communications with the flash microcontroller.

Figure 3-28. Timing of Baud Rate Setting Command

"9A" "3C" "02" "3C"

TxD

RxD

COMMAND

WaitComAck WaitAckData WaitDataAck WaitBaudRateCalcTime
WaitComAck

ACK = "3C" BAUDRATE DATA ACK = "3C" ACK = "3C"

"00"wait baudrate calculating time "3C"

RESET COMMAND
Confirms
whether the
baud rate that
is used for
communications
with the flash
microcontroller.

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an

ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitBaudRateCalcTime: The number of wait clocks is at least 3,820/27,000 CPU clocks. The wait time is the time used to calculate the baud rate setting.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

74

3.3.5 Prewrite command

This command must be used to clear the flash microcontroller's program area (flash memory area) to "00H" to prepare for erasure before the erase command can be

used.

Figure 3-29. Timing of Prewrite Command

"48" "3C" "3C""70"

TxD

RxD

COMMAND

WaitComAck WaitPreWriteTime WaitDataAck

ACK = "3C"

"3C"

wait prewrite time

"STATUS DATA" RETRY Status Command

WaitAckDataWaitComAck WaitPreWriteTime

WRITE ERROR #2
WRITING NOW #6

STATUS CHECK COMMAND

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitPreWriteTime: The number of wait clocks is at least (230/216 CPU clocks + flash memory write timeNote) × flash memory capacity (bytes).

Note See CHAPTER 4 SAMPLE PROGRAMS .

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

75

3.3.6 Erase command

This command erases the flash microcontroller's program area (flash memory).

Figure 3-30. Timing of Erase Command

"20" "3C" "3C""70"

TxD

RxD

COMMAND

WaitEraseTime WaitDataAck

ACK = "3C"

"3C"

wait erase time

"STATUS DATA" RETRY Status Command

WaitAckDataWaitComAck WaitBlankCheckTime

BLANK CHECK ERROR #0
ERASE ERROR #3

ERASING NOW #7

STATUS CHECK COMMAND

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitEraseTime: The number of wait clocks is at least the erase time set via the erase time setting command + (690/175 CPU clocks × flash memory capacity

(bytes)). The wait time is equal to the erase time.

WaitBlankCheckTime: The number of wait clocks is at least 690/175 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

76

3.3.7 Write commands

This command writes data to the flash microcontroller's program area (flash memory). It is used in combination with the status check command to check for write

failures while the write operation is in progress.

Figure 3-31. Timing of High-Speed Write Command

"40" "3C" "01""10"

TxD

RxD

COMMAND ACK = "3C"

"55"

WaitDataDataWaitDataData WaitDataData

"00" "00" "55"

WaitComAck WaitAckData

ADDRESS (High)

WaitDataData

ADDRESS (Mid) ADDRESS (Low) BYTE DATA WRITE DATA

"55" "55" "3C""70"

TxD

RxD

"3C"

WaitAckDataWaitComAck WaitWriteTime

"3C" "STATUS DATA" RETRY Status Command

WaitDataData WaitDataAck

ACK = "3C"

WaitWriteTime

STATUS CHECK COMMAND

WRITE ERROR #2

WRITING NOW #6

WaitDataAck

wait write time

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

77

Figure 3-32. Timing of Continuous Write Command

"44" "3C" "55""55"

TxD

RxD

COMMAND ACK = "3C"

"3C"

WaitDataData WaitDataAck

"55" "55"

WaitComAck WaitAckData WaitDataData

WRITE DATA

WaitWriteTime

ACK = "3C"

"70" "3C" RETRY Status Command"3C"

TxD

RxD

WaitDataAck

"STATUS DATA"

WaitWriteTimeWaitComAck

STATUS CHECK COMMAND

WaitAckData

WRITE ERROR #2

WRITING NOW #6

wait write time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitDataData: The number of wait clocks is at least 650/690 CPU clocks. The wait time is the time between receiving two sets of data.

WaitWriteTime: The number of wait clocks is at least (1,010/275 CPU clocks + flash memory write timeNote 1) × write data size (bytes)Note 2.

Notes 1. See CHAPTER 4 SAMPLE PROGRAMS.

2. Write data size: 1 to 256 bytes (for 78K/0) or 1 to 128 bytes (for 78K/0S)

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

78

3.3.8 Internal verify command

This command is used after the write command has been executed to check the depth of the write level.

Figure 3-33. Timing of Internal Verify Command

"18" "3C""70"

TxD

RxD

"3C"

WaitAckDataWaitComAck WaitIVerifyTime

"3C" "STATUS DATA" RETRY Status Command

COMMAND

WaitComAck

ACK = "3C"

WaitIVerifyTime

STATUS CHECK COMMAND

VERIFY ERROR #1

VERIFYING NOW #5

WaitDataAck

wait internal verify time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitVerifyTime: The number of wait clocks is at least 840/230 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

79

3.3.9 Verify command

This command compares the contents of the flash microcontroller's program area (flash memory) with the data received by the flash microcontroller.

Figure 3-34. Timing of Verify Command

"11" "3C" "55""55"

TxD

RxD

COMMAND ACK = "3C"

"3C"

WaitDataData WaitDataAck

"55" "55"

WaitComAck WaitAckData WaitDataData

VERIFY DATA

WaitVerifyTime

"55" "55" "3C""55"

TxD

RxD

WaitVerifyTimeWaitDataData

"55" RETRY Status Command

ACK = "3C"

WaitDataAck

Status Command

Status Command

WaitVerifyTime

ACK = "3C"VERIFY DATA

WaitDataData

wait verify time wait verify time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitDataData: The number of wait clocks is at least 650/690 CPU clocks. The wait time is the time between receiving two sets of data.

WaitVerifyTime: The number of wait clocks is at least 258,560/29,400 CPU clocks.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

80

3.3.10 Blank check command

This command checks whether or not the flash microcontroller's program area (flash memory) has been erased.

Figure 3-35. Timing of Blank Check Command

"30" "3C""70"

TxD

RxD

"3C"

WaitAckDataWaitComAck WaitBlankCheckTime

"3C" "STATUS DATA" RETRY Status Command

COMMAND

WaitComAck

ACK = "3C"

WaitBlankCheckTime

STATUS CHECK COMMAND

BLANK CHECK ERROR #0

BLANK CHECKING NOW #4

WaitDataAck

wait blank check time

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK

signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitBlankCheckTime: The number of wait clocks is at least 690/175 CPU clocks × flash memory capacity (bytes).

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

81

3.3.11 Silicon signature command

This command gets the flash microcontroller's device information (silicon signature). For description of the silicon signature data, see Table 2-6. Meaning of Silicon

Signature Data .

Figure 3-36. Timing of Silicon Signature Command

"C0" "3C" "20""7F"

TxD

RxD

COMMAND ACK = "3C"

"00"

WaitDataData

"10" "20"

WaitComAck WaitAckData WaitDataData

SILICON SIGNATURE DATA ACK = "3C"

"3C"

Block count number

WaitDataAckWaitDataData

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

WaitDataData: The number of wait clocks is at least 650/690 CPU clocks. The wait time is the time between receiving two sets of data.

C
H

A
P

T
E

R
 3 W

R
IT

E
 S

E
Q

U
E

N
C

E

P
relim

inary A
pplication N

ote U
14458E

J1V
0A

N
00

82

3.3.12 Status check command

This command gets the flash microcontroller's internal command execution status and also gets the command execution results. The status check command can

be executed any number of times after any command is executed. The status data is 8-bit data in which values indicating the command's execution status and

execution results are assigned to each bit. For description of the status data, see Table 2-7. Meaning of Status and Data bits in Status Check Command .

Figure 3-37. Timing of Status Check Command

"70" "3C" "00" "3C"

TxD

RxD

COMMAND

WaitComAck WaitAckData WaitDataAck

ACK = "3C" STATUS DATA ACK = "3C"

WaitComAck: The number of wait clocks is at least 1,870/1,900 CPU clocks. The wait time is the time between issuing a command and receiving an ACK signal.

WaitAckData: The number of wait clocks is at least 240/180 CPU clocks. The wait time is the time between receiving an ACK signal and receiving data.

WaitDataAck: The number of wait clocks is at least 700/660 CPU clocks. The wait time is the time between receiving data and receiving an ACK signal.

Preliminary Application Note U14458EJ1V0AN00 83

CHAPTER 4 SAMPLE PROGRAMS

This chapter describes an example of software that writes to the flash microcontroller using a µPD784038Y as the

flash programmer's controller.

4.1 Description of Configuration for Processing

The overall program processing flow when developing an actual program is shown below.

Figure 4-1. Overall Flow of Program

START

INITIALIZATIONNote 1

SWITCH TO POWER
ON/WRITE MODE

SYNCHRONIZATION
DETECTION PROCESSING

OSCILLATION FREQUENCY
SETTING COMMAND

UART COMMUNICATIONS?

BAUD RATE SETTING COMMAND

GET SILICON SIGNATURE

COMMAND PROCESSINGNote 2

POWER OFF PROCESSING

NO

YES

Note 1. This initializes the I/O ports and
sets parameters.

EXIT COMMAND?

END

NO

YES

Note 2. This refers to the next command
(one of the following)

• Erase command
• Write command
• Verify command
• Blank check command
• Prewrite command
• Internal verify command

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0084

4.2 Description of ROM

Table 4-1 lists the areas of ROM usage.

Table 4-1. ROM Map

ROM Address Size (Bytes) Description

000000H to

00003FH

40H Vector entry table

000040H to

00007FH

40H CALLT table area (not used)

000080H to

000121H

A2H Startup routine

000122H to

000261H

320 bytes ROM table (name of table: WaitDataTable)

This stores the number of wait clocks during the flash microcontroller's processing.

000262H to

0007FFH

59EH Unused area

000800H to

001EAEH

16AFH Area for processing commands and subroutines

001EAFH to

00EDFFH

CF51H Unused area

20000H to 2FFFFH 64 Kbytes External memory area

In the sample programs, this area is allocated in external ROM (64 Kbytes) and is

used to store data to be written to the flash microcontroller.

4.3 Description of RAM

The RAM areas are described in Table 4-2 below. For description of constant values that are stored in RAM, see

4.6.5 List of constant values . Also, see the corresponding source file for description of variables (local variables)

that are used only within modules.

Table 4-2. RAM Specifications (1/3)

RAM Name Address Used

Bytes

Name Description

aSendBuffer[] EE00H 256 Send buffer This is the area where data is stored when being

transmitted to the flash microcontroller.

aRecieveBuffer[] EF00H 256 Receive buffer This is the area where data received from the flash

microcontroller is stored.

STBEG F000H 3,360 Stack area The stack is used to temporarily store addresses and

register data during subroutine calls, etc.

dwParStartAddress FD20H 4 Write start

address

This is the flash microcontroller's write start address.

When using the high-speed write command, the low-order

three bytes of data are sent to the flash microcontroller as

the write start address.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 85

Table 4-2. RAM Specifications (2/3)

RAM Name Address Used

Bytes

Name Description

dwParEndAddress FD24H 4 Write end

address

This is the flash microcontroller's write end address.

wParCpuClockSpeed FD28H 2 CPU clock

speed

This is the flash microcontroller's operating clock.

A clock value is stored in 10-kHz units, then data is

processed and transferred to the flash microcontroller.

This clock value is used to calculate the flash

microcontroller's processing wait time.

wParCsiClockSpeed FD2AH 2 CSI

communication

clock speed

This is the communications clock speed for 3-wire serial

or pseudo 3-wire serial communications. Data is stored at

a frequency of 100 Hz.

wParEraseTime FD2CH 2 Erase time This is the flash microcontroller's erase time. The erase

time is stored using 10-ms units.

cParTargetSeries FD2EH 1 Target series This is used to determine the series (78K/0 or 78K/0S) of

the microcontroller that will perform the write operation.

cParVppPulse FD2FH 1 VPP pulse

count

This stores the number of VPP pulses to be sent to the

flash microcontroller. The communication method is

selected based on the contents of this area.

cParBaudRate FD30H 1 Baud rate

select

This area stores data used to change the baud rate for

UART communications.

cParCpuClockSource FD31H 1 CPU clock

source

This selects the source for supplying the flash

microcontroller's operating clock.

cParSlaveAddress FD32H 1 Slave address

data

This area stores the flash microcontroller's slave address

used during IIC communications.

wSendSize FD33H 2 Send size This area stores the size of the data to be sent to the flash

microcontroller.

cCommunicationMethod FD35H 1 Communication

method

The value set to this area is determined based on the

value stored in cParVppPulse. The communication

method to be used with the flash microcontroller is stored

as data and is used for branch decisions in the program's

processing that depends on a specified communication

method.

cSendData FD36H 1 Send data This area stores the data to be sent to the flash

microcontroller.

cRecieveData FD37H 1 Receive data This area stores the data to be received from the flash

microcontroller.

cSendFlag FD38H 1 Send flag This flag is used when sending data to the flash

microcontroller.

cRecieveFlag FD39H 1 Receive flag This flag is used when receiving data from the flash

microcontroller.

wWaitTimeVppCom FD3AH 2 VPP-COM wait

time

This area stores the amount of wait time required between

outputting a VPP pulse and sending a command.

wWaitTimeComAck FD3CH 2 COM-ACK

wait time

This area stores the amount of wait time required between

sending a command and receiving an ACK signal.

wWaitTimeAckCom FD3EH 2 ACK-COM

wait time

This area stores the amount of wait time required between

receiving an ACK signal and sending a command.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0086

Table 4-2. RAM Specifications (3/3)

RAM Name Address Used

Bytes

Name Description

wWaitTimeAckData FD40H 2 ACK-DAT

wait time

This area stores the amount of wait time required between

receiving an ACK signal and sending data.

wWaitTimeDataData FD42H 2 DAT-DAT wait

time

This area stores the amount of wait time required between

sending two sets of data.

wWaitTimeDataAck FD44H 2 DAT-ACK wait

time

This area stores the amount of wait time required between

sending data and receiving an ACK signal.

cTargetStatus FD46H 1 Target status This area stores the flash microcontroller's command

execution status that is received via the status command.

cRetryCounter FD47H 1 Retry counter This counter counts the number of retries by each module.

cErrorStatus FD48H 1 Error status This area stores an indicator of the type of error that has

occurred while executing a command (when "0" is stored

in this area, it means there is no error).

cEnterCommand FD49H 1 Enter

command

This area stores a command that is captured via a SW (in

the sample programs, this area is used since certain

commands have been determined to be commands that

are captured by SW and executed). This area is used

only for the "main" and "MGetCom" modules.

cTimerFlag FD4AH 1 Timer flag This flag provides notification of the start of wait

processing. It also provides notification when waiting

processing is finished.

cWaitClockSelect FD4BH 1 Wait clock

select

The value in this area is set based on the values in the

cParTargetSeries area and cParVppPulse area. This area

is used to select the number of wait clocks used to

calculate the wait time for executing various commands

that differ according to the target series and

communication method.

cSigVendorCode FD4CH 1 Vendor code This area stores the silicon signature data's "vendor

code".

cSigIdCode FD42H 1 ID code This area stores the silicon signature data's "ID code".

cSigElectInf FD43H 1 Electrical

information

This area stores the silicon signature data's "electrical

information".

dwSigLastAddress FD44H 4 Flash end

address

This area stores the silicon signature data's "flash end

address".

aSigDeviceName[] FD48H 10 Device name This area stores the silicon signature data's "device

name".

sSig

cSigBlockInf FD52H 1 Block division

information

This area stores the silicon signature data's "block division

information".

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 87

4.3.1 Nomenclature related to processing and RAM

In the program description for this system, the following process names and RAM names are used to improve

operational efficiency. The meanings of these names are explained below.

(1) Names of modules and subroutines

M****: Module that combines various processing, such as power supply processing and command

processing.

S****: Module that is called from another module as a subroutine.

(2) Definitions of RAM and ROM data types

The following three data type definitions are used for RAM and ROM data types in programs. The definition

for each data type is stored in the file "DatType.h". Therefore, when using these sample programs, the

DatType.h must be included. For further description of DatType.h, see 4.3.2 Data type definition file .

Byte: Defines RAM and ROM as one byte of unsigned data.

Word: Defines RAM and ROM as two bytes of unsigned data.

DWord: Defines RAM and ROM as four bytes of unsigned data.

(3) RAM and ROM names

The size or data type of an area is indicated by one or two lower-case letters added to the start of the RAM

name or ROM name.

c***: Area whose size is one byte Example: cParTargetSeries

w***: Area whose size is two bytes Example: wParCpuClockSpeed

dw***: Area whose size is four bytes Example: dwParStartAddress

a***: Area defined as an array Example: aSendBuffer[256]

s***: Area defined as a structure Example: sSig

The characters that follow the one or two characters (in the examples above: c, w, dw, a, and s) that indicate

the area size or data type describe the area itself.

*Par***: Name of an area that is used as a parameter (a user-defined value)

Examples: cParTargetSeries, wParEraseTime, dwParEndAddress

sSig.***: Name of an area that is used to store silicon signature information

Examples: sSig.cSigVendorCode, sSig.aSigDeviceName

*Wait***: Name of an area that is used to store the number of wait clocks, wait time, or other wait-related data

Examples: cWaitClockSelect, wWaitTimeComAck

4.3.2 Data type definition file

Be sure to include the following declarations when using the sample programs.

typedef unsigned char Byte; // Defined as an unsigned one-byte area.

typedef unsigned short Word; // Defined as an unsigned two-byte area.

typedef unsigned long DWord; // Defined as an unsigned four-byte area.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0088

4.4 Description of Modules

The processing corresponding to each module is described in Table 4-3 below.

Table 4-3. Description of Modules (1/2)

Module Name Full Name Description

cstartrn Startup routine The startup routine branches to the main routine (main) after performing

hardware settings, RAM clearing, I/O port settings, etc.

hdwinit Hardware initialization This module is called from the startup routine to perform hardware settings

and I/O port settings.

main Main routine This is the flash programmer's main module. Commands to be executed are

controlled by this module.

RamIni Variable initialization This module sets hardware settings for variables to be used as parameters

and sets other variables that are used by programs.

MGetCom Enter command This module selects the command to be executed after input via a SW and

stores the command code to be executed in cEnterCommand. Also, if an

error occurred during execution of the previous command, an LED indicates

the error.

MPowerOn Switch to power

on/write mode

This module switches the flash microcontroller to power on mode and write

mode.

MSyncChek Synchronization

detection

This module uses the reset command to check synchronization of the

communication with the flash microcontroller.

MFrequencySetUp Oscillation frequency

setting

This module sets the flash microcontroller's operating clock to the flash

microcontroller.

MEraseTimeSetUp Erase time setting This module sets the flash microcontroller's erase time to the flash

microcontroller.

MBaudRate Baud rate setting This module changes the baud rate for UART communications. This module

is called from the main routine only when UART has been selected as the

communication method to be used with the flash microcontroller.

MGetSiliconeSignature Get silicon signature This module fetches the flash microcontroller's silicon signature (device

information).

MPreWrite Prewrite This module is called from MErase and performs prewrite in preparation for

erasure.

MErase Erase This module erases the flash microcontroller's program area (flash memory).

MProgram Write This module writes data to the flash microcontroller's program area (flash

memory).

MInternalVerify Internal verify This module is called from Mprogram and is used to check the depth of the

write level in the flash microcontroller's program area (flash memory) after a

write operation.

MVerify Verify This module compares the contents of the flash microcontroller's program

area (flash memory) with the data received by the flash microcontroller.

MBlankChek Blank check This module checks whether or not the flash microcontroller's program area

(flash memory) has been erased.

MGetStatus Get status This module gets the flash microcontroller's internal command execution

status.

MPowerOff Power off processing This module turns off the power to the flash microcontroller.

SWaitMicroSec Microsecond wait This module inserts a wait period in 1-µs units during processing.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 89

Table 4-3. Description of Modules (2/2)

Module Name Full Name Description

SWaitMiliSec Millisecond wait This module inserts a wait period in 1-ms units. Meanwhile, the cTimerFlag

module can be used to perform other processing during the wait time.

SWaitTimeCalcFlMemSize Calculate wait time per

flash memory size

This module calculates the wait time for the blank check and internal verify

operations.

SWriteWaitTimeCalc Calculate write/prewrite

time

This module calculates the write wait time or the prewrite wait time.

SWait Wait processing This module inserts a wait period in 1-ms units.

SWait30us 30-µs wait This module inserts a 30-µs wait period.

SByteDataSend Send single-byte data This module sends one byte of data.

SDataSend Send data This module uses the SByteDataSend module to send the specified number

of data bytes.

SSlaveAddressSend Send slave address This module sends slave addressees.

SbyteDataReceive Receive single-byte

data

This module receives one byte of data.

SdataReceive Receive data This module uses the SByteDataReceive module to receive the specified

number of data bytes.

ScsiIni Set 3-wire

serial/pseudo 3-wire

serial communications

This module sets either 3-wire serial or pseudo 3-wire serial communications.

SIicIni Set IIC

communications

This module sets IIC communications.

SUartIni Set UART

communications

This module sets UART communications.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0090

4.5 Sample Programs

(1) In the following sample programs, the µPD78P4038Y is used as the flash programmer's controller.

(2) In these sample programs, compiler or assembler options specify "LOCATION0" as the location and the "large

model" as the memory model. During actual coding, "LOCATION0" must be specified as the location and

"large model" must be specified as the memory model.

(3) The constant value definitions stored in the program's subroutines, variables (RAM), and ROM table are listed

in 4.6.5 List of constant value definitions .

(4) In these sample programs, the "MGetCom" moduleNote 1 performs a key scan and stores the code for the

command (erase, write, verify, or erase, write, & verify) that is executed for the variable "cEnterCommand"Note 2

and selects the command that determines and executes the contents of cEnterCommand in the main routine.

During actual coding, we recommend modifying the main routine to suit the interface to be used.

(5) Although an error may be detected in any of these modules, if an error is detected in a sample program, the

variable "cErrorStatus" stores the error description and the "MGetCom" moduleNote 1 uses an LED to indicate

the error. During actual coding, we recommend performing error notification in a way that suits the interface

to be used. For a list of errors that may be detected in these sample programs, see 4.7 Error Code List .

Also, the processing that sets the type of error to the "cErrorStatus" variable and the part that determines the

contents of cErrorStatus and branches processing are not shown in the sample program flow chart.

Notes 1. See CHAPTER 5 INTERFACE EXAMPLES for description of the MGetCom module. Since

MGetCom is a module that performs processing of the interface part (key scan and LED display) in

these sample programs, it does not affect flash memory write operations. Consequently, when the

interface has been changed, there is no need to call MGetCom from the main routine or from

another module.

2. cEnterCommand is not used in any modules other than main (the main routine) and MGetCom.

Accordingly, there is no need to use this variable when the main routine or interface has been

changed.

4.5.1 Startup routine

In the following sample programs, the file "cStartrn.asm" which is supplied with the C compiler (CC78K4) is used

in the startup routine. When referring to these sample programs, you must use cStartrn.asm. In the startup routine,

processing branches to the main routine (main) after the hardware settings, I/O port settings, and clearing of RAM

have been performed. The hardware settings and I/O port settings are performed by calling the function "hdwinit"

from within the startup routine. The startup routine (cStartrn.asm) can be used without modification if the function

name for the hardware settings has been set as "hdwinit" and the function name "main" is used as the main routine.

In the following sample programs, the C compiler (CC78K4)'s default file (cStartrn.asm) is used without modification.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 91

4.5.2 Hardware initialization processing

This processing initializes the flash programmer's hardware and set I/O ports.

(1) Flow chart

INITIALIZE HARDWARE

SET MEMORY EXPANSION MODE

TURN POWER SUPPLY OFF

SELECT OPERATING CLOCK

SET I/O PORTSNote
Note Set the ports to suit the system

(peripheral circuit) to be used.

END

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0092

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/***
* Hardware initialization *
* Initializes D/A converter, port output latch, and port mode. *
* This routine is called by the startup routine. *
**
void hdwinit(void){

 MM = 0x29; //1 MByte expansion mode
 STBC= 0x00; //fCLK/2

/***** Initialize D/A converter *****/
 DACS1 = 0; //VPP = 0 V
 DACS0 = 0; //VDD = 0 V

/***** Set port output latch and port mode *****/
 P0 = 0b00000010; //Selects CPU clock

//P0.1: High (no clock supply)
//P0.6: Low [1.25 MHz]
//P0.7: Low [1.25 MHz]

 P1 = 0b00001111; //Status lamp (low active)
//P1.0: BLANK CHEK
//P1.1: VERIFY
//P1.2: PROGRAM
//P1.3: ERASE

 P3 = 0b00001000; //P3.0 [RXD]
//P3.1 [TXD]
//P3.2: [SCK/SCL] (low active)
//P3.3: [SO/SDA]

 P6 = 0b00000000; //P6.7 Reset target (low active)
 P7 = 0b00000000;
 PM0 = 0b00000000; //Output mode
 PM1 = 0b00000000; //Output mode
 PM3 = 0b00000001; //P3.0 [RXD]

//P3.1 [TXD]
//P3.2 [SCK] (low active)
//P3.3 [SO]

 PM6 = 0b00000000; //P6.7 Reset target (low active)
 PM7 = 0b00011111; //Command SW

//P7.0 BLANK CHEK
//P7.1 VERIFY
//P7.2 PROGRAM
//P7.3 ERASE
//P7.4 E.P.V

 PMC1 = 0b00000000; //Set general-purpose port
 PMC3 = 0b00000000; //High during initialization of communication method
 PUO = 0b00000100; //P2.[2-6] On-chip pull-up resistor connection (not used)
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 93

4.5.3 Main processing

The following sample shows SW selection of five types of processing: erase, write, verify, blank check, and

erase/write/verify. NEC recommends changing the main processing to suit the target system before using it.

(1) Flow chart

START

INITIALIZE RAM

SWITCH TO POWER ON/
WRITE MODE

GET COMMAND SW/
DISPLAY STATUS

SYNCHRONIZATION DETECTION
PROCESSING

OSCILLATION FREQUENCY
SETTING COMMAND

ERASE TIME SETTING
COMMAND

cCommunicationMethod
= UART?

BAUD RATE SETTING
COMMAND

GET SILICON SIGNATURE

cEnterCommand?

VERIFY COMMAND ERASE COMMAND

WRITE (PROGRAM) COMMANDBLANK CHECK COMMAND

ERASE COMMAND

WRITE (PROGRAM) COMMAND

VERIFY COMMAND

POWER OFF PROCESSING

NO

YES

This selects the command to be executed
after entry via a SW and stores the command
code to be executed in cEnterCommand.
Also, if an error occurred during execution of
the previous command, an LED indicates the
error.

Is communication method
UART?

Baud rate setting command
is executed only when
communication method is
UART.

Executes the command specified via
a SW.

PROGRAM

ERASE, PROGRAM, VERIFYVERIFYERASE

BLANK CHECK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0094

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*--
 FUNCTION PROTOTYPE DECLARATION
--*/
void RamIni(void); //Initializes RAM (parameters, etc.)
void MGetCom(void); //Gets command
void MPowerOn(void); //Switches to power on/write mode
void MSyncChek(void); //Synchronization detection
void MFrequencySetUp(void); //Sets oscillation frequency
void MEraseTimeSetUp(void); //Sets erase time
void MBaudRate(void); //Sets baud rate
void MGetSiliconeSignature(void); //Gets silicon signature
void MErase(void); //Erase
void MProgram(void); //Write
void MVerify(void); //Verify
void MBlankChek(void); //Blank check
void MPowerOff(void); //Power off

/** *
* Main routine *
* Global variables: cErrorStatus Error status *
* cCommunicationMethod Communication method *
*** /
void main(void){
 RamIni(); //Initializes RAM

 while(1){
 MGetCom(); //Gets command

 MpowerOn(); //Switches to power on/write mode

 MSyncChek(); //Synchronization detection
 if(cErrorStatus == NO_ERROR){ //Any errors?

 MFrequencySetUp(); //Sets oscillation frequency
 if(cErrorStatus == NO_ERROR){ //Any errors?
 if(UART == cCommunicationMethod){

//UART communication method?
 MBaudRate(); //If yes, sets baud rate
 }
 if(cErrorStatus == NO_ERROR){

//Any errors?
 MEraseTimeSetUp(); //Sets erase time
 if(cErrorStatus == NO_ERROR){

//Any errors?
 MGetSiliconeSignature();

//Gets silicon signature
 if(cErrorStatus == NO_ERROR){

//Any errors?
 switch(cEnterCommand){

//Erase, write, and verify
 case ENTER_EPV:
 P1.3 = 0;

//Displays status

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 95

 MErase();
//Erase

 if(cErrorStatus != NO_ERROR)break;
//Any errors?

 P1.2 = 0;
//Displays status

 MProgram();
//Write

 if(cErrorStatus != NO_ERROR)break;
//Any errors?

 P1.1 = 0;
//Displays status

 MVerify();break;
//Verify

 case ENTER_ERA: MErase(); break;
//Erase

 case ENTER_PRG: MProgram(); break;
//Write

 case ENTER_VRF: MVerify(); break;
//Verify

 case ENTER_BLN: MBlankChek(); break;
//Blank check

 }
 }
 }
 }
 }
 }
 MPowerOff(); //Power OFF
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0096

4.5.4 RAM initialization

(1) Flow chart

INITIALIZE RAM

SET PARAMETERSNote

INITIALIZE OTHER VARIABLES

Note The parameters required for the
write operation must be set.

END

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 97

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
 FUNCTION PROTOTYPE DECLARATION
---*/
Word SWaitTimeCalc(Word wWaitClock); // Calculates communication wait time

/**
* RAM initialization *
* *
* Initializes parameter settings and other RAM to be used as global variables *
**/
void RamIni(void){

/**** Parameter settings ****/

 cParTargetSeries = K0S; //Selects 78K/0S as target series

 dwParStartAddress = 0x00000000; //Write start address
 dwParEndAddress = 0x00007fff; //Write end address

//Stores write program size
//Set a value that does not exceed the capacity of
//the target microcontroller's flash memory.

 wParEraseTime = 200; //Erase time (in 10-ms units)
//2.0 s is set in the sample program.

 cParCpuClockSource = IN_FLASHWRITER; //Sets source for supply of CPU clock to target
//microcontroller
//Select the method for supplying a CPU clock from
//this flash programmer.

 wParCpuClockSpeed = 500; //Oscillation frequency (in 10-kHz units)
//Speed of CPU clock supplied to target
//microcontroller
//5 MHz is set in sample program
//Setting range: 100 to 1,000 (1 MHz to 10 MHz)

 cParVppPulse = SIO_CH0; //VPP pulse count (0 to 14)
//3-wire serial, channel 0 is selected in sample
//program
//SIO_CH0 = 0)
//See 4.6.5 List of constant value definitions for
//correspondence between VPP pulse count and
//selected communication method

 wParCsiClockSpeed = 10000; //Serial clock speed (3-wire serial or pseudo 3-wire
//serial communication method), 100-Hz units
//1 MHz is set in sample program
// (For pseudo 3-wire serial communication method,
//set to 1 kHz or less)

 cParBaudRate = BPS9600; //Baud rate for UART communications
//9,600 bps is selected in sample program

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN0098

 cParSlaveAddress = 0x10; //Slave address setting (required for IIC
//communications)
//Setting range: (08H to 77H) Communication will
//not be possible if it is set outside of this range.

/**** End setting of parameters ****/

 cCommunicationMethod = cParVppPulse / 4; //RAM setting to select communication method
//(used to speed up communication processing)
// Value Communication method
// 0 3-wire serial
// 1 IIC
// 2 UART
// 3 Pseudo 3-wire serial

 cWaitClockSelect = cParVppPulse / 4; //Sets element number of structure array (wait data
 if(cParTargetSeries == K0S){ //table) used to select the number of wait clocks for
 cWaitClockSelect += 4; //each communication method and target series
}

/***** Calculates each communication wait time and stores value in RAM (to speed up communications) *****/
 wWaitTimeVppCom = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitVppCom);

//Wait time between VPP and command [µs units]
 wWaitTimeComAck = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitComAck);

//Wait time between command and ACK [µs units]
 wWaitTimeAckCom = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitAckCom);

//Wait time between ACK and command [µs units]
 wWaitTimeAckData = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitAckData);

//Wait time between ACK and data [µs units]
 wWaitTimeDataData = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitDataData);

//Wait time between two data sets [µs units]
 wWaitTimeDataAck = SWaitTimeCalc(WaitDataTable[cWaitClockSelect].wWaitDataAck);

//Wait time between data and ACK [µs units]

 cTargetStatus = READY; //Initializes target microcontroller's status
 cRetryCounter = 0; //Initializes retry counter
 cErrorStatus = NO_ERROR; //Initializes error status (no errors)
 cEnterCommand = ENTER_NOTHING; //Initializes input command (no entered command)
 cTimerFlag = WAIT_START; //Initializes timer flag

}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 99

4.5.5 Switch to power on/write mode

(1) Flow chart

SWITCH TO POWER
ON/WRITE MODE

OUTPUT RESET (LOW LEVEL)

WAIT 2 ms

Note 1. 0: Supply CPU clock from flash programmer
1: Use target board's CPU clock

SUPPLY VDD VOLTAGE

WAIT 2 ms

SUPPLY VPP VOLTAGE

OUTPUT SCK (HIGH LEVEL)

WAIT 2 ms

OUTPUT RESET (HIGH LEVEL)
(CANCEL RESET)

cParCpuClockSource
= 0?Note 1

SUPPLY CPU CLOCK

WAIT 2 ms

OUTPUT VPP PULSENote 2

END

NO

YES

Note 2. Stop output of VPP pulse within 20 ms after
starting supply of CPU clock.

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00100

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWait30us(void); //30-µs wait time

/***
* Switch to power on/write mode *
* Global variables: cParCpuClockSource CPU clock source *
* wParCpuClockSpeed CPU clock speed *
* cErrorStatus Error status *
* cTimerFlag Timer flag *
* *
* Local variable: cVppPulseCounter VPP pulse counter *
* *
***/
void MPowerOn(void){
 register Byte cVppPulseCounter; //VPP pulse counter

 P6.7 = 0; //Low-level output of RESET signal
 cTimerFlag = WAIT_START;
 do{
 SWaitMiliSec(2); //2-ms wait time
 }while(cTimerFlag == WAIT_NOW);

 DAM = 0x03; //Enables D/A converter output
 DACS0 = 85; //VDD = 5-V power supply

//(5/256) V × 85 × 3 = 4.98 V
 do{
 SWaitMiliSec(2); //2-ms wait time
 }while(cTimerFlag == WAIT_NOW);

 DACS1 = 171; //VPP = 10-V power supply
//(5/256) V × 171 × 3 = 10.02 V

 P3.2 = 1; //High-level output of SCK signal
 do{
 SWaitMiliSec(2); / //2-ms wait time
 }while(cTimerFlag == WAIT_NOW);

 P6.7 = 1; //High-level output of RESET signal

***** Select CPU clock *****/
 if(cParCpuClockSource == IN_FLASHWRITER){ //When supplying a CPU clock from the flash

//programmer
 switch(wParCpuClockSpeed / 100){
 case 1: P0.6 = 0; //1.25 MHz
 P0.7 = 0; break;
 case 2: P0.6 = 1; //2.5 MHz
 P0.7 = 0; break;
 case 5: P0.6 = 0; //5.0 MHz
 P0.7 = 1; break;
 case 10:P0.6 = 1; //10 MHz
 P0.7 = 1; break;

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 101

 default:
 cErrorStatus = PARAMETER_OUT_OF_RANGE;

//Parameter is out of range
 }

 P0.1 = 0; //Clock supply starts when P0.1 = L
 }
 do{ //Output timing of VPP pulse after high-level output of

//RESET signal:
 SWaitMiliSec(2); //Within 20 ms for 78K/0 series (@8.38-MHz

//operation)
 }while(cTimerFlag == WAIT_NOW); //Within 20 ms for 78K/0S series (@10-MHz

//operation)

: /***** VPP pulse output *****/ //Notifies target flash microcontroller of
//communication method

 for(cVppPulseCounter = cParVppPulse ; 0 < cVppPulseCounter ; cVppPulseCounter--){
 DACS1 = 85; //VPP pin, VDD level output (5 V)
 SWait30us(); //30-µs wait time
 DACS1 = 171; //VPP pin, VPP level output (10 V)
 SWait30us(); //30-µs wait time
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00102

4.5.6 Synchronization detection processing

(1) Flow chart

SYNCHRONIZATION
DETECTION PROCESSING

WAIT FOR TARGET MICROCONTROLLER
INITIALIZATION TIME

INITIALIZE IIC COMMUNICATIONS

SYNCHRONIZATION
DETECTION PROCESSING FOR

SERIAL COMMUNICATIONS

SYNCHRONIZATION
DETECTION PROCESSING

FOR UART COMMUNICATIONS

SYNCHRONIZATION
DETECTION PROCESSING FOR

SERIAL COMMUNICATIONS

cCommunicationMethod?

INITIALIZE UART COMMUNICATIONSINITIALIZE CSI COMMUNICATIONS

CSI/PCSI IIC UART

END

Communication method?

SYNCHRONIZATION
DETECTION PROCESSING FOR

SERIAL COMMUNICATIONS

cCommunicationMethod
= IIC?

SET SLAVE ADDRESS

SEND RESET COMMAND
(00H)

ACK RECEIVED?

RETRIED 16 TIMES?

END

YES

NO

NO

YES

NO
Is communication method IIC?

Synchronization
detection failed

Normal end of synchronization
detection

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 103

SYNCHRONIZATION DETECTION
FOR UART COMMUNICATIONS

ACK RECEIVED?

RETRIED 16 TIMES?

END

YES

NO

NO

Synchronization
detection failed

Normal end of synchronization
detection processing

SEND RESET COMMAND
(00H)

SEND RESET COMMAND
(00H)

WAIT FOR TARGET
MICROCONTROLLER'S

PROCESSING TIME

SEND RESET COMMAND
(00H)

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00104

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)
void SWait(DWord dwWaitClock); //Wait
void SCsiIni(void); //Initializes 3-wire serial/pseudo 3-wire serial

//communications
void SUartIni(void); //Initializes UART communications
void SIicIni(void); //Initializes IIC communications
void SSyncChekCsiOrIic(void); //Synchronization detection for 3-wire serial/pseudo

//3-wire serial/IIC communications
void SSyncChekUart(void); //Synchronization detection for UART

//communications
void SSlaveAddressSend(Byte cSendOrRecieve); //Slave address transmit processing

/**
* Synchronization detection *
* Global variables: cCommunicationMethod Communication method *
* cTimerFlag Timer flag *
***/
void MSyncChek(void){

/****** Wait for target microcontroller's initialization time *****/
 cTimerFlag = WAIT_START; //Wait for flash microcontroller's initialization time
 do{ // (Wait time for flash microcontroller's oscillation

//stabilization + wait time for initialization of flash
//microcontroller)

 SWaitMiliSec(100); //In the sample program, this time is set as 100 ms.
 }while(cTimerFlag == WAIT_NOW);

/***** Synchronization detection for each communication method *****/
 switch(cCommunicationMethod){ //Synchronization detection for each communication

//method
 case CSI: //3-wire serial
 case PCSI: //Pseudo 3-wire serial
 SCsiIni(); //Initializes 3-wire serial/pseudo 3-wire serial

//communications
 SSyncChekCsiOrIic(); //3-wire serial/pseudo 3-wire serial/IIC

//synchronization detection
 break;
 case IIC: //IIC
 SIicIni(); //Initializes IIC communications
 SSyncChekCsiOrIic(); //3-wire serial/pseudo 3-wire serial/IIC

//synchronization detection
 break;
 case UART: //UART
 SUartIni(); //Initializes UART communications
 SSyncChekUart(); //UART synchronization detection processing
 break;

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 105

 default: cErrorStatus = PARAMETER_OUT_OF_RANGE;
//Parameter is out of range

 return;
 }
}

/***
* 3-wire serial/pseudo 3-wire serial/IIC synchronization detection *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckCom ACK-COM wait time *
**/
void SSyncChekCsiOrIic(void){
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++) {

//Maximum of 16 retries for cRetryCounter
 switch(cCommunicationMethod){ //Communication method: IIC
 case IIC: //Notifies the target microcontroller concerning its

//slave address
 if((cParSlaveAddress < 0x08)|| //Slave address is out of range
 (cParSlaveAddress > 0x77)){ //(Valid range is 0x08 to 0x77)
 cErrorStatus = PARAMETER_OUT_OF_RANGE;

//Parameter is out of range
 return;
 }
 SSlaveAddressSend(((cParSlaveAddress & 0b01000000) >> 6));

//Sets transfer direction bit to A6 (same value as
//bit6 in address)

 SPT = 1; //Outputs stop condition
 }
 cErrorStatus = NO_ERROR; //Sets error status to "no errors"

/***** Send reset command *****/
 cSendData = CMD_RESET;
 SDataSend(1, &cSendData); //Sends reset command
 if(cErrorStatus != NO_ERROR)continue; //Retries if error has occurred

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving an ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR)continue; //Any errors?
 SWaitMicroSec(wWaitTimeAckCom); //Wait for time between receiving ACK signal and

//sending command
 if(cRecieveData != ACK) continue; //Is receive data an ACK signal?

 return; //Normal end of synchronization detection
 }
 cErrorStatus = INITIALISE_ERROR; //Synchronization detection failed
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00106

/**
* UART synchronization detection *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckCom ACK-COM wait time *
***/
void SSyncChekUart(void){
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){

//Maximum of 16 retries for cRetryCounter
 cErrorStatus = NO_ERROR; //Sets error status as "no errors"
/***** Send reset command *****/
 cSendData = CMD_RESET;
 SDataSend(1, &cSendData); //Sends reset command (first time)
 if(cErrorStatus != NO_ERROR)continue; //Any errors?
 cRetryCounter++;

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitRst1);
//Wait time after first reset command is sent

/***** Send reset command *****/
 cSendData = CMD_RESET;
 SDataSend(1, &cSendData); //Sends reset command (second time)
 if(cErrorStatus != NO_ERROR)continue; //Any errors?
 cRetryCounter++;

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitRst2);
//Wait time after second reset command is sent

/***** Sends reset command *****/
 cSendData = CMD_RESET;
 SDataSend(1, &cSendData); //Sends reset command (third time)
 if(cErrorStatus != NO_ERROR)continue; //Any errors?

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitRst3);
//Wait time after third reset command is sent

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR)continue; //Any errors?
 SWaitMicroSec(wWaitTimeAckCom); //Wait for time between receiving ACK signal and

//sending command
 if(cRecieveData != ACK)continue; //Is receive data an ACK signal?

 return; //Normal end of synchronization detection
 }
 cErrorStatus = INITIALISE_ERROR; //Synchronization detection failed
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 107

4.5.7 Oscillation frequency setting command

(1) Flow chart

SET OSCILLATION
FREQUENCY

SEND OSCILLATION FREQUENCY
SETTING COMMAND (90H)

SEND OSCILLATION FREQUENCY
DATA (4 BYTES)

WAIT FOR TARGET
MICROCONTROLLER'S

PROCESSING TIME

Example: The following is indicated for 5.00 MHz operation.
Since 5.00 MHz = 0.500 × 104 [kHz], the oscillation
frequency data is "05 00 00 04".

END

RECEIVE ACK

RECEIVE ACK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00108

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/** *
* Oscillation frequency setting command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckData ACK-COM wait time *
* *
* Local variable: wWork1 Work area 1 *
* cWork2 Work area 2 *
* cWork3 Work area 3 *
* *
**/
void MFrequencySetUp(void){
 register Word wWork1; //Work area 1
 register Byte cWork2; //Work area 2
 register Byte cWork3; //Work area 3

/***** Send command *****/
 cSendData = CMD_FRQ_SET;
 SDataSend(1, &cSendData); //Sends oscillation frequency setting command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait for time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }
 SWaitMicroSec(wWaitTimeAckData); //Wait for time between receiving ACK signal and

//sending data

/***** CPU clock range judgement (valid range: 1 MHz to 10 MHz) *****/
 if(!((100 <= wParCpuClockSpeed) && (1000 >= wParCpuClockSpeed))){
 cErrorStatus = PARAMETER_OUT_OF_RANGE;
 return; //Invalid value was set to parameter
 }

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 109

/**** Send four bytes of oscillation frequency data ****/
 wWork1 = wParCpuClockSpeed;
 cWork2 = 4; //Exponent: 10^4 (10-kHz units)
 if(1000 == wParCpuClockSpeed){ //When oscillation frequency is 10 MHz
 wWork1 /= 10; //Multiplies by 0.1 and adds 1 to exponent
 cWork2++;
 }
 aSendBuffer[3] = cWork2; //Exponent

 for(cWork3 = 0 ; 100 <= wWork1 ; cWork3++){
 wWork1 -= 100; //Example: when wParCpuClockSpeed (10-kHz

// units) = 500 (5 MHz)
 } //Send data Hi Mid Low
 aSendBuffer[0] = cWork3; // 5 0 0
 for(cWork3 = 0 ; 10 <= wWork1 ; cWork3++){
 wWork1 -= 10;
 }
 aSendBuffer[1] = cWork3;
 for(cWork3 = 0 ; 1 <= wWork1 ; cWork3++){
 wWork1 -= 1;
 }
 aSendBuffer[2] = cWork3;

 SDataSend(4 , aSendBuffer); //Sends buffer contents (4 bytes)
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitFrequencySet);
//Wait for target microcontroller's processing time

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00110

4.5.8 Erase time setting command

(1) Flow chart

ERASE TIME SETTING

SEND ERASE TIME SETTING
COMMAND (95H)

SEND ERASE TIME DATA
(4 BYTES)

WAIT FOR TARGET
MICROCONTROLLER'S

PROCESSING TIME

Example: The following is indicated for 2 s erase time.
Since 2 s = 0.200 × 101 (s), the erase time
data is "02 00 00 01".

END

RECEIVE ACK

RECEIVE ACK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 111

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Erase time setting *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckData ACK-DATA wait time *
* *
* Local variable: wWork1 Work area 1 *
* cWork2 Work area 2 *
* cWork3 Work area 3 *
**/
void MEraseTimeSetUp(void){
 register Word wWork1; //Work area 1
 register Byte cWork2; //Work area 2
 register Byte cWork3; //Work area 3

/***** Send command *****/
 cSendData = CMD_ERT_SET;
 SDataSend(1, &cSendData); //Sends erase time setting command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait for time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }

 SWaitMicroSec(wWaitTimeAckData); //Wait for time between receiving ACK signal and
//sending data

/**** Erase time range judgement (valid range: 0.5 s to 20 s) ****/
 if(!((50 <= wParEraseTime) && (2000 >= wParEraseTime))){
 cErrorStatus = PARAMETER_OUT_OF_RANGE;return;

//Invalid value was set to parameter
 }

/**** Send four bytes of erase time data ****/
 wWork1 = wParEraseTime;
 cWork2 = 1; //Exponent: 10^1 (10-ms units)
 if(1000 <= wParEraseTime){ //When erase time is 10 s or longer

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00112

 wWork1 /= 10; //Multiplies by 0.1 and adds 1 to exponent
 cWork2++;
 }
 aSendBuffer[3] = cWork2; //Exponent

 for(cWork3 = 0 ; 100 <= wWork1 ; cWork3++){
 wWork1 -= 100; //Example: when wParEraseTime (10-ms units) =

// 200 (2 s)
 } //Send data Hi Mid Low
 aSendBuffer[0] = cWork3; // 2 0 0
 for(cWork3 = 0 ; 10 <= wWork1 ; cWork3++){
 wWork1 -= 10;
 }
 aSendBuffer[1] = cWork3;
 for(cWork3 = 0 ; 1 <= wWork1 ; cWork3++){
 wWork1 -= 1;
 }
 aSendBuffer[2] = cWork3;

 SDataSend(4 , aSendBuffer); //Sends buffer contents (4 bytes)
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitEraseTimeSet);
//Wait for target microcontroller's processing time

 SDataRecieve(1); //Receives ACK
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK) //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 113

4.5.9 Baud rate setting command

(1) Flow chart

BAUD RATE SETTING

SEND BAUD RATE SETTING
COMMAND (9AH)

SEND BAUD RATE SETTING DATA

RECEIVE ACK

Example: Baud rates values corresponding to baud rate
settings are indicated as follows.
When value = 2: 4,800 bps, 3: 9,600bps, 4: 19,200 bps

5: 31,250 bps, 6: 38,400 bps, 7: 76,800 bps
If value is other than above, a data error occurs.

END

RECEIVE ACK

SEND RESET COMMAND
(00H)

WAIT FOR TARGET
MICROCONTROLLER'S

PROCESSING TIME

RECEIVE ACK

Sends a reset command using the new baud rate

Confirms that normal communications have been executed using the
new baud rate

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00114

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);
void SDataRecieve(Word wRecieveDataSize);
void SWait(DWord dwWaitClock);
void SWaitMicroSec(Word wCrRegData); //Wait for communications

/** *
* Baud rate setting command (for UART communications only) *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cParBaudRate Baud rate setting data *
* cErrorStatus Error status *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckData ACK-DATA wait time *
* wWaitTimeDataAck DATA-ACK wait time *
**/
void MBaudRate(void){

/***** Send command *****/
 cSendData = CMD_BAUDRATE;
 SDataSend(1, &cSendData); //Sends baud rate setting command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait for time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;return;
 }

 SWaitMicroSec(wWaitTimeAckData); //Wait for time between receiving ACK signal and
//sending data

/***** Send baud rate setting data *****/
 cSendData = cParBaudRate;
 SDataSend(1, &cSendData); //Sends baud rate setting data

//cParBaudRate(bps)
//0: 1,200 1: 2,400 2: 4,800 3: 9,600
//4: 19,200 5: 31,250 6: 38,400 7: 76,800

 if(cErrorStatus != NO_ERROR)return; //Any errors?

 SWaitMicroSec(wWaitTimeDataAck); //Wait for time between sending data and receiving
//ACK signal

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 115

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != CMD_RESET)return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;return;
 }

 RXE = 0; //Receive inhibit
 TXE = 0; //Transmit inhibit

/***** Set new baud rate to BRGC register *****/
 switch(cParBaudRate){ //Sets new baud rate to BRGC register
 case BPS4800: BRGC = BRGC4800; break; //4,800 bps
 case BPS9600: BRGC = BRGC9600; break; //9,600 bps
 case BPS19200: BRGC = BRGC19200; break; //19,200 bps
 case BPS31250: BRGC = BRGC31250; break; //31,250 bps
 case BPS38400: BRGC = BRGC38400; break; //38,400 bps
 case BPS76800: BRGC = BRGC76800; break; //76,800 bps
 default: cErrorStatus = PARAMETER_OUT_OF_RANGE;

//Parameter is out of range
 }

 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitBaudRateCalc);
//Wait for baud rate calculation time

 TXE = 1; //Transmit enabled
 RXE = 1; //Receive enabled

/***** Send reset command at new baud rate *****/
 cSendData = CMD_RESET;
 SDataSend(1, &cSendData); //Sends reset command at the new baud rate
 if(cErrorStatus != NO_ERROR)return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait for time between sending command and
//receiving ACK signal

/***** Receive ACK *****/ //Confirms that baud rate setting was executed
//normally.

 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR)return; //Any errors?
 if(cRecieveData != ACK) //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00116

4.5.10 Get device information command

(1) Flow chart

GET DEVICE
INFORMATION

SEND SILICON SIGNATURE
(C0H)

GET VENDOR CODE

GET ID CODE

END

RECEIVE ACK

GET LAST ADDRESS

GET ELECTRICAL INFORMATION

GET DEVICE NAME

GET BLOCK COUNT NUMBER

RECEIVE ACK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 117

(2) Sample program

#pragma sfr //Uses sfr area
#pragma NOP

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Get device information command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckData ACK-DATA wait time *
* wWaitTimeDataAck DATA-ACK wait time *
* *
* Local variable: cWork Work *
**/
void MGetSiliconeSignature(void){
 register Byte cWork; //Work

/***** Send silicon signature command *****/
 cSendData = CMD_SIGNATURE;
 SDataSend(1, &cSendData); //Sends silicon signature command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 if(cCommunicationMethod != UART){ //If other than UART communications
 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and

//receiving ACK signal
 }

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }

 if(cCommunicationMethod != UART){ //If other than UART communications
 SWaitMicroSec(wWaitTimeAckData); //Wait time between receiving ACK signal and

//sending data
 }

/***** Get device information *****/
 SDataRecieve(17); //Receives silicon signature data (17 bytes)
 if(cErrorStatus != NO_ERROR) return; //Any errors?

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00118

 if(cCommunicationMethod != UART){ //If other than UART communications
 SWaitMicroSec(wWaitTimeDataAck); //Wait time between receiving data and receiving

//ACK signal
 }

 for(cWork = 0 ; cWork < 17 ; cWork++){ //Stores receive data to RAM
 switch(cWork){
 case 0: sSig.cSigVendorCode = aRecieveBuffer[cWork];

//Gets vendor code
 break;
 case 1: sSig.cSigIdCode = aRecieveBuffer[cWork];

//Gets ID code
 break;
 case 2: sSig.cSigElectInf = aRecieveBuffer[cWork];

//Gets electrical information
 break;
 case 3: sSig.dwSigLastAddress = (((DWord)aRecieveBuffer[cWork]) &
 0x0000007f);

//Gets last address (low)
 break;
 case 4: sSig.dwSigLastAddress |= ((((DWord)aRecieveBuffer[cWork]) &
 0x0000007f) << 7);

//Gets last address (mid)
 break;
 case 5: sSig.dwSigLastAddress |= ((((DWord)aRecieveBuffer[cWork]) &
 0x0000007f) << 14);

//Gets last address (high)
 break;
 case 6: //Gets device name (10 bytes)
 case 7:
 case 8:
 case 9:
 case 10:
 case 11:
 case 12:
 case 13:
 case 14:
 case 15:
 sSig.aSigDeviceName[(cWork -6)] = aRecieveBuffer[cWork];
 break;
 case 16:
 sSig.cSigBlockInf = aRecieveBuffer[cWork];

//Gets block information
 break;
 }
 }

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 119

4.5.11 Prewrite command

(1) Flow chart

PREWRITE

PREWRITE IN PROGRESS?

RETRIED 16 TIMES?

END

YES

NO
NO

Status no return

Normal end

SEND PREWRITE COMMAND
(48H)

RECEIVE ACK

WAIT FOR PREWRITE TIME

GET STATUS

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00120

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
 FUNCTION PROTOTYPE DECLARATION
---*/
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
Word SWriteWaitTimeCalc(Byte cWriteOrPreWrite , Word wWaitClock);

//Calculates write time
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/** *
* Prewrite command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cTimerFlag Timer flag *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* *
* Local variables: wSec Wait time (1-s units) *
* wMiliSec Wait time (1-ms units) *
**/
void MPreWrite(void){
 register Word wSec; //Wait time (1-s units)
 register Word wMiliSec; //Wait time (1-ms units)

/***** Send command *****/
 cSendData = CMD_PRE_WRITE;
 SDataSend(1, &cSendData); //Sends prewrite command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
}

/***** Wait for prewrite time *****/
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){
 wSec = SWriteWaitTimeCalc(1, WaitDataTable[cWaitClockSelect].wWaitPreWrite);

//Calculates prewrite time (1-ms units)
 wMiliSec = (wSec % 1000); //Wait time (1-ms units)
 wSec = wSec / 1000; //Wait time (1-µs units)

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 121

 cTimerFlag = WAIT_START;
 do{ //Waits up to 1 second
 SWaitMiliSec(wMiliSec);
 }while(cTimerFlag == WAIT_NOW);

 for(cTimerFlag = WAIT_START ; 0 < wSec ; wSec--){
//Any wait beyond 1 second?

 do{
 SWaitMiliSec(1000); //Waits in 1-s units
 }while(cTimerFlag == WAIT_NOW);
 }

/***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) break; //Any errors?

 if(cTargetStatus == PRE_WRITING_NOW)continue;
//Prewrite in progress? YES

 else return; //Ends prewrite
 }
 cErrorStatus = STATUS_NO_RETURN; //Retries = 16 times

//Status no return
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00122

4.5.12 Erase command

(1) Flow chart

ERASE

BLANK CHECK ERROR?

ERASE IN PROGRESS?

END

YES

NO

NO

PREWRITE COMMAND

SEND ERASE COMMAND
(20H)

RECEIVE ACK

YES

WAIT FOR ERASE TIME

WAIT FOR BLANK CHECK TIME

GET STATUS

RETRIED 16 TIMES?

ERASE RETRIES
FOR MORE THAN

20 SECONDS?

NO

Normal end

Status no return
YES

YES
Erase error

No

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 123

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void MPreWrite(void); //Prewrites
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
Word SWaitTimeCalcFlMemSize(Word wWaitClock); //Calculates wait time
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Erase command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cRetryCounter Retry counter *
* cTimerFlag Timer flag *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* *
* Local variables: wTotalEraseTime Total erase time *
* wSec Wait time (1-s units) *
* wMiliSec Wait time (1-ms units) *
**/
void MErase(void){

 register Word wTotalEraseTime; //Total erase time
 register Word wSec; //Wait time (1-s units)
 register Word wMiliSec; //Wait time (1-ms units)

/***** Send prewrite command *****/
 MPreWrite(); //Prewrite command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWait((DWord) WaitDataTable[cWaitClockSelect].wWaitComToCom);
//Wait time between commands

 for(wTotalEraseTime = 0 ; //Initializes total erase time
 wTotalEraseTime <= 2000 ; //Total erase time up to 20 seconds (10-ms units)
 wTotalEraseTime += wParEraseTime){

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00124

/***** Send command *****/
 cSendData = CMD_CHIP_ERASE;
 SDataSend(1, &cSendData); //Sends erase command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }

/***** Wait for erase time + blank check time *****/

 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){
//Maximum of 16 retries

 wSec = SWaitTimeCalcFlMemSize(WaitDataTable[cWaitClockSelect].wWaitErase);
//Calculates blank check time (1-ms units)

 if(0 == cRetryCounter){ //Retries do not include erase time (blank check
 wSec += (wParEraseTime * 10); //time + (erase time × 10)) (ms)
 } //wParEraseTime uses 10-ms units

 wMiliSec = wSec % 1000; //Wait time (1-ms units)
 wSec /= 1000; //Wait time (1-s units)

 cTimerFlag = WAIT_START;
 do{ //Waits up to 1 s
 SWaitMiliSec(wMiliSec);
 }while(cTimerFlag == WAIT_NOW);

 for(cTimerFlag = WAIT_START ; 0 < wSec ; wSec--){
//Any wait beyond 1 second?

 do{
 SWaitMiliSec(1000); //Waits in 1-s units
 }while(cTimerFlag == WAIT_NOW);
 }

/***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 if(cTargetStatus == ERASING_NOW)continue;
//Erase in progress? YES

 else if(cTargetStatus == BLANK_CHEK_FAILED)break;
//Any blank check errors?

 else if(cTargetStatus == READY) return;
//Normal end of erase operation

 } //else: erase in progress (retries getting status)
 if(cRetryCounter >= 16){ //Retried 16 times?
 cErrorStatus = STATUS_NO_RETURN; //Status no return
 return;
 } //else: retries blank check error erase
 }
 cErrorStatus = ERASE_FAILED; //Judged as erase error if blank check error occurs

//after total erase time exceeds 20 seconds
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 125

4.5.13 High-speed write/continuous write command

(1) Flow chart

WRITE

WRITE IN PROGRESS?

END

NO

NO

SEND HIGH-SPEED WRITE
COMMAND (40H)

RECEIVE ACK

NO

SEND WRITE ADDRESS (3 BYTES)
AND WRITE SIZE (1 BYTE)

WRITE ERROR?

NO

SEND SIZE <
REMAINING WRITE

BYTES

YES

aSendBuffer[3] ←
(wSendSize & 0x00ff)Note 1

SEND WRITE DATANote 2

RECEIVE ACK

WAIT FOR WRITE TIME

GET STATUS

CONTINUOUS WRITE
NEXT TIME?

LAST WRITE NEXT TIME?

aSendBuffer[3] ←
(remaining write bytes)

RETRIED 16 TIMES?

END

YES

YES

SEND CONTINUOUS WRITE
COMMAND (44H)

RECEIVE ACK

YES

NO Normal end of
write operation

YES Status no return

NO

Note 1. wSendSize (send size)
78K/0: 256 bytes (write size is sent as "00H" to specify

a 256-byte write size to the flash microcontroller)
78K/0S: 128 bytes (write size "80H")

Note 2. Sends write data that is the same size as the send
size sent to the target microcontroller.

Write failed

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00126

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void MInternalVerify(void); //Internal verify
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
Word SWriteWaitTimeCalc(Byte cWriteOrPreWrite , Word wWriteSize);

//Calculates write time
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* High-speed/continuous write command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* dwParStartAddress Write start address *
* dwParEndAddress Write end address *
* cTargetStatus Target status *
* cParTargetSeries Target series *
* cTimerFlag Timer flag *
* cRetryCounter Retry counter *
* wSendSize Send size *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeDataAck DATA-ACK wait time *
* *
* Local variables: *dwWriteDataAddress Address where write data is stored *
* *dwWriteEndAddress End address of write data *
* dwWork Work *
* wWaitTime Write wait time *
* wWorkPointer Work *
* cHighSpeedWriteFlag High-speed write flag *
* *
* In this sample program, data stored in external ROM is written to the flash microcontroller. The *
* external ROM's start address is 20000H (start address of example memory area in 78K4). This *
* address is declared and embedded in the program as follows in this sample program. *
* *
* #define USER_DATA_ADDRESS 0x20000 //Start address of storage area for write data *
**/
void MProgram(void){
 register Byte *dwWriteDataAddress; //Address where write data is stored
 register Byte *dwWriteEndAddress; //End address of write data
 register Dword dwWork; //Work
 register Word wWaitTime; //Write wait time
 register Word wWorkPointer; //Work
 register Byte cHighSpeedWriteFlag; //High-speed write flag

 cHighSpeedWriteFlag = 1; //Sets high-speed write flag

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 127

 dwWriteDataAddress = (Byte *)USER_DATA_ADDRESS;
//Start address of storage area for write data

 dwWriteDataAddress += dwParStartAddress; //+ write start address
 dwWriteEndAddress = (Byte *)USER_DATA_ADDRESS;

//End address of storage area for write data
 dwWriteEndAddress += dwParEndAddress; //+ write end address

 if (cParTargetSeries == K0){ //Specifies send size
 wSendSize = 0x0100; //78K/0: 256 bytes
 }else{
 wSendSize = 0x0080; //78K/0S: 128 bytes
 }

 while(dwWriteDataAddress <= dwWriteEndAddress){
//Continue until write end address

/***** Send high-speed write command *****/
 cSendData = CMD_HIGH_SPEED_WRITE;
 SDataSend(1, &cSendData); //Sends high-speed write command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }

 SWaitMicroSec(wWaitTimeAckData //Wait time between receiving ACK signal and
//sending data

/***** Send send size and write start address *****/

 dwWork = dwWriteDataAddress - (Byte *)USER_DATA_ADDRESS;
//Sets write start address to send buffer

 aSendBuffer[2] = (Byte)(dwWork & 0x000000ff);
//(high address)

 aSendBuffer[1] = (Byte)((dwWork >>= 8) & 0x000000ff);
//(mid address)

 aSendBuffer[0] = (Byte)((dwWork >>= 8) & 0x000000ff);
//(low address)

 //Sets send size
 if (!((DWord)wSendSize < (dwWriteEndAddress + 1 - dwWriteDataAddress))){
 wSendSize = (Word)(dwWriteEndAddress + 1 - dwWriteDataAddress);
 }
 aSendBuffer[3] = (Byte)(wSendSize & 0x00ff);

 SDataSend(4 , aSendBuffer); //Sends address (3 bytes) and send size
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 do {

/***** Send write data *****/
 //Stores write data in send buffer
 for(wWorkPointer = 0 ; wWorkPointer < wSendSize ; wWorkPointer++){
 aSendBuffer[wWorkPointer] = *dwWriteDataAddress;
 dwWriteDataAddress++;
 }

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00128

 SDataSend(wSendSize , aSendBuffer); //Send buffer contents
 if(cErrorStatus != NO_ERROR) return;

//Any errors?
 SWaitMicroSec(wWaitTimeDataAck); //Wait time between sending data and receiving

//ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return;

//Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }

/***** Wait for write time *****/
 wWaitTime = SWriteWaitTimeCalc(0, wSendSize);

//Calculates write wait time (1-ms units)
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){
 cTimerFlag = WAIT_START;
 do{
 SWaitMiliSec(wWaitTime); //Waits for write time
 }while(cTimerFlag == WAIT_NOW);

 /***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) return;

//Any errors?

 if(cTargetStatus == PROGRAMING_NOW)continue;
//Write in progress? YES

 else if(cTargetStatus == PROGRAM_FAILED){
 cErrorStatus = PROGRAM_FAILED;

//Program Failed
 return;
 }else if(cTargetStatus == READY) break;

//Normal end of write operation
 } //else cTargetStatus = 0x40 (during write)
 if(cRetryCounter >= 16){ //Retried wait 16 times?
 cErrorStatus = STATUS_NO_RETURN; //Status no return
 return;
 }

 if (wSendSize < (dwWriteEndAddress + 1 - dwWriteDataAddress)){
 cHighSpeedWriteFlag = 0; //Uses continuous write command next time
 }else{
 cHighSpeedWriteFlag = 1; //Uses high-speed write command next time
 }

 if (cHighSpeedWriteFlag == 0){ //Use continuous write command next time?

/***** Send continuous write command *****/
 cSendData = CMD_CONTINUE_WRITE; //No
 SDataSend(1, &cSendData); //Sends continuous write command
 if(cErrorStatus != NO_ERROR) return;

//Any errors?

 SWaitMicroSec(wWaitTimeComAck);
//Wait time between sending command and receive
//ACK signal

 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return;

//Any errors?

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 129

 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }
 SWaitMicroSec(wWaitTimeAckData);

//Wait time between receiving ACK signal and
//sending data

 }
 }while(cHighSpeedWriteFlag == 0); //Use high-speed write command next time? No
 }
 SWait((DWord)WaitDataTable[cWaitClockSelect].wWaitComToCom);
 //Wait time between commands

/***** Send internal verify command *****/
 MInternalVerify(); //Internal verify command
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00130

4.5.14 Internal verify command

(1) Flow chart

INTERNAL VERIFY

INTERNAL VERIFY
IN PROGRESS?

RETRIED 16 TIMES?

END

YES

NO
NO

Status no return

Normal end/
Verify error

SEND INTERNAL VERIFY
COMMAND (18H)

RECEIVE ACK

INTERNAL VERIFY WAIT TIME

GET STATUS

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 131

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
Word SWaitTimeCalcFlMemSize(Word wWaitClock); //Calculates wait time
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Internal verify command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cTimerFlag Timer flag *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* *
* Local variables: wSec Wait time (1-s units) *
* wMiliSec Wait time (1-ms units) *
**/
void MInternalVerify(void){

 register Word wSec; //Wait time (1-s units)
 register Word wMiliSec; //Wait time (1-ms units)

/***** Send command *****/
 cSendData = CMD_CHIP_IVRF;
 SDataSend(1, &cSendData); //Sends internal verify command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){
 cErrorStatus = TARGET_RETURN_ERROR; return;

//Target return error
 }

/***** Wait for internal verify time *****/
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){
 wSec = SWaitTimeCalcFlMemSize(WaitDataTable[cWaitClockSelect].
 wWaitInternalVerify);

//Calculates internal verify wait time (1-ms units)
 wMiliSec = wSec % 1000; //Wait time (1-ms units)
 wSec = wSec / 1000; //Wait time (1-s units)

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00132

 cTimerFlag = WAIT_START;
 do{ //Waits up to 1 second
 SWaitMiliSec(wMiliSec);
 }while(cTimerFlag == WAIT_NOW);

 for(cTimerFlag = WAIT_START ; 0 < wSec ; wSec--){
//Any wait beyond 1 second?

 do{
 SWaitMiliSec(1000); //Waits in 1-s units
 }while(cTimerFlag == WAIT_NOW);
 }

/***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) break; //Any errors?

 if(cTargetStatus == VERIFYING_NOW)continue;
//Internal verify in progress? YES

 else if(cTargetStatus == VERIFY_ERROR){
//Any verify errors?

 cErrorStatus = VERIFY_ERROR; //Sets verify error
 return; //Verify error
 }else return; //Normal end of verify operation
 }
 cErrorStatus = STATUS_NO_RETURN; //Retries 16 times?

//Status no return
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 133

4.5.15 Verify command

(1) Flow chart

VERIFY

VERIFY COMPLETED
FOR ALL DATA?

VERIFY IN PROGRESS?

END

YES

NO

YES

SEND VERIFY COMMAND
(11H)

RECEIVE ACK

YES

RECEIVE ACK

VERIFY WAIT TIME

GET STATUS

RETRIED 16 TIMES?

Status no return

SEND VERIFY DATANote

Normal end/
Verify error

NO

NO

Note wSendSize (send size)
78K/0: 256 bytes
78K/0S: 128 bytes

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00134

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(DWord dwWaitClock); //Wait
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Verify command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cParTargetSeries Target series *
* sSig.dwSigLastAddress Flash memory end address *
* (fetched using silicon signature command) *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeDataAck DATA-ACK wait time *
* *
* Local variables: *dwVerifyDataAddress Address where verify data is stored *
* *dwVerifyEndAddress End address for verify data *
* wWorkPointer Work *
* *
* In this sample program, the data stored in external ROM and the contents of the flash *
* microcontroller's flash memory are verified. *
* The start address in external ROM is 20000H (which is the starting address of external memory *
* area in 78K/4 devices). In this sample program, the following declaration is included in the *
* program. *
* *
* #define USER_DATA_ADDRESS 0x20000 //Start address of write data storage area *
**/
void MVerify(void){
 register Byte *dwVerifyDataAddress; //Address where verify data is stored
 register Byte *dwVerifyEndAddress; //End address of verify data
 register Word wWorkPointer; //Work

/***** Send command *****/
 cSendData = CMD_CHIP_VRF;
 SDataSend(1, &cSendData); //Sends verify command
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and
//receiving ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 135

 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }

 SWaitMicroSec(wWaitTimeAckData); //Wait time between receiving an ACK signal and
//sending data

 dwVerifyDataAddress = (Byte *)USER_DATA_ADDRESS;
//Sets address where verify data is stored

 dwVerifyEndAddress = (Byte *)USER_DATA_ADDRESS;
//USER_DATA_ADDRESS = 20000H

 dwVerifyEndAddress += sSig.dwSigLastAddress; //Sets end address of verify data
//The target for verification is the target device's
//entire flash memory area.
//End of verification is judged based on the last
//address fetched by the silicon signature
//command.

 if (cParTargetSeries == K0){ //Send size
 wSendSize = 256; //78K/0: 256 bytes
 }else{
 wSendSize = 128; //78K/0S: 128 bytes
 }

 do { //Continues until all verify data has been sent.
 for(wWorkPointer = 0 ; wWorkPointer < wSendSize ; wWorkPointer++){
 aSendBuffer[wWorkPointer] = *dwVerifyDataAddress;

//Stores verify data in send buffer
 dwVerifyDataAddress++;
 }

/***** Send verify data *****/
 SDataSend(wSendSize , aSendBuffer); //Sends contents of buffer

//(78K/0: 256 bytes, 78K/0S: 128 bytes)
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 SWaitMicroSec(wWaitTimeDataAck); //Wait time between sending data and receiving an
//ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 return;
 }
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){

//Maximum of 16 retries
 SWait(WaitDataTable[cWaitClockSelect].dwWaitVerify);

//Waits for verify time

/***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 if(cTargetStatus == VERIFYING_NOW)continue;
//Verify in progress? YES

 else break; //Ends verification of send size
 }
 if(cRetryCounter >= 16){
 cErrorStatus = STATUS_NO_RETURN; //Status no return

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00136

 return;
 }
 }while(dwVerifyDataAddress < dwVerifyEndAddress);

//Judges end of verification
 if(cTargetStatus == VERIFY_ERROR){
 cErrorStatus = VERIFY_ERROR; //Verification error,
 } //else: normal end of verification
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 137

4.5.16 Blank check command

(1) Flow chart

BLANK CHECK

BLANK CHECK
IN PROGRESS?

RETRIED 16 TIMES?

END

YES

NO
NO

Status no return

Normal end/
Blank check error

SEND BLANK CHECK
COMMAND (30H)

RECEIVE ACK

WAIT FOR BLANK CHECK TIME

GET STATUS

YES

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00138

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void MGetStatus(void); //Gets status
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)
Word SWaitTimeCalcFlMemSize(Word wWaitClock); //Calculates wait time

/** *
* Blank check command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cTimerFlag Timer flag *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* *
* Local variables: wSec Wait time (1-s units) *
* wMiliSec Wait time (1-ms units) *
* *
**/
void MBlankChek(void){
 register Word wSec; //Wait time (1-s units)
 register Word wMiliSec; //Wait time (1-ms units)

/***** Send command *****/
 cSendData = CMD_CHIP_BLN;
 SDataSend(1, &cSendData); //Sends blank check command
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and

//receiving an ACK signal

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; //Sets error status
 return;
 }

/***** Wait for blank check time *****/
 for(cRetryCounter = 0 ; cRetryCounter < 16 ; cRetryCounter++){

//Maximum of 16 retries
 wSec = SWaitTimeCalcFlMemSize(WaitDataTable[cWaitClockSelect]wWaitBlankChek);

//Calculates blank check time (1-ms units)
 wMiliSec = wSec % 1000; //1-ms units
 wSec = wSec / 1000; //1-s units
 cTimerFlag = WAIT_START;
 do{ //Waits up to 1 second

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 139

 SWaitMiliSec(wMiliSec);
 }while(cTimerFlag == WAIT_NOW);

 for(cTimerFlag = WAIT_START ; 0 < wSec ; wSec--){
//Any wait beyond 1 second?

 do{
 SWaitMiliSec(1000); //Waits in 1-s units
 }while(cTimerFlag == WAIT_NOW);
 }

/***** Get status *****/
 MGetStatus();
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 if(cTargetStatus == BLANK_CHEK_NOW) continue;
//Blank check in progress? YES

 else if(cTargetStatus == BLANK_CHEK_FAILED){
//Any blank check errors?

 cErrorStatus = BLANK_CHEK_FAILED; //YES: Sets error status
 return; //Blank check error
 }else return; //Normal end of blank check
 }
 cErrorStatus = STATUS_NO_RETURN; //Retry count = 16

//Status no return
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00140

4.5.17 Get status command

(1) Flow chart

GET STATUS

SEND GET STATUS COMMAND
(70H)

RECEIVE STATUS DATA

END

RECEIVE ACK

RECEIVE ACK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 141

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SDataSend(Word SendSize , Byte *SendDataAddress);

//Sends data
void SDataRecieve(Word wRecieveDataSize); //Receives data
void SWait(Word wWaitClock); //Wait
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)

/***
* Get status command *
* Global variables: cSendData Send data *
* cRecieveData Receive data *
* cErrorStatus Error status *
* cTargetStatus Target status *
* cRetryCounter Retry counter *
* wWaitTimeComAck COM-ACK wait time *
* wWaitTimeAckData ACK-DATA wait time *
* wWaitTimeDataAck DATA-ACK wait time *
**/
void MGetStatus(void){

/***** Send get status command *****/
 cSendData = CMD_STATUS;
 SDataSend(1, &cSendData); //Sends get status command (70H)
 if(cErrorStatus != NO_ERROR) return; //Any errors?

 if(cCommunicationMethod != UART){
 SWaitMicroSec(wWaitTimeComAck); //Wait time between sending command and

//receiving an ACK signal
 }

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK){ //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR; return;
 }

 if(cCommunicationMethod != UART){ //If other than UART communications
 SWaitMicroSec(wWaitTimeAckData); //Wait time between receiving ACK signal and

//receiving data
 }

/***** Receive status data *****/
 SDataRecieve(1); //Receives status data
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 cTargetStatus = cRecieveData; //Stores status data

 if(cCommunicationMethod != UART){ //If other than UART communications
 SWaitMicroSec(wWaitTimeDataAck); //Wait time between receiving data and receiving an

//ACK signal
 }

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00142

/***** Receive ACK *****/
 SDataRecieve(1); //Receives ACK signal
 if(cErrorStatus != NO_ERROR) return; //Any errors?
 if(cRecieveData != ACK) //Is receive data an ACK signal?
 cErrorStatus = TARGET_RETURN_ERROR;
 }

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 143

4.5.18 Power off processing

(1) Flow chart

END

POWER OFF
PROCESSING

RESET LOW-LEVEL OUTPUT

STOP CPU CLOCK

SCK LOW-LEVEL OUTPUT

STOP VPP SUPPLY VOLTAGE

STOP VDD SUPPLY VOLTAGE

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00144

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/***
* Power off processing *
**/
void MPowerOff(void){
 P6.7 = 0; //Low-level output of RESET signal

 P0.1 = 1; //Stops clock supply

 P3.2 = 0; //High-level output of SCK signal

 DACS1 = 0; //Stops VPP supply

 DACS0 = 0; //Stops VDD supply

}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 145

4.6 Other Sample Programs

4.6.1 Subroutines

#pragma sfr //Uses sfr area
#pragma NOP

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---/
Subroutine

This is a subroutine that is used in the sample program.
This subroutine must be included when using the sample
program.

---*/

/***
* Wait processing in microsecond units *
* Local variable: cWork Work *
* *
* IN: wCrRegData (compare register setting data) = 1 − 65,535 *
* A wait of (wCrRegData × 0.8) µs is performed within this routine. *
* OUT: None *
**/
void SWaitMicroSec(Word wCrRegData){
 register Byte cWork;

 cWork = PRM0; //Selects count clock
 cWork &= 0xf0; //fXX/16 (0.8 µs)
 cWork |= 0x02;
 PRM0 = cWork;

 cWork = TMC0; //Stops operation of TM0
 cWork &= 0xf0;
 cWork |= 0x04;
 TMC0 = cWork;

 CIF00 = 0; //Clears interrupt flag

 CR00 = wCrRegData; //Sets compare register
 CE0 = 1; //Starts TM0

 while(CIF00 != 1){ //Waits for interrupt flag
 }
 CIF00 = 0; //Clears interrupt flag
}

/**
* Wait processing in millisecond units *
* Local variable: cWork Work *
* *
* IN: wWaitTime (wait time data) = 1 − 6,553 ms *
* cTimerFlag = WAIT_START (wait start) *
* OUT: cTimerFlag = WAIT_FINISH (wait end) *
***/

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00146

void SWaitMiliSec(Word wWaitTime){
 register Byte cWork;

 if(cTimerFlag == WAIT_START){ //Start wait?

 wWaitTime = wWaitTime * (1000 / 100); //Calculates compare register value

 cWork = PRM0; //Selects count clock
 cWork &= 0xf0; //fXX/2,048 (102.4 µs)
 cWork |= 0x09;
 PRM0 = cWork;

 cWork = TMC0; //Stops operation of TM0
 cWork &= 0xf0;
 cWork |= 0x04;
 TMC0 = cWork;

 CIF00 = 0; //Clears interrupt flag

 if(wWaitTime == 0){
 wWaitTime++;
 }
 CR00 = wWaitTime; //Sets compare register
 CE0 = 1; //Starts TM0

 cTimerFlag = WAIT_NOW; //Sets timer flag during wait time
 }

 if(CIF00 == 1){ //Waits for interrupt flag
 CIF00 = 0; //Clears interrupt flag
 cTimerFlag = WAIT_FINISH; //Ends wait time
 }
}

/***
* Calculation of wait time for flash memory size *
* This calculates the wait times during blank check and internal verify operations. *
* *
* Number of wait clocks per byte × flash memory capacity / CPU clock (10-kHz unit) / 10 (ms) *
* Local variables: dwWaitTime (wait time) *
* *
* IN: wWaitClock (wait clock count data) = 1 − 65,535 clocks *
* OUT: dwWaitTime (wait time) = 1 − 65,535 ms *
**/
Word SWaitTimeCalcFlMemSize(Word wWaitClock){
 register DWord dwWaitTime; //Wait time (ms units)

 dwWaitTime = (DWord)wWaitClock; //Number of wait clocks per byte
 dwWaitTime *= sSig.dwSigLastAddress; //Number of wait clocks per byte × total memory

//size (bytes)
 dwWaitTime = dwWaitTime / (DWord)wParCpuClockSpeed;

//CPU clocks (100-µs units)
 dwWaitTime = dwWaitTime / 10; //Sets 1-ms units
 dwWaitTime++; //Truncates fraction values

 return (Word)dwWaitTime;
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 147

/***
* Write/Prewrite time calculation *
* IN: cWriteOrPreWrite (value 0: For write, 1: For prewrite) *
* wWriteSize (write size; for write command) *
* OUT: dwWaitTime (wait time for write/prewrite) *
* The formulas used to calculate the write time and prewrite time are shown below. The wait times during*
* write processing and prewrite processing are based on these calculated write and prewrite times. *
* *
* Write time formula *
* [(Write processing wait clock count + a) × target write retry count *
* + (α × 2)] × write byte count / oscillation frequency *
* = (((wWaitWrite + α) × cflashWriteRetry + α × 2) × wWriteSize) / wParCpuClockSpeed *
* *
* Prewrite time formula *
* [(Prewrite processing wait clock count + α) × total memory size / oscillation frequency *
* = (PreWriteWait + α) × sSig.dwSigLastAddress / wParCpuClockSpeed *
* *
* Calculation of value for α *
* For 78K/0: α1 = 2^ (n1 + m1) / fX [n1 = 1 to 4], [m1 = 5 (fixed)]] *
* For 78K/0S: α2 = 2^ (n2 + m2) / fX [n2 = 2 to 5], [m2 = 4 (fixed)] *
* *
* *
* Relationship between target CPU's clock speed and value of n *
* *
* Oscillation frequency Value of n *
* 78K/0[n1] 78K/0S[n2] *
* 1.00 MHz ≤ fX ≤ 1.28 MHz 1 2 *
* 1.28 MHz < fX ≤ 2.56 MHz 2 3 *
* 2.56 MHz < fX ≤ 5.12 MHz 3 4 *
* 5.12 MHz < fX ≤ 10.0 MHz 4 5 *
* *
* Given the above: *
* α1 = α2 = α *
* Therefore, the value of α is the same no matter whether the target is a 78K/0 Series product *
* or a 78K/0S Series product. *
* Thus, in the sample program, the value of α can be determined using the formula for calculating *
* the value of α regardless of whether the target is a 78K/0 Series product or a 78K/0S Series *
* product. *
**/
Word SWriteWaitTimeCalc(Byte cWriteOrPreWrite , Word wWriteSize){
 register Byte n; //Value of n
 register Word wAlpha; //Value of α
 register Byte cTargetWriteRetry; //Target microcontroller's write retry count
 register DWord dwWaitTime; //Wait time

 wAlpha = 1; //Initializes α value
 cTargetWriteRetry = 1; //1 to 10 times: In this sample program, the

//minimum value (1 time) is set.
//Select value of n (2^n)

 if((100 <= wParCpuClockSpeed) && (128 >= wParCpuClockSpeed)){
//1.00 MHz ≤ fX ≤ 1.28 MHz

 n = (2 + 4); //2^(2 + 4)
 }else if((128 < wParCpuClockSpeed) && (256 >= wParCpuClockSpeed)){

//1.28 MHz < fX ≤ 2.56 MHz
 n = (3 + 4); //2^(3 + 4)
 }else if((256 < wParCpuClockSpeed) && (512 >= wParCpuClockSpeed)){

//2.56 MHz < fX ≤ 5.12 MHz
 n = (4 + 4); //2^(4 + 4)
 }else if((512 < wParCpuClockSpeed) && (1000 >= wParCpuClockSpeed)){

//5.12 MHz < fX ≤ 10.0 MHz

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00148

 n = (5 + 4); //2^(5 + 4)
 }
 wAlpha <<= n; //Calculates value of α

 if(cWriteOrPreWrite == 0){ //When waiting for write command
 dwWaitTime = (DWord)WaitDataTable[cWaitClockSelect].wWaitWrite;
 dwWaitTime += (DWord)wAlpha;
 dwWaitTime *= cTargetWriteRetry;
 dwWaitTime += (DWord)(wAlpha * 2);
 dwWaitTime *= wWriteSize; //WriteSize : 78K/0: 256 bytes

// : 78K/0S: 128 bytes

 }else{ //During prewrite
 dwWaitTime = (DWord)WaitDataTable[cWaitClockSelect].wWaitPreWrite;

//Wait clock count per byte
 dwWaitTime += (DWord)wAlpha; //Adds value of α
 dwWaitTime *= sSig.dwSigLastAddress; //Multiplies flash memory size
 }
 dwWaitTime /= wParCpuClockSpeed; //100-µs units, divided by oscillation frequency (10-

//kHz units)

 dwWaitTime /= 10; //Converts to ms units
 dwWaitTime++; //Truncates fraction
 return (Word)dwWaitTime;
}

/***
* Wait *
* Local variable: dwWaitMiliSec (wait time in ms units) *
* *
* IN: dwWaitClock (wait clock count) = 1 − 65,535 *
**/
void SWait(DWord dwWaitClock){
 register DWord dwWaitMiliSec; //Wait time in ms units

 dwWaitClock /= (wParCpuClockSpeed / 100); //Converts to µs units
 dwWaitMiliSec = dwWaitClock / 1000; //Stores ms units

 if(dwWaitMiliSec == 0){ //Any wait beyond 1 ms?
 dwWaitMiliSec++;
 }
 cTimerFlag = WAIT_START;
 do{
 SWaitMiliSec((Word)dwWaitMiliSec); //Waits in 1-ms units
 }while(cTimerFlag == WAIT_NOW);
}

/***
* Calculate communication wait time *
* IN: wWaitClock (wait clocks) = 1 − 65,535 *
* OUT: wWaitClock[µs × (5/4)] = 1 − 52,428 *
* (Used as parameter for SWaitMicroSec processing) *
**/
Word SWaitTimeCalc(Word wWaitClock){
 wWaitClock /= (wParCpuClockSpeed / 100); //Converts to µs units
 wWaitClock = ((wWaitClock * 5) / 4) ; //Calculates setting in compare register (µs units)
 if(wWaitClock == 0){
 wWaitClock++;
 }
 return wWaitClock; //µs units
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 149

/**
* 30-µs wait (measured value) *
* Local variable: cWork Work *
***/
void SWait30us(void){
 register Byte cWork;

 for(cWork = 2 ; 0 < cWork ; cWork--){
 NOP();
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00150

#pragma sfr //Uses sfr area
#pragma NOP

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---
FUNCTION PROTOTYPE DECLARATION

---*/
void SWaitMiliSec(Word wWaitTime); //Wait time (1-ms units)
void SWaitMicroSec(Word wCrRegData); //Wait time (1-µs units)
void SWait(DWord dwWaitClock); //Wait

/**
* Send 1 byte of data *
* Global variables: cSendFlag Send flag *
* cCommunicationMethod Communication method *
* cSendData Send data *
***/
void SByteDataSend(void)
{

 if(cSendFlag == SEND_START){
 switch(cCommunicationMethod){
 case UART: //Communication method: UART
 TXS = cSendData; //Send
 break;
 case IIC: //Communication method: IIC
 SIO = cSendData; //Send
 break;
 case CSI: //Communication method: 3-wire serial
 case PCSI: //Communication method: pseudo 3-wire serial
 SIO = cSendData; //Send
 }
 cSendFlag = SEND_NOW; //Set to "send in progress"
 }
 switch(cCommunicationMethod){
 case UART: //Communication method: UART
 if(STIF == 1){
 STIF = 0; //Clear send finish flag
 cSendFlag = SEND_FINISH; //Finish one-byte transfer
 }
 break;
 case IIC: //Communication method: IIC
 if(CSIIF == 1){
 CSIIF = 0; //Clear send finish flag
 if(ACKD == 0){ //Confirm ACK detection
 cErrorStatus = IIC_NO_ACK;

//IIC_NO_ACK
 }
 cSendFlag = SEND_FINISH; //Finish one-byte transfer
 }
 break;
 case CSI: //Communication method: 3-wire serial
 case PCSI: //Communication method: pseudo 3-wire serial
 if(CSIIF == 1){
 CSIIF = 0; //Clear send finish flag
 cSendFlag = SEND_FINISH; //Finish one-byte transfer
 }
 }
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 151

/**
* Send slave address (during IIC communication only) *
* Global variables: cSendFlag Send flag *
* cTimerFlag Timer flag *
* cErrorStatus Send data *
* *
* IN: cSendOrRecieve (data transfer direction of slave address) *
* (Transfer direction 0: Send, 1: Receive) *
***/
void SSlaveAddressSend(Byte cSendOrRecieve){

 STT = 1; //Outputs start condition
 NOP(); //Waits for one instruction

 if(cSendOrRecieve == 0){ //slave address
 SIO = (cParSlaveAddress << 1); //Transfer direction: send (bit0 is low)
 }else{
 SIO = ((cParSlaveAddress << 1) | 0x01);

//Transfer direction: receive (bit0 is high)
 }

 cTimerFlag = WAIT_START; //Timeout setting
 while(CSIIF == 0){ //Waits until sending of slave address is finished
 SWaitMiliSec(1000); //Time out check
 if(cTimerFlag == WAIT_FINISH){
 cErrorStatus = TARGET_IS_CLOSED; //Send failed
 return;
 }
 }
 CSIIF = 0; //Clears send finish flag
 if(ACKD == 0){ //ACK detected? No
 cErrorStatus = IIC_NO_ACK; //IIC_NO_ACK
 cSendFlag = SEND_FINISH; //Finish one-byte transfer
 }
}

/**
* Send data *
* Global variables: cSendFlag Send flag *
* cTimerFlag Timer flag *
* cErrorStatus Error status *
* cCommunicationMethod) Communication method *
* *
* IN: cSendDataSize (send size) = 1 − 256 bytes *
* SendDataAddress (address where send data is stored) *
***/
void SDataSend(Word wSendDataSize , Byte *SendDataAddress){
 register Word wSendCounter;

 switch(cCommunicationMethod){ //Communication method
 case UART:TXE = 1; //UART communication enabled
 break;
 case IIC: //IIC communications
 SSlaveAddressSend(0); //Direction of slave address transfer 0: Send
 break;
 case CSI: //3-wire serial/pseudo 3-wire serial transmit enabled
 case PCSI:CTXE = 1;
 }

 for(wSendCounter = 0 ;
 ((wSendCounter < wSendDataSize) && (cErrorStatus == NO_ERROR));
 wSendCounter++){ //Continues until send size has been sent

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00152

 cSendFlag = SEND_START; //Clears send flag
 cTimerFlag = WAIT_START; //Sets timeout
 cSendData = (*SendDataAddress); //Send data setting
 SendDataAddress++; //Address refresh

 while(cSendFlag != SEND_FINISH){ //Waits until one byte of data has been transmitted
 SWaitMiliSec(1000); //Time out check

 if(cTimerFlag == WAIT_FINISH){
 cErrorStatus = TARGET_IS_CLOSED; //Send failed
 break;
 }
 SByteDataSend();
 }
 if(((wSendCounter + 1) < wSendDataSize)
 && (cCommunicationMethod != PCSI)){ //Inserts a wait if communication method is pseudo

//3-wire serial (since SO has been high impedance)
 SWaitMicroSec(wWaitTimeDataData); //Wait time between sending two sets of data
 }
 }

 switch(cCommunicationMethod){ //Communication method
 case UART:TXE = 0; //UART communications disabled
 case IIC: //IIC communications
 SPT = 1; //Outputs stop condition
 break;
 case CSI:
 case PCSI:
 CTXE = 0; //CSI.PCSI transmit disabled
 }
}

/**
* Receive one byte of data *
* Global variables: cCommunicationMethod Communication method *
* cRecieveData Receive data *
* cRecieveFlag Receive flag *
* cErrorStatus Error status *
***/
void SByteDataRecieve(void){

 if(cRecieveFlag == RECIEVE_START){
 switch(cCommunicationMethod){
 case UART: break; //Communication method: UART
 case IIC: //Communication method: IIC
 SIO = 0xff; //Clock output for receiving
 break;
 case CSI: //Communication method: 3-wire serial
 case PCSI: //Communication method: pseudo 3-wire serial
 CRXE = 0; //Receive disabled
 CTXE = 0; //Transmit disabled
 CRXE = 1; //Receive enabled
 }
 cRecieveFlag = RECIEVE_NOW; //Sets receive flag while receiving
 }
 switch(cCommunicationMethod){
 case UART: //Communication method: UART
 if(SRIF == 1){
 cRecieveData = RXB; //Reads receive data
 SRIF = 0;
 cRecieveFlag = RECIEVE_FINISH;
 }
 break;

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 153

 case IIC: //Communication method: IIC
 if(CSIIF == 1){
 cRecieveData = SIO; //Reads receive data
 CSIIF = 0;
 cRecieveFlag = RECIEVE_FINISH;
 }
 break;
 case CSI: //Communication method: 3-wire serial
 case PCSI: //Communication method: pseudo 3-wire serial
 if(CSIIF == 1){
 CRXE = 0; //Receive disabled
 cRecieveData = SIO; //Reads receive data
 CSIIF = 0;
 cRecieveFlag = RECIEVE_FINISH;
 }
 }
}

/**
* Receive data *
* Global variables: cCommunicationMethod Communication method *
* cRecieveData Receive data *
* cRecieveFlag Receive flag *
* cTimerFlag Timer flag *
* cErrorStatus Error status *
* wWaitTimeDataData Wait time between two sets of data *
* *
* Local variable: wRecieveCounter Receive counter *
* *
* IN: wRecieveDataSize (receive data size) = 1 − 256 bytes *
***/
void SDataRecieve(Word wRecieveDataSize){
 register Word wRecieveCounter;

 if(cCommunicationMethod == UART){ //During UART reception
 for(wRecieveCounter = 0 ;
 wRecieveCounter < wRecieveDataSize ;
 wRecieveCounter++){
 cRecieveFlag = RECIEVE_START; //Clears receive flag

 cTimerFlag = WAIT_START; //Sets timeout
 while(cRecieveFlag != RECIEVE_FINISH){

//Waits until one byte of data has been received
 SWaitMiliSec(1000); //Time out check
 if(cTimerFlag == WAIT_FINISH){
 cErrorStatus = STATUS_NO_RETURN;

//Reception failed
 return;
 }
 if(SRIF == 1){
 cRecieveData = RXB; //Reads receive data
 SRIF = 0;
 cRecieveFlag = RECIEVE_FINISH;
 }
 }
 aRecieveBuffer[wRecieveCounter] = cRecieveData;

//Stores receive data in buffer
 }
 }
 else{ //During 3-wire serial, IIC, or pseudo 3-wire serial

//communications
 switch(cCommunicationMethod){ //Communication method: only when IIC
 case IIC:
 SSlaveAddressSend(1); //Direction of slave address transmission 1:

//Receive

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00154

 }
 cTimerFlag = WAIT_START; //Sets timeout
 for(wRecieveCounter = 0 ;
 ((wRecieveCounter < wRecieveDataSize) && (cErrorStatus = = NO_ERROR)) ;
 wRecieveCounter++){

 cRecieveFlag = RECIEVE_START; //Clears receive flag
 while(cRecieveFlag != RECIEVE_FINISH){ //Waits until one byte of data has been received
 SWaitMiliSec(1000); //Time out check
 if(cTimerFlag == WAIT_FINISH){
 cErrorStatus = STATUS_NO_RETURN; //Reception failed
 break;
 }
 SByteDataRecieve(); //Receives one byte of data
 }
 aRecieveBuffer[wRecieveCounter] = cRecieveData;

//Stores receive data in buffer
 if((wRecieveCounter + 1) != wRecieveDataSize){

//No wait during last transfer
 SWaitMicroSec(wWaitTimeDataData); //Wait time between receiving two sets of data
 }
 }

 switch(cCommunicationMethod){ //Communication method: only when IIC
 case IIC:
 SPT = 1; //Outputs stop condition
 }
 }
}

/**
* Initialize 3-wire serial/pseudo 3-wire serial communications *
* Local variables: wWork1 Work *
* cWork2 Work *
***/
void SCsiIni(void){
 register Word wWork1; //Work
 register Byte cWork2; //Work

 CSIM = 0x01; //Send/receive disabled, MSB first, CLK = TM 3/2

 wWork1 = 12500; //CR30W setting when 12,500: fX = 20 MHz,
//sck = 100 Hz

 wWork1 /= wParCsiClockSpeed; //wSioClockSpeed: 100-Hz units
 wWork1--;
 CR30W = wWork1; //CR30W = (12,500 / wSioClockSpeed) − 1

 cWork2 = PMC3;
 cWork2 &= 0xf3; //PMC32: SCK, PMC33: SO0
 cWork2 |= 0x0c;
 PMC3 = cWork2; //Control mode

 cWork2 = PRM0; //bit[7-4]: TM3's count clock specification
 cWork2 &= 0x0f; //bit[3-0]: TM0's count clock specification
 cWork2 |= 0x10;
 PRM0 = cWork2; //TM3 = fXX/8, TM0 = fXX/2,048

 cWork2 = TMC0; //TM3 16-bit operation mode, start of TM3 operation
 cWork2 &= 0x0f;
 cWork2 |= 0x90;
 TMC0 = cWork2;

 CSIIF = 0; //Clears send/receive finish flag
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 155

/**
* Initialize IIC communications *
* Local variable: cWork Work *
***/
void SIicIni(void){
 register Byte cWork;
 CSIM = 0b00001110; //Transmit/receive disabled, internal clock, master,

//SPRS
 cWork = PMC3;
 cWork &= 0xf3; //PMC32: SCK, PMC33: SO0
 cWork |= 0x0c;
 PMC3 = cWork; //Control mode

 IICC = 0x90; //Waits for nine clocks

 SPRM = 0x08; //duty: For standard mode
//hold: 16 MHz < fXX < 32 MHz
//clk: fXX/256 = 20 MHz / 256 = 78.125 kHz

 CTXE = 1; //Transmit/receive enabled

 CSIIF = 0; //Clears send/receive finish flag
}

/**
* Initialize UART communications *
* Local variable: cWork Work *
***/
void SUartIni(void){
 register Byte cWork;

 TXE = 0; //Transmit disabled
 RXE = 0; //Receive disabled

 cWork = PMC3;
 cWork &= 0xfc; //PMC30: RXD, PMC31: TXD
 cWork |= 0x03;
 PMC3 = cWork; //Control mode

 BRGC = BRGC9600; //9,600 bps when fX = 20 MHz

 ASIM = 0b11001011; //Internal clock is selected. Receive completion
//interrupt inhibited when receive error has
//occurred.
//Stop bit: 1 bit, Characters: 8 bits
//No parity, transmit/receive enabled

 STIF = 0; //Clears send finish flag
 SRIF = 0; //Clears receive finish flag
}

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00156

4.6.2 RAM definitions

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*---/
RAM definition

This is a variable that is used in the sample programs.
The following declarations are required when using the sample programs.

---*/

Byte aSendBuffer[256]; //Send buffer
Byte aRecieveBuffer[256]; //Receive buffer

/***** Variables used as parameters *****/
sreg DWord dwParStartAddress; //Write start address
sreg DWord dwParEndAddress; //Write end address
sreg Word wParCpuClockSpeed; //Flash microcontroller CPU's clock speed, 10-kHz

//units
sreg Word wParCsiClockSpeed; //Communication clock speed (100-Hz units) for 3-

//wire serial or pseudo 3-wire serial communications
sreg Word wParEraseTime; //Erase time (10-ms units)

sreg Byte cParTargetSeries; //Selects 78K/0 or 78K/0S as target series
sreg Byte cParVppPulse; //VPP pulse count (valid range: 0 to 14)
sreg Byte cParBaudRate; //Communication baud rate
sreg Byte cParCpuClockSource; //Selects CPU clock source supplied to flash

//microcontroller
sreg Byte cParSlaveAddress; //Slave address

/***** Other variables *****/
sreg Word wSendSize; //Buffer send size
sreg Byte cCommunicationMethod; //Communication method
sreg Byte cSendData; //Send data
sreg Byte cRecieveData; //Receive data
sreg Byte cSendFlag; //Send flag
sreg Byte cRecieveFlag; //Receive flag

sreg Word wWaitTimeVppCom; //Wait time (µs units) between VPP and COMMAND
sreg Word wWaitTimeComAck; //Wait time (µs units) between COMMAND and ACK
sreg Word wWaitTimeAckCom; //Wait time (µs units) between ACK and COMMAND
sreg Word wWaitTimeAckData; //Wait time (µs units) between ACK and DATA
sreg Word wWaitTimeDataData; //Wait time (µs units) between two sets of DATA
sreg Word wWaitTimeDataAck; //Wait time (µs units) between DATA and ACK

sreg Byte cTargetStatus; //Status of target microcontroller
sreg Byte cRetryCounter; //Retry counter
sreg Byte cErrorStatus; //Error status
sreg Byte cEnterCommand; //Enter command

sreg Byte cTimerFlag; //Timer flag

reg Byte cWaitClockSelect; //Element number of structure array (wait data table)

sreg struct SigType sSig; //Stores silicon signature

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 157

4.6.3 RAM declarations

#include "DATTYPE.H" //Data type definition file

/*---/
RAM declaration

These are variables that are used in the sample programs.
The following types of declarations must be included when using the sample programs.

--*/

/* This defines the data type of the area used to store the silicon signature data. */
struct SigType{ //Type declaration for structure used to store silicon

//signature data
 Byte cSigVendorCode; //Vendor Code
 Byte cSigIdCode; //ID Code
 Byte cSigElectInf; //Electrical Information
 DWord dwSigLastAddress; //Last Address
 Byte aSigDeviceName[10]; //Device Name
 Byte cSigBlockInf; //Block Information//PARAMETER
};

/* This defines the data type of the wait clock count data table used to store the wait clock count. */
struct WaitData{ //Type declaration of structure used to store wait

//clock count (as ROM table)
 Word wWaitVppCom ; //0 Wait time between VPP and COMMAND
 Word wWaitComAck ; //1 Wait time between COMMAND and ACK
 Word wWaitAckCom ; //2 Wait time between ACK and COMMAND
 Word wWaitAckData; //3 Wait time between ACK and DATA
 Word wWaitDataData; //4 Wait time between two sets of DATA
 Word wWaitDataAck; //5 Wait time between DATA and ACK
 Word wWaitFrequencySet; //6 Wait time for calculation of oscillation

// frequency
 Word wWaitEraseTimeSet; //7 Wait time for calculation of erase time
 Word wWaitComToCom; //8 Wait time between two COMMANDS
 Word wWaitBaudRateCalc; //9 Wait time for calculation of baud rate
 Word wWaitPreWrite; //10 Wait time for prewrite
 Word wWaitErase; //11 Wait time for erase
 Word wWaitWrite; //12 Wait time for write
 Word wWaitInternalVerify; //13 Wait time for internal verify
 Word wWaitBlankChek; //14 Wait time for blank check
 Word wWaitRst1; //15 Wait time after sending first RESET

// command (for UART synchronization
// detection)

 Word wWaitRst2; //16 Wait time after sending second RESET
// command (for UART synchronization
// detection)

 Word wWaitRst3; //17 Wait time after sending third RESET
// command (for UART synchronization
// detection)

 Dword dwWaitVerify; //18 Wait time for verify
};

extern Byte aSendBuffer[256]; //Send buffer
extern Byte aRecieveBuffer[256]; //Receive buffer

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00158

/***** Variables used as parameters *****/
extern sreg DWord dwParStartAddress; //Write start address
extern sreg DWord dwParEndAddress; //Write end address
extern sreg Word wParCpuClockSpeed; //Flash microcontroller CPU's clock speed, 10-kHz

//units
extern sreg Word wParCsiClockSpeed; //Communication clock speed (100-Hz units) for 3-

//wire serial or pseudo 3-wire serial
//communications

extern sreg WordwParEraseTime; //Erase time (10-ms units)
extern sreg Byte cParTargetSeries; //Selects 78K/0 or 78K/0S as target series
extern sreg Byte cParVppPulse; //VPP pulse count (valid range: 0 to 14)
extern sreg Byte cParBaudRate; //Communication baud rate
extern sreg Byte cParCpuClockSource; //Selects CPU clock source supplied to flash

//microcontroller
extern sreg Byte cParSlaveAddress; //Slave address

/***** Other variables *****/
extern sreg Word wSendSize; //Buffer send size
extern sreg Byte cCommunicationMethod; //Communication method
extern sreg Byte cSendData; //Send data
extern sreg Byte cRecieveData; //Receive data
extern sreg Byte cSendFlag; //Send flag
extern sreg Byte cRecieveFlag; //Receive flag
extern sreg Word wWaitTimeVppCom; //Wait time (µs units) between VPP and COMMAND
extern sreg Word wWaitTimeComAck; //Wait time (µs units) between COMMAND and ACK
extern sreg Word wWaitTimeAckCom; //Wait time (µs units) between ACK and COMMAND
extern sreg Word wWaitTimeAckData; //Wait time (µs units) between ACK and DATA
extern sreg Word wWaitTimeDataData; //Wait time (µs units) between two sets of DATA
extern sreg Word wWaitTimeDataAck; //Wait time (µs units) between DATA and ACK
extern sreg Byte cTargetStatus; //Status of target microcontroller
extern sreg Byte cRetryCounter; //Retry counter
extern sreg Byte cErrorStatus; //Error status
extern sreg Byte cEnterCommand; //Enter command
extern sreg Byte cTimerFlag; //Timer flag
extern sreg Byte cWaitClockSelect; //Element number of structure array (wait data table)
extern sreg struct SigType sSig; //Stores silicon signature
extern sreg Byte cWaitClockSelect; //Element number of structure array (wait data table)
extern const struct WaitData WaitDataTable[]; //ROM table wait clock count for each

//communication method

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 159

4.6.4 Wait clock count data table definition

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/*--/
Wait clock count data table definition

This defines the wait cock count data that is used in the sample programs.
When using the sample programs, the following data must be defined and a wait data table area
must be reserved.

The wait clock counts are the number of clocks during the target microcontroller's processing.

The wait clock counts for various commands, which differ according to the target series (78K/0 or
78K/0S) and communication method, are stored to ROM as table data.

When executing these commands, waits are performed using the required wait clock count
based on the data stored in ROM.

---*/

/*---
* Wait clock count constant value definition
---*/
#define DUMMY 1000 //dummy (value is insignificant)

/***** Define wait clock count for 78K/0 series and 3-wire serial communications *****/
#define WAIT_K0_CSI_VPPCOM 150 //Wait clock count between VPP and COMMAND
#define WAIT_K0_CSI_COMACK 900 //Wait clock count between COMMAND and ACK
#define WAIT_K0_CSI_ACKCOM 170 //Wait clock count between ACK and COMMAND
#define WAIT_K0_CSI_ACKDAT 230 //Wait clock count between ACK and DATA
#define WAIT_K0_CSI_DATDAT 300 //Wait clock count between two sets of DATA
#define WAIT_K0_CSI_DATACK 350 //Wait clock count between DATA and ACK

#define WAIT_K0_CSI_FRQ 2200 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0_CSI_ERT 1200 //Wait clock count for processing of erase time setting

/***** Define wait clock count for 78K/0 series and IIC communications *****/
#define WAIT_K0_IIC_VPPCOM 30 //Wait clock count between VPP and COMMAND
#define WAIT_K0_IIC_COMACK 1030 //Wait clock count between COMMAND and ACK
#define WAIT_K0_IIC_ACKCOM 40 //Wait clock count between ACK and COMMAND
#define WAIT_K0_IIC_ACKDAT 50 //Wait clock count between ACK and DATA
#define WAIT_K0_IIC_DATDAT 70 //Wait clock count between two sets of DATA
#define WAIT_K0_IIC_DATACK 70 //Wait clock count between DATA and ACK

#define WAIT_K0_IIC_FRQ 2350 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0_IIC_ERT 1200 //Wait clock count for processing of erase time setting

/***** Define wait clock count for 78K/0 series and UART communications *****/
#define WAIT_K0_UART_VPPCOM 290 //Wait clock count between VPP and COMMAND
#define WAIT_K0_UART_COMACK 1870 //Wait clock count between COMMAND and ACK
#define WAIT_K0_UART_ACKCOM 170 //Wait clock count between ACK and COMMAND
#define WAIT_K0_UART_ACKDAT 240 //Wait clock count between ACK and DATA
#define WAIT_K0_UART_DATDAT 650 //Wait clock count between two sets of DATA
#define WAIT_K0_UART_DATACK 700 //Wait clock count between DATA and ACK

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00160

#define WAIT_K0_UART_FRQ 5260 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0_UART_ERT 1450 //Wait clock count for processing of erase time setting

#define WAIT_K0_UART_BRGCALC 3820 //Wait clock count for wait during calculation of baud
//rate setting

#define WAIT_K0_UART_RST1 260 //Wait clock count after sending first RESET
//command

#define WAIT_K0_UART_RST2 180 //Wait clock count after sending second RESET
//command

#define WAIT_K0_UART_RST3 4100 //Wait clock count after sending third RESET
//command

/***** Define wait clock count for 78K/0 series and 3-wire serial, IIC, or UART communications *****/

#define WAIT_COMCOM 1000 //Wait clocks between two COMMANDS
#define WAIT_K0_PREW 230 //Wait clock count for per-byte prewrite processing
#define WAIT_K0_ERA 690 //Wait clock count for per-byte erase processing
#define WAIT_K0_PRG 1010 //Wait clock count for per-byte write processing
#define WAIT_K0_IVRF 840 //Wait clock count for per-byte internal verify

//processing
#define WAIT_K0_BLN 690 //Wait clock count for per-byte blank check

//processing
#define WAIT_K0_VRF 258560 //Wait clock count for verify processing per 256 bytes

/***** Define wait clock count for 78K/0 Series and pseudo 3-wire serial communications *****/
#define WAIT_K0_PCSI_VPPCOM 190 //Wait clock count between VPP and COMMAND
#define WAIT_K0_PCSI_COMACK 1630 //Wait clock count between COMMAND and ACK
#define WAIT_K0_PCSI_ACKCOM 790 //Wait clock count between ACK and COMMAND
#define WAIT_K0_PCSI_ACKDAT 640 //Wait clock count between ACK and DATA
#define WAIT_K0_PCSI_DATDAT 860 //Wait clock count between two sets of DATA
#define WAIT_K0_PCSI_DATACK 960 //Wait clock count between DATA and ACK

#define WAIT_K0_PCSI_FRQ 3380 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0_PCSI_ERT 1690 //Wait clock count for processing of erase time setting

#define WAIT_K0_PCSI_PREW 330 //Wait clock count for per-byte prewrite processing
#define WAIT_K0_PCSI_ERA 840 //Wait clock count for per-byte erase processing
#define WAIT_K0_PCSI_PRG 1010 //Wait clock count for per-byte write processing
#define WAIT_K0_PCSI_IVRF 900 //Wait clock count for per-byte internal verify

//processing
#define WAIT_K0_PCSI_BLN 840 //Wait clock count for per-byte blank check

//processing

/***** Define wait clock count for 78K/0S Series and pseudo 3-wire serial communications *****/
#define WAIT_K0S_CSI_VPPCOM 220 //Wait clock count between VPP and COMMAND
#define WAIT_K0S_CSI_COMACK 1040 //Wait clock count between COMMAND and ACK
#define WAIT_K0S_CSI_ACKCOM 210 //Wait clock count between ACK and COMMAND
#define WAIT_K0S_CSI_ACKDAT 190 //Wait clock count between ACK and DATA
#define WAIT_K0S_CSI_DATDAT 360 //Wait clock count between two sets of DATA
#define WAIT_K0S_CSI_DATACK 320 //Wait clock count between DATA and ACK

#define WAIT_K0S_CSI_FRQ 31600 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0S_ERT 20000 //Wait clock count for processing of erase time setting

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 161

#define WAIT_K0S_PREW 216 //Wait clock count for per-byte prewrite processing
#define WAIT_K0S_ERA 175 //Wait clock count for per-byte erase processing
#define WAIT_K0S_PRG 275 //Wait clock count for per-byte write processing
#define WAIT_K0S_IVRF 230 //Wait clock count for per-byte internal verify

//processing
#define WAIT_K0S_BLN 175 //Wait clock count for per-byte blank check

//processing

#define WAIT_K0S_VRF 29400 //Wait clock count for verify processing per 128 bytes

/***** Define wait clock count for 78K/0S Series and IIC communications *****/
#define WAIT_K0S_IIC_VPPCOM 220 //Wait clock count between VPP and COMMAND
#define WAIT_K0S_IIC_COMACK 1240 //Wait clock count between COMMAND and ACK
#define WAIT_K0S_IIC_ACKCOM 390 //Wait clock count between ACK and COMMAND
#define WAIT_K0S_IIC_ACKDAT 640 //Wait clock count between ACK and DATA
#define WAIT_K0S_IIC_DATDAT 530 //Wait clock count between two sets of DATA
#define WAIT_K0S_IIC_DATACK 530 //Wait clock count between DATA and ACK

#define WAIT_K0S_IIC_FRQ 65000 //Wait clock count for calculation of oscillation
//frequency

/***** Define wait clock count for 78K/0S Series and UART communications *****/
#define WAIT_K0S_UART_VPPCOM 330 //Wait clock count between VPP and COMMAND
#define WAIT_K0S_UART_COMACK 1900 //Wait clock count between COMMAND and ACK
#define WAIT_K0S_UART_ACKCOM 190 //Wait clock count between ACK and COMMAND
#define WAIT_K0S_UART_ACKDAT 180 //Wait clock count between ACK and DATA
#define WAIT_K0S_UART_DATDAT 690 //Wait clock count between two sets of DATA
#define WAIT_K0S_UART_DATACK 660 //Wait clock count between DATA and ACK

#define WAIT_K0S_UART_FRQ 46600 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0S_UART_BRGCALC 27000 //Wait clock count for wait during calculation of
//baud rate setting

#define WAIT_K0S_UART_RST1 320 //Wait clock count after sending first RESET
//command

#define WAIT_K0S_UART_RST2 230 //Wait clock count after sending second RESET
//command

#define WAIT_K0S_UART_RST3 14700 //Wait clock count after sending third RESET
//command

/***** Define wait clock count for 78K/0S Series and pseudo 3-wire serial communications *****/
#define WAIT_K0S_PCSI_VPPCOM 210 //Wait clock count between VPP and COMMAND
#define WAIT_K0S_PCSI_COMACK 2580 //Wait clock count between COMMAND and ACK
#define WAIT_K0S_PCSI_ACKCOM 820 //Wait clock count between ACK and COMMAND
#define WAIT_K0S_PCSI_ACKDAT 700 //Wait clock count between ACK and DATA
#define WAIT_K0S_PCSI_DATDAT 1560 //Wait clock count between two sets of DATA
#define WAIT_K0S_PCSI_DATACK 1600 //Wait clock count between DATA and ACK

#define WAIT_K0S_PCSI_FRQ 44200 //Wait clock count for calculation of oscillation
//frequency

#define WAIT_K0S_PCSI_ERT 27600 //Wait clock count for processing of erase time setting

#define WAIT_K0S_PCSI_PREW 340 //Wait clock count for per-byte prewrite processing
#define WAIT_K0S_PCSI_ERA 235 //Wait clock count for per-byte erase processing
#define WAIT_K0S_PCSI_PRG 440 //Wait clock count for per-byte write processing
#define WAIT_K0S_PCSI_BLN 235 //Wait clock count for per-byte blank check

//processing
#define WAIT_K0S_PCSI_IVRF 325 //Wait clock count for per-byte internal verify

//processing

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00162

#define WAIT_K0S_PCSI_VRF 41800 //Wait clock count for verify processing per 128 bytes

/*---
Wait clock count data table

The wait clock count data, which is used to adjust communication timing and in commands that differ
according to the target series and communication method, is stored in a ROM table. When executing
these commands, wait processing is performed using the data stored in the ROM table. The data stored
in the ROM table is the data that is defined above.

---*/
/**
* Wait data table
***/

const struct WaitData WaitDataTable[] = {
 /***** 78K/0, 3-wire serial *****/
 { WAIT_K0_CSI_VPPCOM ,WAIT_K0_CSI_COMACK ,WAIT_K0_CSI_ACKCOM ,
 WAIT_K0_CSI_ACKDAT ,WAIT_K0_CSI_DATDAT ,WAIT_K0_CSI_DATACK ,
 WAIT_K0_CSI_FRQ ,WAIT_K0_CSI_ERT ,WAIT_COMCOM ,
 DUMMY ,WAIT_K0_PREW ,WAIT_K0_ERA ,
 WAIT_K0_PRG ,WAIT_K0_IVRF ,WAIT_K0_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0_VRF },

 /***** 78K/0, IIC *****/
 { WAIT_K0_IIC_VPPCOM,WAIT_K0_IIC_COMACK ,WAIT_K0_IIC_ACKCOM ,
 WAIT_K0_IIC_ACKDAT ,WAIT_K0_IIC_DATDAT,WAIT_K0_IIC_DATACK ,
 WAIT_K0_IIC_FRQ ,WAIT_K0_IIC_ERT , WAIT_COMCOM,
 DUMMY ,WAIT_K0_PREW ,WAIT_K0_ERA ,
 WAIT_K0_PRG ,WAIT_K0_IVRF , WAIT_K0_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0_VRF },

 /***** 78K/0, UART *****/
 { WAIT_K0_UART_VPPCOM ,WAIT_K0_UART_COMACK ,WAIT_K0_UART_ACKCOM ,
 WAIT_K0_UART_ACKDAT ,WAIT_K0_UART_DATDAT ,WAIT_K0_UART_DATACK ,
 WAIT_K0_UART_FRQ ,WAIT_K0_UART_ERT ,WAIT_COMCOM ,
 WAIT_K0_UART_BRGCALC ,WAIT_K0_PREW ,WAIT_K0_ERA ,
 WAIT_K0_PRG ,WAIT_K0_IVRF ,WAIT_K0_BLN ,
 WAIT_K0_UART_RST1 ,WAIT_K0_UART_RST2 ,WAIT_K0_UART_RST3 ,
 WAIT_K0_VRF },

 /***** 78K/0, pseudo 3-wire serial *****/
 { WAIT_K0_PCSI_VPPCOM ,WAIT_K0_PCSI_COMACK ,WAIT_K0_PCSI_ACKCOM ,
 WAIT_K0_PCSI_ACKDAT ,WAIT_K0_PCSI_DATDAT ,WAIT_K0_PCSI_DATACK ,
 WAIT_K0_PCSI_FRQ ,WAIT_K0_PCSI_ERT ,WAIT_COMCOM ,
 DUMMY ,WAIT_K0_PCSI_PREW ,WAIT_K0_PCSI_ERA ,
 WAIT_K0_PCSI_PRG ,WAIT_K0_PCSI_IVRF ,WAIT_K0_PCSI_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0_VRF },

 /***** 78K/0S, 3-wire serial *****/
 { WAIT_K0S_CSI_VPPCOM ,WAIT_K0S_CSI_COMACK ,WAIT_K0S_CSI_ACKCOM ,
 WAIT_K0S_CSI_ACKDAT ,WAIT_K0S_CSI_DATDAT ,WAIT_K0S_CSI_DATACK ,
 WAIT_K0S_CSI_FRQ ,WAIT_K0S_ERT ,WAIT_COMCOM ,
 DUMMY ,WAIT_K0S_PREW ,WAIT_K0S_ERA ,
 WAIT_K0S_PRG ,WAIT_K0S_IVRF ,WAIT_K0S_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0S_VRF },

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 163

 /***** 78K/0S, IIC *****/
 { WAIT_K0S_IIC_VPPCOM ,WAIT_K0S_IIC_COMACK ,WAIT_K0S_IIC_ACKCOM ,
 WAIT_K0S_IIC_ACKDAT ,WAIT_K0S_IIC_DATDAT ,WAIT_K0S_IIC_DATACK ,
 WAIT_K0S_IIC_FRQ ,WAIT_K0S_ERT ,WAIT_COMCOM ,
 DUMMY ,WAIT_K0S_PREW ,WAIT_K0S_ERA ,
 WAIT_K0S_PRG ,WAIT_K0S_IVRF ,WAIT_K0S_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0S_VRF },

 /***** 78K/0S, UART *****/
 { WAIT_K0S_UART_VPPCOM ,WAIT_K0S_UART_COMACK ,WAIT_K0S_UART_ACKCOM ,
 WAIT_K0S_UART_ACKDAT ,WAIT_K0S_UART_DATDAT ,WAIT_K0S_UART_DATACK ,
 WAIT_K0S_UART_FRQ ,WAIT_K0S_ERT ,WAIT_COMCOM ,
 WAIT_K0S_UART_BRGCALC ,WAIT_K0S_PREW ,WAIT_K0S_ERA ,
 WAIT_K0S_PRG ,WAIT_K0S_IVRF ,WAIT_K0S_BLN ,
 WAIT_K0S_UART_RST1 ,WAIT_K0S_UART_RST2 ,WAIT_K0S_UART_RST3 ,
 WAIT_K0S_VRF },

 /***** 78K/0S, pseudo 3-wire serial *****/
 { WAIT_K0S_PCSI_VPPCOM ,WAIT_K0S_PCSI_COMACK ,WAIT_K0S_PCSI_ACKCOM ,
 WAIT_K0S_PCSI_ACKDAT ,WAIT_K0S_PCSI_DATDAT ,WAIT_K0S_PCSI_DATACK ,
 WAIT_K0S_PCSI_FRQ ,WAIT_K0S_PCSI_ERT ,WAIT_COMCOM ,
 DUMMY ,WAIT_K0S_PCSI_PREW ,WAIT_K0S_PCSI_ERA ,
 WAIT_K0S_PCSI_PRG ,WAIT_K0S_PCSI_IVRF ,WAIT_K0S_PCSI_BLN ,
 DUMMY ,DUMMY ,DUMMY ,
 WAIT_K0S_PCSI_VRF }
};

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00164

4.6.5 List of constant value definitions

/*--/
Constant value definition

These constant values are used in the sample programs
The following types of declarations must be included when using the sample programs.

--*/

/*--
Address where user data is stored

In these sample programs, the data stored in external ROM is written to the flash microcontroller.
The start address of external ROM is 20000H (start address of external memory area in 78K/4 products).
The following are declared and included in the sample programs.

---*/
#define USER_DATA_ADDRESS 0x020000 //Address where write and verify data is stored: 64

//Kbytes starting from 20000H

/*--
Flash memory control command (variable to be set: cSendData)

--*/
#define CMD_RESET 0x00 //Reset command
#define CMD_CHIP_VRF 0x11 //Batch verify command
#define CMD_CHIP_IVRF 0x18 //Batch internal verify command
#define CMD_CHIP_ERASE 0x20 //Batch erase command
#define CMD_CHIP_BLN 0x30 //Batch blank check command
#define CMD_HIGH_SPEED_WRITE 0x40 //High-speed write command
#define CMD_CONTINUE_WRITE 0x44 //Continuous write command
#define CMD_PRE_WRITE 0x48 //Prewrite command
#define CMD_STATUS 0x70 //Status command
#define CMD_FRQ_SET 0x90 //Oscillation frequency setting command
#define CMD_ERT_SET 0x95 //Erase time setting command
#define CMD_BAUDRATE 0x9a //Baud rate setting command
#define CMD_SIGNATURE 0xC0 //Silicon signature read command

/*---
Error status (variable to be set: cErrorStatus)

---*/
#define NO_ERROR 0x00 //No error
#define BLANK_CHEK_FAILED 0x01 //Blank check error
#define VERIFY_ERROR 0x02 //Verify error
#define PROGRAM_FAILED 0x04 //Write failed
#define ERASE_FAILED 0x08 //Erase failed
#define INITIALISE_ERROR 0x09 //Synchronization detection failed
#define TARGET_RETURN_ERROR 0x0a //ACK not returned
#define IIC_NO_ACK 0x0b //ACK not detected during IIC communications
#define STATUS_NO_RETURN 0x0c //Reception failed
#define PARAMETER_OUT_OF_RANGE 0X0d //Parameter is out of range
#define TARGET_IS_CLOSED 0x0e //Send failed
#define SYSTEM_ERROR 0x0f //Unexpected error

/*---
VPP pulse count (variable to be set: cParVppPulse)

---*/
#define SIO_CH0 0x00 //3-wire serial − ch0
#define SIO_CH1 0x01 //3-wire serial − ch1
#define SIO_CH2 0x02 //3-wire serial − ch2
#define SIO_CH3 0x03 //3-wire serial − ch3
#define IIC_CH0 0x04 //IIC − ch0
#define IIC_CH1 0x05 //IIC − ch1

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 165

#define IIC_CH2 0x06 //IIC − ch2
#define IIC_CH3 0x07 //IIC − ch3
#define UART_CH0 0x08 //UART − ch0
#define UART_CH1 0x09 //UART − ch1
#define UART_CH2 0x0a //UART − ch2
#define UART_CH3 0x0b //UART − ch3
#define PSIO_A 0x0c //Pseudo 3-wire serial − A
#define PSIO_B 0x0d //Pseudo 3-wire serial − B
#define PSIO_C 0x0e //Pseudo 3-wire serial − C

/*---
Communication method (variable to be set: cCommunicationMethod)

---*/
#define CSI 0x00 //3-wire serial
#define IIC 0x01 //IIC
#define UART 0x02 //UART
#define PCSI 0x03 //Pseudo 3-wire serial
/*---

Receive data (variable to be set: cReceiveData)
---*/
#define ACK 0x3c //Acknowledge

/*---
Status data (variable to be set: cTargetStatus)

---*/
#define ERASING_NOW 0x80 //Erase in progress
#define PROGRAMING_NOW 0x40 //Write in progress
#define PRE_WRITING_NOW 0x40 //Prewrite in progress
#define VERIFYING_NOW 0x20 //Verify in progress
#define BLANK_CHEK_NOW 0x10 //Blank check in progress
//#define ERASE_FAILED 0x08 //Erase failed //shared with cErrorStatus
//#define PROGRAM_FAILED 0x04 //Write failed //shared with cErrorStatus
//#define VERIFY_ERROR 0x02 //Verify error //shared with cErrorStatus
//#define BLANK_CHEK_FAILED 0x01 //Blank check error //shared with cErrorStatus
#define READY 0x00 //Command processing completed or no error

/*---
Communication baud rate (variable to be set: cParBaudRate)

---*/
#define BPS4800 0x02 //4,800 bps
#define BPS9600 0x03 //9,600 bps
#define BPS19200 0x04 //19,200 bps
#define BPS31250 0x05 //31,250 bps
#define BPS38400 0x06 //38,400 bps
#define BPS76800 0x07 //76,800 bps

/*--
Baud rate generator setting value (variable to be set: BRGC register)

--*/
#define BRGC4800 0x50 //4,800 bps
#define BRGC9600 0x40 //9,600 bps
#define BRGC19200 0x30 //19,200 bps
#define BRGC31250 0x24 //31,250 bps
#define BRGC38400 0x20 //38,400 bps
#define BRGC76800 0x10 //76,800 bps

/*--
Target series (variable to be set: cParTargetSeries)

--*/
#define K0 0x00 //Target series: 78K/0 Series
#define K0S 0x01 //Target series: 78K/0S Series

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00166

/*--
Select CPU clock source (variable to be set: cCpuClockSource)

--*/
#define IN_FLASHWRITER 0x00 //Supplied from flash programmer
#define ON_TARGETBOARD 0x01 //Uses target board’s clock

/*--
Enter command (variable to be set: cEnterCommand)

--*/
#define ENTER_EPV 0x10 //Erase/write/verify command
#define ENTER_ERA 0x08 //Erase command
#define ENTER_PRG 0x04 //Write command
#define ENTER_VRF 0x02 //Verify command
#define ENTER_BLN 0x01 //Blank check command
#define ENTER_NOTHING 0x00 //No entered command

/*--
Timer flag setting value (variable to be set: cTimerFlag)

--*/
#define WAIT_START 0x00 //Start of wait
#define WAIT_FINISH 0x00 //End of wait
#define WAIT_NOW 0x01 //Wait in progress

/*--
Send flag (variable to be set: cSendFlag)

--*/
#define SEND_START 0x00 //Start of send
#define SEND_NOW 0x01 //Send in progress
#define SEND_FINISH 0xff //End of send

/*--
Receive flag (variable to be set: cReceiveFlag)

--*/
#define RECIEVE_START 0x00 //Start of receive
#define RECIEVE_NOW 0x01 //Receive in progress
#define RECIEVE_FINISH 0xff //End of receive

CHAPTER 4 SAMPLE PROGRAMS

Preliminary Application Note U14458EJ1V0AN00 167

4.7 Error Code List

When an error occurs in any of these sample programs, a value such as those listed below entered as

cErrorStatus (variable name).

cErrorStatus Error

00H No error

01H Blank check error

02H Verify error

04H Write failed

08H Erase failed

09H Synchronization detection failed

0AH ACK not returned

0BH ACK not detected during IIC communications

0CH Receive failed

0DH Parameter is out of range

0EH Send failed

0FH Unexpected error

Preliminary Application Note U14458EJ1V0AN00168

[MEMO]

Preliminary Application Note U14458EJ1V0AN00 169

CHAPTER 5 SAMPLE INTERFACE

This chapter presents a sample program that uses keys (command entry) and LED (error indicators) in a flash

programmer interface.

5.1 Connection Diagram

Figure 5-1 shows a connection diagram that includes the flash programmer and the interface keys and LEDs.

Figure 5-1. Connection Diagram

Flash programmer
 PD78P4038Y

P11

P12

VDD

P10

VDD
SW1

P74

VDD
SW2

VDD
SW3

VDD
SW4

VDD
SW5

P73

P72

P71

P70

P13

VDD VDDVDD

100 kΩ

100 kΩ

100 kΩ

100 kΩ

100 kΩ

Erase/write/verify

Erase

Write

Verify

Blank check

330 Ω 330 Ω330 Ω330 Ω
LED1

LED2

LED3

LED4

Erase

Write

Verify

Blank check

µ

CHAPTER 5 SAMPLE INTERFACE

Preliminary Application Note U14458EJ1V0AN00170

In this sample interface, commands entered via SW1 to SW5 are executed and the LEDs corresponding to the

executed command is lit. If an error occurs during command execution, the corresponding LED blinks at a 0.5-

second interval to notify the user of the error. Table 5-1 lists the correspondences among SW1 to SW5, LED1 to

LED4, and the commands. Table 5-2 lists the types of errors corresponding to blinking LEDs.

Table 5-1. Correspondence among SWs, LEDs, and Commands

SW Command Being Executed Lit LED

SW1 is ON Erase/write/verify Note

SW2 is ON Erase LED1

SW3 is ON Write LED2

SW4 is ON Verify LED3

SW4 is ON Blank check LED4

Note The sequence of lit LEDs is LED1 → LED2 → LED3 corresponding to the sequence of command execution

(erase → write → verify).

Table 5-2. Types of Errors Corresponding to Blinking LEDs

Blinking LED (blinks at 0.5-second interval) Type of Error

LED1 Erase error

LED2 Write error

LED3 Verify error

LED4 Blank check error

LED1 and LED4 Synchronization detection error

LED1 and LED3 ACK not returned

LED1, LED3, and LED4 ACK not detected during IIC

communications

LED1, LED2, and LED4 Parameter is out of range

LED1 and LED2 Receive failed

LED1, LED2, and LED3 Send failed

LED1, LED2, LED3, and LED4 Unexpected error

CHAPTER 5 SAMPLE INTERFACE

Preliminary Application Note U14458EJ1V0AN00 171

5.2 Sample Program

See CHAPTER 4 SAMPLE PROGRAMS for description of the variables used in this sample program.

(1) Flow chart

COMMAND CAPTURE/
LED DISPLAY

IS COMMAND
ENTRY SW ON?

END

NO

KEY SCAN OF COMMAND
ENTRY SWITCHES

LED INDICATION OF
ERROR STATUS

STOP LED's ERROR
STATUS DISPLAY

LED DISPLAY OF
ENTERED COMMAND

YES

LED blinks at 0.5-second interval if an
error has occurred when executing the
previous command.

Two 20-ms waits for anti-chattering
(when old and new statuses match)

CHAPTER 5 SAMPLE INTERFACE

Preliminary Application Note U14458EJ1V0AN00172

(2) Sample program

#pragma sfr //Uses sfr area

#include "DATTYPE.H" //Data type definition file
#include "sram.h" //RAM external access definition file
#include "constant.h" //Constant value definition file

/**
* Capture command/Display status *
* Global variables: cErrorStatus Error status *
* cCommunicationMethod Communication method *
* *
* Local variables: cWork Work *
* cSwStatus SW status *
* cOldSwStatus Old SW status *
* c500msCounter 500-ms counter *
***/
void MGetCom(void){
 register Byte cWork; //Work
 register Byte cSwStatus; //SW status
 register Byte cOldSwStatus; //Old SW status
 register Byte c500msCounter; //500-ms counter

 cSwStatus = 0;
 cOldSwStatus = 0;
 c500msCounter = 25; //25*20 ms = 500 ms

 PRM1 = 0x19; //TM1 count clock = 2,048/fX
 CR11 = 195; //195 × (2,048/20 MHz) = 20 ms
 CRC1 = 0x08;
 CE1 = 1; //TM1 start

/***** Clear status display LED *****/
 cWork = P1; //Clears status display LED
 cWork &= 0xf0;
 cWork |= 0x0f;
 P1 = cWork;

 while(P7 != 0x1f); //Waits until all switches are OFF

 for(cEnterCommand = ENTER_NOTHING ; cEnterCommand == ENTER_NOTHING ;){
 if(CIF11 == 1){ //Interrupt request flag
 CIF11 = 0; //Clears interrupt request flag

 c500msCounter--;

/***** Command capture (key scan) *****/
 cSwStatus = P7;
 if(cOldSwStatus == cSwStatus){ //Anti-chattering (20-ms interval) when old and new

//statuses match
 cWork = cSwStatus ^ 0xff;
 cWork &= 0x1f;
 if((cWork == ENTER_EPV) || (cWork == ENTER_ERA)
 || (cWork == ENTER_PRG)
 || (cWork == ENTER_VRF) || (cWork == ENTER_BLN)){

//Is SW input valid?
 cEnterCommand = cWork ; //Sets command to be entered
 }
 }else{
 cOldSwStatus = cSwStatus; //Stores SW status as old SW status
 }
 }

CHAPTER 5 SAMPLE INTERFACE

Preliminary Application Note U14458EJ1V0AN00 173

/***** Error status LED display *****/
 if((cErrorStatus != NO_ERROR) && (c500msCounter == 0)){
 c500msCounter = 25; //Initializes wait time (as 500 ms)
 cWork = P1;
 P1 = cWork ^ cErrorStatus; //Blinks at 500-ms interval to indicate error status
 }
 }

/***** Error status LED OFF/LED ON corresponding to entered command *****/
 cErrorStatus = NO_ERROR; //Set for "no error"
 if(cEnterCommand != ENTER_EPV){ //Is captured command E.P.V.?

//LED is ON in main routine during erase/write/verify
 cWork = cEnterCommand ^ 0xff;
 cWork &= 0x0f;
 cWork |= P1 & 0xf0;
 P1 = cWork;
 }
 else{ //During erase/write/verify
 cWork = P1;
 cWork &= 0xf0;
 cWork |= 0x0f;
 P1 = cWork;
 }
 CE1 = 0; //Stops TM1

/***** Return to main routine (command execution) *****/
}

Preliminary Application Note U14458EJ1V0AN00174

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 System Configuration
	1.2 Differences between the uPD78F0xxx and the uPD78F9xxx

	CHAPTER 2 BASIC FORMAT
	2.1 Flow Chart of Write Operation
	2.2 Initial Settings
	2.3 Ways to Switch to Power On/Write Mode
	2.3.1 Switching to power on/write mode

	2.4 Synchronization Detection Processing
	2.4.1 Synchronization detection processing for 3-wire serial and pseudo 3-wire serial communication methods
	2.4.2 Synchronization detection processing for UART communication method
	2.4.3 Synchronization detection processing for IIC communication method
	2.4.4 Initialization wait time

	2.5 Processing of Setting Commands
	2.5.1 Oscillation frequency setting command
	2.5.2 Erase time setting command
	2.5.3 Baud rate setting command

	2.6 Write Processing
	2.7 List of Commands
	2.8 Power Off Processing

	CHAPTER 3 WRITE SEQUENCE
	3.1 Write Sequence for 3-Wire Serial and Pseudo 3-Wire Serial Communications
	3.1.1 Reset command
	3.1.2 Oscillation frequency setting command
	3.1.3 Erase time setting command
	3.1.4 Prewrite command
	3.1.5 Erase command
	3.1.6 Write commands
	3.1.7 Internal verify command
	3.1.8 Verify command
	3.1.9 Blank check command
	3.1.10 Silicon signature command
	3.1.11 Status check command

	3.2 Write Sequence for IIC Communications
	3.2.1 Reset command
	3.2.2. Oscillation frequency setting command
	3.2.3 Erase time setting command
	3.2.4 Prewrite command
	3.2.5 Erase command
	3.2.6 Write commands
	3.2.7 Internal verify command
	3.2.8 Verify command
	3.2.9 Blank check command
	3.2.10 Silicon signature command
	3.2.11 Status check command

	3.3 Write Sequence for UART Communications
	3.3.1 Reset command
	3.3.2 Oscillation frequency setting command
	3.3.3 Erase time setting command
	3.3.4 Baud rate setting command
	3.3.5 Prewrite command
	3.3.6 Erase command
	3.3.7 Write commands
	3.3.8 Internal verify command
	3.3.9 Verify command
	3.3.10 Blank check command
	3.3.11 Silicon signature command
	3.3.12 Status check command

	CHAPTER 4 SAMPLE PROGRAMS
	4.1 Description of Configuration for Processing
	4.2 Description of ROM
	4.3 Description of RAM
	4.3.1 Nomenclature related to processing and RAM
	4.3.2 Data type definition file

	4.4 Description of Modules
	4.5 Sample Programs
	4.5.1 Startup routine
	4.5.2 Hardware initialization processing
	4.5.3 Main processing
	4.5.4 RAM initialization
	4.5.5 Switch to power on/write mode
	4.5.6 Synchronization detection processing
	4.5.7 Oscillation frequency setting command
	4.5.8 Erase time setting command
	4.5.9 Baud rate setting command
	4.5.10 Get device information command
	4.5.11 Prewrite command
	4.5.12 Erase command
	4.5.13 High-speed write/continuous write command
	4.5.14 Internal verify command
	4.5.15 Verify command
	4.5.16 Blank check command
	4.5.17 Get status command
	4.5.18 Power off processing

	4.6 Other Sample Programs
	4.6.1 Subroutines
	4.6.2 RAM definitions
	4.6.3 RAM declarations
	4.6.4 Wait clock count data table definition
	4.6.5 List of constant value definitions

	4.7 Error Code List

	CHAPTER 5 SAMPLE INTERFACE
	5.1 Connection Diagram
	5.2 Sample Program

