

HONORARY NATIONAL OFFICIALS

Wing Cdr. Mick Ryan
164 Chesterfield Drive,
Riverhead,
Sevenoaks, Kent TN13 2EH
Telephone: Sevenoaks (0732) 453530

Jim Tierney
11 Collison Place,
Tenterden,
Kent TN30 7BU
Telephone: 058-06 2711

Eli Pamphlet
7 Lower Green,
Tewin,
Welwyn Garden City,
Herts AL6 OJX
Telephone: Welwyn (043 871) 7325

Joseph Gabbott

Bob Wood
13 Bowland Crescent,
Ward Green,
Barnsley, South Yorks S70 5JP
Telephone: (0246) 811585 (work)

(0226) 85084 (home)

Membership Secretary: Jack Cohen
30 Brancaster Road,
Newbury Park,
Ilford, Essex IG2 7EP
Telephone: 01-597 1229

Editor: Ron Geere
109 York Road,
Farnborough,
Hants G UM 6NQ

Sub-Editor: Mike Todd
27 Nursery Gardens,
Lodgefield,
Welwyn Garden City,
Herts AL7 1SF

Discounts Officer: Dr. David Annal
142 Windermere Road,
Norbury,
London SW16 5HE
Telephone: 01-764 4043

Chairman:

General Secretary:

Regional Co-ordinator:

Treasurer:

Software Librarian:

INDEPENDENT COMMODORE
PRODUCTS USERS GROJP

Vol. 4 No. 5 Newsletter Sept 1982
Europe's first independent magazine for PET users

Page Contents

218 Editor’s Notebook
219 Microchess on Ice
223 Round the Regions
224 A Lesson to be Learnt?
226 VIC Matters
241 Review — BEE
244 Comal Corner
246 Interval Music
248 Review — Math Hurldler

— Mouster Maze
249 Review — Ski Run
250 Photo Spread
256 Comal Version 0.12
259 Shop Window
261 PET REVAS
263 Group Discounts
264 Strictly for Beginners
266 Disk Filename Tip
266 Review — TRIOS
268 Data Appending
270 Data Maker and Loader
272 Matters Arising
272 Visicalc and Commodore 2022/2023 Printers
274 Telesoftware
278 Comal Towers of Hanoi
282 Men & Women
283 Commodore Column
284 Disk to Tape Save (Arrow Format)
286 Review — COMPUTE!’s First Book of PET/CBM

The op in ions expressed herein are those o f the author and not necessarily those
o f ICPUG or the ed ito r. Item s m en tioned in "Shop W in d o w " are cu lle d from adver
tis e rs ' m a te ria l and ICPUG d o not necessarily endorse or recom m end such item s
caveat em ptor

218

EDITO R 1S NOTEBOOK

At this time of year we have our Annual General
Meeting at which you have the opportunity of having a hand
in the running of the User Group, either to share the
wcrk-Loac!, or undertake some new venture on behalf of the
Grouo. Several of the existing officials will not be
seeking re-election, myself among them. I have been Editor
of the magazine since the Group was formed some four years
ago and would like a change. I will give my successor a
hand with the next issue to show him/her the way, and will
continue to contribute my regular features. The job is not
without its perks, but the prime activity is to collate
members' articles, correct spelling and grammar, cut out
the naughty bits and convert the text to the format of the
magazine. Software exists to aid the process and if
necessary I will continue to print out the manuscripts
ready for reproduction. Remember, no editor, no magazine.
For my part, I shall not be having a rest, but will have
more time to devote to a number of publications akin to the
Compendium and its ill-fated sequel, the ROM Gazetteer.

R.D.G.
— 0O0—

MEMBER'S PRIVATE SALES & WANTS

Sold Vic to buy PET - have following Vic accessories
for sale. All 'as new'. Stack ROM switchboard (£ 25). Stack
RS232 interface (£ 18). Greenwich Instruments GA20
Development board - will hold a total of 35Kbytes of
RAM/ROM/EPROM/INSTANT ROM and memory expansion cartridges
(£ 35). Three GA8 adapters - permits two 4K devices to
occupy an 8K socket, or two 2K to occupy a 4K socket with
automatic selection (£ 12 each). All have full
instructions. Tel: Brian Atherton, Doncaster (0302) 539142.

— oOo—

219

MICROCHESS ON ICE
By Walter Green.

The modifications to MICROCHESS presented here are to
enable a more flexible program which allows among other
things Ci) two players to play chess rather than player vs
computer, (ii) saving of such a game which can be returned
to at a later date and (iii) the making of a set position
which can be returned to at will, so allowing alternative
lines of attack to be tried.

The work was carried out with an old-ROM PET with
expanded memory and the original MICROCHESS program.
Modifications to cope with new ROM and the later versions
of MICROCHESS are included (courtesy Brian Grainger).

First of all we need to prepare the program. In
addition to MICROCHESS you will need a copy of the
relocatable Supermon available from the ICPUG software
library (SUPERM0N1.REL for old ROMs, SUPERM0N2.REL for new
ROMs). Then carry out the following:-

1) Lower top of memory to $2400 by P0KE134,0:P0KE135,36
(new ROMs POKE52,0:P0KE53,36). Type NEW and LOAD the
relocatable Supermon and RUN. PET will break irto monitor
automatically so save the Supermon machine code by

.S"SUPERM0N",01 ,1B71 ,2400
This copes with either Supermon version although the new
ROM code starts from 1E33 not 1B71.

2) You need to prepare a modified version of MICROCHESS.
Although it loads to $2000 in memory it only uses up to
$17DF ($17FC in the later version). To prepare the modified
version reset the PET (this may not be necessary) and
L0AD"MICR0CHESS".
If you have the original MICROCHESS [PEEK(6128)=36] then do
the following:-

P0KE1043,1 :P0KE1044,0:P0KE1049,2:P0KE1 050,0
P0KE1362,1 : P0KE1363,0 : P0KE1368,2 : P0KE1369,0
P0KE2294,0:P0KE2295,0

If you have the later MICR0CHESS version CPEEK(6128)=4]
then do this instead:-

220

P0KE1C43, 1 : P0KE10 4 4 , 0 : P0KE10 4 9 , 2 : P0KE1050,0
P0KE1059 ,1 : P0KE1 060 ,0 : P0KE1 064-2 : P0KE1 065-0
P0KE1388 ,1 : P0KE1389,0 : P0KE1396 ,2 : P0KE139 7 ,0
P0KE2D94,214:P0KE2095,1 2 2 :P0KE2096,234:P0KE2269,0
P0KE2270,0

3) Mow L0AD"SUPER!v!0N" saved in 1) and if old ROM do a
SYS7C25 (new ROM, SYS7731). You will now be in monitor
agai n. Transfer zero page by the command:
.T 0000 00FF 1A00

4) We are going to modify HICROCHESS so that pressing
will return to BASIC after transferring zero page to
S1900-19FF £ restoring zero page to the values from $1A00.
Carry out this mod. by monitor commands to display and
change memory as follows:-
.05B9 4C 00 18 (original MICROCHESS)
.05D7 4C 00 18 (later version)
.1 800 A2 00 B5 00 9D 00 19 E8
.1808 DO F8 BD 00 1A 95 00 E8
.1810 DO F8 78 AD FE 03 8D 19
.1818 02 AD FF 03 8D 1A 02 4C
.1820 05 1D (old ROM)
.1820 07 FF (new ROM)

5) We now wish to modify MICROCHESS so it can set up a
position that we specify at the start of a game. Do this by
displaying and modifying memory as follows:-
.04A2 BD 2D 18 (original MICROCHESS)
.04BC BD 2D 18 (later version)
-055D 4C 50 18 (original MICROCHESS)
.057B 4C 50 18 (later version)
.1850 A2 21 BD 1D 14 9D 2D 18 (original MICROCHESS)
.1858 CA 10 F7 4C OF 04 (original MICROCHESS)
.1 850 A2 21 BD 07 14 9D 2D 18 (later version)
.1858 CA 10 F7 4C OF 04 (later version)

It is suggested that you set up the standard board start
position by the following:-
.T 141D 143E 182D (original MICROCHESS)
.T 1407 1428 182D (later version)

221

Finally, if you have the original MICROCHESS set $082C to
00 and $0830 to $24.

6) Return to BASIC (.X) and save the modified MICROCHESS by
P0KE124,0:P0KE125,36 (new ROM P0KE42,0:P0KE43,36) and
SAVE"MICROCHESSMOD". The original version of MICROCHESS can
be saved more simply by SYS2062.

With the modified program you can call SUPERMON at any time
with SYS7025 (new ROM SYS7731). Typing RUN and pressing
'return' will start MICROCHESS from the set position stored
at $132D-184E (see later). If MICROCHESS is reset by the
'R' command the set position will be permanently replaced
with the preset start position (standard board unless
modified by the user). While playing chess you can break
into BASIC by pressing key. (Note that moves should be
given without the e.g. E2E4).

Enter Supermon and you can review the zero page of
MICROCHESS which has been transferred to $1900 upwards. In
the original version memory from $1920-1980 gives a record
of moves to date.

We need to show how MICROCHESS stores pieces and
positions so that any position can be set up. Look at the
table below.

BQR BQN BQB BQ BK BKB BKN BKR B Promoted

1 94 98 96 92 90 95 97 93 91
2 CB CF CD C9 C7 CC CE CA C8
3 1432 1436 1434 1430 1 42 E 1433 1435 1431 1 42 F
4 141C 1420 1 41 E 141 A 1418 1 41 D 141 F 141 E 1419
5 1842 1846 1844 1840 1 83 E 1843 1845 1841 1 83 F

BP BP BP BP BP BP BP BP
1 9A 9C 9E 9F A0 9D 9B 99
2 D1 D3 D5 D6 D7 D4 D2 DO
3 1438 1 43 A 143C 143 D 143E 143B 1439 1437
4 1422 1424 1426 1427 1428 1425 1423 1421

5 1848 1 84 A 184C 184D 1 84 E 184B 1849 1847

222

WP WP WP WP WP WP WP WP

1 AB AD AF B0 B1 AE AC AA

2 E2 E4 E6 E7 E8 E5 E3 E1

3 1427 1429 1 42 B 1 42 C 142 D 142 A 1428 1426

4 1411 1413 1415 1416 1417 1414 1412 1410

5 1837 1839 1 83 B 1 83 C 1 83D 183 A 1 83 0 1836

WQR WQN UQB WQ WK WKB WKN WKR W Promoted

1 A5 A9 A 7 A3 A1 A6 A8 A4 A2

2 DC E0 DE DA D8 DD DF DB D9

3 1421 1425 1423 141 F 141 D 1422 1424 1420 1 41 E

4 1 40 B 1 40 F 140D 1409 1407 1 40C H O E 140 A 1408

5 1831 1835 1833 1 82 F 1 82 D 1832 1834 1830 1 82 E

Lines 1,2 give the zero-page Locations where the current
positions of the relevant pieces are. Line 1 is for the
original MICROCHESS line 2 for the later version. Each
square of the board can be regarded as a two-digit hex
number row,column. Top left is 00 and bottom right 77. The
position of the piece is given by storage in the zero page
location of the appropriate code for the square. Lines 3,4
give the preset storage positions taken up when a reset is
performed. Line 3 is for the original MICROCHESS and line 4
for the later version. In this case however the board value
is EOR'd with $77. (Alternatively one can view the board as
being numbered with 00 as bottom right and 77 as top
left!). Line 5 gives the storage position of positions
taken when a RUN is executed. Again values are EOR'd with
$77. If a piece is captured, it is denoted by a value of
$CC in zero page, $BB in any other location.

To give some examples the white king is preset on
square 74. Thus the preset position, $141D original
version, shows $74 EOR $77, that is $03. As another example
on loading the program POKE the RUN time position of the
White queen, $182F (=6191)) with $BB(=187) and RUN. The
board will come up with the white queen captured. Exit to
BASIC via '-' and PEEK the copy of zero page location,
$19A3 (original MICROCHESS). The reply is 172(=$CC).

223

By this means any position can be set up, e.g. a book
problem. Two players can play a game by each in turn
exiting to BASIC, poking the appropriate RUN time memory
(remembering to identify captured pieces), and typing RUM
to display new position. Such a game can be adjourned and
SAVEd at any time.

Perhaps future modifications can be made to allow a
game against the computer to be saved until resuming later.

Anybody finding further interesting points on the old
ROM MICROCHESS may wish to contact rue at
151, The Hatherley, Basildon, Essex.

— oOo—

ROUND THE REGIONS

On August 9th the Watford group celebrated their first
anniversary with a demonstration of the Beeb 1B ' computer
to see how the other half live, plus a chance to play with
tr.~ new 8250 disk drive. Future meetings will be September
6th, October 6th and November 10th, the latter two being a
shift from Monday to Wednesday evenings.

New regional groups are being formed. At Petersfield
there is a local self-help group of about 24 PET owners who
meet on the second Tuesday of every month in the Computing
Room of Bedales School, Petersfield, Hants. A Vic subgroup
is to start at the Kinloss Komputer Klub, contact Mr.
C.J.Smith, 49, Trenchard Crescent, RAF Kinloss, Ferres,
Moray, Scotland.

Mrs. P.Dawsom, 189, Cannock Road, Westcroft,
Wolverhampton, would like to start a Vic group in the
Wolverhampton area. Anyone interest should contact her on

0902 721330.

Carol Taylor, 101, Courtland Avenue, Cranbrook,
Ilford, Essex, has recently had her first group meeting,
but would like further support for the group.

— oOo—

224

A L TO BE LEARNT?

Attending and helping at our exhibition stands can be

very tiring) and being tired can have rather terrifying
consequences. ICPUG's chairman, Mick Ryan, went to the PET
show ready for all contingencies with almost every disk (a
hundred of them) he owned under his arm. After the show he
took his box of disks and headed for home by train. To keep
the disks away from any possible magnetic fields, Mick placed
them safely in the luggage rack and settled down for the
journey home.

He woke out of a doze suddenly to find himself at his
home station and dived off the train - only realising some
time later that he had left his disks on the luggage rack!
Although very helpful, British Rail were unable to track the
disks down despite a great deal of telexing and telephoning
and soon Mick resigned himself to the awful truth - he had
lost just about every disk he owned.

Mick spent the last two months trying to rebuild his
collection, but many will know, it is impossible to recreate
your own programs and replacing commercial programs can be
very expensive. But with the help of his many contacts, he
was at least able to replace a few of them.

Around the middle of August, two months after the event,
he received a letter from a lad in Hastings (where the train
had ended up) who had found the disks on the platform at one
o'clock in the morning and had taken them home.

Unfortunately they had been tucked under a bed and
forgotten about until one day, while cleaning the bedroom,
the disks re-emerged. The lad probably had little
understanding of their value, but nevertheless wrote to Mick
who gladly zoomed off to Hastings and picked them up - with a
suitable reward for their finder of course!

Mick's disks were all backed up, but on the reverse side
of other disks. They were protected against the disk drive

225

going bananas, but nothing else. It's easy to be wise after
the event, but I'm sure Mick will be making proper back up
copies in the future! A sobering lesson to us all!

M.R.T.

— oOo—•

DISK FILE
By Hike Todd.

It probably hasn't gone unnoticed that there was no Disk
File in the July Newsletter. This was mainly due to a variety
of factors, not last of which was that I was having to spend
a great deal of time on my proper, full time job! The time
spent on the Vic side of ICPUG was also taking up a great
deal of time and so the Disk File had to be dropped.

Regrettably, something very similar has happened this
time, except holidays have also intervened to make life even
more hectic - so I have to apologise for there being no disk
file in this issue either.

The fact that there are now several DOS versions around
means that, whatever is included in the column, which is
based on D0S2.1, may not be valid for D0S1.2, D0S2.2 or the
DOS used on 8050, D0S2.5, or the single disk drives and so I
am beginning to wonder if the series is really worthwhile.
I'd appreciate any comments on this.

The fact that my own 3040 disk unit has failed hasn't
helped! After operating for a couple of minutes after switch
on, resetting the unit using the "U:" command I get the front
LEDs flashing 7 times. Referring to page 39 in the January
1982 Newsletter, this indicates a RAH failure between $2000-
$23FF and I now have to replace the RAM chip(s) in question.

What will happen next issue is in the lap of the Gods.

•—oOo—

226

VIC MATTERS
By Hike Todd

When I offered an errata for Vic Revealed, I had little
idea of the response that I would get and as I am writing
this, I have a pile of stamped and addressed envelopes
waiting for the errata. Hopefully, most of you should have
your copy by now - if not, then it won't be far away.

VR v PRG

My criticisms of the book are echoed by most who wrote,
although some disagree with my conclusion that the Commodore
Programmers Reference Guide (PRG) was a better publication.
Certainly the Commodore book has many errors too, but Nick
Hampshire has cribbed much of "Vic Revealed'* (VC) from it (or
at least the same source), transferring Commodore's errors as
well as adding a hefty supply of his own.

Note that the PRG I am referring to is NOT the early A1!,
ringbound folder that cost about 20 pounds. This was a very
poor value document. The glossy cover, spiral bound, 285
page, A5 book has been available for some time now, and it is
this one which I am referring to.

I can't really go into their differences and
similarities much more, and would only add that about 90$ of
what is in VR is in PRG and about 60? of what is in PRG is in
VR; PRG is easier to read, and much better presented - it has
far fewer typing errors and about a third of the factual
errors that VR has.

In terms of value for money I would give VR about 55%
and PRG about 85?, although it is true to say that VR was
(and still is in some places) the only reference guide
available and so it is inevitably worth that much more. My
advice? Avoid Vic Revealed like the plague and try to obtain
the Commodore Programmers Reference Guide!!

HELP?

I would like to thank all of you who took the time to
add in your letters such kind comments about ICPUG, the
Newsletter and my Vic column. It certainly makes the many
hours of work which go to make up the Vic column (and the
Newsletter as a whole) worthwhile.

It is often very difficult to judge what you want to
know about, although your letters are often a good guide, so
if there's anything you want explaining, drop me a line. If I
can't get round to writing about it, I will pass it on to one
of the volunteers that are beginning to emerge. It may not be
possible to answer specific queries personally - but we will
do what we can, and at least include a mention in the
Newsletter.

Also, if you think you have some expertise to offer,
don't hesitate to contact me, giving details of your field of
interest and equipment. The larger the pool of knowledge that
we can draw on, the better we can serve those who are
struggling. In fact, I would like to see a broadsheet
published with the names and addresses of these volunteers,
together with details of the help they can offer.

MORE DOWNGRADING

My downgrading technique described last time seems to
have been very useful to many, and several have asked if it
is possible to perform the downgrade without disconnecting
the Super-Expander cartridge. Instead of SYS64824, use
SYS41031 and the Expander will be available for use.

I also mentioned a program for doing all the work for
you - well I'm including the listing for a program that will
do just that. It contains all the essential "meat", but is
not very user friendly. If you want to adapt it yourself and
include grandiose graphics to show what is happening then
that is certainly possible. If anyone does do anything
exciting I'd like to have a look at the results.

228

The program asks for the configuration you require (just
press a number 0-6) and then asks if you want the expander in
or out (press I or 0). To make life easy, the guts of the
program is in the routines at 1000 and 2000.

The subroutine at 1000 uses the variable C to set up the
POKE and SYS parameters, where C is the configuration
required. If C=0 then the configuration is unchanged.

The actual POKEs and SYSs are done after line 2000 and
these perform the reconfiguration.

Remember that running this program will reconfigure the
Vic as if you had just switched on and so will erase the
reconfiguration program itself (auto-cannibalism?). Also be
aware that, if you try to set up a configuration which has
RAM missing (e.g. to +24K with only +16K RAM expansion) the
program will do it for you, but you may be in trouble when
trying to do anything with the Vic, especially when using
strings.

10 REM **** RECON - PROGRAM FOR RECONFIGURING THE VIC ****

100 PRINT "<clear screen>
110 PRINT "PRESS TO CONFIGURE AS
120 PRINT !t___ _
130 PRINT " 0 EXISTING
140 PRINT " 1 UNEXPANDED VIC
150 PRINT " 2 + 3K ONLY
160 PRINT " 3 + OK
170 PRINT " 4 + 8K
180 PRINT n 5 +16K
190 PRINT " 6 +24K

200 GET T $:IF T$<"0" OR T$ >"6" THEN 200
210 C = VAL(T$) : REM *** C IS THE CONFIGURATION NUMBER
220 G0SUB 1000 : REM *** SET UP CONFIGURATION VARIABLES
230 PRINT:PRINT"C0NFIGURING AS A VIC"
240 PRINT"WITH ";T$

229

300 PRINT
310 PRINT "DO YOU WANT SUPER-EXPANDER
320 PRINT "IN OR OUT (PRESS I OR 0)
330 GET T $:IF T$<>"I" AND T$<>"0" THEN 330
340 GOTO 2000 : REM *** DO THE CONFIGURING

1000 REM *** SET UP POKE VALUES (X,Y & Z)
1010 REM *** AND SYS VALUE (Q)

1020 FOR I = 0 TO C : REM *** READ THE APPROPRIATE VALUES
1030 : READ X,Y,Z,T$
1040 NEXT I
1050 RETURN

1100 DATA 0, 0, 0, NO CHANGE
1110 DATA 16, 30, 30, NO EXPANSION
1120 DATA 4, 30, 30, 3K EXPANSION ONLY
1130 DATA 18, 32, 16, + OK EXPANSION
1140 DATA 18, 64, 16, + 8K EXPANSION
1150 DATA 18, 96, 16, +16K EXPANSION
1160 DATA 18,128, 16, +24K EXPANSION

2000 REM **** DO THE CONFIGURATION

2010 REM **** IF T$="I" - SET UP TO INITIALISE VIA EXPANDER
2020 IF T$="I" THEN Q=41031

2020 REM **** IF T$="0" - SET UP TO INITIALISE NORMALLY AND
2030 REM **** DISCONNECT EXPANDER
2040 IF T$="0" THEN Q=64824 : SYS64850

2100 IF C=0 THEN 2230 :REM ** DON'T SET NEW CONFIGURATION

2200 POKE641,0:P0KE642,X :REM ** SET NEW CONFIGURATION
2210 POKE643,0:POKE644,Y
2220 POKE648,Z
2230 SYS(G) :REM ** RE-INITIALISE THE VIC

230

RS232 USERS BEWARE!

As anyone who uses input and output other than the
screen and keyboard will know, it is essential to CLOSE a
file when finished. This is especially true with cassette and
disk write operations as data could be lost if the file is
not properly closed, but CLOSE used with device number 2 (the
RS232 port) has some problems associated with it.

When you OPEN the RS232 channel, the Vic grabs 512 bytes
at the top of memory for input and output buffers and at the
same time clears all variables (just like CLR). This is done
deliberately, as strings that existed at the upper limit of
memory will now be corrupt. Therefore OPENing an RS232
channel should be done at the very start of a program.

The CLOSE command grabs these bytes back again and, just
like OPEN, performs a CLR operation! Consequently, the RS232
CLOSE command should only be used at the very end of a
program.

Because of a bug in the routine which transfers the
RS232 status byte to the ST variable, ST cannot be used to
check for RS232 errors. Instead, use PEEK(663). The bug
actually clears the RS232 status byte instead of collecting
it!

Although the 3-line handshaking works OK, there are
bugs in the multi-line handshaking which can cause the Vic
to crash. For those who understand machine code, the bug
appears to be a typing error in the source code. At locations
$EFF4 and $F512 an attempt is made to check the DSR and CTS
lines. Unfortunately, instead of checking location $9110
where these lines appear, the code checks location $9120!

If you are using RS232, especially for receiving data,
it is recommended that you use the GET# command as INPUT# may
hang if no carriage return is received. Also, you need to
GET# characters as quickly as possible otherwise you are in
danger of allowing the RS232 buffer to overflow.

231

CQ CQ CQ DE G8AZY!

As a bit of an aside, I would like to mention that we
have a lot of radio amateurs amongst our numbers. I myself am
licensed as G8AZY and can be sometimes heard on the 2-metre
band. I'm always happy to talk about computing so if you hear
me around, give me a call.

A popular use for personal computers is the sending and
receiving of morse code (known as CW to radio amateurs) and
teleprinter signals (ETTY). It may come as a surprise to many
that radio amateurs use teleprinter signals for
communication. As well as sending messages from one place to
another, the technique can also be used for swapping computer
programs - a job which is not too difficult on the Vic with
the appropriate software.

Receiving RTTY and CW is a relatively simple task,
although hand sent CW is much more difficult due to the
variations in speed that occur. With a decoder, it is
possible to eavesdrop on fascinating conversations between
radio amateurs all over the world. It is also possible to
eavesdrop on all sorts of other RTTY and CW from the mundane
to the exotic (and may even include diplomatic communications
and some of the major world news agencies).

As well as the appropriate software, a receiver covering
the appropriate short wave bands and a suitable interface to
convert the incoming tones to a digital form for the computer
are needed.

There are a couple of such hard/soft packages currently
available (see the mags for details) and I hope that we will
soon be publishing circuit diagrams and listings for a Vic
RTTY/CW package in the not too distant future.

As well as using computers for RTTY & CW, radio amateurs
use them to record their contacts (although by law they must
also keep a handwritten log), and even to pinpoint the
amateur radio satellites.

232

THE FUTURE

The new range of Commodore products seems to be worrying
many members. With the VIC-10 (aka MAX and ULTIMAX) at about
100 pounds, and the VIC-40 (aka Commodore 64) at about 240
pounds appearing in the next few months, some are having
doubts as to the viability of the VIC-20.

A VIC-20 should cost in the region of 170 pounds (less
if you shop around) and Commodore should be able to offer a
hundred pound upgrade from VIC-20 to VIC-40. So VIC-20 owners
should at least have a chance to upgrade relatively cheaply.

The VIC-10 and VIC-40 have similar basic facilities,
although the exteriors are very different. These internal
structures are not fully compatible with the VIC-20 which may
mean some software could become unusable on switching over.

There is no doubt that the VIC-40 is a superb machine. I
had one at home for a few days in May and was able to
discover that the ROMs are virtually identical to the VIC-20,
but the video chip and sound generator chip bear no
relationship whatsoever to the VIC-20 chips.

In fact the 6567 video controller chip has 46 control
registers and the 6581 sound chip has 28 - so the
possibilities for PEEKing and POKEing are enormous.

Software writers, especially games authors, will delight
from the ability to define large shapes on the screen and
move them around very easily. The chip detects when these
shapes (known as "sprites") bump into each other and can have
one shape going "in front of" another. Normally, there can be
up to eight on the screen at a time, but it is possible to
define almost as many as you need and swap them on and off
the screen with ease.

There is also a greater choice of colours than on the
VIC-20, and high resolution graphics are made easier by
selecting a bit-map mode which uses an 8K area of memory to

233

display 320x200 individual dots. This should be much easier
to use than the VIC-20 method of high resolution graphics.

The sound chip is really an audio synthesizer. Remember
the out-of-tune notes emanating from a VIC-20? Not on the
VIC-40, since the frequency of each of the three voices
(which can be triangular, sawtooth, pulse or noise) is
controlled with 16 bits instead of only 7 on the VIC-20. Each
voice has its attack rate, decay rate, sustain level and
release rate definable and each is indivdually triggerable.
The voices can be programmed to interact (ring modulated) and
even fed through a digital filter.

The chip also has two analogue-digital converters for
external potentiometers and there is even a random number
generator derived from the third voice’s oscillator.

The results of programming these two chips could be
truly astounding - and remember, even the VIC-10 has these
two chips on board!

The interface chips have been replaced by two CIAs
(Complex Interface Adapters) which each contain the usual 2x8
bit input/output ports, timers and shift registers. They also
contain a 24 hour time of day clock together with an alarm
facility. These clocks are not used by the Vic and so should
be "get-at-able" by programmers - possibly using PEEKs and
POKEs.

And of course, we mus t n’t forget the 64K of RAH, some of
which must occupy the same address space as the ROMs and I/O
chips - but I would imagine that there is a way of bank
switching these in or out.

The use of $0000-$0400 has changed little, although the
USR vector at $00-02 has been moved as there is now an
input/output register at $00~$01. The Kernel has been also
been retained - so there should be no need to rediscover the
inner workings of ROM & RAM leaving all the more time to
explore the intricacies of the new chips.

234

USING CASSETTES

Many newcomers appear confused about the use of
cassettes on the Vic. The handbook is far from clear and is
actually inaccurate. Many complain that they can't write data
to the cassette and read it back again and so I'm devoting
the rest of the column to the simple use of cassettes. It is
possible to be more adventurous than I am about to describe
but this should provide a starting point for experimentation.

Writing to cassette is easy - it's just like printing on
the screen except that each character Is written on the tape
as a series of pulses; reading back is just like typing
characters on the keyboard, except that the characters ccme
from the tape.

STARTING OFF - OPEN

Before writing anything to the cassette# a data path to
the cassette must be opened using 0PEN2,1,1,"TEST DATA"
which tells the Vic that we want to use the cassette and it
starts the operation by writing the title (in this case "TEST
DATA") on the tape. This operation is vital as it marks the
start of the data we are going to write.

The OPEN command also ensures that you've pressed the
keys on the cassette machine. Be careful though, although the
Vic can tell that you've pressed a key on the cassette, it
doesn't know the difference between PLAY, RECORD or WIND.
Therefore it is up to you to make sure that you press the
correct keys when you get the message "PRESS RECORD & PLAY ON
TAPE".

The first number after OPEN says how we will refer to
the cassette in the rest of the program and could be any
arbitrary number between 1 and 127. In this case we use the
number 2 and will use PRINT#2 to access the cassette unit.
The reason this is needed is that it may be necessary with
disks and printers to access several different data channels
in the course of a program.

235

The second number identifies the device we want to use -
device number 1 is the cassette unit, and the third number
is used to select read (0) or write (1). The interpretation
of this third number depends upon the device being used.

Finally, the characters in quotes give the data a title
which can be used when reading back to ensure that we are
about to read the correct data.

During the OPEN command the cassette runs for a while
and then stops. The cassette is then ready to receive data.

WRITING TO TAPE - PRINT#

Instead of PRINT we use PRINT#2, which sends the output
to the device specified in the OPEN2 command. Note that there
is a comma after PRINT#2.

In the early stages of using cassettes, it is best to
have only one variable for every PRINT#2 used and make sure
that the statement doesn't end in a comma or semicolon. When
we read the data back we need a "carriage return" at the end
of each item - just as we have to press RETURN when typing
data at the keyboard. This will be written to the cassette at
the end of the data item provided that we don't suppress it
with a comma or semicolon.

Once all data has been written, it is essential to tell
the Vic that we've finished with the cassette unit. This is
done with the CLOSE command which makes sure that the last
few data items are written to tape (it is possible that they
may still be in the Vic waiting to be written). In our
example we use CL0SE2 - the number used being the same as the
first number in the OPEN command. For reliable cassette
operation the importance of CLOSE cannot be stressed enough.

Let's imagine we have set up two arrays in memory, each
with 20 items in it - NAME$ contains the names of friends and
NUMBER contains their telephone number. If we want to record
this information on cassette we can do it as follows:

236

1000 OPEN 2,1,1,"PHONE
1010 FOR I = 1 TO 20
1020 PRINT#2, NAME $(I)
1030 PRINT#2, NUMBER(I)
1040 NEXT I
1050 CLOSE 2

READING IT BACK - INPUT#

Now we have to read the data back. After rewinding the
cassette, we use the OPEN command again but in the form
0PEN2,1 ,0 , "TEST DATA" where the zero indicates that we want
to read the data. We also include the name we gave to the
data and the Vic will start reading the cassette, looking for
the title "TEST DATA".

If the name is omitted and we use OPEN2,1,0 or even
0PEN2 (since the Vic assumes we mean a read on the cassette
unit if these parameters are omitted) the Vic will find the
first title on the cassette and assume it's the one we want.

Once found, the data is ready to be read. We simply use
INPUT#2 in place of INPUT and make sure that we read the data
back in the same order as it was written, although the actual
variable names don't have to be the same.

To read our telephone list back we can use:

1000 0PEN2.1,0,"PHONE NUMBERS"
1010 FOR I = 1 TO 20
1020 INPUT#2, A$(I)
1030 INPUT#2, B(I)
1040 NEXT I
1050 CLOSE 2

Using several variables with each PRINT# in the same way
as is done on the screen can cause problems since there is no
way for the cassette to identify the end of one item and the
start of the next. Commas should be printed between these
data items and the INPUT# must match the PRINT# in the number

NUMBERS"

237

of items it requests. Until totally familiar with these
problems I would suggest avoiding having more than one
variable in each PRINT# statement.

Also be careful not to read past the last item written.
If necessary use an invalid item to indicate the end of the
data (such as -999) and stop as soon as it is read. Reading
beyond the last item written can result in some odd things
happening and you'll more than likely get a "STRING TOO LONG"
error message - even if you were looking for a number.

If you are in doubt as to what is actually on the
cassette, it is possible to retrieve the data, character by
character and print it on the screen as follows:

This will loop round getting individual characters from
tape and writing them to the screen. When all the data has
been read, a continuous block of spaces will be printed on
the screen - when this happens, press the STOP key otherwise
the routine will continue to try to read data from the tape.

A TRICK?

Debugging programs using cassettes is sometimes quite
difficult and there is a trick to allow you to put the data
on the screen instead of cassette without converting PRINT#2
to PRINT. If you change the OPEN from device 1 to device 3
(the screen) - in other words OPEN 2,3,1,"TEST DATA" - all
data will now go to the screen instead of the cassette.

It is also possible to mimic the cassette read using
device 0 (keyboard) in the OPEN command and simulate cassette
input by typing the data yourself at the keyboard but be
aware that you won't have the normal "?" prompt - instead you
will simply get a flashing cursor.

110 GET#2,A$
120 PRINT A$;
130 GOT0110

100 0PEN2

238

FILES

The collection of data written to tape between the OPEN
and CLOSE is known as a FILE and the f '" S t number in the OPEN
and CLOSE commands is known as the "logical file number".

There can be several FILEs on a cassette, each with a
different title or FILE NAME. If the Vic fails to find the
file specified in the read OPEN command it will continue
reading the tape until it finds the file it is looking for.
This can be a problem if you have only one or two files on a
tape and the Vic procedes to search the whole of a C90 for a
non existent file.

To prevent reading beyond the last file, it is possible
to label it as being the last on the tape. To do this we use
0PEN2,1,2,"TEST DATA" - in other words we replace the 1
indicating that we want to write data with a 2 indicating
that we want to write data and that this is the last data
that will appear on the cassette.

If the cassette is searched and the file we are looking
for is not found we will then get a "FILE NOT FOUND" error
and the search will stop.

Because of the way the cassette records data, it is not
possible to overwrite individual items of data to update
them. Instead, the entire file must be read into the Vic,
ammended and then re-written it in its entireity. This can be
very tedious but is the only way.

LISTENING TO THE DATA

Because the cassettes used are identical to standard
audio cassettes, it is possible to listen to a cassette on an
audio cassette player. The first thing you will hear is about
9 seconds of pure tone - this is "leader" tone used to
synchronise the read operation. This is followed by 3 seconds
of buzzing - this will be the title block.

239

The data is recorded in blocks of 192 characters (which
is why the cassette unit stops and starts while in use) and
each is preceded by a burst of the pure tone followed by
about 3 seconds of buzzing which is the data. There is a
brief "hiccup" in the middle of each data block where the
second (backup) copy of the data starts.

A program has the same leader tone and title block, but
is recorded as one long block whose length depends on the
length of the program - there will still be the "hiccup" in
the middle where the second copy of the program starts.

PROBLEMS WITH CASSETTES

If the cassette is fully rewound, there is a fair chance
that there will be up to 10 seconds of transparent plastic
tape at the start. If this tape is less than 7 or 8 seconds
long there should be no problem but if it is too long the
leader tone, or even the title block, may not be written on
the actual recording tape.

This is probably the single most likely cause of
cassette read/write failures since the read operation cannot
procede without this leader tone and title block being read.
The solution is to ensure that the cassette is wound to the
end of the transparent leader tape before recording or to use
so called "leaderless" cassettes.

While there should be no problems in reading cassettes
you've written on your own machine, there are sometimes
problems when reading back tapes produced on other machines.
This includes program tapes that you may have bought.

This is usually caused by the azimuth of the playback
head in your cassette machine being different from the one
that recorded the program or data.

The playback and record heads have a very tiny vertical
gap in them, across which the magnetism is generated and
transferred to the tape. It can be thought of as putting

240

vertical stripes of magnetism on the tape, and it is
important that the head that reads the information off the
tape must match these stripes exactly.

This is no problem if you only use the one machine since
its record and playback heads are one and the same and any
tilt in recording will be matched by the tilt in playback.

But if the heads are on different machines then problems
can occur as a slight tilt on playback can result in the data
being read incorrectly and errors will occur.

It is usual for heads to be aligned so that they are at
right angles to the tape, and this is what is normally done
at the factory. Transport, misuse, or just careless handling
can upset this alignment and that’s when the errors occur.

There are some cassette machines around which exhibit
this problem and some which develop an azimuth error after a
period of use. If you are finding difficulty in loading
programs or data from other machines then it ' may be worth
having your machine checked by your dealer.

FINALLY

There are a couple of points arising from the memory map
in the July Newsletter that I'd like to clear up.

Firstly, these lists are based on ROM numbers 90148-01
and 901486-07 and these numbers were omitted from the bottom
of pages 196-198.

All numbers in the lists are in hex with the exception
of the line number range of location 014-015. the 60 times a
second of 0A0-0A2, 192 in the tape buffer (0A6) and the
number of characters per line in location 0D5.

Next time I hope to have a commentary on some of the
more useful locations.

— oOo—

241

REVIEW
BASIC Editor Expandor (BEE) Supersoft

BEE is an acronym for BASIC Editor Expandor and is the
name of a Swedish firmware chip recently available through
Supersoft (where else ?). The package adds to the BASIC
operating system not only the extensions that older hands
have by now become familiar, such as the TOOLKIT range
AUTO, DELETE, DUMP, FIND, TRACE, etc., but a selection of
less common utility commands. I will discuss these briefly
in turn.

ASSIST is similar to the Toolkit HELP command. After a
run-time error, ASSIST will display the line in error with
the error to line end displayed in reverse video.

AUTO has the same format as the CBM assembler editor.
The command format is AUTO n, where n sets the line number
increment. The command is disabled with AUTO on its own.

BOTTOM y,x defines the bottom right corner of a screen
window. The default values are 24 and 79 from which one
deduces that the chip is only available for 8000-series
machines. TOP complements BOTTOM with default to 0,0.

BREAK simply enters the machine-code monitor, but
saves one remembering SYS54386, or is it SYS54395 ?

CHANGE is a search-&-replace facility. The format is
CHANGE:X$:Y$:,250-1000 or CHANGE"text""strir.g",n1-nZ where
the line number parameters are as in the LIST command. I
found the delimiters took some getting used to compared to
similar facilities elsewhere, but the newcomer should have
no problem. FIND has the same format as CHANGE, but changes
nothing, simply listing the line.

CLINK has nothing to do with 'go to jail1, but is a
cassette append command, not a merge. Consequently it reads
a program from cassette (#1 or #2) and links it to the end
of the one in memory, irrespective of line numbering. The
responsibiIty for the resulting line number sequence rests
with the user.

242

CONVERT will do number conversion between decimal and
hexadecimal. Hex quantities must be four-digit, e.g.
C0NVERT$00A9, and decimal 0 to 65535.

DELETE has the same format as LIST, but instead of
listing the lines, it removes them, if present, from the
program.

I became used to DOS Support before the arrival of
BASIC4 and I still use Universal Wedge in preference to the
BASIC4 disk commands especially when applied to drive #1. I
was pleased therefore to see the inclusion of the DOS
command, although not so much its syntax. D0S"string" sends
the string to the disk command channel, but tends to lose
out with DOS”$0" against DIr for drive zero directory. Its
behaviour with CMD to output a directory to a printer is
better than with DOS Support.

DUMP will list the simple variables created during a
program run in the order that they were created. Scrolling
can be prevented with the '0' key and resumed with any
other (this facility is available with the CHANGE command
also).

A program on disk may be loaded and then RUN by using
EXECUTE"progname",Dl ON U9 where drive number and device
number are optional and default to 0 and 8, respectively.
The unit (device) number must be in the range 4 to 31.

FLIST and PLIST respectively list to the screen a
sequential and a program file to the screen without
disturbing a program in memory. The format is as for
EXECUTE and scrolling controlled as with DUMP.

GRAPHIC, LCASE and UCASE are related. UCASE is
analogous to P0KE59468,12 and puts the screen into upper
case character mode. GRAPHIC corresponds to ?CHR$(142) and
produces upper case text, but with line-spacing closed up
ready for graphics. LCASE is equivalent to P0KE59468,14
selecting the normal character set.

KILL is included to de-activate the chip, but can be
re-activated with the normal SYS call.

243

MERGE is a true merge command and will take a program
from disk and merge it with the one in memory. The syntax
is the same as for EXECUTE.

NUMBER is perhaps one of the most useful in the set.
It has the facility to renumber part of a program, thereby
enabling one to improve the documentation of the program
modules (assuming of course your program has some
recognisable structure). The full syntax is
NUMBERnl,n2,n3-n4 where n1 is the new number, n2 is the
increment and n3 to n4 the line range to be renumbered. The
variables n1 to n4 are optional and default to the entire
program being renumbered from 100 in increments of 10.

SIZE has the same syntax as EXECUTE and displays the
number of bytes your program would occupy. Can't think of a
use for it, unless you have suddenly lost a great chunk of
your available memory, or never had it in the first place.

START is similar to SIZE, but displays the start
(load) address.

TRACE is similar, but not the same as the Toolkit
trace. When active it displays the line number and first
BASIC statement of the five previous Lines executed, plus
the next line to be executed. The speed of execution is set
by TRACEn where 0<n<128. TRACE on its own turns the trace
off.

UNITnlT0n2 changes the disk device number from n1 to
n2 and is useful in using two disk drive units on line
simultaneously.

AIL the commands are 'tokenised' and can thus be
abbrieviated, eg Co for CONVERT, or Nu for NUMBER. My
current documentation comprises seven pages of explanatory
notes produced on a matrix printer, but knowing Peter
Calver, Supersoft will no doubt produce a presentable
reference book. At the time of writing, a retail price had
not been announced, but Supersoft are at 1st Floor, 10-14,
Canning Road, Wealdstone, Harrow, HA3 7SJ. Tel: 01-861 1166.

R.D.G„

— oOo—

244

COMAL. CORNER
By Brian Grainger

First of all many thanks to all correspondents, in
particular to Nick Higham again, Jim BacBrayne and Ui
Cheah„ They have all contributed to the latest COMAL news
in some way. The Commodore show and subsequent new ICPUG
members have also increased the frequency of my postman's
visits. Welcome to all those newcomers to CORAL. Lets go
through the points of note discovered since the last
Newsletter. They all refer to version 0.11 but most are
also relevant to 0.12

1) Pressing the 'STOP1 key when executing LOAD, SAVE, LIST
or ENTER will cause a hangup.

2) In COMAL there are no problems with the use of
1 and ':' in DATA statements. Quote marks (") can
also be used if they are written TWICE, e.g. 12"" LONG
would be taken as 12" LONG.

3) A bug has been found where DEL with no line numbers
deletes the whole program !

4) When using DIV and MOD with negative numbers funny
things can happen. It is unlikely negative numbers will be
used but if you have an application you are advised to test
the results very carefully. They may not be what you expect.

5) Along with the version 0.12 the 8096 version 1.01 allows
procedures to be executed by direct command AFTER they have
been prepassed.

6) The word OUTPUT as in SELECT OUTPUT is an optional
keyword. If omitted the interpreter will add it
automati cally.

7) There is a bug in the RENUM command such that if the
renumbered lines go above 9999 (The maximum number in
COMAL) the lines become unlistable. As the line numbers
have no meaning in the COMAL language and are only used by
the Editor the resulting program will RUN OK. For those who

245

think this would produce a good unlist facility think
again. The process is reversible so a RENUM 10 command will
restore the listing.

8) I have not made it clear that a FOR loop structure in
COMAL is tested at the beginning of the loop unlike BASIC.
Thus nothing will be printed if the following COMAL line is
executed: FOR 1=2 TO 1 DO PRINT I
The equivalent BASIC command would print the value '2'
which is usually not wanted.

9) I am told that a shifted space will cause an error in
COMAL.

10) It is clear that spaces cannot be used in variable
names. However it is sometimes useful to give variable
names which are more than one English word. There is an
unwritten convention rapidly growing that a 1 is used:

e.g. FILE'NO, DRAW'DISK, FORM'BAR are all valid names.

One other point of note with variable names. One
cannot use the same identity for different types of
variables. E.g. two separate variables A and Att cannot
appear in the same program. This non duplicity of names
also applies to procedure or function names as well as
statement labels. This is because COMAL holds all its name
references in one long table which are not separated by
pointers to variable name start, strings start, etc.

11) Another shortform I forgot to mention. '!' can be used
instead of REM or //. I am told that COMAL was developed
from Data Geneneral's Extended BASIC which accepted this
abbreviation.

12) An interesting word of caution to those with 8032
computers. You are advised to type = and NOT := for the
assignment code. The reason is that if in error a shifted =
is sent, you will have which means something entirely
different.

246

Well that's all the new points for this Newsletter. What
does the future hold ? Well I now have a copy of Len
Lindsay's manuscript for his forthcoming COMAL reference
manual. My initial impression is that it does for CBM COMAL
what Raeto West did for the CBM Product Manuals. I hope to
do a review next time. The COMAL board to allow COMAL users
access to all CBM RAM space is to be distributed in this
country by Ellis Horwood. See Newsletter Vol.4, No.3, P.167
for address. As for those who say COMAL is a flash in the
pan S BASIC is God's gift to programmers, it is interesting
to note that COMAL is the standard language on the Galaxy 1
computer as well as the Piccolo. It is also available for
Gemini multiboard systems and the Newbrain computer. In
addition COMAL-type languages exist for Research Machines
computers (SBS) and CROMEMCO systems (Cromemco Structured
BASIC). Whether it is called COMAL or structured BASIC, the
language is here to stay.

— oOo—

INTERVAL MUSIC
By Ni ck Bailey.

Here is a small amusing subroutine which is useful in
situations when reading large amounts of data, etc., where
the delay would otherwise be excessive. The routine called
INTMUSIC, is interrupt driven and so does not disturb other
processing whilelin operation. The sound may be heard on a
CB2 soundbox. Later 12" screen machines have this built
in, but for BASIC4. the interrupt routine address $E62E
must be changed to $E455. The POKEs to enable CB2 sound,
viz P0KE59467,16:P0KE59466,15:P0KE59464,0 should be given
before calling the routine. Data for the music can start
anywhere in memory and should be stored in the format:
duration (jiffies), POKE value, duration, POKE value, etc,
and should end: 01,00,00,00. The (start-of-table)-l should
be POKEd into locations 1099/1100 (lo/hi) and called with
SYS1030. At the end, the interrupts are restored, but the
tune can be aborted with SYS1041:P0KE59466,0.

Enter the machine code dump first, then add the BASIC.
As shown, the program inputs the tune from cassette data
and dumps it to high memory. That dump is also included.

247

0400 00 57 04 00 00 8F 78 A9 For BASIC4 to
0408 04 85 91 A9 23 85 90 58 change
0410 60 78 A9 E4 85 91 A9 55 E4 to E6, 55
0418 85 90 58 60 EA EA EA EA
0420 EA EA 01 CE 22 04 FO 03
0428 4C 55 E4 20 42 04 DO 06 55 E4 to 2E
0430 20 11 04 4C 4E 04 8D 22
0438 04 20 42 04 8D 48 E8 4C
0440 55 E4 EE 4B 04 DO 03 EE di tto
0448 4C 04 AD CE 7F 60 A9 01
0450 8D 22 04 4C 55 E4 00 00 ditto
0458 00 AA AA AA AA AA AA AA

to 2E

E6

PROGRAM NAME: INTMUSIC
100 POKE53,PEEK(53)-1:CLR
110 DT=PEEK(53)*256+PEEK(52)
130 OPEN1,2,0,"THE ENTERTAINER"
140 INPUT#1 ,P:POKEDT+I,P:I=I+1 : IFSTO64G0T01 40
150 POKE59467,16:POKE59466,15:POKE59464,0
160 P0KE1100,INT((DT-1)/256)
170 POKE1099,(DT-1)-256*PEEK(1100)
180 SYS1030
190 END

'The Entertainer'

7F00 OA 19 OA
7F08 OA 1 E 14
7F10 OA 3 A 14
7F18 OA 68 OA
7F20 OA 7D OA
7F28 14 00 14
7F30 OA BC 14
7F38 OA BC 30
7F40 OA 68 OA
7F48 OA 68 14
7F50 30 75 OA
7F58 14 75 OA
7F60 30 75 OA
7F68 OA 8C OA
7F70 OA 75 OA
7F78 OA C7 OA
7F80 14 75 OA

16 OA 1C 14 22
26 OA 33 OA 2D
45 OA 3D 14 4E
5D OA 75 14 8C
8C OA 94 14 9D
4E OA D3 OA C7
75 OA BC 14 75
75 01 00 OA 75
62 OA 5D OA 75
5D OA 7D 14 68
D3 OA C7 OA BC
BC 14 75 OA BC
8C OA 9D OA A7
75 14 5D OA 68
8C 30 68 OA D3
BC 14 75 OA BC
BC 30 75 01 00

248

7F38 OA 75 OA 68 OA 62 OA 5D
. : 7F90 OA 75 OA 68 14 5D OA 7D
. : 7F98 14 68 30 75 01 00 OA 75

7 FAQ OA 68 OA 5D OA 75 OA 68
7FA8 14 5D OA 75 OA 68 OA 75
7FB0 OA 5D OA 75 OA 68 14 5D
7FB8 OA 75 OA 68 OA 75 OA 5D
7FC0 OA 75 OA 68 14 5D OA 7D

.: 7FC8 14 63 3C 75 01 00 00 00
7FD0 AA AA AA AA AA AA AA AA

— oOo—

REVIEW
MATH HURDLER / MONSTER MAZE
£ 7.99 Creative Software, California

These two programs, marketted by Audiogenic as VIC
Pack VP045, are to be recommended. The first is an
educational game, and the second, a compulsive, 100%
machine code beat-the-computer game.

In Hath Hurdler, you choose from a difficulty level of
1 to 3, a speed of 1 to 5, and one of +, -, *, /, as the
operator. A hurdler then sets off at the appropriate speed
to jump ten hurdles. Whether he clears them or not depends
on you supplying the correct answer to the sum. You score
according to how many hurdles he clears and get more points
per hurdle the more difficult the sums and the faster he is
running. Teachers who have tried it like the idea but
complain that they would like a more gradual increase in
difficulty. In fact, difficulty level three is impossible
at medium or fast speeds, even for addition. Difficulty
level one at fast speed is a typing speed rather than a
maths test. Nevertheless, overall it is worthwhile.

Monster Maze is in the 'monsters homing in on you
trying to escape1 catagory. The variation in this case is
that the maze only appears around you as you explore it.
Having dodged the first one, then two, then three monsters
the amount of maze visible to you as you explore it, is
reduced. Again, you compete against one, then two, then
three. If you manage that your visibility range again

249

reduces and so on. A certain amount of tactics is involved,
along with the normal reaction time versus luck element. It
may not be a classic, but it's certainly worth its price.
Both fit a basic VIC.

Brian Jones - Slough Region
— 0O0—

REVIEW
SKI RUN

Not very impressive! The program, as one might expect,
simulates that well televised Winter Olympic sport
skiing. It comes in two parts, instructions and game, which
allows it to fit into the standard 3K VIC. With the
exception of the sideways skier (a user defined character)
there is nothing of special merit. The use of sound is
minimal (wind and crash noises) and apart from green trees
colour is no benefit.

You are offered three varieties of the game, all at
skill levels 1-9:

1. SI a I om.
2. Giant Slalom.
3. Downhill. I could find no difference between Giant

Slalom and Slalom and after twenty minutes play skill level
9 was the only one to cause me problems. (I'm no games
expert, over 1500 on Invaders is rare for me). In fact the
higher skill levels merely put down more random obstacles,
but didn't speed up the movement, so the 'new best time'
feature was a bit of a joke sir.ce it applied to all skill
I ev e I s.

When I tried this game it was priced at £10 + VAT. On
writing to RABBIT I received a letter saying they were
closing down their VIC operations. However, at the
Commodore show there was RABBIT and SKI RUN priced at
£ 4.99 inc VAT. I still wouldn't recommend it as value for
■money.

Brian Jones
— oOo—

250

Vic
lig

ht
pen

from

sto

ck

251

Ex
pa

ns
ion

Bo

ard

from

sto
ck

252

Jim Butterfield and Chairman Mick Ryan
at the Commodore Show

253

Part of the ICPUG stand at the Commodore Show

254

The VIC-20 Quizmaster program at £9.99

The
 n

ew
ran

ge
 o

f C
SE

Re
vis

ion

Pr
og

ram
s

255

256

COMAL VERSION 0.12
By Brian Grainger.

In COMAL CORNER in the last Newsletter I mentioned
that COMAL had now been revised and a version 0.12 was
available. This article will identify the differences
between the new version and that previously distributed by
ICPUG.

1) There is no split version of COMAL as there was with
ver si on 0.11.

2) Version 0.12 does not support cassettes at all. On the
earlier version of COMAL it was possible to ENTER and LIST
files to cassette even though LOAD and SAVE did not work.
This is not possible on version 0.12.

3) The final item not available on version 0.12 that was on
version 0.11 is the use of with string variables.

4) The commands OPEN and CLOSE have been extended to
OPEN FILE and CLOSE FILE for readability. It is not
necessary to type the word FILE. It is added automatically
by the interpreter. Programs SAVEd with Version 0.11 will
LOAD into version 0.12 with the OPEN and CLOSE statements
changed accordingly.

5) The command 'BASIC' is now implemented which does a warm
reset of the PET which will set up BASIC. On version 0.11
one had to type SYS 64790 to have the same effect.

6) The commands TRAP ESC+ and TRAP ESC- are added which
enable and disable the STOP key respectively. COMAL comes
up with the STOP key enabled until commanded otherwise.

7) A system variable ESC has been added which, if the STOP
key is disabled, has a value of TRUE (1) when the STOP key
is pressed and FALSE (0) otherwise. When the STOP key is
enabled its value is always FALSE.

8) The INPUT FILE and PRINT FILE commands have been
extended to cope with input and print to relative access

257

files. I have not tested this facility but see no reason
why it should not be the case.

9) As well as STATUS command causing the disk status to be
displayed there is now a system variable STATUS& which can
be used like any other string variable.

10) It is possible to suppress the calling of error
messages from disk during the input of code by the command
SETMSG-. Messages can be restored by the command SETMSG+.
The default case is with messages given. Run time messages
cannot be suppressed.

11) While in version 0.11 it was essential to call a
procedure by the command EXEC PROCNAME it is now no longer
necessary. If a PROCNAME is found by itself it is assumed
to be a procedure. This makes program listings more
readable. If you wish the EXEC to be specifically listed
one can send the command SETEXEC+. If one wishes to return
to the default of no EXEC words then send the command
SETEXEC-.

12) One could not make a direct call of a procedure in
version 0.11 COMAL. In version 0.12, provided the procedure
has been prepassed a direct command is acceptable. This
also applies to functions.

13) A fundamental difference with version 0.12 is that
procedures CANNOT be used as functions. There is now a
separate FUNC header statement. The associated ENDFUNC also
exists. The syntax for FUNC is identical for that of the
procedure used as a function in version 0.11. The method of
returning the function value is different however. The
following example, which adds two numbers, will illustrate.

0010 FUNC ADDCI,J)
0020 RETURN I+J
0030 ENDFUNC

14) It is possible to return from a procedure at any point,
as well as via the ENDPR0C statement, by use of the RETURN
statement. The following example, which prints a message
dependent on the sign of a variable, will illustrate:

258

0010 PROC SIGN(I)
0020 IF I<0 THEN
0030 PRINT”THE VALUE IS NEGATIVE"
0040 RETURN
0050 ELSE
0060 PRINT"THE VALUE IS POSITIVE"
0070 ENDIF
0080 ENDPROC

15) The second fundamental difference in the new COMAL is
the definition of substrings. Version 0.11 was very similar
to MICROSOFT BASIC where A$(4:3) denoted the substring
starting at the 4th character and length 3 characters.
Version 0.12 COMAL defines a substring by its start and end
characters. The above example becomes A$(4:6). Secondly
where in version 0.11 one referenced an array substring by
e.g A$(1,4:3), the equivalent in version 0.12 COMAL is
A$(1)(4:6). While this incompatibility between COMAL 0.12
and its earlier version will no doubt cause some
inconvenience when transferring programs, I do feel the
current standard is more sensible.

16) It is now possible to send disk commands via the PASS
command. The following example illustrates:
PASS"S0:MYFILE" will delete MYFILE from drive 0 of the disk
unit. The disk commands used in the PASS command are
identical to the BASIC2 commands.

17) There is now a NULL command which does precisely
nothing ! An obvious use is to create a delay.

FOR 1=1 TO 775*SEC0NDS DO NULL
If anybody can find another USEFUL example of the need for
this command I would like to hear from you !

18) The statement Z0NE=5 to set the print zone length is
now a command ZONE 5. In addition there exists a system
variable ZONE which holds the current value of the print
zone length. PRINT ZONE is therefore a valid statement.

19) Finally, I am told the latest version of COMAL supports
variable names up to 79 characters long ! I have not tested
this facility and I cannot see much value in it !

259

As you can see COMAL version 0.12 is much more flexible
than its predecessor and removes much of my earlier
criticism of version 0.11. Apart from two omissions which I
hope will be corrected, it supports the latest definition
of COMAL. This is the COMAL KERNAL of MAY 1982 which has
replaced the earlier NUCLEUS definition.

Copies of the new version are available through me if
a disk and return postage is sent to 73, Minehead Way,
Stevenage, Herts. SG1 2HZ. Disks will be formatted to 4040
standard.

— oOo—

SHOP WINDOW

A number of speech output devices have been mentioned
in these columns, but the model 9816 from Time Electronics
Ltd. has an IEEE-488 interface. The unit comes in a 3U 19"
rack-mounting system and uses a Digitalker speech chip. The
standard ROM holds 280 words and numbers. The output can be
single words, numbers or complete phrases programmed from
the IEEE-488 bus. A standard volume control determines the
sound level from a speaker or headphones. Price is £ 550
from Time Electronics Ltd., Botany Industrial Estate,
Tonbridge, Kent, TN9 1RS. Tel: (0732) 355993.

Using the PET as a dedicated processor ? Why not have
your program auto-booted up at power-on ? The Progstore
PPMS-01 enables 2K to 28K of EPROM-stored program to be
'permanently' available and called with either a SYS
command, or booted up at power-on according to switch
selection. Programs can be in BASIC, machine-code,
compiled, or a combination. The system is ideal in hostile
environments where disk or cassette storage would be
unsuitable, or possibly to illiminate keyboard use/abuse
(eg oily or heavily gloved hands). Priced at £ 345, details
are available from Microscience Ltd., P.O. Box 14,
Bramhall, Stockport, Cheshire, SK7 2QS. Contact
D.L.Mawdsley or A.S.Blears on 061-477 3888.

260

Yorkshire Microcomputers (formerly Kingston
Computers), famous for their Netkit, have now superseded it
with the Netkit II. The main differences are additional
commands and features, 4K EPROM and guest ROM socket on
board, application software available, a better manual, and
a smaller, easier to install, circuit board without the
former steel case. Users of Netkit I will still be
supported, or assisted with a possible upgrade. Yorkshire
Microcomputers Ltd., are at 28, Ramshill Road, Scarborough,
North Yorkshire, Y011 2QF. Tel: (0723) 78136.

Data acquisition products for the PET abound, so I
will just mention contacts. Products are generally analogue
I/O, digital I/O and relay drivers, IEEE-488 interfaced.
DMS 550 comes from DI-AN Microsystems Ltd., Mersey House,
Battersea Road, Heaton Mersey Industrial Estate, Stockport,
Cheshire. SK4 3EA. Tel: 061-442 9768. Plant Interface
Peripheral (PIP) comes from MC Computers Ltd., Park St.,
Newbury, Berks, RG13 1EA. Tel: (0635) 44967. Interact
System from Tastronic Controls Ltd., Unit 16J, Gloucester
Trading Estate, Hucclecote, Gloucester, GL3 4AA.
Tel: (0452) 64244. F0 Series boards from Cytel - these are
not IEEE-488 but daisy-chain on the 'Cybus1, an extension
of the memory expansion port. Available from Cytel
Instruments Ltd., 61, Woodburn Road, Carrickfergus,
BT38 8HQ. Tel: (09603) 62494.

An IEEE-488 to Centronics 2K buffered interface with
user programmable code conversion comes from Tastronic
Controls Ltd., address as above.

Simplex Cash Book is a program to handle the
book-keeping for small traders and is marketed by
Micro-Simplex Ltd., Moss House, High Street, Mosborough,
Sheffield, S19 5AE. Tel: 0742 484466, or 8, Charlotte
Street West, Macclesfield, Cheshire, SK11 6EF. Tel:
0625 615000.

R.D.G.
—oOo—

261

PET REVAS
Club Software Review By Brian Grainger.

In this the second of my articles on club software I
want to turn the spotlight on Dave Prentice and Tom
Cranstoun of ICPUG-SE. When microcomputers had just started
PCW ran a series of articles on REVAS, a reverse assembler.
Like a disassembler this recreates assembler code from a
binary machine code file. Unlike a disassembler however it
attaches labels where necessary. I rather fancy these
articles were a bit before their time as most hobbyists had
yet to get to grips with BASIC let alone machine code. Mow
however, it is a different story. What Dave and Tom have
done is to create a PET REVAS.

From a binary file PET REVAS will recreate assembler
code directly compatible with the Commodore assembler
system. Labels can be created for any calls to ROM
routines, calls to locations within the code by 3-byte
op-codes, branch instructions or any combination of the
above. PET REVAS not only creates labels however, it has 2
other very useful facilities. A label editor exists so that
label names can be chosen to have meaning or the addresses
themselves can be changed if required. Also a table of
labels for ROM routines is held with BASIC2 and BASIC4
address references. By careful use one can REVAS some
BASIC2 code, tell the program to create label declarations
for BASIC4 instead of BASIC2 and then the resulting
assembler source can be reassembled by the Commodore
assembler. I do not know of an easier way to convert from
BASIC2 to BASIC4.

The functions available from PET REVAS are:

Create labels for code in memory or on disk. Labels can be
created for JMPs+JSRs, branch instructions etc.

Disassemble from memory or disk to screen/disk/printer
using the labels already created.

Store and retrieve standard labels and created labels to
screen/di sk/pri nter.

262

Edit the labels.

Send any label declarations to a device as an assembler
source file.

Read an ASCII file to screen/printer. This function is
useful if only to read the program instructions !

Exit to BASIC.

To give an example of the usefulness of this program I
wanted to take a BASIC2 version of the RABBIT, convert it
to BASIC4 and relocate it to RAM. I carried this out in the
following steps:
1) Create labels to ROM routines assuming BASIC2 code.
2) Create labels to the code itself for all instructions
including branches.
3) Disassemble the code using the labels created and send
the source to disk.
4) Edit the labels which address the code to cater for the
required relocation.
5) Send label declarations to a disk file BUT sending
declarations for ROM routines as BASIC4.
6) Exit to BASIC.
7) Once in BASIC I used the source file editor to link the
label declaration file to the source file created in 3).
The resulting files were then input to the Commodore
assembler and my code was created. It all sounds
complicated but I'm sure machine code enthusiasts will
realise the value of the program.

In conjunction with PET REVAS, Tom Cranstoun has also
created an improved Editor for the Commodore Assembler
system. As well as the normal facilities it includes the
following:
1) Simpler PUT and GET commands which automatically read
the disk error channel.
2) A DO command which executes the code in the first line
of the source after the 1;'. If one has a PUT instruction
in the first line one can resave some edited source file
simply by typing DO.

263

3) HILOAD inbuilt into the Editor.
4) GOLOAD will create a binary file from an object file
(TIM format).
5) Display next page, display previous page, display same
page, display a page from current cursor position.
6) Bidirectional scrolling.
7) Automatic repeat key which is turned off automatically
when using file commands.

Versions of this editor exist for BASIC2, BASIC4 or
8032.

Both the above programs are available from ICPUG-SE
Software Librarian, Tom Cranstoun, Flat 7, 10, Lancaster
Rd., London, SE25 4AQ. Subject to the the usual conditions
of providing a disk and return postage they represent, at a
cost of nothing, excellent value to the machine code
enthusi ast.

GROUP DISCOUNTS

ICPUG can now arrange at least 20% off new VICs,
17+1/2% off all hardware and even more off some software
and consumables - get in touch with me.

'Speakeasy' (reviewed p4 - Ed) now at the special
single price of £ 68.85 including VAT + postage. This
represents a saving of £ 12 ! Orders through me and cheques
payable to me please. Driver programs and demos also from
me, or ICPUG SE region - send disk and return postage.

Stack Computers will give 10% off list price to ICPUG
members.

Contact Dr. David Annal, ICPUG Discount Organiser,
142, Windermere Road, London, SW16 5HE. Tel: 01-764 4043.

— oOo—

264

STRICTLY FOR BEGINNERS
By Ray Davies.

This is by way of an apology for some errors which
have crept in to some of the programs previously printed
under the above heading. Three readers have written to say
that these programs did not work. Unfortunately this is
absolutely true. The corrections to the relevant programs
are printed here. All the page numbers relate to volume 4.
Page 40.

100 DIM A(20),A$C20):FOR I = 0 TO 19:INPUT A(I) :
INPUT A$(I) : IF A Cl) = 0 THEN 120

110 NEXT I
120 FOR I = 0 TO 19 : ? A Cl) A$(I) : NEXT I
130 INPUT " WHICH NUMBER DO YOU WANT " ; N
140 FOR I = 0 TO 19:IF A Cl) = N THEN ?"THE NUMBER YOU

WANT IS " ; A Cl) ; "AND THE NAME IS "; ASCI)
150 NEXT I

The fault with this program was the semi-colon C;) in line
100. BASIC does not permit this after an INPUT statement.

Page 81.

The next-to-last paragraph, last sentence, states
'This can also be done with cursors up, right, left or
home.1 As the previous part of the paragraph was discussing
printing blank lines on screen, this does not make sense.
What I meant was that all the cursor control keys can be
incorporated into program statements, and will then have
the effect that they have when used in direct mode. e.g. A
cursor up <cu> in a program will cause the cursor to move
up one line when it occurs. So if it was HERE the word
'the' after HERE would appear with it's first letter Ct) in
the line above the line HERE was in, and the other words
would follow on that line, overwriting what was already
there. So that is an occasion when you would not use a

cursor up!

Page 83.

Line 230 of the second program on this page should
read:

230 GET Q$: IF Q$ = "" THEN 230

265

Incidentally, pri nters such as those that pri nt our
Newsletter do not have zeros with the diagonal line, so all
those apparent O's in my programs must not be confused.
They are all zeros, if not in words.
Page 121 .

Several alterations are required in this program, so
I'll just give you the corrected versions of the
appropriate lines:

90 PRINT"<dn>IS THIS A NEW PROGRAM?":G0SUB6Q
290 FOR 1=1TOK:IFLEFT$(A$(I),L)=N$THEN350
350 PRINT"<dn>NAME"TAB(17)"QUANT"TAB(25)"PRICE"TAB(32)

"VALUE
360 PRINT"<dn>"A$(I)TAB(18)B(I)TAB(25)C(I)TAB(32)D(I)

Page 123.

50 DEFFNA(X)=INT(X*100+.5)/100:G0T0170
Explanation: Line 60 states that Z=FNA(Y). The computer
does not know what FNA means without the extra statement in
line 50 above. That statement is a user defined function.
Running line 50 defines the function, which is then
referred to in the rest of the program by the use of the
command Z (or any other variable label) = FN (the name of
the function) followed by any legal variable name. (In this
case A).

The remainder of the function (after the equals sign)
means that I want the number in question (X in the
definition is what is called a 'dummy1 variable) to be
rounded to a two decimal place number. This number is then
padded out with trailing zeros as necessary by the rest of
the subroutine. This is very useful for financial programs,
in which we do not want to see amounts of money such as
£ 12.30021 or worse still £ 9.99999978E-03. This is the
result if you subtract 4.99 from 5. The result using the
FNA as above is .01, as one would expect. The rest of the
routine also enables us to line up the decimal points.

That is the end of the corrections. I have since then
'revamped1 the program on page 121, and anyone wanting a
working copy should send me a suitable disk or cassette
tape and I will SAVE it for them. (If you take me up on
this, please enclose return postage). And my equipment is a

266

PET 4032 with 4040 disk drive, 4022 printer and a
seldom-used cassette unit.

Finally, may I say once again that I am still
available for any beginners requiring assistance with
programs. My address is 105 Normanton Road, Derby, DE1 2GG.
I promise you a reply within 48 hours, unless you choose a
holiday period or a Postal strike!

— oOo—

DISK FILENAME TIP
By John Stout.

Concerning the naming of disk files I'd like to offer
the thought that, contrary to a lot of systems around, the
idea of putting an extension to a filename BEFORE the rest
of the filename makes a lot of sense with CBM disk drives.
For example using BAS. for BASIC programs, ASM. for
assembler files, OBJ. for object code files and MCD. for
machine code files allows one to use pattern matching to
find all assembler files (ASM.*), all files to do with
renumber (???.RENUMBER) and so on.

—oOo—

REVIEW
TRIOS EPROM £ 20 for 12" models

£ 30 for 9" models

TRIOS is the third and latest EPROM from ICPUG's SE
Region and adds commands to BASIC with code occupying the
spare address space in the 'E'-R0M slot. This results in
extra facilities without sacrificing 'spare' socket space,
although these could no doubt be occupied by the other two
EPROMs from the same authors. TRIOS will automatically link
into these other two, BASM0N and PLUSD0S, and will also
coexist with the TOOLKIT.

267

TRIOS is activated by SYS59700 and enables a number of
features, perhaps the the most useful of which is the
bi-directional scrolling, a feature which first appeared in
the POWER chip. NOSCROLL turns this feature off and SCROLL
will reinstate it. The feature is only available in BASIC
and attempts to use it when in monitor simply cause a
listing of any BASIC program present to reappear. I would
have liked to have had the facility available in the
machine code monitor, as in MICROMON, oO that one could
scroll through the memory dump, or even a BASMON
disassembly i However, I do appreciate that ' E' address
space is limited and possibly accounts for what I suspect
may be just 'padding' by the inclusion of COLD (same as
SYS64790 - resets PET), OLD which restores NEW, and DO,
which will ignore line number and REM in the first line of
BASIC and execute it as a direct command. The latter
appears to work by listing the part line to the screen and
inputting it to the BASIC input buffer.

As far as I could tell, the chip has its own routine
to scroll down and does not use PET's routine entry at
$E021 . This may be for compatibility of coding with 9"
screen machines which do not contain the CRT controller
chi p.

Paging is another feature of TRIOS and a listing can
be paged from the cursor line, or one can select previous,
same or next pages. These are selected using a number in
conjuction with either shift or for 8032, ESCape.

BASIC2/4 machines with 9" screens need a hardware
extra to further decode the 'E' slot, but will then with
TRIOS give many 8000-series features such as delete to end
of line. Bell, and will give greater compatibility with new
software. The chip comes with a printed instruction sheet
which explains in detail the individual commands. Since the
chip is a plug-in replacement for an existing chip, apart
from money, you lose nothing by having one. Orders should
be sent to Kevin Viney, 95, Crofton Road, Orpington, Kent.
Tel: (0689) 22443 (Cheques/POs payable to K. Viney).

R.D.G.
— oOo—

268

DATA APPENDING
By P h i l i p M o r t i b o y .

PROGRAM NAME: DATALINE INST

10 PRINT"<clrXrvs>DATA LINE WRITER<0"ff>:- CONVERTS A
SEQUENTIAL FILE ON TAPE INTO DATA";

20 PRINT"LINES WHICH CAN BE APPENDED TO A BASIC PROGRAM.
IT WORKSON";

30 PRINT" BASIC 2 OR 4.":PRINT
40 PRINT"STRINGS ARE INPUT, CARRIAGE RETURNS ACTING

AS SEPARATORS, AND";
50 PRINT"CONVERTED INTO A PROGRAM LINE. (LINES ARE BUILT

UP TO 80 CHARACTERS)."
60 PRINT:PRINT"<rvs>TO USE<off>:LOAD DATA LINE WRITER.":

PRINT
70 PRINT"SET UP FILE TO BE READ AND TYPE RUN.":PRINT
80 PRINT"DAT A LINE WRITER WILL READ THE FILE, CONVERT

IT, AND POKE IT INTO";
90 PRINT"HIGHER MEMORY. WHEN AN END OF FILE MARK IS

REACHED A";
100 PRINT" MACHINE CODE ROUTINE IS AUTO- MATICALLY RUN ON

THE SCREEN TO MOVE";
110 PRINT"THE DATA STATEMENTS TO THE BASIC PROGRAM AREA

":PRINT
120 G0SUB1000
130 PRINT"<cIr>THE BASIC POINTERS ARE THEN RESET."
140 PRINT"WHEN THE PET RETURNS WITH THE READY MESSAGE

CLEAR THE SCREEN";
150 PRINT" YOU CAN THEN LIST AND SAVE THE PROGRAM."
160 PRINT"(N.B. STRINGS OF 69 TO 248 CHARACTERS WILL BE

WRITTEN AS ONE ";
170 PRINTLINE. CARRIAGE RETURNS THROUGH THESE LINES

WILL LOSE THE EXCESS";
180 PRINT" CHARACTERS!)":PRINT
190 PRINT"ON APPENDING TO YOUR BASIC PROGRAM CONVERT

INPUT# AND GET# ";
200 PRINT"ROUTINES TO APPROPRIATE READ STATEMENTS.":

PRINT
210 PRINT"IF DATA LINE WRITER FINDS INSUFFICIENT MEMORY

OR A STRING LONGER";
220 PRINT"THAN 248 CHARACTERS THE PROGRAM TERMINATES.

":PRINT:PRINT
230 G0SUB1000:PRINT:PRINT"LOAD DATA LINE WRITER WHEN

READY*":END

269

1000 PRINT”<rvs> PRESS ANY KEY
1005 GETA$:IFA$<>""THEN1005
1010 GETAS:IFA$=""THEN1010
1015 RETURN

PROGRAM NAME: DATLIN WRTER
100 PRINTCHRSC147);"DATA LINE WRITER:BY:-P.N.MORTIBOY"
110 LL=68:1=10:LN=10000:0P=1025:CP=3524:MS=PEEK(52)+256

*PEEK(53):LC=128:QU=2
120 P0KE53,13:P0KE52,196:P0KE49,13:P0KE48,19 6 :0PEN1,1,0:

G0SUB310
130 GET#1,AS:IFAS=""THENA$=CHRS(0)
140 IFASC(AS)>LCORA$=CHR$(44)THENQ=QU
150 IFA$OCHR$(13)THENB$=B$+A$:GOT0130
160 IFQ=QUTHENB$=CHR$(34)+B$+CHR$(34)
170 IFLEN(B$)>248THENPRINT"STRING TOO L0NG":G0T0290
180 IFLEN(C$)+LEN(B$)>LLTHENG0SUB220:G0SUB300:C$="m
190 C$=C$+B$+",":K=1 :B$=""
200 IFST=64THENG0SUB220:G0T0250
210 Q=0:G0T013D

220 L=LEN(C$):IFCP+T+L>MSTHENPRINT"INSUFFICIENT MEMORY":
G0T0290

230 F0RJ=1TOL-K:X=ASC(MID$(C$,J,1)):G0SUB340:NEXT:K=0
240 PRINTLN;"DATA ";LEFTS(CS,L-1) :LN=LN+I:RETURN
250 X=0:GOSUB340:GOSUB360:GOSUB340:60SUB340
260 PRINTCHR$(147);:F0RI=33008T033061:READX:POKEI,X:

NEXT
270 NU=CP+T+1:G0SUB350:P0KE33062,L0:P0KE33063,HI
280 PRINT"SYS33008:CLR":P0KE623,19:P0KE624,13:P0KE1 58,2
290 CL0SE1:NU=MS:G0SUB350:P0KE53,HI:P0KE49,HI:P0KE48,L0:

POKE52,L0:END
300 X=0:G0SUB340:G0SUB360
310 NL=CP+T:T=T+QU:NU=LN:G0SUB350
320 X=L0:G0SUB340:X=HI:G0SUB340
330 X=131:G0SUB340:X=32:G0SUB340:RETURN
340 P0KECP+T,X:T=T+1 :RETURN
350 HI=INTCNU/256):L0=NU-HI*256:RETURN
360 NU=0P+T:G0SUB350:P0KENL,L0:P0KENL+1,H I :RETURN
370 DATA173,1 96,13,141 ,1 ,4,238,241 ,128,208,3,238,242,128.

173,39,129,205,242,128
380 DATA 208,10,173,38,129,205,241 ,128,208.2,240,11 ,238,

244,128,208,3,238,245
390 DATA128,76,240,128,173,244,128,133,42,173,245,128,133

,43,96
— oOo—

270

DATA MAKER AND LOADER
By John Stout

The main object of this article is to present yet
another machine code data maker and loader. They differ in
that they include some attempt at error checking using
checksums and data counts. The general idea is for every
line of data to consist of four sections:
1. an identifier for the line of data concerned, in the
programs this is assumed to be the same as the BASIC line
number.
2. a count of the number of data items on the line.
3. the data items for that line.
4. a checksum, simply a number formed by adding up all the
data items on the line.

The terminating line of the data has -1 as an
identifier. The data handled need not be machine code or
even numbers, although some other way of producing a
checksum would be needed (add up the ASCII value of each
character perhaps).

The data maker program is basically that published in
the January 1981 ICPUG magazine by Jim MacBrayne without
the section to delete the datamaker program.

The data reading program proceeds in two stages, first
of all it reads through all the lines of data, checking for
checksum errors. It then does a restore to start again
(this means that as written the data statements must be the
first in the program) and then treats it as machine code
data, with a first line of data containing just the start
and end addresses of the machine code. When reading it
checks for two errors which can be missed by the first
section of the program:
1. an error in the address header, e.g. missing altogether
2. a missing or duplicated line which results in an
incorrect number of data items.

271

PROGRAM NAME: DATAMAKER
10 INPUT"<cIr>START ADDRESS<2rt>.<3Ift>";HEX$:GOSUB 1000

: S A= H EX
20 INPUT"FINISH ADDRESS <2rt>.<3lft>";HEX$:

= HEX
GOSUB 1000:FA

30 LN=60000:KQ=1 58:KB=623
40 PRINT "<cIr><3dn>";LN;"DATA";LN;"<lft>,

<Lft>,";FA;"<Lft>,";SA+FA
2,";SA;"

50 PRINT "KQ=";KQ;":KB=";KB;":I=";SA;":LN="
; FA=";FA;":GOTO 70<hcsr>"

;LN;":SA=";SA

60 P0KEKQ,2:POKEKB,13:P0KEKB+1 ,13:END
70 LN=LN+10
80 PRINT "<clr><3dn>";LN;"DATA";LN;
90 DT=I+9: IF(DT>FA) THEN DT=FA : F=1
95 PRINT "<Lft>,";DT-I+1

100 CH=0:FORX=I TO DT
110 DT$=MID$(STR$(PEEK(X)),2):PRINTDT$;
120 CH=CH+PEEK(X)
130 NEXTX:PRINTCH;:IF (F=1)THEN PRINT ", -1"1. r
140 PRINT:PRINT "KQ=";KQ;":KB=";KB;":I=";1+10;":LN=";LN;"

:SA=";SA;":FA=";FA;
150 IF (F=1) THEN PRINT ":GOTO 180<hcsr>":G0T0 170
160 PRINT ":G0T070<hcsr>":
170 POKEKQ,2:P0KEKB,13:POKEKB+1,13:END
180 END

1000 REM CONVERT HEX$ TO HEX
1010 HEX=0
1020 F0RH=1TOLEN(HEXS)
1030 DI=ASC(MIDS(HEX$,H,1))-48
1040 IF (DI>9) THEN DI=DI-7
1050 HEX=HEX*16+DI
1060 NEXT H
1070 RETURN

PROGRAM NAME: DATAL0ADER.00
100 G0SUB59000:STOP

59000 REM READ IN A MACHINE CODE ROUTINE WITH CHECKS
59010 READ LN: IF (LN=-1) THEN 59080
59020 READ ND: CH=0
59030 FOR 1=1 TO ND
59040 READ DI: CH=CH+1
59050 NEXT I
59060 READ TC: IF (TCOCH) THEN PRINT "ERROR IN LINE:";LN

272

59070 GOTO 59010
59080 RESTORE
59090 READ LN,ND,SA,FA,CH
59100 AD=SA:IF (ND02) THEM PRINT"ERROR IN ADDRESS HEADER"

: STOP
59110 READ LN : IF (LN=-1) THEN 59170
59120 READ ND
59130 FOR 1=1 TO ND
59140 READ DI: POKE AD,DI:AD=AD+1
59150 NEXTI
59160 READ CH: GOTO 59110
59170 IF (A D O (FA+1)) THEN PRINT"ERROR IN NUMBER OF DATA

ITEMS";AD;FA:STOP
59180 STOP

— oOo—

MATTERS ARISING...

Two typing slips occurred in the STOP-key disable
article, pp212/213, firstly the Line to update the clock an
extra time should read BEQ CLK1. Secondly line 13 of the
program should have the figure 144 inserted after the first
occurrence of 133. Those of you that used the hex dump for
comparision may have spotted the difference.

—oOo—

VISICALC AND COMMODORE 2022/2023 PRINTERS
By Brian Grainger

This article derived from the fact that I had a
version of VISICALC which I wished to run with an early
Commodore printer (2022/2023). These printers have the
unfortunate problem that upper and lower case characters
are reversed from most other printers. VISICALC needed to
be modified to cope with this fact. The changes identified
here work with VISICALC Version 1 .70A. It may, with minor
mods, work with later VISICALC versions but not having seen
any I cannot guarantee this.

1) LOAD"0:VISICALC40",8 (or VISICALC80 if you use an 8032

machi ne).

273

2) Enter MLM by SYS1024

3) Change Locations from 5565 as follows:
from .5565 OD 80 E6 47 DO CA 4C 6E 3D (original VISICALC40)

.5565 OD 80 E6 54 DO CA 4C 6E 3D (original VISICALC80)

to .5565 OD 11 80 E6 47 DO C9 EA EA (VISICALC40)
.5565 OD 11 80 E6 54 DO C9 EA EA (VISICALC80)

4) Change Locations from 551E as follows:
from .551 E A9 23 20 77 23 22 85 3D 2B BB
to .551 E 4C BB 3D A9 23 20 77 23 2B BA

5) This step is optional. It alters the screen display to
ensure a SETUP option is not given to the print command.
Change locations from 5E70 as follows:
from .5E70 22 73 65 74 75 70 2C
to .5E70 20 20 20 20 20 20 20

6) Change locations from 55B9 as follows:
from .55B9 4C D3 96 A9 0A 20 EA 22

.55 C1 20 4B 21 0D 80 4C 1E 3D

to .55B9 18 60 A9 0A 20 EA 22 20
.55C1 4B 21 0D 11 80 4C 21 3D

7) Save your modified machine code by the appropriate
machine code save:

.S"a0:VISICALC40",08,1A79,6B89
or . S"30:VISICALC80",08,1A79,6B89

In using VISICALC with certain printers (e.g. 8027),
I have found that a line feed character needs to be sent at
the end of each line. Similar modifications to those above
can be made to solve this problem. Should anybody using
Version 1 ,70A require the mods for this problem send an SAE
to me at 73, Minehead Way, Stevenage, Herts. SG1 2HZ and
I'Ll send them by return.

— oOo—

274

E
 TELESOFTWARE - The R e a l i t i es!

By Bob Denton
Electronic Insight *800#

I have read so many articles on this subject recently but
none have captured the essence of what as been happening.
The current benefits of Telesoftware are in the fast and
efficient distribution of non-commercial software. By
non-commercial I mean the programs designed by teachers in
individual schools that are not intended to be
money-earning but need speedy and broad distribution to all
schools. Also by non-commercial I mean that vast storehouse
of programs each computer user club amasses that relies on
members dedicated time to duplicate and distribute to other
members.

Any w r i t e r o f s o f t w a r e who i s w a n t in g kudos f o r a
program need look no f u r t h e r than P r e s t e l T e l e s o f t w a r e as a
medi um.
The Background.

For over a year Prestel have been trying to set up a
full service for Telesoftware - this does not just mean the
creation of a format or the production of relevant hardware
or the development of necessary software but the complete
service to include all of these plus a good database of
telesoftware programs.

IPC Cref 1] have had the word Telesoftware displayed
on their free node Cref 22 *357# Cref 3] for over a year
but still have no down-loadable programs, simply giving
program listings that the Prestel users must note and then
transcribe onto their computers.

The CET, Council for Educational Technology, *211#,
have been actually offering down-loadable programs for some
time but because of their concentration on the educational
area and the Research Machines 380Z computer their impact
has been very selective.

275

It was only when Tandata issued their MicroTantel that
things started to move. For the first time a low cost means
of connecting low cost microcomputers to Prestel was
available. However it did not solve all of the problems.
Theoretically the MicroTantel was able to interface with
any computer but in fact it proved very simple for the
Apple II but almost impossible with the PET.

The Hardware Emerges. canccL
Late in 1981 all interested parties gathered to

discuss how we could get the service underway and the
reality of Telesoftware has its origins at that meeting.

The first decision was made to establish the CET
format as the standard and the other contenders gracefully
withdrew their systems. Although the format question is
left dormant for now, it was made clear that if a better
system should emerge then it would be reconsidered.

The MicroTantel shortcomings (and short delivery!)
were discussed and the development of the TelesoftTantel
created by Prestel ordering 250 units from Tandata. This
unit has an RS232, or industry standard, interface that
makes connections easier.

For the Apple II a simple connection from the existing
MicroTantel's DIN cassette port to the Apple's twin
mini-jack cassette port achieves the hardware solution. For
the PET the TelesoftTantel is needed and the connecting
lead requires a small printed circuit board built into it.
For the TRS-80 again the TelesoftTantel is necessary and a
25-pin to DIN lead.

This product-by-product appraisal is all-important
because no one-off solution is practicable. The largest
computer user base is, of course, the Sinclair ZX80/1 and
it is felt necessary to have a low-cost hardware solution
to suit this market.

Prestel announced a contest with a £1000 prize which
excited much comment but only two entries. Lion Viewdata
produced a low-cost unit but the software would not

276

funct i on on j udgement day. Matochoice produced a Mullard
Lucy-based unit (the heart of the Tantel too!) which had
good embellishments and worked well but was not really a
low price solution. The prize was split between the two and
we now await their plans to reach production.

The Software Activity.

All the real accolades are deserved by the various
individuals who were commissioned to write the necessary
software packages. David Boulton and John Sharp for Apple,
Stephen Rabagliati and Rod Eva for PET/VIC and Roger Hamlet
for TRS-80.

For each micro two mi rror-image programs were needed -
the uploader and the downloader. The GET format determines
the shape of the program but the uploader has to take a
normal program listing, format it and then deliver it into
the Prestel database. The downloader, of course, has to
handle the reverse task and check the program has been
correctly received. To date we have concentrated on the
large volume micros but the task must continue through all
of the other worthwhile systems.

To Become a Telesoftware User:

Any user of one of the previously mentioned micros may soon
use telesoftware. This will require the user to obtain a
Prestel jackplug and become a Prestel user and the purchase
of the necessary package. The package consists of the
relevant Prestel adaptor, the downloading software, the
connecting lead and full instructions - see page *80061#.

The Database.

Once the service started to come together there was a
flurry of IP Cref 4] activity to become involved. However,
in order to ensure a focal point and to make sure that
problems and queries could be effectively centralised,
Prestel themselves have established a database called
Aladdin's Cave *700#. On Aladdins Cave a broad range of
public domain software has been established to reflect each
micro as its package is available. Electronic Insight has

been involved in acquiring these programs and maintains a
full subject index on *80066# with almost one hundred
programs available now! Further, many computer user groups
who have contributed this software have a news and comments
section on *8008#.

The Future.

To permit commercial software to utilise these
techniques requires one of a variety of methods. As most of
you are aware the 50p maximum charge per frame is to be
increased, but it is likely to come about by the use of a
'Gateway-ed' third-party database or by 'dongle'-ising
micros (the 'dongle' is a component that is hired to decode
the program received - without it, the program would be
meani ngless).

For a detailed catalogue and brochure please write to:
'Electronic Insight', Bushfield House, Orton Centre,
Peterborough, PE2 OUW. Further, if you require a kit for
the Apple II, PET 3000, 4000, or 8000 please specify which
and ask for a quotation, or: Phone 0733 237111 business
hours, 0234 721088 out of hours.

References.

C1] IPC - Publishing House and Prestel Information
Provider.

C2U NODE - page number under which an IP holds his
information.

[33 *nn# - reference to a Prestel page.
C4H I.P. - Prestel information provider.

— oOo—

THOUGHT FOR THE MONTH

Remember, anything that begins well ends badly;
anything that begins badly ends worse.

— oOo—

278

^0r'1AJ:„ TOWERS OF HANOI
By Brian Grainger

I recently had a letter from Jim MacBrayne (Region T
organiser) who was amazed at the speed of COMAL. He was
running the Towers of Hanoi program which comes with the
latest COMAL disks and likened its speed to that of machine
code. This program was written for 80-column machines so I
set about modifying it for 40-column machines. It is
slightly slower than the original since the 40-column
machine does not have a screen window capability. It is
however extremely fast and serves to introduce a powerful
COMAL feature which helps in this speed. I am talking of
recursive procedures where a procedure (subroutine for
BASIC fans) can call itself. The usual example given for
this idea is that of calculating the factorial of a
positive number. However the Towers problem is a classic
example. The problem is simple. You have a pile of discs of
varying sizes piled on a peg so that a smaller disc always
lies on top of a larger disc. The problem is to move the
pile from the peg on which they are set to one of the two
other empty pegs, by moving the discs one at a time so that
at all times a larger disc is NEVER placed on a smaller
one. The problem is easy with a small pile (3-5 disks). You
may like to try it with seven, but if you want a real
problem try it with twelve ! With a bit of thought the
solution is simple enough:-
1) Move all but the bottom disc of a pile to a peg
2) Move the bottom disc to the other spare peg
3) Bring back the discs moved in 1) on top of the disc
moved in 2).

Unfortunately all we have succeeded in doing is defining
the solution in terms of another problem - how to move a
pile of discs one less than the original pile. However if
we repeat this procedure we eventually define the problem
in terms of moving one disc and that is easy- just move it!
If we write a computer program to solve this problem we
need a routine to move a pile of 'X' discs say. This can be
programmed by calling the same routine with X-1 discs,
calling the routine with one disc and finally calling the

279

routine with X-1 discs again. As we keep breaking the
program down, the routine will call itself over and over
again, nesting itself to a level dependent on the number of
discs. It is possible to program the problem in BASIC but
because of the limited stack space available to subroutines
and the problem of keeping track of the parameters being
passed at each stage it is not easy. COMAL with its dynamic
stack limited only by memory and recursive procedures is
ideal for the program. Here is a COMAL program to solve the
problem. It runs in all CORAL versions and its simplicity
does much to speed it up. I challenge anybody to write such
a speedy program in BASIC. Remember the COMAL program is
about 2K long and variables arid stack perhaps use as much
agai n.

0010 //
0020 dim pile(19,3), top(3)
0040 dim space$ of 12, fillers of 12, bar$ of 14
0050 //
0060 s p a c e $ (1 : 1 2) // fill with spaces
0080 //
0090 exec initialize
0100 exec hanoi(max,1,2,3)
0110 end
0120 //
0130 proc initialize
0140 exec clear
0150 exec read1no'of1disk
0160 while 3>max or max>12 do
0170 print "at least 3 and no more than 12 disks!"
0180 exec read'no1of1disk
0190 endwhile
0200 exec clear
0210 top(1):=max
0220 for i:=1 to max do
0230 pile(i,1) :=max-i+1
0240 exec draw'disk(i,1,pile(i,1))
0250 next i
0260 exec cursor(23,1)
0270 print tab(5),"pile 1 ",tab(18),"pile 2",

tab(31),"pile 3"

0280
0290
0300
0310
0320
0330

0340
0350
0360
0370
0380
0385
0390
0400
0410
0420
0425
0430
0440
0450
0452
0455
0460
0465
0470
0480
0490
0500
0510

0520
0530
0540

0550
0560
0570
0580
0590

pri nt
print tab(7),"tower of Hanoi with";max;"di sks.",

endproc initialize
//
proc read'no1of1disk
input "<home,5dn>how many disks: "+chr$(157)+
chr$(157)+chr$(157): max
max:=int(max)

endproc read'no1of'disk
//
proc draw1disk(no,pile,disk)
exec cursor(21 -no,13*pile-11)
exec form'bar(disk)
print barS

endproc draw'disk
I I
proc move1di sk(from1no,from1pile,to'no,to'pile,di sk)
exec form'bar(disk)
// rai se disk:
j:=from’pile*13-11
for i:=21-from'no to 20-max step -1 do
exec cursor(i,j)
print space$(1:12)
exec cursor(i-1,j)
print barS

next
exec cur sor (19-max, 13*f rorn' pi le-11)
if from1pile<to'pile then
// push to the right:
for i:=1 to 13*(to'pile-from1pile) do print<space>
chr$(148),

else
// push to the left:
for i:=1 to 13*(from1pile-to'pile) do pri nt<space>
chr$(20),

endif
pri nt
// lower disk:
j:=to'pi Ie*13—11
for i:=19-max to 20-to'no do

281

0592 exec cursor(i,j)
0595 print space$(1:12)
0600 exec cursor(i+1,j)
0605 print bar$
0610 next
0620 endproc move'disk
0630 //
0640 //- main routine, is called recursively -//
0650 II
0660 proc hanoi(no1of1disks,source,via,dest)
0670 if no1of'disks>1 then
0680 exec hanoi(no'of'disks-1,source,dest,via)
0690 exec hanoi(1,source,via,dest)
0700 exec hanoi(no'of1disks-1,via,source,dest)
0710 else
0720 top(dest):+1
0730 pi Ie(top(dest),dest): =piIe(top(source),source)
0740 exec move'disk(top(source),source,top(dest),dest,

pile(top(source),source))
0750 top(source):-1
0760 endif
0770 endproc hanoi
0780 //
0790 proc form'bar(disk)
0800 i-f disk mod 2 then
0810 bar$:=chr$(18)+chr$(161)+space$(1:di sk-1) +

chr$(146)+chr$(161)
0820 else
0830 bar$:=chr$(18)+space$(1:disk)+chr$(146)
0840 endif
0850 filler$:=space$(1:(12-disk) div 2)
0860 bar$:=fiIler$+bar$+fiIler$
0870 endproc
0880 //
0890 proc cursor(row,col)
0900 poke 216,row-1
0910 row:=32768+(row-1)*40 II start of new line
0920 poke 196,row mod 256
0930 poke 197,row div 256
0940 poke 198,col-1
0950 endproc cursor
0960 //

282

0970 proc clear
0980 print chr$(147),chr$(142),
0990 print "the tower of hanoi"
1000 endproc clear
1010 //

— oOo—

HEN & WOMEN

100 REM MEN & WOMEN-FOR COMMODORE 8032
110 REM BY PETER PETTS..................
115 REM FOR BUSINESS USERS WHO HAVE NEVER PLAYED WITH

GRAPHICS TAKE CARE TO
120 REM DISTINGUISH BETWEEN FIGURE 1 AND THE LETTER I.
130 PRINT CHR$(142)"<cIr>";
140 M$="<4rt>"+CHR$(213)+CHR$(201)+"<dn><2Ift>"+CHR$(202)

+CHR$(203)+"<dnX4lft>"
150 H$=M$+CHR$(164)+CHR$(206)+"<rvs> <off>"+CHR$(205)
155 M$=M$+CHR$(164)+"<dnX4lft>"+CHR$(223)
160 M$=M$+CHR$(223)+"<dnX2lft>"+CHR$(233)+CHR$(223) +

"<dn><2Ift>"
165 M$=M$+CHR$(165)+CHR$(167)
170 W$="<4rt>"+CHR$(213)+CHR$(201)+"<dn><2Ift>"+CHRS(202)

+CHR$(203)+"<dn><4Ift>"
180 W$=W$+CHR$(164)+CHR$(206)+CHR$(218)+CHR$(21 8)+CHR$

(205)+CHR$(164)+"<dnX4lft>"
190 W$=W$+CHR$(223)+CHR$(233)+"<dn><2Ift>"+CHR$(233)+

CHR$(223)+"<dnX2lft>"+CHRS(165)
200 W$=W$+CHR$(167)
210 F0RJ=1T03:IFJ=2 OR J=3 THEN PRINT"<8rt>";
220 FOR 1=1 T06
230 PRINTMS;"<5up>";W$;"<5up>";
240 NEXTI:PRINT"<6dn>";
250 NEXTJ
260 PRINT"<2dn><36rt>PRESS SPACE TO EXIT"
270 GETA$:IFA$<>" "THEN270
280 PRINT"<clr>"CHR$(14)
300 REM PETER PETTS, BRAMLEY HALE, WRETTON, KING'S LYNN,

NORFOLK PE33 9QS

283

COMMODORE COLUMN

I f by now you h a v e n ' t o rdered a copy o f S u p e r s c r ip t
f rom ICPUG's South East Reg ion , shou ld you want a copy i t
i s now marketed by P r e c i s i o n S o f tw a re w o r ld w ide v i a the
Commodore d e a le r n e tw o rk . I t w i l l thus compete d i r e c t l y
w i t h D a ta v ie w 's W o r d c r a f t and Wordpro , now d i s t r i b u t e d by
Wego Computers. The p r i c e i s s u b s t a n t i a l l y g r e a t e r - more
anon.

A new machine at the Hanover Fair was the BX256, a
CBM 256 with an Intel 8088 16-bit processor chip supporting
CP/M-86 alongside the normal 6509 processor. An optional
Z80 card is offered for the 8-bit enthusiast.

The monthly sales of the VIC-20 are currently around
6,700 per month and although Sinclair's ZX series go at
20,000/month, Commodore leads with 2.6 million pounds in
the financial charts.

— oOo—

ATARI VERSUS C0MM0D0

Just as the Newsletter closed for press, it was
announced that Atari are wielding the legal big stick at
Commodore over copyright claims. Atari claim that the
VIC-20 game called Jelly Monsters is a copyright violation
of their Pac-Man game. In court were a VIC-20 and an Atari
800 set up to demonstrate both games to the judge....

—oOo—

284

DISK TO TAPE SAVE (ARROW FORMAT)
By Brian Grainger.

As promised in the Last Newsletter I have modified my
disk to tape routine to work with the ARROW chip. It needs
an ARROW chip or relocated code to work. With this program
a complete disk of programs can be saved in less than 13
minutes! I used relocated ARROW code for the version below
but I have included instructions on how to change it for
the various chips.

I repeat my warning in the last issue that it is
up to the user to ensure the disk does not contain programs
that are too long for the available RAM space.

First some changes to the original program have to be
made as follows:

change line 155 to:
155 PRINT"<10spaces>IN ARROW FORMAT."

change line 470 to
470 RESTORE:FORA=33768-IT033767:READB:P0KEA,B:NEXT

change line 2740 to:
2740 IFLS=0ANDHS=4THENLS=1: REM NEEDED FOR ARROW

finally change line 30270 to:
30270 DATA 208,202 :REM BNE LAB1B

Now replace lines 19980-20100 in the original program
with the lines below:

19980 ;

19981 REM **********************

19982 REM * ARROW SPECIFIC M/C *
19983 REM * * * * * * * * * * x- * * * * X- x- x- * * * X-

19984 "

19990 REM **
★k k "k "k k k k ★ * k -k k -k -k "k "k k k

19991 REM * FOR USE WITH 'ARROW1 IN A BASIC2 OR
BASIC4 MACHINE *

19992 REM **
***** k ** * ** ********

19993 REM * HUNT YOUR 'ARROW' FOR THE BYTES A5 B6 8D B4
02. LOOK AT THE *

285

19994 REM 3 BYTES PRIOR TO THE VALUE GIVEN AND YOU WILL
SEE JSR SABCD *

19995 REM * DISASSEMBLE 'ARROW' FROM THE VALUE GIVEN AND
THE 3 BYTES *

19996 REM * IMMEDIATELY BEFORE THE FIRST 'RTS' WILL GIVE
JSR SEFGH. USE *

19997 REM * JSR $ABCD IN LINE 20240 AND JSR $EFGH IN LINE

20420 *

19998 REM **

19999 ■

20000 DATA 165,209 REM LDA $D1 (START)
20010 DATA 201,16 REM CMP #$10
20020 DATA 208,2 REM BNE LAB1

20030 DATA 169,15 REM LDA #SOF
20040 DATA 168 REM TAY (LAB1)
20050 DATA 169,32 REM LDA #$20
20060 DATA 153,160,2 REM STA $02A0,Y
20070 DATA 136 REM DEY (LAB1A)
20080 DATA 177,218 REM LDA ($DA),Y
20090 DATA 153,160,2 REM STA $02A0,Y
20100 DATA 152 REM TYA
20110 DATA 208,247 REM BNE LAB1 A
20120 DATA 164,209 REM LDY $D1
20130 DATA 177,21 8 REM LDA ($DA),Y
20140 DATA 141,176,2 REM STA $02B0
20150 DATA 133,185 REM STA $B9
20160 DATA 200 REM INY
20170 DATA 177,218 REM LDA ($DA),Y
20180 DATA 141 ,177,2 REM STA $02 B1
20190 DATA 133,186 REM STA $BA
20200 DATA 165,201 REM LDA $C9
20210 DATA 141,178,2 REM STA $02 B2
20220 DATA 165,202 REM LDA $CA
20230 DATA 141,179,2 REM STA $02 B3
20240 DATA 32,14,124 REM JSR $7C0E
20250 DATA 165,182 REM LDA $B6
20260 DATA 141 ,180,2 REM STA $02 B4
20270 DATA 165,183 REM LDA $B7
20280 DATA 141 ,1 81 ,2 REM STA $02B5
20290 DATA 169,160 REM LDA #$A0
20300 DATA 133,136 REM STA $88

286

20310 DATA 169,2 : REM LDA #$02
20320 DATA 133,137 : REM STA $89
20330 DATA 133,139 : REM STA $8B
20340 DATA 169,183 : REM LDA #SB7
20350 DATA 133,138 : REM STA $8 A
20360 DATA 169,60 : REM LDA #S3C
20370 DATA 141,182 ,2 : REM STA $02 B6
20380 DATA 169,83 : REM LDA # S53
20390 DATA 133,182 : REM STA $B6
20400 DATA 169,1 : REM LDA #S01
20410 DATA 133,180 : REM STA $B4
20420 DATA 32,87,121 : REM JSR $7957
20430 DATA 76,180,131 : REM JMP $83 B4
20440 DATA 208,158 : REM BNE START (LAB1B)

— oOo—

REVIEW

COMPUTE! 's First Book of PET/ CBM $12..95
COMPUTE! Books, 625, Fulton St., PO Box5406

Greensboro., NC 27403, USA.

Some of you may from time to time have seen the
magazine 'COMPUTE!'. Although an excellent magazine, in the
UK the price can be rather high, especially as the 6502
version of the magazine is about 40% Apple-related, 40%
PET/CBM-related and the remainder Atari, Ohio, et al. The
Commodore interest articles come largely from Jim
Butterfield, and other contributors supplying material to
an advanced standard. It is this material which has been
collated and published as 'COMPUTE!'s First Book of
PET/CBM'.

The book comprises about 250 pages spiral bound in an
odd size, 8" X 6". The articles selected for reprinting
have been collated under six chapter headings. Following
the introduction, chapter one is entitled 'Getting Started'
and for the new-comer includes a potted history of
Commodore along with some basic principles such as
explaining the use of Microsoft BASIC tokens.

287

Chapter two i s 'P rog ram m er 's C o rne r ' and covers
a r t i c l e s t h a t p ro v id e h e l p , h i n t s and t i p s . Examples are
s o r t r o u t i n e s , u nc rash ing f rom machine code e r r o r s and
us ing GET. The more advanced s t u f f i s covered i n chapte r
t h r e e - Beyond th e BASICs. T h i s chap te r c o n t a i n s ideas
which a re u s e f u l and u s e a b le , but which r e q u i r e more t im e
and knowledge th an perhaps one could spare .

Graphics i s t h e heading f o r chap te r f o u r and i n c lu d e s
a screen dump t o p r i n t e r a r t i c l e . Chapter f i v e i s my
f a v o u r i t e and cove rs th e s u b je c t o f u t i l i t i e s . Inc lud ed are
Jim B u t t e r f i e l d ' s Cross r e f e r e n c e program (now i n th e
p u b l i c domain and t h e ICPUG s o f t w a r e l i b r a r y) , B r e t t
B u t l e r ' s T race and an a r t i c l e on M u l t i - t a s k i n g on t h e
PET (!) . Chapter s i x c o n t a i n s two a r t i c l e s on
communica t ions f rom Jim B u t t e r f i e l d .

The book concludes with Appendices (memory maps and
ROM routine entry points) and an index. The memory maps are
not as detailed as in the 'Compendium' or Ray West's book
(p56) but no doubt will come in handy.

I went to some lengths to establish whether any errors
which may have been in the original articles had been
corrected before reprinting. After much searching of text I
did find one correction and on the strength of this, assume
it is general. The odd typo still remains, eg Superman
instead of Supermon ! Do note, however, the material
reproduced comes from COMPUTE! of 1980 so that some of it
is a little dated, especially as the US appear to be behind
Europe on Commodore matters. For example, references to
upgrading generally mean from BASIC1.0 to BASIC2.0 although
BASIC4 is covered. I would have liked to have seen with
each article the issue in which the article originally
appeared, but this is just a personal preference. By
implication from the title, subsequent material may well be
reproduced at some future date. If you haven't seen
COMPUTE!, you don't know what you're missing; what's more,
you need this book.

R. D.G.

— oOo—

Cash & Carry Computer
and

Word Processing Supplies

A ll types of com puter stationery

Listing paper Ex-stock

Free quotation for your letterheads, invoices, statements etc,

A ppo in ted dealer for

COMMODORE
micro computers
JUST LIFT THE PHONE

Farnborough, Hants

518022 & 518717

30 Camp Road, Farnborough, Hants

Printed and distributed by Richardson Printing Ltd., Unit 23, Colville Road Works,
Colville Road, Oulton Broad, Lowestoft, Suffolk NR33 9QS. Telephone: (0502) 67029

