

❖ ♦> •> •> <• ❖ •> •> <• <• ❖<♦❖❖❖❖ ♦> ❖ •> ❖ ❖ •>
HONORARY NATIONAL OFFICIALS

Chairman:

Technical Queries
Secretary:

W ing Cdr. M ick Ryan
164 Chesterfield Drive,
Riverhead,
Sevenoaks, Kent TN13 2EH

Telephone: Sevenoaks (0732) 453530

Jim Tierney
11 Collison Place,
Tenterden,
Kent TN30 7BU

Telephone: 058-06 2711

Regional Co-ordinator: Terry Devereux
32 W indm ill Lane,
Southall,
Middlesex UB2 4ND

Treasurer:

Software Librarian:

Joseph Gabbott

Bob W ood
13 Bowland Crescent,
W ard Green,
Barnsley, South Yorks S70 5JP

Telephone: (0246) 811585 (work)
(0226) 85084 (home)

Membership Secretary:

Editor:

Jack Cohen
30 Brancaster Road,
Newbury Park,
Ilford, Essex IG2 7EP

Telephone: 01-597 1229

Ron Geere
109 York Road,
Farnborough,
Hants G U M 6NQ

VIC Co-ordinator: Mike Todd
27 Nursery Gardens,
Lodgefield,
W elwyn Garden City,
Herts AL7 1SF

Discounts Officer: John Bickerstaff
48 Martin Down Road,
W hitstable,
Kent CT5 4PR

Telephone: (0227) 272702

Assistant Editor: Tom Cranstoun

INDEPENDENT COMMDODRE
PHDDUCTS USERS GRDJP

Vol 4 No. 6 N ew sletter Nov 1982
Europe's first independent magazine for PET users

289

Page Contents

290 Editor's Notebook
291 Machine Code within BASIC
292 Prestel on your PET
296 Comal Corner
298 Vic Matters
318 Strictly for Beginners
322 Starting Forth
323 Software Library
325 Extending the CBM Assembler
330 Review — AUTO-1
332 Storage Technology Update
333 Round the Regions
334 Review — Beginning COMAL
336 Disk File — Sector 3
344 Commodore's Latest Machines
349 Realisation of Switching Functions

Using Multiplexers
353 Technical Tips
356 Software Headers
357 COMAL for the 8096
361 Pi with the Business Keyboard
362 Shop Window
363 Officers Elected at the AGM
365 Some Readers Problems
368 Commodore Column
370 Debugging and DOSsing Around
372 Writing for the Newsletter

The opinions expressed herein are those of the author and not necessarily those
o f ICPUG or the editor. Items m entioned in "Shop W indow ' are culled from adver
tisers ' m aterial and ICPUG do not necessarily endorse or recommend such item s-
c a v e a t e m n t n r

290

EDITORS NOTEBOOK

Each issue of the Newsletter seems to be Larger than
the previous and I am led to wonder how much further this
growth can be sustained. Each revision of production
methods improves 'productivity', but each breathing space
so created is soon plugged by the expansion. At the A.G.M.
there was 5 the customary two minutes silence when
nominations for editor were sought, and so here I am again
for another 12 months. Several members were kind enough to
offer to assist and this will ease the load. In addition a
number of background projects which have laid dormant could
now well see fruition in the new year. Tom Cranstoun has
volunteered to take on the task of assistant editor to
succeed Mike Todd who is almost 100% committed to the 'Vic'
range product information. Suggestions as to how you can
help are outlined on p57Z .

This issue marks the end of volume 4 (can it really be
over four years since Norman Fox founded the Group and I
became editor ?) and next issue there will be a number of
changes to the Newsletter, a new cover design perhaps, and
other improvements that as yet I cannot disclose.

Meanwhile please see that correspondence is directed
to the appropriate person. I only handle Newsletter input.
For output, i.e. mailing queries and back-numbers (at
£ 1.00 each), contact Jack Cohen. Comal matters are dealt
with by Brian Grainger, Vic series and CBM 64 by Mike Todd,
but with those exceptions, all input should be addressed to
the editor.

This issue was nearly 30pp shorter. When Mike Todd's
disk of text arrived, the Post Office had neatly folded it
in half. Fortunately I was able to soften it in warm coffee
and iron it flat (nylon setting) again and with a bit of
WD-40 it was soon rotating in my drive unit....

R.D.G.

— oOo—

MIXING IT - MACHINE CODE WITHIN BASIC

291

Often one needs to add a short machine-code routine to
a BASIC program, either for speed, or to do some function
that is impracticable in BASIC. There are several methods,
and each has limitations and disadvantages. I will not
attempt a discussion of the relative merits of placing the
code a) in high memory, b) in the second cassette buffer,
c) at the end of the BASIC program and d) at the start of
the program. This brief note is concerned with method d)
and one method of placing the code there.

If an assembler is used to produce the code, such as
Supersoft's MIKRO, the following example shows how to
create code in a REM statement in line 0 of the program.
100 ;example to put m/code routine
120 ;in rem at line 0
140 *=1024
160 0400 000d04 start byt 0,< I ink,>li nk,0,0,$8f
180 0406 a902 sysrtn Ida #2 ;example routine
200 0408 8d0880 sta $8008
220 040b 60 rts
240 040 c 00 byt 0
260 040d 0000 link byt 0,0

This will create the necessary line 0 to which the rest
of BASIC may be added and edited without ill-effect. This
method, like all others, has disadvantages. In this
instance the code is limited to about 250 bytes and the
code may not contain any zero values, eg BRK or LDA #0.

R.D.G.
— oOo—

- from an I.E.E. circular

292

PRESTEL ON YOUR PET
By David Annal.

It is now possible to couple your PET, any model, to
an RS232 Tantel adaptor, discussed in last issue, and use
it to call up Prestel pages, view them on the PET screen,
save them on disk and, what is particularly exciting,
download computer programs and convert them to BASIC. Once
converted, they can then be saved or run in the usual way.
Programs are already available together with club
information and news -see ICPUG pages starting on 80061819.

UART Board.

The means whereby all this can be achieved is the UART
coupling board and associated software produced by Y2
Computing Ltd. UART stands for Universal Asynchronous
Receiver-Transmitter (which can now be forgotten) and its
function is to convert parallel to serial signals and vice
versa. This particular chip is mounted on a small circuit
board, together with a few associated components. It is
supplied to plug into the middle (UD4) socket of your PET.
If you have already got a utility chip in this socket, it
is still possible to use it as the board has a duplicate
socket included. Simply remove the IC already there and
plug it into the socket on the board. This will work for
all 2K Chips, such as Toolkit, etc. The board can be
supplied to plug into other sockets if required. Flying
leads are connected from the board to other points of the
PET circuit board via shakeproof prods. A lead from the
board comes out from the side of the PET to connect into
the Tantel via a DIN plug. All these connections and
installation instructions are described in a booklet
accompanying the board. They are full and detailed and
include easy to follow diagrams. The whole installation
takes only a few minutes.

What you need.

The Telesoftware Tantel Adaptor is a MODEM device
(MOdulator/DEModulator) which will plug into a Prestel jack
provided by British Telecom next to your 'phone. A colour

293

TV set will plug directly into the adaptor via its ordinary
aerial socket. These two will now function as a Prestel
terminal and the phone nos. of the nearest Prestel
computers can be programmed into the adaptor. The Prestel
computer can now be dialled automatically using the keys on
the adaptor, and your requested pages will be shown on the
TV in colour. (Various registration procedures have to be
followed in the first instance. They are not discussed here
but are adequately covered in the papers accompanying the
Tantel). The phone Iine can be acqui red or di sconnected by
pressing appropriate keys. Other makes of modem are likely
to appear before long and some already exist, although more
expensive - see also, article by Bob Denton, p274, last
i ssue.

Now, although the above set-up is satisfactory for
viewing pages of your choice and for answering back in a
simple way, such as revealing hidden answers, etc., it
cannot make use of other superb faciIities now being
provided on Prestel. These include the sending of messages
to other users and the general use of the alpha-numeric
keys in answering questions, placing orders, etc. A Tantel
is available with keys, but why not make use of those you
already have on your computer and use the Y2 board ?
Several other advantages follow which we will discuss below.

Character Set.

First, it is necessary to deaI with the di splay whi ch
appears on your computer screen. Unlike the TV set, this
will obviously be in monochrome. This need not be a
disadvantage as any colour TV set connected to the aerial
socket will still show the display in full colour even
though the PET has taken control. The TV is not now
essential and could be removed back to the heart of the
family and thus avoid arguments! The PET screen will
continue to function as the display, but there is a
snag..... Prestel graphics are not the same as PET graphics
and a full display of some Prestel characters is not
possible. This may not matter much if you are only
receiving the printed page, but graphic pictures will not
look right. Y2 will provide a chip, at extra cost, whi ch

294

replaces the character generator in your PET. In the case
of the 'fat 40' and 8032, this provides the full Prestel
set and all graphics will reproduce correctly on the
screen. On 9" screens, the chip will not interfere with
normal PET graphics used in upper case mode as these are
still there. However, in lower case mode, used by Prestel,
the graphics associated with shifting the top row keys and
numeric keys now become the Prestel set. Fractions and
pound signs also appear! For most applications, the Prestel
character ROM can remain in situ all the time.

What will it do?

Once the computer had been plugged into the RS232
socket of the Tantel, all control is possible from the
computer keyboard and the Tantel keys are not required,
although they will still function in an emergency. In order
to achieve this transformation, the first program on the
software disk supplied with the UART board is loaded in the
manner appropriate to your model.

Off-line mode.

When first loaded, the program enters the off-line
mode and displays a menu which gives the user the choice
between a display showing all the normally hidden Prestel
control characters and a normal screen. The former would
only be of interest to those editing their own pages. You
are next asked if you wish to display PET characters or
Prestel ones. The answer depends on whether or not the
Prestel character ROM has been fitted as described above.
In the off-line mode, facilities are provided to recall a
previously recorded page from disk, alter, or add to, the
pre-programmed telephone numbers of Prestel computers,
change the modes above, exit the program altogether, or
enter the on-line mode. (Note that phone numbers are stored
in the Tantel, which has a battery backup. They will not
therefore be lost when the computer, or Tantel, are
switched off).

295

On-Line mode.

This allows you to call up the Prestel computer of
your choice, using the numbers programmed above. You may
then: view pages at will, copy any interesting pages to
disk, write letters to friends, answer advertisements, book
tickets and generally make use of all the Prestel
facilities normally available. The ability to store pages
on disk means that you are connected to the phone line for
a shorter time and can view your selections at leisure when
off-line and not clocking up phone bills! Normal extra
facilities are readily available such as ’reveal1, 'double
height1, etc, but will only be seen on a TV connected to
the Tantel.

Telesoftware.

The great advantage of using a computer connected in
this way is that programs, especially provided for the
purpose, can be downloaded directly into your machine,
saved on disk and then converted to BASIC to be stored or
run at will when off-line. The procedures to enable this to
be done are fully detailed in the instructions and are
accomplished fairly simply. Two steps are required. Once
the telesoftware program page has been located in the usual
way, it is accessed by the control program which then saves
it on disk as an ASCII file. Full error checking is
implemented and if this is satisfactory, the program
returns to the normal on-line mode. After any further
programs have been saved, and at the end of viewing, the
off-line mode is entered and the whole program exited. A
utility program, also supplied on the same control disk, is
now loaded and by this means, the previously saved ASCII
file is converted to PET BASIC which can be re-stored for
future use and run in the usual way.

Summary.

A nice little board giving several extremely useful
extra facilities for use with a combination of PET, Tantel
adaptor and Prestel. Installation is simple and easy to
follow diagrams make it hard to go wrong. Operation is
straightfoward and the programs do what they are supposed
to do. Documentation is adequate. Y2 will support the board

296

and software and models are available for different
sockets. Models will also be available for different modems
as they are produced.

Contact - Y2 Computing, 5, Kenilworth Court, Watford,
Herts (mail only) or phone Watford 50161. Mailbox no. on
Prestel - 092350161. The board and adaptor is also
available from Prestel itself at Telephone House, Temple
Avenue, London EC4Y OHL.

— oOo—

COMAL CORNER
By Brian Grainger.

There has not been much COMAL news in the last two
months, no doubt the summer lull. The news in the last
Newsletter that I had versions for the 8096 SuperPET
produced a larger than expected response and it is
heartening to note that at least one business user has
started serious work on business programs using COMAL. A
software house has also considered the use of COMAL for its
work.

I mentioned last time that the COMAL board was
available from Ellis Horwood. I now have the price, 195
pounds ex.VAT. Not very.cheap but it does give the serious
non 8096 owner nearly 31K user space on a 32K PET. It is
understood that a firmware implementation is being worked
on for the Commodore 64. Few details are available yet but
there will be a price tag attached. Talking of the
Commodore 64 leads me into mentioning that Commodore will
be marketing an extension to the BASIC operating system.
Written by Dave Simons this has some sytructured BASIC
extensions but they do not appear to compare with the
facilities of COMAL although it IS a step forward.

From a business user I heard that a sort routine based
on QUICKSORT had been implemented by him in COMAL. On an
8096, random 10-character strings were set up and 800 of
them could be sorted in 2.5mins. Apart from the fact the
user could not set up such a sort routine in BASIC he found

297

that it was much faster than what he could set up in BASIC.
Fast enough to make the program suitable for use.

The latest versions of COMAL are 0.12 for 4032/8032
and 1.02 for 8096. Programs are NOT load and save
compatible between the two versions. For example the token
for OPEN FILE in 0.12 turns out to be INTERRUPT in 1.02.
Other inconsistencies exist so those users who are trying
to use 0.12 programs on 1.02 must LIST the programs from
0.12 and ENTER them to 1.02.

I have spoken to the distributors of Len Lindsay's
'COMAL Handbook' (Prentice Hall) who tell me that it will
be available in the UK in December at a cost of £15.15

The most amusing bug in version 0.11 has been found.
If one uses the TAN function it calculates the reciprocal
of the true answer. This is true for the original version
0.11 COMAL as well as the versions for BASIC2 and cassette
users.

To finish this time here is a Shellsort routine from
Nick Higham. This sorts N items of the array A O .

1320 PR0C SHELLS0RT(N,REF 0)
1330 D:=INT((N+1)/3)
1340 REPEAT
1350 FOR I:=1 TO D DO
1360 FOR J:=1 TO N-D STEP D DO
1370 TEMP:=A(J+D)
1380 FOR K:=J TO 1 STEP -D DO
1400 IF TEMP>=A(K) THEN GOTO LABEL8
1410 A(K+D) : = A(K)
1430 NEXT K
1440 LABEL8:
1450 A(K+D):=TEMP
1470 NEXT J
1480 NEXT I
1490 D:=INT((D+1)/3)
1500 UNTIL D=0
1510 ENDPR0C SHELLSORT

— oOo—

298

VIC MATTERS
by Hike Todd

Before I go any further, who spotted the mistake in the
reconfiguration program in the last issue? I omitted the T$
from line 1030 which would cause an error when the program
was run. Line 1030 on page 229 should read:

1030 : READ X,Y,Z,T$

There was also an error due to a bug in the Vic. This is

to do with the "FILE NOT FOUND ERROR" that you should get if
you attempt to OPEN a file for reading beyond the End-of-Tape
marker. Instead you get a "DEVICE NOT PRESENT" error which
could be a bit confusing! If you attempt to LOAD beyond this
End-of-Tape marker, you WILL get the "FILE NOT FOUND ERROR"
as the bug only occurs in the OPEN routine.

I discovered to my horror that part of the SUPER

EXPANDER wouldn't work when the Vic was reconfigured to have
+0k RAM. This is probably because the reconfiguration to a
Vic with no expansion RAM but with the screen moved around as
if it were, is an unlikely configuration. I would therefore
suggest that this configuration only be set up for
experimenting with and not used for any serious applications.
I don't know why the expander gets upset at this
configuration and I will try to look inside for a clue.

ICPUG & VICSOFT

Up until now, we have not put much effort into
recruiting - most have joined as a result of our stands at
the exhibitions or through personal contact. The next issue
of VICSOFT, which many of you will be receiving soon,
contains details of the Group and this should have a
significant effect on our membership in 1983.

On the subject of VICSOFT I would like to clear up any
confusion about VICSOFT being a user group like ourselves. It
is Commodore's intention to have VICSOFT as a "discount club"

299

and as such it will not be running in direct competition with
us. Instead, it is intended that both groups would work
closely together, with the overriding consideration that
ICPUG is INDEPENDENT. In fact, with all our very close
contacts with Commodore, this independence is continuously
stressed, and the encouragement we receive from Commodore
(which I might add extends from the very top of the Company)
has always been with their conviction that our independence
is of paramount importance.

MEMORY MAPS AGAIN

I know that I've spelt out the organisation of the Vic's
RAM on more than one occasion, but judging by my mailbag
there is still some confusion about the use of memory
expansion so here, I hope, is the final and definitive
description of the Vic's memory layout.

First some terminology. The Vic is theoretically capable
of having 65536 storage locations (BYTES). Each is ADDRESSED
by its number from 0 to 65535 and is capable of holding 8
BITS, that is a binary number with eight Binary diglTS (hence
"BITS") from 00000000 to 11111111 or 0 to 255 in decimal.

Some of these locations are allocated when you buy the
Vic and you can see a "map" of these in the accompanying
diagram. Locations 0-1023 and 4096-8191 already have Random
Access Memory (RAM) installed which means that these
locations can be used to store numbers and then have these
values read back as required, although any numbers stored
will be lost after the power is removed.

On the other hand, locations 49152-65535 contain Read
Only Memory (ROM) which has had all its locations permanently
preprogrammed so that, although you can't put a nunrber into
these locations, you can get numbers back again. These
numbers represent the instructions to the microprocessor at
the heart of the Vic which tell it how to interpret the BASIC
language program that you type in.

300

A second section of ROM from 32768 to 36863 contains
details of the shape of all the characters you can put on the
screen and is called the character generator. There is also a
small section of memory space from location 36864 which is
used to access the special chips used to control the screen,
keyboard, cassette machine and so on.

You will see from the diagram that the numbers stored in
locations 0-1023 are called "system variables". This means
that these locations are used by the Vic to keep a track of
the different functions of the Vic itself such as where the
BASIC program is stored, or where the variables used in the
BASIC program are stored. These locations are not of much use
to BASIC programmers, although PEEKs and POKEs (which allow
you to actually see what numbers are stored in each location
or to change them) can sometimes be used to get at these
locations to good effect. For instance, the location 650
controls which keys will repeat when held down long enough
and normally contains the number 0 but if you change it to 64
(by POKE 650,64) then no keys will repeat or if you change it
to 128 (by POKE 650,128) then all keys will repeat.

RAM from 4096 to 7679 is used to store BASIC programs
when you type or LOAD them in, and the section from 7680 to
8191 is used to store the characters on the screen and these

locations are not available to store BASIC programs.

Because of the way that the video chip (the VIC chip
itself) accesses memory to get at the section which holds the
screen information or the character generator, these areas of
memory must reside within the Vic itself and cannot be
contained in expansion memory outside the Vic. This may seem
an odd thing to say at this stage, but it is important to
appreciate this when trying to understand why the Vic's
memory swaps around under certain circumstances.

The simplest type of expansion is to fill in the gap
between>1024 and 4095 and this is what the normal 3K
expansion modules do. When you plug this in and then switch
on the Vic, the space available for storing your BASIC

301

programs now starts at 1024 instead of 4096 allowing you to
write bigger (and better) programs.

Although the screen memory remains in the same place, it
is possible to tell the VIC chip that the character generator
has moved into the section of RAM from 4096 to 7679 and,
since this is RAM and not ROM, it would be possible to change
the characters on the screen and make up your own. You don't
need to have the 3K expansion to do this, but without it
there would be very little room for BASIC programs.

The other type of RAM expansion available is in
multiples of 8K, although some companies do sell it in 4K or
even 2K multiples.

This memory could be addressed anywhere between 8192 and
32767, the precise position is determined by the memory
module itself and is often set by means of small switches or
wired links on the circuit board. If you have an expansion
unit such as the Arfon or Commodore unit with several slots,
it makes no difference which slots the modules are plugged
into since it is the module itself which determines where it
should appear in the memory map.

To be usable by BASIC, this memory must be contiguous
(that's a computer word for adjoining!) from 8192 onwards and
so your first 8K expansion must reside from 8192 to 16383,
the second from 16384 to 24575 and the third from 24576 to
32767. These sections are often referred to in 8K blocks as
block 1, block 2 and block 3 respectively.

As soon as the Vic sees contiguous RAM after location
8191 it makes the decision to move the screen memory from

7680-8191 to 4096-4607. It does this to ensure that the
largest available contiguous block of RAM is available for
BASIC programs - from 4608 through 8191 and into the
expansion RAM.

Although theoretically possible with the 3K expansion
fitted, to move the screen down to 1024-1535 giving even more

302

RAM for BASIC programs, this is not possible in practice
since, as already mentioned, the video chip cannot get at
memory contained within expansion RAM. As a result, although
the 3K may be installed, as soon as RAM is installed above
8191, it will be ignored as far as BASIC is concerned,
although it is still there and can be used for machine code
or accessed by PEEKing and POKEing.

There is a special section of memory space between 40960
and 49151 (block 5) reserved for plug-in ROM packs which
normally contain games programs. These can be made to start
up automatically as soon as the Vic is switched on. Although
not normally used for RAM, it is possible to buy "cartridge
simulators" which allow RAM to be inserted in this space.
This has the advantage that you can leave the module in place
and simply load programs from disk or cassette as required
instead of swapping cartridges - cassettes are a bit tricky
to use up at this end of memory, but it can be done.

These cartridge simulators usually have a built-in
battery to keep power applied to the RAM even when the Vic is
turned off and thereby preserving the contents of the memory
for the next time you turn the Vic on - almost like a ROM.

Finally, because the Vic must see only one byte of RAM
at any given address, it is not possible to have two or more
cartridges with the same addresses installed at the same
time. Some expansion boards have switches to disable unused
cartridges, and this effectively removes them from the memory
map - otherwise it is important to remove unused cartridges.
This occurs most obviously when using several different
games cartridges as they normally occupy block 5 (40960-
49151). However, some cartridges (such as Commodore's
Programmer's Aid and Machine Code Monitor cartridges) use

block 3 (24576-32767) and therefore any 8K RAM in this
section must be removed to allow these cartridges to work
correctly.

303

A GUIDED TOUR

As promised, here's a quick guided tour of a few of the
memory locations listed on pages 188-198 of the July
Newsletter. I can't possibly describe all the locations in
detail, so I'll only look at the more interesting ones. Many
are in constant use by the Vic and their contents when PEEKed
or POKEd may bear no relationship to their actual value when
the interpreter uses them. Typical is the floating point
accumulator (FAC at $61—$65/97— 101) the contents of which
will change as soon as the Vic has to evaluate a number such
as the parameters in the PEEK or POKE commands themselves. -

In order to get at some of the pointers and so on, it is
useful to define a function to get a 16 bit number from RAM
as follows: DEF FN DEEK(X) = PEEK(X)+256*PEEK(X+1)

$00-$02 000-002 USRPOK

This is a JMP to the programmer's own machine code
routine and is executed as soon as the USR(X) function is
encountered within an expression. The floating point value of
X is available in FAC (the floating point accumulator at $61-
$65/97-101), and, after processing, the value of FAC will be
returned as the value of the USR(X) function.

If A=10+USR(5) were executed, and a machine code program
was written which doubled the value of FAC, then A would be
evaluated to 10+(5+5). Note that the start address of the
machine code routine would be placed in $01/$02 and the
routine would end with an RTS instruction.

$03-$06 003-006 FACINT and INTFAC

FAC can be converted to an integer or vice versa by a
JMP ($0003) or JMP ($0005). This is only of use to a machine
code program and could be useful when using the USR function.

These two vectors are never actually accessed by the Vic
itself once set up.

304

$013 019 CHANNL

This location is normally 0, but is set to the logical
file number during INPUT#, PRINT#, GET# and CMD and is
restored to zero following them all except CMD. If it is zero
then input and output is from the keyboard and screen in the
normal manner; if non-zero then prompts are suppressed (to
avoid them appearing on an active output device) and the
normal INPUT and PRINT routines (which are shared by the file
input and output routines) will behave accordingly.

$2B-$2C 043-044 TXTTAB

This pointer (the first byte of which is the LEAST
significant byte in normal 6502 tradition) indicates the
first byte of the BASIC program in RAM. Its value can be
accessed by FN DEEK(43) and this would normally be 4097 for
an unexpanded Vic, 1025 for a Vic with only 3K expansion and
4609 for a Vic with +8k or more expansion.

$2D-$2E 045-046 VARTAB

Points to the start of the space in RAM where the
identity and value of ordinary variables (that is anything
other than arrays), are stored. This normally starts at the
byte following the end of the BASIC program and is also used
to indicate the last byte to be saved to cassette or disk.

$2F-$30 047-048 ARYTAB

Points to the first byte after the ordinary variables
and indicates the start of the space used to store arrays.

As soon as an ordinary variable is used for the first
time, this pointer must be increased to make space for it,
and so all the arrays must be moved up too. This can take
some time, and it is therefore best to DIM arrays after all
ordinary variables have been used at least once - if
necessary, dummy statements like A=0:B=0 and so on could be
used. Of course this is only of use if speed is important.

305

$31-$32 049-050 STRBND

This indicates the first byte after the array storage
space and is considered the last byte of the memory being
used. However, strings occupy RAM, but working from the
highest available RAM location downward - so this pointer is
actually the lowest location available for strings, or the
end of string space pointer. If strings are in danger of
going below this location, a garbage collection is initiated
(see page 185 of July Newsletter).

$33-$34 051-052 FRETOP

As strings work downwards from the top of RAM, FRETOP
keeps a track of the lowest byte used and it is this pointer
which must not go below STREND as described above. The FRE(0)
value is calculated by subtracting STREND from FRETOP.

$37-$38 055-056 MEMSIZ

This points to the first "unusable" byte and is
determines the topmost byte available for strings. It can be
lowered if necessary to allow space at the top of RAM for
machine code, character generator tables and so on, but
FRETOP is only set from it when a CLR is executed. Until
then, the Vic continues to store strings according to FRETOP
and may overwrite anything stored in that space.

Note that MEMSIZ does not indicate the uppermost byte of
RAM - it is the limit of space USABLE by BASIC.

$39-$3A 057-58 CURLIN

If you need to know the line number currently being
executed, then FN DEEK(57) will tell you.

$3F-$40 063-064 DATLIN

FN DEEK(63) will tell you the line number of the last
item of DATA read.

306

$61 —$65 095-101- FAC

This is the main floating point accumulator where nearly
all numeric computation in the Vic takes place.

Numbers are stored here in a special form with the first
byte holding the exponent and the other four the mantissa of
the floating point number. The actual construction of this
type of numeric storage is fairly complex and I hope to
explain how this is done in the not too distant future.

$73-$8A 115-138 CHRGET

This is a machine code subroutine which is at the heart
of the interpreter. It contains a two byte pointer ($7A-$7B
122-123 TXTPTR) which points to the last character read.

When the interpreter needs to read a character from the
program, it calls CHRGET which first increments TXTPTR, gets
the character at that location, ignores it if it was a space,
gets the next character, and sets up flags to indicate
whether the character read was a numeric digit or a statement
terminator (that is a character indicating the end of a BASIC
statement - a colon or end of line marker).

It is this routine which some programs modify to allow
the inclusion of new BASIC commands.

$8B-$8F 139-143 RNDX

These five bytes hold the last random number generated
and are used as a seed to generate the next random number.

If you use RND(1) then the random number generated is
based on the contents of RNDX. RND(-R) will store R in RNDX
and then generate a random number from it - this way you can
force a random number to be the same each time the program is
run. RND(O) will cause RNDX to be set at random from internal
registers and can be used as a RANDOMISE command - it should
ideally only be used at the start of a program.

307

$91 145 STQPFL

When the STOP/RUN key is pressed, this location is set
to $FE (254) by the keyboard scanning routine. It is this
flag which is disabled when the normal STOP-key disable
routine is used.

STOPFL is checked before each statement is executed and
not during the execution of a statement. If a statement were
stopped in the middle, it may not be possible to recover
properly when CONT is typed.

However, certain operations (notably some input/output
routines) include their own special check of the STOP key and

this is done directly and not using STOPFL.

$9D 157 MSGFLG

This byte is normally 128 and is used to control the
printing of Kernal input/output error messages.

There are two categories of error messages - the normal
error messages such as "DEVICE NOT PRESENT", and the
equivalent kernal message "I/O ERROR #5".

If set to 0 then MO input/output error messages will be
printed. However, if bit 6 is set to 1 (POKE 157,64) then the
kernal error message will replace the normal error message.

The only exceptions are the "PRESS RECORD" or "PRESS
PLAY" messages and the "EXTRA IGNORED" and "REDO FROM START"
error messages which will always appear.

$C5 197 LSTX

If no key is pressed this location holds the value 64,
but if any key (except SHIFT, STOP, CBM, CTRL or RESTORE) is
pressed, it will contain the matrix value of the key. For
instance the number "1" gives a value of 0 and the letter "F"
gives "42".

308

To convert from this keyboard value to an ASCII
character value requires the use of the keyboard conversion
tables in the Vic's ROM.

These are at $EC5E (60510) for normal keys, $EC9F
(60575) for shifted keys, $ECF0 (60656) for CBM graphics keys
and $EDA3 (60835) for CTRL keys. To set A to the character
value for a normal key, use: A = PEEK(60510+PEEK(197))

Note that $CB 203 KEYVAL contains the same information
although it is used slightly differently by the Vic.

$C6 198 NDX

This hold the number of characters in the keyboard
buffer. It can be used to clear the buffer if you suspect
that spurious keys have been pressed prior to a GET or INPUT
- this is done with: POKE 198,0

$D1-$D2 209-210 SCRPTR

This points to the RAM location of the first character
of the current screen line. If the line is a continuation
line, it points to the first character of the first line of
the complete long line.

$D3 211 CPOS

Contains the current position of the cursor on the line.
By adding it to SCRPTR it is possible to obtain the address
of the the cursor or the position where the next character
will be printed. The first position on the line is 0 and the
value of CPOS can go up to 87 as the cursor wraps around onto
continuation lines.

$D5 213 SLINEL

Holds the actual length of the current screen line,
including wrap around continuation lines. Note that the value
is actually one less than the number of characters.

309

$D6 214 SLNUM

The current line number of the cursor - this time the
lines are the physical lines on the screen and not the
logical line numbers.

$D9-$F1 217-241 SCRPTH

The start address of each screen line is held in two
parts. The most significant byte is held in the SCRPTH table,
the least signifcant byte in ROM at $EDFD (60925).

As soon as anything is typed beyond the end of a line on
the screen, the rest of the screen is pushed down and the new
line is "attached" to the original line. This is the so-
called wrap-around facility and, at least until the screen is
cleared, these long lines will remain joined up.

To identify which lines are continuation lines and which
are not, the SCRPTH table is used. Bit 7 of each byte is set
to 1 for each screen line. As soon as a screen line becomes
part of a long line then it has bit 7 cleared. The only
address that matters in this instance is the start address of
the very first line of the group since the continuation lines
are from then on considered as part of this first line.

There may be occasions when it is necessary to force all
lines to be "single" lines and to cancel any long lines. This

can be done by clearing the screen (NOT homing the cursor!)
but this may not be appropriate. The following routine will
cause the desired effect:

FOR I = 217 TO 241: POKE I, PEEK(I) OR 128 : NEXT

This wrap-around technique leads to some quirks in
handling the screen. For instance, you may have noticed that,
as you write off the bottom of the screen, sometimes the
screen will scroll up more than one line - it does this if
there is a long line at the top of the screen so that it
shifts the whole of the line off the screen.

310

$F3-$F4 243-244 KEYMTX

As already mentioned, there are several decoding
matrices to convert the key code into a character code
depending on whether the normal, shifted, CBM or CTRL
characters are being accessed.

KEYMTX holds the address of the last matrix used -
unfortunately it is not possible to alter this address from
BASIC although it is possible to examine the address (using
FN DEEK(243)) which will show the most recent matrix used.

$28l-$282 641-642 LORAM

Points to the lowest USABLE RAM byte and is set up by
the switch-on initialisation routines. FN DEEK(641) will

return a value of 4096, 1024 or 4608.

$283-$284 643-644 HIRAM

After finding the first usable byte of RAM, the
initialisation routines then test every subsequent byte until
no more RAM is found. The address at which this occurs is
placed in HIRAM and is the value which decides where the
screen memory will begin.

$288 648 SCRAMH

This is the most significant byte of the start address
of the screen memory. The actual start address can be found

by PEEK(648)«256.

$28D 653 SHFFLG

Keeps a track of whether the SHIFT, CBM or CTRL keys are
pressed. Bit 0 is set if SHIFT, bit 1 if CBM and bit 2 if

CTRL. So that is PEEK(653) is 3 then both the CTRL and CBM
keys are being pressed together.

311

ANOTHER BUG!

Users of the machine code monitor cartridge may have

noticed that, if they exit to BASIC with the "X" command, any
BASIC program already in the Vic is likely to be corrupted.

It would appear that the monitor changes location $2B
(the first byte of TXTTAB) under certain circumstances, and
as a result, the Vie thinks the program is starting somewhere
other than its true start.

There is a quick and easy fix - just POKE 43,1 after
leaving the monitor to regain the BASIC program.

COMMODORE'S COMPETITION

Many of you may have read in the press of the Commodore
software competition earlier in the year. The rules required
original programs that were "inventive and instructive" and
were written for the Vic or the 4032, and I was asked to
assist in the judging, together with Gail Wellington and
Graham Sullivan of Commodore.

I spent a fascinating afternoon looking at the entries,
of which there were over eighty. I have to say that I was
rather disappointed by the standard of inventiveness since
most programs were only variations on unoriginal themes.

The winner was Bob Tulloch of Kings Lynn in Norfolk and
his entry was a very simple program for the Vic, designed to
help him teach his very young daughter to count - different
numbers of simple, but beautifully and colourfully designed,
objects would appear on the screen. The child hits the
keyboard, once for each object, and the numbers appear over
the top of the objects. Although very simple, its design was
superb and the fact that it was used as a teaching aid and
not as a teaching program appealed to all the judges. You
will read more in the press, but it just goes to show how a
successful idea can be a simple idea.

312

THE COMMODORE 64

Following my brief discussion of the Commodore-64 last
time, I would like to give a little more information about
the 64K RAM available.

The 64 comes with 64K RAM, but only 38K contiguous bytes
of RAM usable by BASIC, and I suspect that the practical
limit will be 32K. The BASIC ROM is at $A000-$BFFF and the
Kernal at $E000-$FFFF, with the space $C000-$DFFF being used
by the I/O chips and some "spare" RAM. Plug-in ROM packs are

designed to fit in anywhere between $8000-$9FFF.

Obviously, there is more memory available than can be
practically used at any one time - for instance there is RAM
at the same address as both the BASIC and Kernal ROMs but
this is not normally accessible. However, it is possible to
"bank-switch" these ROMs out of the 64's memory space and use
the RAM instead, but it must be stressed that this can only
be done for machine code programs, and only machine code can
therefore take full advantage of the full 64K RAM.

To allow the memory map to be moved around there are a
variety of control lines available. For instance there are
three available to software through the new I/O register at
$01 (LORAM, H I RAM and CHAREN); there are two hardware control
lines on the cartridge socket (GAME and EXROM) and there are
two on an I/O register in one of the new interface chips
(VA14 and VAT?).

These last two are only used to determine where in the
main address space the video chip will access the screen RAM,
colour RAM and character generator. The character generator
sits between $D000 and $DFFF and is not normally available
since the I/O chips etc., are situated here. If the
programmer does need to get at the character generator then
this can be done by switching it into the address space using
CHAREN; this is only useful if it is necessary to transfer
the character generator into RAM.

r
r

0
3
fO

J-
J

55
0
J
s

T
in

0
0
J
t0

\-

' i0
J
to

o—9f **113 —

**«>f i s m —

O0OVf OfhOl7

oeokf #***£ _

_ _ eoogf ZltZ? __

rO

3
Q
J
GO

Tk9#T-

_ _ 0 0 0 9 ^ -

N

0
J
qQ

- - oo§nf

. TV»f
••# if •*■»*

o ̂«»T»f
0 000 7 f •>&v
J
SO

1 '

O0-»Op
&@m<f o dP

Mi
le#

f̂oJ

UL

M
41

-
-

ro
Ju

t&
A

ft*
*.

W
®L

&t
e«

tA
i-

34 Eig_3 - Commodore 64- configurations

X

£

i
*
a

^0

J
v

J J

u
*oQ
»

1
v
i
£<x

*
a
r

*<3,
r

i*
*
j

i *<xt

«t
<&
«o
“'d
i
1

Hi

a00

-rf
J
i
'X

o —̂o - o o V- o T—o T- o -r- o T-

o o - - o o *- *- o o T— o o o- *-

o o o o V- - -- «- o o o o T"

o o o o o o o o - - - - - - X—-

to
tt.V

t*
T

.A
i

il
tr

-
t,

315

LORAM and HIRAM are used to replace the BASIC and KERNAL
ROMs with RAM - GAME is used by MAX-type cartridges to change
the memory map from the 64 to the MAX memory map, and EXROM
allows the top 8K of BASIC RAM ($8000-$9FFF) to be replaced
by ROM. Unfortunately, all these memory controls interact
upon each other and Fig.3 shows the various combinations of

LORAM, HIRAM, GAME and EXROM.

With the normal BASIC and KERNAL ROMs still in place, it
is still possible to write to the "parallel" RAM since a
write to one of these addresses will always go into the
underlying RAM, while a read will, of course, read the ROM
itself. This could be useful if the hi-resolution screen is
used which needs a full 8K of RAM and which could access this
hidden RAM; it would mean that bank-switching of this RAM
into the memory map would not be necessary for writing to the

hi-res screen.

Fig 2 actually shows the overall memory map and what can
be accessed at each point. The space from $D000-$DFFF
contains the I/O devices as follows:

$D000-$D02E Video controller chip
$D400-$D41C Sound controller
$D800-$DBFF Screen colour RAM
$DC00-$DC0F Complex interface adapter (CIA) #1
$DD00-$DD0F Complex interface adapter (CIA) #2
$DE00-$DFFF Available for expansion (CP/M, IEEE maybe?)

Finally on the 64, the power supply is slightly
different to that on the Vic-20, which only had a low voltage
AC input. The 64 uses a 7-pin DIN plug with a 5-volt DC
supply and a 9-volt AC supply from the power unit.

Most of the information given comes from playing around
with an NTSC (American) 64 in the Spring, backed up by some
of Commodore's preliminary documentation. Next time I hope to
have had a PAL (UK) 64 and should be able to give even more
details of this fascinating machine.

316

AND FINALLY?

Many members have been writing to me about problems that
they've been having with the Vic (and indeed other Commodore
machines) and I've not really been able to answer all of them
personally.

Not only do I not have the same configurations as these
people, but I don't have the time to do the, often
substantial, research needed.

Therefore, elsewhere in the Newsletter you'll find a
PROBLEMS page, which also includes three Vic problems. I hope
to try to keep this idea going, although we do have a
techical queries panel and I don't want to do them out of a
job - mind you, I don't recall ever seeing their names and
addresses published in the Newsletter, do you? [Watch it! -
Ed].

Anyway, for the time being I think that the PROBLEMS
column could be a useful source of information and you'll
find more details in the column itself.

AN ADVERT! - NEW VIC FOR SALE

Finally, finally - I've got a brand new Vic-20 for sale.
It was bought at the beginning of October and has only been
used for about 5 hours in total since then. It cost about
.€167.00 and I'll accept any reasonable offer over ,£140.00.
If required, I will hand on the receipt to whoever buys it.

The cassette machine that was bought with it has already
been sold, but I have an old cassette machine that I'm
prepared to sell with it. It's in good condition and works
fine and I'll accept £20.00 for it - making a total price of
j£160.00. I'll also "throw in" some blank cassettes at no
extra charge. I'm afraid that the buyer will have to arrange

collection, but I'm sure that we could come to some
arrangement.

— oOo—

Xerox 820 IBM Personal
Computer

Apple III

Standard Memory 64K 64K 128K

Maximum Memory when fully configured* 64K 192K 256K

Expandability No expansion No extra expan
sion slots in fully
configured*
19 2K system

4 extra expansion
slots in fully
configured 256K

Diskette Storage (per drive) 92K 160K 140K

Mass Storage (per drive) 5 megabyte
Hard Disk

Display Graphics Capability High resolution
B/W

High resolution
B/W or 4-color
(color requires
additional card)

High resolution
B/W or 16-color

How Apple gives others the pip....

HOW COMMODORE PIPS APPLE.

FEATURES COMMODORE APPLE 11+

Base Price £299* £499*
ADVANCED FEATURES

Built-in user memory 64K 48K
Programmable YES YES
Real typewriter keyboard YES (66 keys) YES (52 keys)
Graphics characters

(from keyboard) YES NO
Upper & lower case letters YES N O "
Function keys YES NO
M axim um 5 / " floppy 170 K.B. to

disk capacity per drive 1M.B. 143 K.B.
AUDIO FEATURES

Sound Generator YES YES
M usic Synthesizer YES NO
Hi-Fi Output YES NO
VIDEO OUTPUT

M onitor Output YES YES
T.V Output YES EXTRA
INPUT/OUTPUT FEATURES

Cassette Port YES YES
Intelligent Peripherals YES YES
Serial Peripheral Bus YES NO
ADDITIONAL SOFTWARE FEATURES

CP/M” Option
(over 1000 packages) YES YES

External ROM cartridge
slot YES NO

*EXC. V A T-D ETA ILS C O R R E C T AT T IM E O F G O IN G T O PRESS
“ UPPER ONLY

CP/M IS A R E G IST E R E D T R A D E M A R K O F D IG IT A L R ESEA RCH , INC.

f t com m odore

318

STRICTLY FOR BEGINNERS - 6

This month I am pleased to present to you an improved
version of a small addition program I produced in the May
issue. This has been sent to me by a reader in Sheffield,
Mr. Simm. The program is called 'Addition List', and the
listing is as follows:
100 PRINT"<cIr>ADDITI0N LIST"
110 PRINT"#############":PRINT:REM SHIFTED # (4032)
120 T=0:A=0
130 INPUT"<dn>VALUE";N
140 IF N=0 THEN GOTO 170
150 T=T+N:A=A+1
160 G0T0130
170 PRINT"<dn>ENTRIES = ";A,"TOTAL = ";T

Do you see the improvement made by Mr. Simm ? The
program now not only counts the amounts entered in the
INPUT in line 130, but also counts how many inputs you
make. Very good. Any other ideas on the programs you have
seen so far?

DATA DELETION in Programs.

Suppose you have some data in an array of alphanumeric
data called P$(X) (where X is the total number of names or
whatever in the array).

One of these names now becomes superfluous, and you
wish to delete it. This routine will do just that:
450 REM ** DELETION **
460 INPUT"NAME REQUIRED";N$:L=LEN(N$)
470 F0RI=1T0X
480 IFLEFT$(P$(I),L)=N$THEN51 0
490 NEXT
500 PRINT"<cdXrvs>N0<off> <rvs>SUCH<off> <rvs>NAME<off>

<rvs>0N<off> <rvs>REC0RD<off>
510 K=i:PRINT"<dn><rvs>"P$(I)" DELETED":F0RI=KT0X

:P$(I)=P$(I+1):NEXT
The explanation for this is simply that one searches

for the name required in line 460, using the length (L) of
the search name (N$) so that one need only enter enough

319

digits of the name to identify it from any other similar
names in the array, e.g. If the names stored in P$ are;
P S (1) = ADAMS; P$(2) = ADAMSON; P$(3) = ADSAM then
inputting A will find ADAMS; inputting AD will also find
ADAMS; inputting ADS will find ADSAM; to find ADAMSON it is
necessary to input ADAMSO or the full name. If there are
two ADAMS, then one would need to input their initials
also, to distinguish them. If their initials were
identical, then there is no way of distinguishing them with
a simple program like this. But that is not too common an
occurrence.

When a match is found, in Line 480, the program
branches to line 510. If no match is found, and the program
reaches the end of the array, at which time 'I' will be
equal to X+1, the program will continue to line 500 and
print a suitable message on the screen.

Line 510 sets a variable (K) in this case, to the
value of "I1 at the point of matching the name required
with the appropriate name in the array. Then the name is
printed on screen followed by the word DELETED. Then the
array is set up again with each member of the array being
renumbered 'downwards1, i.e. if the array was as described
above, and P$(2) ADAMSON was deleted, K would be set to 2.
P$(2) would then be made to equal P$(2+1), which is P$(3).
Hence the new array would be: P$(1) = ADAMS; P$(2) = ADSAM.
Thus the old P$(2) has been effectively deleted.

Here is a more complete program demonstrating the
above:
10 REM *** CREATE ARRAY P$() ***
20 INPUT"<2dn>N0.OF NAMES IN ARRAY";X
30 DIMPS(X+1):FOR 1=1T0X:PRINT"<rvs>"I"<off>";:

INPUT"<dn>NAME";P$(I)
40 IFP$(I)="ZZZ"THEN60
50 NEXT
60 REM *** LIST THE ARRAY ***
70 FOR 1=1T0X:IFP$(I)="ZZZ"THEN90:PRINT"<rvs>"I"<off>"P$(I)
80 NEXT
90 REM *** DEMONSTRATE DELETION ***
100 INPUT"<dn>NAME TO DELETE";N$:L=LEN(N$)

320

110 FOR 1=1TOX
120 IFLEFT$(P$(I),L)=N$THEN150
130 NEXT
140 PRINT"<dn><rvs>NO SUCH NAME"
150 K=I:PRINT"<dn><rvs>"P$(I)" DELETED":FORI=KTOX:

P$(I)=P$(I+1):NEXT
160 FOR 1=1TOX:IFP$(I)="ZZZ"THEN1 80
170 PRINT"<rvs><2dn>"I"<off>"P$(I):NEXT
180 PRINT"<dn>END OF DEMONSTRATION.

PEEK 8 POKE ON THE SCREEN

The words PEEK and POKE used to frighten me to death
when I saw them in programs in the magazines. I couldn't
fathom out what they did at all. Once again, they lost
their fearsomeness when I started learning from my fellow
enthusiasts at the USER GROUP meetings.

The PET screen is what is known as a Memory Mapped
Screen. That is, each position on the screen has a
particular place on an invisible map inside the PET's
memory, which is labelled with a number. The top left hand
corner of the screen, where the cursor goes when you press
the CLR/H0ME key, is position number 32768. The bottom
right hand corner is number 33767.

Using these screen locations, as they are known, we
can place bits of illumination in known parts of the
screen. We can also erase them. This is useful (how's that
for understatement) in games involving movements across the
screen.

But games-type movements are a little bit complicated
for beginners. So let us start with something simple.

POKE is the computing word for placing a value in a
particular memory location. If that memory location is
between 32768 and 33767 then the value POKE'd will appear
on the screen. Try this:

POKE 32768,55
Lo and behold, a figure 7 appears at the top left hand
corner of the screen! Now let us check this, by using the
other function, PEEK. Try this:

?PEEK(32768)

321

This time we are asking PET to print on screen whatever
value (ASCII value, that is) it finds at the top left hand
corner of the screen. Provided you cleared the screen
before you started the POKE command, the answer now will be
55. ASCII, incidentally, stands for American Standard Code
on Information Interchange. And when I mentioned it above,
I really meant CBM ASCII, because the makers of our beloved
computer have altered standard ASCII to CBM ASCII, for
their own purposes. Confused ? Well don't worry about it.
There are available tables of ASCII values and characters
for PET, so all you have to do is look them up.
Unfortunately the CBM User Manual presents them in binary
on Page A-13, which I do not pretend to understand. 'The
PET Revealed', on the other hand, has excellent tables a
few pages from the end. Or even easier, enter this program
to see them on your screen.
10 FOR J=32768 TO 32768 + 255
20 POKE J,K: K=K+1
30 NEXT
40 POKE 59468,12: FOR J=1 TO 500:NEXT:POKE 59468,14

:F0RJ=1T0500:NEXT:G0T040
Cl hope you all know what POKE 59468,12 or POKE 59468,14
does. For those who do not know, POKE 59468,14 changes the
writing on your PET screen into lower case and graphics
characters, and POKEing the same location with 12 changes
back to upper case characters (Capitals).] See page A-12 in
the CBM User Manual for models 2001-16 to 32N. Or this
program to see them and their 'reference numbers' (i.e.
decimal value).
100 ?"<clr>":FOR 1=33T0255:?"<rvs>"I"<off>";CHR$(I)

: F0RJ=1 T0500 : NEXTJ , I: IFNO0THEN300
200 P0KE59468,14:N=N+1:G0T0100
300 P0KE59468,12:END

Note: 0 to 32 are blanks, so I have excluded them. There
are also some more blanks, but I've left them in because
they appear in the middle of the list (128-160). Did you
notice what CHR$(186) was? If you did not, it was a tick.
I'll bet you didn't know PET had a tick in its character
set, did you? (And if you did, you are not a beginner and
should not be reading this!!) If you want the list to go
through more quickly, change the value 500 (try 50) in line
100.

322

I have just returned from the ICPUG stand at the
Personal Computer World Show in London. I hope that at
least some of the people who came to the stand for
information were satisfied with the replies they received,
and also that some of them have actually attended a
Regional Group meeting by now. This is still the best way
to receive help and knowledge about computing. I spent a
good part of my time there quizzing Stephen Rabagliati
about Prestel for the PET. Before the ladder hit him on the
head (in the local pub) his answers were quite logical!
What a wonderful invention is Telesoftware. No more typing
in programs at the keyboard, just download them from
Prestel's ICPUG page (and others).

Don't forget, any ideas for this page, or any more
problems, please contact me. LEd's Note: much of the
principles in this column apply to Vic users.]

--0O0--

STARTING FORTH
By Ron Geere

Beginning next issue I propose to start a regular
column devoted to the language Forth. There appears to be
justification for such a column from the cross-section of
interest at the AGM, Versions of Forth are available for
both CBM/PET and Vic-20 with a '64' version to follow
shortly.

Forth is characterised by five major elements:
dictionary, stack, interpreters, assembler and virtual
memory. Although not one of these is unique to Forth, their
interaction in Forth produces a synergistic effect that
creates a system of unexpected power and flexibility.

The dictionary is a threaded list of variable-length
items, each of which defines a word of the vocabulary. Two
push-down stacks are maintained, a parameter stack and a
return stack.

323

Forth is fundamentally an interpretive system, i.e.
program execution is controlled by data items rather than
by machine code. Two levels of interpretation exist in
Forth, the outer, or text interpreter, parses text strings
and looks them up in the dictionary. When found, it is
usually interpreted by invoking the address interpreter,
also known as the inner interpreter. This interprets
strings of absolute addresses by executing the definition
pointed to by each. This operation is fast, being only a
few machine instructions.

Forth includes a resident assembler to generate
specific machine instructions - a sort of equivalent to the
SYS command. Finally, Forth has a number of buffers in
memory which relate to fixed-length segments of disk space.
If a block is modified in memory, it is automatically
replaced on disk.

Forth is a language which, at first had little use,
but had time to mature. In consequence few 'dialects' of
Forth exist, unlike BASIC, and in consequence the programs
are very portable between greatly differing machines.

Next issue I hope to publish some items from those of
you that expressed an interest. In addition, I will be
describing some more features of the language.

— 0O0—

SOFTWARE LIBRARY

VIC-20 SOFTWARE NEWS.

We now have two disks of Vic-20 software. Members
wishing a directory listing should send a stamped addressed
envelope to me, you are reminded that the original list
should be returned to me.

Software for the 3.5K Vic contains mostly games. What
is lacking in the library is: —
1) assembler/disassembler
2) utilities
3) large games programes

324

Would members please note this deficiency and help by
sending me programs for the Library.

PET/CBM SOFTWARE NEWS.

We are now a member of Commodore's workshop library
and have all their software from this service. This
consists of a total of 12 disks, mainly of the educational
type programs.

We have received a contribution from Bob Chappell. The
disk (number 15) containes games, educational, business and
miscellaneous programs, most of which have appeared in
'Microcomputer Printout'. The editor of the magazine has
given permission for ICPUG members to use the software.

8050 FORMAT DISKS.

Members please note that 8050 format disks containing
software can now be obtained from:- Stephen Rabagliati,
46, Milton Dene, Woodhall Farm, Hemel Hempstead.

GENERAL.

When requesting software from the User Group library
please bear in mind the following points:-
1) limit your choice to two disks or four programs on
cassette per request.
2) adequate postage, packing and an addressed adhesive
label should be included.

Members are reminded that anyone writing to me who
wants a reply should include a stamped addressed envelope.

Bob Wood, 13, Bowland Crescent, Ward Green, Barnsley,
Sth. Yorks S70 5J S.

— oOo—

325

EXTENDING THE COMMODORE ASSEMBLER.
By John Stout.

Using the extensions to the Commodore assembler
(version V121579 for BASIC 4) described here writing in
assembly language becomes a lot more like writing in a
high-level language with a full complement of programming
structures. For example the programming to calculate the
length of a string (including the carriage return) stored
in memory starting at location START can be written as:
LDX #$00
.REPEAT
INX
LDA START-1,X
CMP #RETURN
.UNTIL EQ

The five programming structures provided by the extended
assembler are IF/THEN/ELSE, REPEAT/UNTIL, WHILE,
L00P/EXITIF/ENDL00P and CASE/WHEN/ENDCASE. All the new
structure words are preceded by a full stop as shown above
and have the following syntax:
.IFF <test>
code to be performed if <test> is true
. EIF
.IFF <test1 > THEM
code to be performed if <test1> is true
.ELSE C<test2>]
code to be performed if <test1> is false
.EIF

Anything enclosed in square brackets is optional. If
[<test2>] is included the assembler can generate more
efficient code, substituting a branch to the .EIF rather
than a JMP. Note that if there is to be a .ELSE part the
.REPEAT
code repeatedly performed until <test> is true
.UNTIL <test>
.WHILE
code to set up a test result
.DOIF <test1>
code repeatedly performed while <test1> is true
.EWHILE [<test2>D

326

Again L<test2>] allows more efficient code to be produced.

.LOOP
code performed repeatedly until a .EXITIF succeeds
.EXITIF <test1>
code performed repeatedly until a .EXITIF succeeds
.EXITIF <test2>

.ELOOP C<testn>3

There can be as many .EXITIFs as required inside a
efficient code to be generated.

•CASE <register>
.WHEN <value1>
code performed when <register>=<value1>
.EXCASE C<test1>3
.WHEN <value2>
code performed when Cregister>=<value2>
.EXCASE C<test2>]

.ECASE

There can be up to 10 alternatives (.WHEN/.EXCASE
structures) inside a .CASE/.ECASE structure. [<test1>],
[<test2>H etc produce more efficient code.

In addition to the above structures the statement
jump (or a branch if followed by an optional test, e.g.
two-character representations of the required tests, i.e.
EQ, NE, CC, CS, PL, MI, VC and VS. <register> in the .CASE
structure is either A, X or Y. The <value>s in the .WHEN
statements are any valid memory reference for a CMP, CPX or
CPY statement (CMP if <register> was A, CPX if <register>
was X arjd CPY if <register> was Y). Thus if <register> was
A valid <value>s are ($55),Y and START-1,X.

327

CODE GENERATION.

The code generated by the assembler for the structures
will usually be the same as that generated by hand coding
the structures. The only occasion when the assembler will
actually generate the code to set up a test value (rather
than test the value) is in the .CASE structure when simple
CMP/CPX/CPY followed by BNE statements will be produced. In
all other cases you can use your ingenuity to set up the
test.

.IFF <test> Bopp(<test>) Eliiii
code code
. EIF Eliiii
.IFF <test1> THEN Bopp(<test1>) ELiiii
code code
.ELSE C<test2>: JMP EIjjjj if no <test2>
B<test2> EIjjjj if <test2>
code code
-EIF EIjjjj

Bopp(<test>) signifies a branch with the opposite
sense to <test>, e.g. BNE if <test> were EQ. iiii and jjjj
represent four-digit numbers starting at 0000 which are
used to generate unique labels for the structures.

.REPEAT REiiii
code code
.UNTIL <test> Bopp(<test>) REiiii
UNj j j j
.WHILE WHiiii
code code
.DOIF <test1> Bopp(<test1>) EWjjjj
code code
.EWHILE C<test2>] JMP WHiiii if no <test2>
B<test2> WHiiii if <test2>
EWjjjj
.LOOP LOiiii
code code
.EXITIF <test1> B<test1> EPjjjj
code code
.EXITIF <test2> B<test2> EPjjjj

328

code
.ELOOP C<test3>3
B<test3> LOiiii if <test2>
EPj j j j
.CASE <register>
CcodeH
.WHEN <value1> CAiiiO
BNE CAi ii1
code
.EXCASE C<test1>]
B<test1> ECiii9 if <test1>
.WHEN <value2> CAi i i1
BNE CAi i i2
code
.ECASE
ECi i i9

The .LEAVE statement will generate a JMP (if not followed
by a <test>) or a B<test> (if followed by a <test>) to a
label which labels the end of the innermost enclosing .IFF,
depth (stack storage will run out before the limit is
reached).

ERRORS.

There are four main errors that can occur when using
the structures. If you have a wrong statement word, e.g.
be reported. This error is also reported if you miss off a
compulsory <test> or use a <test> which is not one of EQ,
NE, CC, CS, PL, MI, VC or VS. The structures use a stack
which builds down from top of memory towards the assembler
generated symbol table which grows up. Each structure uses
two bytes on this stack (except for CASE which uses four)
so only a small amount of stack space will be used unless
you nest structures to any great depth. If however you miss
out one of the structure statements, e.g. .IFF, but leave
in the1 rest of the statements, e.g. .ELSE and .EIF, a
'warning: stack underflow' message may be printed to the
screen. You may also get a large number of **undefined
symbol** and **duplicate symbol** errors in this case.

code
JMP LOiiii if no <test3>

CMP/CPX/CPY <value1>

code
JMP ECiii9 if no <test1>

CMP/CPX/CPY <value2>

code
CAi i i2

329

LISTING.

The Listing produced by the extended assembler will
show the structure statements on a line, listed as if they
were comments, followed by the code they generate on
following lines.

FUTURE ADDITIONS.

The major programming task has been done to convert
the assembler into a macro assembler and this may be one of
the additions made in the future. In addition some way of
generating long branches, e.g.

.IFF <test> LONG B<TEST> Sliiii
JMP EIjjjj
Sli i i i

would be useful since without this **branch out of range**
errors may be reported. Finally it would be useful to have
some way of changing the formatting imposed on the Listing
by the assembler so that the program structure could be
emphasised by indenting the sections of code inside
structures.

PATCHING THE ASSEMBLER.

LOAD the assembler and then enter the extensions (1736
bytes) from $2171 to $2838. Now alter the following
i nstructi ons:
Location old contents new contents
$042D AO 21 AO 28
$042F A2 71 A2 39

This alters the start of symbol table from $2171 to $2839
$043D 20 1A 06 20 37 22

This initialises the locations used by the extensions at
the start of pass 1.

$05 E2 20 1 A 06 20 37 22
This initialises the locations used by the extensions at
the start of pass 2.

330

$0910 4C 72 OF 4C 2D 23
This adds the structure statement words into the assembler.

$1 FOE 20 CF FF 20 B3 22
This replaces the character input routine of the assembler
with that in the extensions part of the assembler.

The extensions for BASIC4 are now in the ICPUG
software library and can be obtained by members via Bob
Wood. Note that the Commodore Assembler must be purchased
via your Commodore dealer if you require it.

— oOo—

REVIEW
AUTO-1 A Club Software Review

It is club software review time again and this issue I
turn my attention to the Merseyside area and Mark Atherton
formerly of Merchant Taylors' School, Crosby in particular.

Most of you with disks and BASIC4 will know that
pressing SHIFT RUN will automatically LOAD and RUN the
first program on a disk. Unfortunately for any other
program on the disk one still has to type DL0AD"PR0GNAME".
Now I like my program names to mean something so they can
be quite long. Even though one can use pattern matching to
save typing it can sometimes take a while to key in the
names of programs I want to RUN.

Mark's AUT0-1 program was the answer to my prayers.
What it does is to read the disk directory and display on
the screen in an easy to read format all the file names
together with a key associated with each file. All one does
to LOAD and RUN a program is to RUN Mark's program and hit
the appropriate key. If there should be more programs than
screen space will allow one just presses the 'space' bar to
view the next set of file names. All very simple and very,
very useful.

331

I have been using the program with a BASIC4 'thin 40'
PET and a D0S2A disk drive. Certainly it would need some
modifications for BASIC2 but I am not sure how it would
react with other BASIC4 PETs or different disk DOS. I have
the program as the first program on all my disks. I can
then RUN any program by 2 key presses- SHIFT RUN and the
file key. Excellent Mark. Any body interested should
contact David Jowett, 197, Victoria Rd. East, Thornton,
Blackpool (Remember SAE).

STOP PRESS:

A version of AUTO-1 also exists which allows an option to
just LOAD a program in addition to the normal LOAD and RUN.
This is very useful when loading machine code to the top of
memory. If the RUN is executed in this case AUTO would RUN
itself!

Any regional groups with some good PET software freely
available might like to send me a copy for review in this
series. My address is as usual, 73, Minehead Way,
Stevenage, Herts. SG1 2HZ. Let the rest of ICPUG know what
you are doing...
k • k rk 'k 'k * • k 'k 'k 'k 'k 'k 'k 'k ~k "k k i c k "k * * 'k ' k ' k ' k k "k 'k 'k * k -k k ' k k ic * * ' k 'k 'k 'k -k 'k "k k * 'k 'k -k k "k * ★ ★

Brian Grai nger.

332

STORAGE TECHNOLOGY UPDATE
By Tom Cranstoun.

Once upon a time there was a standard for 'floppy'
disks, a standard set by IBM (remember them) for 8" floppy
disks. This was such a good idea that everyone jumped on
the bandwagon and produced 1IBM'-compatible floppies. Then
someone invented the 5 and a quarter inch drive. IBM
weren't interested (at the time) and no standards were set.
So computer manufacturers all produced their own disk
formats for 5" floppies (Commodore doing more than most by
providing three different formats!!). Times are changing
and the latest developments are leading toward a 3.5"
floppy disk; hopefully some sort of standards will arise.
The Japanese appear to have different thoughts. The
following article outlines current developments. Micro
Floppies (hereafter called uFloppies) are going to provide
the future in floppy disk design. Twelve major
manufacturers have produced a specification:
1) The /jFloppy will be small enough to fit in a shirt
pocket.
2) It will be plug-compatible with existing products in the
number of tracks per side (either 40 or 80) this enables
existing software and drive controllers to be used.
3) The package will be in a hard shell to provide extra
protecti on.
4) Reliability is supposed to be taking precedence over
compactness.

The above spec has been agreed as the major points by
all manufacturers: major differences occur at the important
end - the media interface. Sony are to produce a device
which rotates at 600 revolutions per minute. The americans
are going for 300 revs. The capacity of these drives will
be tremendous, it is in this area that you can readily see
the advance in disk technology as well as the different
approaches being taken. The American standard proposes one
megabyte (that is one million characters) per side of the
disk (compare this with the 4040 -170K or 8050 -500K).
Whereas Toshiba are promising a drive with 3 megabytes per
side. Hitachi currently reckon on 500K per disk. One thing
is for sure, no-one, not even the. manufacturers, are sure

333

about compatibiLty in the future, which is a great shame as
this would have been the time to review current methods and
produce a cheaper more reliable mass market storage device.

We can be sure that 3.5" uFloppies will be around
offering much more storage than the present 5.25" floppies
but will have to wait for the 1" floppy for a set of
standards!! I have seen a 3.5" floppy system working to a
PET at the Computer Fair in Earls Court last Easter. It had
a lot of promise but for the time being I’ll stick to 4040s.

— oOo—

ROUND THE REGIONS

The highly successful Watford regional group recently
had a demonstration of some business software presented by
Harry Broomhall. Packages covered word processing, accounts
and a 'sheet' modeller of an advanced specification. The
evening was rounded off with a programmers clinic. The
meeting on November 10th hosts Dr. David Annal, our
resident expert on interfacing, and his talk is naturally
on the 'ins & outs of interfacing'.

Robin Harvey and Alison Schofield are hoping to form
an ICPUG regional group in North Gloucestershire, based on
Cheltenham and starting in January 1983, when Alison will
have time to act as group secretary. Interested persons
should contact either R.C.Harvey, 30, Wimbourne Close,
Coombe Glen, Cheltenham, Glos., tel: (0242) 27588 (home) or
Mrs. A.Schofield, 78, Hesters Way Rd., Arle, Cheltenham,
Glos., tel: (0242) 580789 (home).

An exhibition due to be held at the Queen's Hotel,
Cheltenham, on Tuesday, 14th December from 12.00 noon to
10.00p.m. It is hoped to use this to launch the group, PET
and Vic users both welcome.

334

After several set-backs in the continuity of meetings,
the Hampshire region (region C) has been resurrected with
the aid of a couple of Vic enthusiasts, Graham Hunt and
Roger Chessell. Meetings are currently at Graham's house on
the third Wednesday of the month, the address being 70,
Reading Road, Farnborough, Hants. The editor remains as the
regional representative to whom enquiries should be
addressed. Since the venue is in the corner of the region,
being one mile from Surrey and three from Berkshire, a
cluster of attendees from Winchester propose that the
region be reconfigured. This is logical since those from
the depths of Hampshire are some 80 miles from the venue.

A number of 'self-help' groups, particularly of Vic
users, have sprung up and not being affiliated to ICPUG
they are missing out on access to facilities and
information provided by the Group. If you know of any such
groups and can find a spokesperson, do put them in touch
with the regional Group co-ordinator (see inside front
cover).

— oOo—

THINK ABOUT IT...

He who works a lot makes many mistakes; he who does
not work does not make any mistakes; he who does not make
any mistakes will be promoted and richly rewarded___

— oOo—

REVIEW
Beginning COMAL Teachers Copy £ 10.00
By Borge Christensen
Ellis Horwood, Market Cross House, Cooper St., Chichester.

This book on COMAL has been written by one of the
founding fathers of the language. It is aimed at students
programming, probably learning a computer language for the
first time and to that market is a very good book. The
teachers copy could also be used as a self instruction text.

335

The style of the book is to introduce concepts in a
gradual manner with many examples and questions for the
student interspersed in the text. The book assumes that the
programs used in the course are held on a disk. As the
programs are printed in the teachers copy there is no
problem in preparing this disk.

The book has been written for the student using COMAL
on a Commodore computer and although it does not say so, it
also assumes a FAT40 or 8032 in certain examples.

All the basic elements of the language are introduced
by examples starting with printing and listing, going on to
input and reading of data and slowly introducing the COMAL
structures. In passing through the examples such things as
the MOD and DIV functions are introduced. Towards the end
of the book the tempo speeds up and a lot is introduced at
once.

My first impression of this book was that it was going
to be terribly slow to read. However I found it interesting
and the programs introduced were relevant rather than the
usual artificial examples. There seem to be very few errors
although confusion could be raised by what is NOT said. For
example it says in the later exercises that data files can
be on cassettes, but the programs are written as if they
were on disk, with no instructions on conversion. My only
criticism of this book is that not all of the language was
introduced. REF parameters and FUNCtions are examples of
this and the DIM statement was not very thorough.

To sum up a good text for learning COMAL on the CBM
especially if one has had no introduction to programming
before. However it does not introduce the full power of the
language. Perhaps that is just as well with beginners.

B. D.G.

— oOo—

ANOTHER THOUGHT

No man is useless - he can always serve as a bad
example.

— oOo—

336

DISK FILE - SECTOR 3
By Mike Todd.

Well, at last the DISK FILE is back again! This time I
will explain the interface chips used by the Floppy Disk
Controller and also how the FDC software reads and writes to
the disk. The article assumes that you've read at least the
previous DISK FILE and also that you've got the diagrams on
pages 156/7 of the May Newsletter in front of you.

I will also repeat my warning that, what I'm talking
about relates to D0S2.1 - although all the other DOS's are
similar, they may not use exactly the same coding at the same
place. I have also included some snippets of the actual code
used in the FDC, together with the addresses at which it's
located. This could be useful if you're trying to find your
way around the FDC ROM, assuming that you've actually managed
to get a dump of i t !

I've also prepared memory maps of the interface chips
used by the FDC. A 6522 at $40-$4F and a 6530 at $80-$8F.

$40 contains the main motor controls - bits 4/5 are used
to turn the drive motors on and off (on=0, off=1) and bits 0-
3 control the head stepper motor. By cycling the appropriate
two bits through 00-11 or downwards from 11-00 the head can
be made to step in one direction or the other. The drive
needs a finite time to get up to speed and an interrupt
routine handles the necessary flags to indicate that this has
occurred. The stepper motors are a bit more complex and all I
will say at this stage is that the interrupt routine steps
each head one cycle on each interrupt according to a control
register which determines both the direction and extent of
the head's movement.

$41 is the byte received from the disk decoder ROM (see

Diagram 2). This byte is latched into the register only when
a complete byte has been read, setting the READY (CA1) flag
at the same time.

337

< CD
cc cr

< Q CD Q
C L O C L Q

DOS 2 FDC INTERFACE
80 - CN CO v j I f) I D Is 0 0 CD < CO U

'W'
_C

CD <
CD < cr cr cr
CC CC O o uO o Q O C L

o
cc

cr
LU

-<r
CN
o
'T

o
sr

cc cc
Li_ IxJ

'— C N (Y) ' s f L n t D ^ O O C T) < 2] (J Q l i l L .

£7

M
il

e
s

-T
a
il

M
X

-
(e

S
ra

&
n
u
’■
Ak

â

9r
o

U
V

k
i
ba

A
.

338

Timer 1 of the 6522 is used as a time-out timer while

searching for SYNC pulses, and timer 2 is not used at all.

The control register at $4C handles the R/W and MODE
lines as well as determining the polarity of the ERROR and
READY pulses. Bits 0 (=0) and 4 (=1) should always be
preserved if this register is altered.

M0DE=C) for normal writing (bits 321 = 110) and M0DE=1
for writing a SYNC pulse (bits 321 = 111). To select WRITE
mode, R/W=0 (bits 765 = 110) and for READ, R/W=1 (bits 765 =

111).

Although the interrupt line of the 6522 is not
connected, use is still made of two of the interrupt flags
for ERROR and READY, although the ERROR flag is normally
disabled during a WRITE operation. The actual flags are
detected using bit 7 of $4D which is 1 if either of these
flags is set. The flags are cleared by a read of the
appropriate data register.

In the 6530, register $80 is the byte to be written to
the disk and is latched out of the register and into the
write logic by the READY signal. Once this has been done, the
next byte can be placed in the register.

The second I/O register of the 6530 is at $82 and has
several functional bits. Bit 6 is normally a 1 until a SYNC
byte is received (that is 10 or more consecutive 1 's on the

disk) when it goes to 0.

Bit 3 is used to detect if the write protect notch is
covered up and is 1 if it's covered and a write operation is

not allowed.

Bits 1-2 control the timing according to which zone the
disk is operating in. Referring to the table on page 159 of
the May Newsletter, you will see the zones listed and these
two control bits correspond directly to the zone number.

339

The read and write electronics are shared between the
two drives and bit 0 of $82 selects which of the two drives

are required.

On the circuit diagram for the 8050, bit 4 of $82 is
also available, although not actually connected. It is
designated as ODD HEAD and presumably is designed to cope
with the possibility of double sided disks in the future.

The only other register in the 6530 used by the FDC is
the timer. Although there is only one timer in the 6530, it
has several control registers, each having a different
scaling factor for the count down. The FDC uses the 1/1024
count down which generates an interrupt when it reaches zero.
The clock is 1MHz, which means that this counter will
decrement every 1024/1000000th second, and the usual timing
constant is 15 - giving an interrupt approximately 65 times
per second. This is used to control the head stepping and

motor "up-to-speed" delay.

Before reading or writing, it is assumed that the head
is on the correct track on the disk, the drive has been
selected, the motor is running at full speed and the correct
zone has been selected.

Once this is done, the appropriae read or write mode
must be selected in $4C. The coding used is as follows:

LDA #$FC ; 5M11 1 110 0 - READ mode
STA $4C

or LDA #$DE ; 51110 1 111 0 - WRITE SYNC mode
STA $4C

or LDA #$DC ;*110 1 110 0 - WRITE NORMAL mode
STA $4C

To read a byte, the READ mode is selected as above (in
fact the FDC is normally left in READ mode) and the disk must
be searched for a SYNC pulse which will mark the start of the

340

read operation. This is done using bit 6 of $82 and a loop is
set up. waiting for a 0 in this bit.

However, if there were no SYNC pulse on this track (if
there's no disk in the drive or the disk is unformatted) the
loop would continue indefinitely and the FDC would hang up.
To avoid this, a time out delay is set up and if no SYNC is
received within the time limit the FDC will abort with a "NO
SYNC" error. The actual coding used is as follows:

FF3F LDA #$D0
FF41 STA $45 ;set timer

FF43 LDA #$03 ;an irrelevant instruction

FF45 BIT $45 ;check for time out

FF47 BPL ERROR ;error if timed out

FF49 BIT $82 ;check for SYNC
FF4B BVS $FF45 ;loop if not present

FF4D BIT $40 ;reset ERROR flag
FF4F BIT $41 ;reset READY flag

Note the two BIT instructions which are used
the ERROR and READY flags.

Once the SYNC pulse has been found, the data byte
doesn't start shifting until the sequence of 1 's is finished
and the first bit of data is being read (this occurs at point
3 in Figure 2). At this point, the first byte of data is
read, and the READY flag is set when the byte is completed.
The READY flag is checked and the read is performed:

FF51 BIT $4D ;is READY?

FF53 BPL $FF51 ;loop until it is
FF55 LDA $41 ;get the byte and reset READY flag

The code at this location is actually reading the first
byte following the SYNC pulse which is a special identifier
byte. As you may recall, the first byte following the SYNC
pulse must have a 0 in the first bit position since it is

341

this which indicates the end of the SYNC pulse and initiates
the data shifting process. This is achieved by arranging that
the first byte is a special identifier byte (either $08 or

$07) and the first bit will therefore always be 0.

Subsequent bytes are read using the same general idea
and as many bytes as required can be read, although in
practice this is normally limited to 256 bytes.

Writing is a little more difficult and the first check
will be to see if the write protect notch is covered:

FDF4 LDA $82
FDF6 BIT #$08 ;is write protect on?
FDF8 BEQ $FDFD ;continue to write if not
FDFA JMP $FF08 ;otherwise, jump to error routine

When formatting a disk under D0S1.2, the write mode is
selected BEFORE checking for the write protect. If the write
protect was then found to be on, the error routine failed to
turn the write mode offl This meant that the erase portion of
the head in question was left on and anything passing under
the head would be erased.

Since the read mode didn't reset to read mode either,
the disk was well and truly destroyed - even if the other
drive was used. There are other quirks in D0S1.2 but this was
probably the one which had the greatest potential for
catastrophy.

To write a single byte to disk, the FDC uses the similar
logic as for a read. That is, it waits for the READY flag to
indicate that the byte that is currently in $80 has been
taken out and is being written, and then places the new byte
into $80. The READY flag must then be reset:

FF79 BIT $4D ;is READY?
FF7B BPL $FF79 ;loop until it is
FF7D STX $80 ;send next byte to disk
FF7F BIT $41 ;clear READY flag

342

Before writing data, the SYNC pulses must be written -
at least ten consecutive 1' s must be written and this is done
by, first selecting WRITE SYNC mode, writing three SYNC
bytes, restoring the normal WRITE mode and then writing the

identifier byte:

FDFD LDA #$10
FDFF
a

STA $4E ;disable the ERROR flag during write

•

•

FE11 LDA #$DE
FE13 STA $4C ; select WRITE SYNC mode

FE15 LDA #$DC ;get ready to select normal WRITE mode

FE17 LDX #$FF ;X=SYNC byte

FE19 JSR $FF79 ;write one
FE1C JSR $FF7 9 ;and a second
FE1F JSR $FF79 ;and just to be sure, a third

FE22 BIT $4D ;is READY?
FE24 BPL $FE22 ;wait for last SYNC byte to be taken
FE26 BIT $41 ;reset READY

FE28 STA $4C ;select normal WRITE mode
FE2A LDA #$07
FE2C STA $80 ;send identifier byte

FE32 BIT $4D ;is READY?
FE34 BPL $FE32 ;loop until it is
FE36 BIT $41 ;reset READY

Now the data bytes can be written as required and the
WRITE mode is turned off immediately the data is written.

None of this actually explains how the data is actually
organised on each track, which is something which I will
cover next time.

343

I will also include a RAM usage list and details of the
ROM routines together with a brief mention of how the
Interface processor actually communicates with the FDC.

Finally, some time ago (page 121, Sept 1981) I described
a technique for trying to recover from a 23 READ ERROR. At
that time I said that I'd give details of how to recover from
a checksum error in the BAM since an error in this block will
prevent the disk from initialising and so result in ID
mismatches when trying to recover the corrupted blocks.

The easiest way to do this is simply to format a new
disk using the same name and ID as the corrupted disk and
then initialise this. Then replace it in the same drive by
the corrupted disk - the DOS still thinks that its got the
same disk, which is now initialised.

Perform the U1 and U2 commands on track 18, sector 0 and
this will correct the checksum error. Of course, there are
likely to be corruptions on this block and so a sensible move
would be to copy all files across to a fresh disk.

If there are checksum errors in the directory, it may be
very difficult to copy all the files, but at least most of
the disk should be recoverable.

Be careful not to write new files to a corrupted disk,
especially if the BAM has been corrupted since it is possible
that the write could erase some of the data already on the
disk.

I have been asked if it is possible to recover from a 27
READ ERROR (checksum error in header). The answer is NO. The
header is used to identify the block about to be read and is
put on the disk by the initial formatting and stays there for
the life of the disk - it is not possible to read it back and
then re-write it. I can envisage techniques for recovering
from this sort of error, but it would require some
sophisticated machine code programming within the disk unit
itself.

— oOo—

344

COMMODORE'S LATEST MACHINES
By J.I. Meardon

The first reviews of the Commodore 64 have now
appeared (Popular Computing Weekly 2.8.82, Personal
Computing Today - Sept. '82, and Your Computer - Oct. '82,
and Computing Today - Nov. ’82), as well as advertisements
from Commodore and at least one dealer (Personal Computer
World - Oct. '82 and Daily Telegraph 5.10.82). None of the
reviews can be regarded as in-depth evaluations of the
Commodore 64. They are, however, worth reading as general
overviews of the 64's capabilities.

With the present highly competitive and volatile
market situation, company plans can change almost
overnight. However, at the moment it seems that the
existing 4000 & 8000 CBMs, together with the Vic-20, will
be joined by four new machines, or series of machines,
the Max, the Commodore 64, the 500-series, and the
700-series. Eventually the 4000 & 8000-series will probably
disappear, but no cut-off date has been announced. The
future of the Vic-20 remains an unknown quantity, but the
recent launch of VICSOFT suggests that the machine will be
with us for some time yet.

The new machines have certain features in common:
* 40 x 25 character screen display (700-series 80 x 25)
* 320 x 200 pixel hi-res graphics
* Full 16-colour capability (not 700-series)
* KERNAL jump table
* Identical graphics, games, and sound facilities - a

consequence of using the same support chips for the central
mi croprocessor.
The Common Chip Set.
Apart from the 700-series, where the 6567 is replaced by a
special CRT control chip, all the machines have the new
6567 video chip and the 6581 Sound Interface Device (the
so-called SID chip), together with the 6526 Complex
Interface Adapter (CIA) - this latter replacing the
well-known 6522 found in existing machines. An additional
interface chip, the 6525, is found in the '64 and machines
of the 500 & 700-series, supplemented on the last two by a
6551 RS232 controller.

345

The main features of the 6567 and the 6581 have
already been discussed in the September issue of this
Newsletter (pp 232 - 233) by Mike Todd.

The Commodore Max.

This is the smallest of the new machines. Originally
it was called the Ultimax or Vic-10. It is essentially a
games machine with conversion capability to a full colour
40-column microcomputer or a music synthesizer. The CPU
chip fitted to the Max is the 6510. This chip is
6502-compatible, retaining the same machine codes but
having certain additional features.

To convert the Max to a micro computer, a plug-in
BASIC cartridge, which also provides 2.5K of RAM is needed.
This cartridge, like all such cartridges for the Max, is
fitted with an edge-connector whose pitch is smaller than
that of the Vic-20 plug-in modules.

The Max BASIC appears to be a version of BASIC 2.0
without the facility for dimensional arrays and trig
functions. When used as a computer, audible feedback of key
depression is provided by a 'keyboard' sound generated by
BASIC. Depression of the character generator is accompanied
by a bell-like sound.

The keyboard of the Max is of the flexible membrane
type; printed overlays being available for games, music,
etc. Layout of the keyboard is standard QWERTY with no
separate numeric pad.

A cassette port is provided which will interface to
the standard CBM cassette player. Facilities are also
provided for the connection of joysticks, paddles, etc.

The Commodore 64.

Using the same chip for the CPU as the Max, the
Commodore 64 comes with 64K of on-board RAM. However, only
38K of this is accessible from BASIC, or 54K from machine

346

code. The 20K ROM comprises 8K BASIC + 8K KERNAL (both
identical to that found in the Vic-20) plus a 4K character
generator.

The graphics, games and sound capabilities are exactly
the same as on the Max, but the keyboard is that of a
Vic-20. I/O ports include: cassette interface; a serial
interface; 8-bit user port and memory expansion/cartridge
port, together with facilities for the connection of
joysticks, paddles, etc.

New features are the ability to accept a second
processor and a claim that the memory map can be
reorganised to allow software written for other Commodore
machines with 40 columns to be run.

The Commodore 500 S 700 Series.

Once again the same graphics games and sound
facilities are found on these machines as on the '64 and
the Max. The CPU, however, is a 6509. This gives the
possibility of memory expansion in excess of 750 Kilobytes.

Ports provided include IEEE-488 (enabling existing
Commodore peripherals to be used), RS232C (for specialised
printers and communications applications), an 8-bit user
port (for scientific applications), and a cassette port
which doubles for tape interfacing and security devices. A
second processor slot opens up the possibility of operating
the machines under other systems such as CP/M, whilst a
cartridge slot is provided to allow ROM-based software to
be used.

Although differing slightly in physical appearance,
the keyboards of both series of machines have a full QWERTY
layout plus in programmable function keys (accessible from
BASIC or machine code), the usual four cursor control keys,
and a separate calculator key-pad. On the 700-series, the
keyboard can be detached from the main housing.

Machines in the 500-series need a separate monitor (or
TV) whilst the 700-series of machines have an integral
monochrome monitor (P39 phosphor) with long retentivity.
This monitor, which can be tilted and swivelled, is fitted

347

with an anti-glare screen. To control the monitor a 6845
chip is used, this chip is the same as the one found in the
8032, but the built-in facilities for hi-res graphics may
be utilized.

On-board RAM varies from 64K (500-series only) to 128K
& 256K.

On the 700-series twin disk drive units are built into
the main processor cabinet beneath the screen. These drives
are linked directly to the main p.c.b. using DMA (Direct
Memory Access) which results in enhanced disk access
speeds. The DMA facility may also be used for fast access
to large capacity storage devices - such as Winchester disk
drives.

New Peripherals.

The new peripherals are unashamedly up-market and are
priced accordingly.

Disk drives being added to the existing range are the
8250 (a dual drive floppy disk unit), the 9060 (a 5Mb hard
disk drive) and the 9090 (a 7.5Mb hard disk drive). All
three new drives are, like the existing drives, intelligent
IEEE-488 devices.

The printer range is being enhanced by the addition of
the 8300P (a daisy wheel printer based on the Diablo 630).

The 8250 drive, which looks both internally and
externally very similar to the 8050 Micropolis drive,
offers twice the capacity of the 8050 on a double-sided,
double-density 5-1/4 inch diskette. The diskette is
arranged with 77-tracks per side, switching between sides
being transparent to the user. The drive is 8050 compatible
- the initial illegal track and sector message generated
when using 8050 disks should be ignored - but relative
record files cannot be directly interchanged without the
use of a special program. Some of its features are the same
as the 8050 (e.g. max directory entry 224, bytes/sector
256). The diskette has an unformatted capacity of 1Mb per
drive (950Kb after formatting).

348

The 9060/9090 drives use Tandon hard disk mechanisms
(9060 - 2 platters, 4 heads; 9090 - 3 platters, 6 heads)
and recognise all standard BASIC 2.0 and 4.0 commands. They
will run all existing software which utilizes only one
drive. Both drives dynamically allocate the block
availability map and the directory areas.

The 9060 has an unformatted capacity of 6.38Mb (5.01
after formatting), whilst the 9090 has capacities of 9.57Mb
(unformatted) and 7.52Mb (formatted).

The new printer (8300P) is a letter quality
bi-directional daisy wheel printer designed for use with
word-processors. It is fitted with a 320-character buffer.
Operating at a print speed of 40 characters per second,
print wheels (metal or plastic) are available for pitches
of 10, 12 & 15 characters per inch - the latter offering
the possibility of proportional spacing. Friction paper
feed is standard, but tractor feed is available as an
alternative if required. A single-sheet feeder is scheduled
for later development. Unlike the Diablo 630, the 8300P is
converted to use the IEEE-488 interface (the Diablo
normally uses the RS232C) and cannot auto-emphasize or
underline, except under software control.

— oOo—

HELP REQUIRED

Are you a 9000-series user ? Help is needed in getting
a copy of a Waterloo tutorial disk to run some APL program
files. Chapter 9 of the Micro-APL manual states "There are
four types of files APL sequential, BARE sequential,
relative and program.". There then follows a definition of
the first three, which is fine, the "A program file is a
special kind of BARE-sequential file normally used to
contain programs and workspaces. As such, it is not usually
accessed with the techniques discussed in this chapter ! I
am having difficulty finding out where program file access
routines are discussed. Any information would be welcome,
contact A. W. Fisken, 23, Warwick Road, Altrincham,
Cheshire, WA15 9NP. Tel: 061-928 4958.

— oOo—

349

REALISATION OF SWITCHING FUNCTIONS USING MULTIPLEXERS

Here is an interesting program for electronics buffs.
You can easily multiplex many switching functions that
would otherwise require several gates and associated
wiring. To operate such a multiplexer, though, you must
know how to configure it to obtain each desired output. The
BASIC program meets this need, accepting the minterms from
a KARNAUGH MAP and printing the data input configuration
required for the desired function.

The program assumes that logic variable A is the data
input; it labels the remainder as B,C,D,E.....H for address
line selection. Suppose for example that the function
required has four inputs and is defined as :

f(A,B,C,D)=ABCD+BC+ACD+ABD
First of all map the function:

(For the non-technicaI: A Karnaugh Map shows the
switch configuration for each desired output, and is an aid
to producing a minimal logic circuit). Now you can enter
the minterms using the Sigma convention (figure 2 shows
numbering for 2 x 2 map).

The Program:
100 REM
110 REM * MULTIPLEXER REALISATION OF SWITCHING FUNCTION *
120 REM
130 REM

350

140 DIM S (65),1(65)
150 A$="ABCDEFGH"
160 PRINT"<clrX2dn>REALISATI0N OF

WITH MULTIPLEXERS "
SWITCHING FUNCTIONS

170 PRINT"HOW MANY INPUT VARIABLES ARE THERE :
180 INPUT N
190 IF N<2 THEN 170
200 IF N>6 THEN 170
210 PRINT"ENTER THE FUNCTION AS THE MINTERMS"
220 PRINT"ASSOCIATED WITH THE SUM OF PRODUCTS"
225 PRINT"FORM OF THE FUNCTION"
230 PRINT"ENTER -1 WHEN FINISHED"
240 REM
250 REM INITIALISE VECTOR S TO 0
260 REM
270 FOR K =1 TO 65:S(K)=0:NEXT
280 REM
290 REM PLACE MINTERMS IN VECTOR S
300 REM
310 FOR K=1 TO 2tN
320 INPUT "MINTERM ";B
330 REM
340 IF B<0 THEN 400
350 IF BX2tN-1) THEM PRINT"ERROR

GOTO 320
NO SUCH MINTERM ! ":

360 REM
370 S(B) =1
380 NEXT
390 REM
400 REM DETERMINE MUX INPUTS
410 REM
420 FOR K=0 TO 2t(N-1)-1
430 IF S(K)= 1 THEN 490
440 REM
450 REM TO DECODE I(K)
460 REM
470 I(K)=0:IF S(2t(N-1)+K)=1 THEN I (K)=2
480 GOTO 500
490 I(K)=3:IF S(2t(N-1)+K)=1 THEN I (K)=1
500 NEXT
510 REM

351

520 REM OUTPUT RESULTS
530 REM
540 PRINT"THE DATA SELECTOR INPUTS TO THE MUX ARE:"
550 FOR K=2 TO N:PRINTMID$(A$,K,1),
560 NEXT:PRINT
580 PRINT"MUX DATA INPUTS ARE ;"
590 FOR K=0 TO 2t(N-1)'-1
600 PRINT"I(";K;
670 IF I(K)=0 THEN PRINT"GROUND"
680 IF I(K)=1 THEN PRINT"LOGIC 1
690 IF ICK)=2 THEN PRINT"A"
700 IF 1 0 0 = 3 THEN PRINT"A NOT”
710 NEXT
720 END

Sample Run for Map in figure One.

REALISATION OF SWITCHING FUNCTIONS WITH MULTIPLEXERS
HOW MANY INPUT VARIABLES ARE THERE : ?4
ENTER THE FUNCTION AS THE MINTERMS
ASSOCIATED WITH THE SUM OF PRODUCTS
FORM OF THE FUNCTION
ENTER -1 WHEN FINISHED
MINTERM
MINTERM
MINTERM
MINTERM
MINTERM
MINTERM
MINTERM
MINTERM

0
1
3
4
8
9
15
-1

THE DATA SELECTOR INPUTS TO THE MUX ARE:
B C D MUX DATA INPUTS ARE : -
I(0)=LOGIC 1
I(1)=LOGIC 1
I(2)=GROUND A
I(3)=A NOT
I(4)=A NOT
I(5)=GROUND
I(6)=GROUND
I(7)=A

#/(6cD)

Circuit diagram of multiplexer connections.

CLEARSONS LTD.
Cash & Carry Computer

and
Word Processing Supplies

A ll types of computer stationery

Listing paper Ex-stock

Free quotation for your letterheads, invoices, statements etc.

Appoin ted dealer for

C O M M O D O R E
micro computers
JUST LIFT THE PHONE

Farnborough, Hants

518022 & 518717

30 Camp Road, Farnborough, Hants.

353

TECHNICAL TIPS

Disk BUG ~ 2031 Drive.

A fault when using BASIC 4.0 DIRECTORY or CATALOG
commands in conjunction with the 2031 single disk drive has
been reported by Commodore. A corrupted directory listing
will occasionally occur. If this happens take another
directory listing to ensure data integrity. An alternative
method is to use the 'wedge' command >$0 or BASIC 2.0's
L0AD"$0"<ret> LIST<ret>, as these appear to be OK!

BASIC 2.0 and 2031 drives.

There is an error in BASIC 2.0's IEEE handshaking
routine, detailed in CBM PROFESSIONAL COMPUTER GUIDE (a
successor to PET/CBM PERSONAL COMPUTER GUIDE) page 362,
this states that the only difficulty will be with
non-Commodore devices. Unfortunately it affects the 2031
drive; occasionally characters are lost during GET# and
INPUT# commands, ST gets screwed up. There are two ways to
fix this bug:
1. Upgrade to BASIC 4.0; this is OK!
2. Change the offending ROM;

ROMs are available from Skyles Electric Works including
28-^pi n (i.e. small keyboard PET) - A UK source may be
SUPERS0FT of 10-14, Canning Road, Wealdstone, Harrow,
HA3 7SJ.

Bad news for 2031 owners.

The 2031 may appear to be a single 4040 drive with all
the features of the 4040, indeed the manual may lead you to
believe this. Unfortunately the 2031 is a 4040 'sawn in
half'. It has half the RAM of a 4040 - therefore half the
channel buffers, which is a restriction on the number of
files that can be opened on the disk. For instance a 4040
can easily have two Relative Files opened at once; the 2031
will struggle. The maximum number of sequential files open
at once is similarly halved. This will probably not affect

354

many 2031 owners but you should be aware that not all PET
4040/using-one-drive programs will work on the 2031.

More on 2031 S 1540 (Vic drive).

Both the 2031 and 1540 drives issue an IEEE reset
signal when switched on thus resetting any other device
(except the computer) on the bus. It is recommended that
you turn on the computer first, then the disk drive then
any other peripherals. If you wish to switch on or off the
drives whilst other devices are connected then disconnect
disks first. This will ensure that any softcoded secondary
addresses, etc., are still valid.

PS for 2031 or 1540 owners.

The save-with-replace bug on 2040, 3040, 4040 drives
has never been cured, it is liable to be present on the
1540 and 2031 drives as well. Never use the
save-with-replace (e.g. SAVE"30:PROGRAM",8) as it is
possible to corrupt data and pointers on the disk. You
should always SCRATCH the old programs first then use a
resave.

SUPERPETS.

Many of the SuperPETs/9000-series (this is the 8032
with access to a 6809 processor at the flip of a switch)
sold in the UK have not been fitted with a retrofit kit to
enable the 6502 to access ROM slots UD11 and UD12. To check
your SUPERPET look at the number of switches on the lower
right hand side of the case. If you have four then
everything is all right. If there are only two then contact
your dealer who should arrange to have the kit installed.

Did you know that the SUPERPET has the best
implementation of APL available on any 8-bit micro ?
(neither did I; but John Collins of Commodore's Technical
Department assures us that it has). To support the use of
the SuperPET in APL a communication software package,
written in APL and 6809 assembler, called KEYC0MM should
now be available from your dealer. KEYC0MM enables the

355

transfer of APL programs between the SuperPET and a
mainframe (in either direction). These programs can be
saved to disk for future running. Alternatively one may
develop programs on the SuperPET before running on the
mainframe.

Are you confused about ROM/RAM in the SuperPET/8096
machines; I know I am.

There is an extra 64K of RAM in both of these beasts,
each of which can run standard 8032 software BUT NOT one
another's special software. The 8096 has four banks, each
of 16K, two being alternates from $8000 to $BFFF and the
other two being alternates from SC000 to $FFFF. I wonder
how long it will take some company to produce a 64 emulator
for the 8096!! The SuperPET has sixteen banks each of 4K,
which are alternates from $9000 to $9FFF - with only one
bank being operative at a time. Waterloo languages are
loaded in these 4K blocks.

8096 STUFF.

OK so you've got that wonderful big 96K PET, you've
got lots of nice machine code software to run in the 96K
but can you access it from BASIC ? The answer is usually NO
unless you are a machine code wizard. Now there is a
product to help !

LOS which stands for Loadable Operating System runs on
an 8096 and provides 32K for BASIC programs and 32K for
variable storage. LOS is also loaded into RAM. In addition
to this larger memory space for BASIC, LOS also adds PRINT
USING, 0N/ERR0R/G0T0, an improved LIST command and
TOOLKIT-like commands such as AUTO.

Chaining of programs is supported (as if 96K of RAM
were not enough!!). LOS has an RRP of £ 100.00 and really
expands BASIC's horizons.

T.C.
— oOo—

356

SOFTWARE HEADERS

The following text gives
information for ICPUG software:

the standard header

1
2 REM"PR0G INFO
3 REM"VERSION
4 REM"TYPE
5 REM"SOURCE
6 REM"AUTHOR
7 REM"DATE WRIT. -
8 REM"AMEND„
9 REM"MACHINE REQ -
10 REM"SIZE
11 REM"PERIPHERALS-
12 REM"LANGUAGE
13 REM"L0AD ADDRS -
14 REM"STATUS
15 REM"DESCRIPTION-
16 REM" READS DISK
17 REM" AND PRINTS
18 REM
19 REM"LETTER A OPTIONS FOR MACHINE :-

DIRECT PRINT
2.4
UTILITY
UNKNOWN
UNKNOWN
?
NONE
ANY PET
SMALL
DISK
BASIC
1024
PUBLIC

[DEFAULT]
[DEFAULT]
[DEFAULT]

[DEFAULT]
[DEFAULT]
[DEFAULT]

DIRECTORIES
THEM ON A PRINTER

i m u it if i m n m i ti ii it ii i i n ii m i ii ii n r r 11 u n ii m n ri n

2
3
4

20 REM"
21 REM"
22 REM"
23 REM" 8
24 REM" A
25 REM" B
26 REM" C
27 REM" U

2000 MACHINE (BASIC 1)
3000 MACHINE (BASIC 2)
4000 MACHINE (BASIC 4)
8000 MACHINE (BASIC 4)
3000 MACHINE UPWARDS
3000 & 4000 40 COLS ONLY
4000 SERIES UPWARDS
UNIVERSAL

28 REM"LETTER B OPTIONS FOR STORAGE :-
29 REM" C - CASSETTE NEEDED
30 REM" D - DISK NEEDED
31 REM" 0 - NOTHING REQUIRED
32 REM”LETTER C P = PRINTER REQUIRED
33 REM" 0 = NO PRINTER REQUIRED
34 REM"LETTER D D = DOCUMENTATION AVAILABLE
35 REM" 0 = NO DOCUMENTATION
36 REM DIRECTORY PRINT V-2.4 13-08-81 ARM

— oOo—

357

17) LOOP is a new structure introduced on 1.02 and the
COMAL board. A set of instructions enclosed by LOOP and
ENDLOOP will execute continuously. Obviously there must be
a way out of the loop. This is by an EXIT command (or
possibly EXITIF command, as this may be implemented instead
in the final version).

LOOP
A$=KEY$
IF A$="A" THEN EXIT (or EXITIF A$="A")

ENDLOOP
will wait until 'A' is pressed.

18) LIST will support the option:
LIST PROCNAME

this will only list the procedure PROCNAME. Pressing the
'space' key will pause listing until pressed again. If
LISTing to a file, version 1,02 will expect a drive number
as part of the file name. These options are not supported
by 1.01. LISTed files in 1.01,1.02 and the board COMAL will
be sequential files rather than PR6 files as in 0.11.

19) NULL is as for 0.12 described last Newsletter.

20) OBJ LOAD "FILENAME" will load the file FILENAME into top
of memory and lower COMAL pointers accordingly. One can
load from tape by adding a unit number (,1).

21) OPTION 9*4096 will recognise the COMAL-compatible
machine code procedures written in ROM starting at $9000.
OPTION can be used to access any start address, so machine
code procedures can be written, loaded with 0BJL0AD and
recognised via OPTION. Unfortunately I have not seen any
instructions on how to implement machine code procedures to
use with this powerful facility.

22) PRINT USING is fully supported by these COMAL versions.

23) RENUM is extended:
RENUM 500; 1000,5

will renumber lines from line 500 to the end of the program
starting line 1000 in steps of 5. This extension is not
implemented in 1.01.

358

9) ESC was described for 0.12 Last Newsletter.

10) EXIT is described under the LOOP command. It is not
supported by 1.01.

11) FUNC was described for 0.12 last Newsletter. It is not
supported by 1.01.

12) GETS(1,6) will get 6 characters from the logical
file number 1 which has been previously opened for READ.
One can GET characters from the keyboard by using a file
number of 0 (which need not be opened). Note that at least
one character must be returned. Use KEY$(q.v.) if no key
press is a possibility. I am unclear as to whether this
command is supported by 1.01. GET$ certainly exists in 1.01
but it may act like KEYS.

13) GLOBAL is provided in 1.01 only and allows a CLOSED
procedure to use variables from outside. To do this they
are defined as GLOBAL inside the procedure.

PROC TEST CLOSED
GLOBAL VAR1,VAR2
m m m m m

will allow the procedure to use VAR1 and VAR2 which
are defined outside the procedure.

14) IMPORT is the equivalent of GLOBAL in 1.02 and the
COMAL board.

15) INTERRUPT PROCNAME will execute the procedure PROCNAME
if a signal is sensed on the SRQ line of the IEEE bus.

16) KEYS will return the last key typed. If no key is
pressed CHR$(0) will result, NOT the null string. This is
not supported by 1.01 (unless GETS is the equivalent).

359

COMAL FOR THE 8096

In this article I want to talk about the additional
COMAL commands available in the 8096 versions of COMAL.
Unless stated otherwise they apply to versions 1.01, 1.02,
and the COMAL board version. Version 1.02 represents the
full COMAL implementation.

1) It is now possible to say PRINT AT 5,16: SALARY
This will print the value of SALARY starting at row 5,
column 16. This can also be combined with USING as e.g.

PRINT AT 5,16: USING "####.##": SALARY
The AT command is not available in 1.01.

2) BASIC is identical to 0.12 in that a warm reset is
carried out. It assumes a BASIC4 machine so would not be
valid with a COMAL board in a new ROM PET.

3) The CAT command has been extended to a full
specification as follows:

CAT [<drive>HII,<unit>] [<pattern>]
An example is CAT 0,9 "COM*" which will display all files
beginning COM from drive 0 of disk unit 9. This extension
is not available in 1.01. Hitting the space bar will pause
the listing.

4) CURSOR row,col moves the cursor to the given row and
column.

5) DEBUG will jump to monitor, but the routine has a bug in
it so you are not advised to use it.

6) DELETE "0:FILENAME" will scratch the file FILENAME from
drive 0. The drive number must be given for the command to
work. This command is also supported by 0.12.

7) ENDFUNC was described for 0.12 last Newsletter. It is
not available in 1.01.

8) ENDL00P is described under the LOOP command. It is not
supported by 1.01.

360

24) RESTORE LABEL will restore the DATA pointer to the
first DATA item after the line labelled LABEL.

25) RETURN is as defined for 0.12 in the last Newsletter.

26) SAFE will make a program unlistable. I am not sure if
this is implemented in 1.02. In my opinion it shouldn't be
implemented at all !

27) LOAD, ENTER, LIST, SAVE to tape are supported by these
COMAL versions.

28) SETEXEC is as described for 0.12 last Newsletter.

29) SETTIME 123 will set the jiffy clock to 123. This is
only available on 1.01.

30) SPCS is supported by these COMAL versions and acts
like the BASIC equivalent.

31) STATUSS is similar to DS$ in BASIC4. In version 0.11 or
0.12 STATUS acts like PRINT STATUSS.

32) STOP "MESSAGE" will print the text 'MESSAGE' when the
STOP command is executed. This is not supported by 1.01.

33) STRS, the BASIC function, is supported by these COMAL
versi ons.

34) TIME holds the value of the jiffy clock. The 1.01
SETTIME is mimicked in other versions by TIME 123.

35) TO can be used for readability in the LIST command on
1.02 or the COMAL board:

LIST 10-266 TO "FILENAME" is identical to
LIST 10-266,"FILENAME"

36) TRAP is as described for 0.12 last Newsletter.

37) VAL and VERIFY are exactly as the BASIC equivalents.

361

38) READ FILE, WRITE FILE, INPUT and PRINT to random access
files are supported.

39) COMAL uses file numbers 1 and 255 for its own use
(1 for disk, 255 for printer) so do NOT use these numbers
in your programs.

As you can see from the above, these versions of COMAL
introduce all the missing items from the earlier software
versions. They also provide some very useful extensions and
further enhance the suitability of COMAL over BASIC. While
the COMAL board is not cheap it certainly will provide a
much better programming language than the original BASIC
while still allowing BASIC to be used when required. By the
time you read this I should have version 1.02 for 8096
computers available on 4040 or 8050 disks. Send a disk and
return postage to my usual address if you want a copy - 73,
Minehead Way, Stevenage, Herts. SG1 2HZ.

Brian Grainger.
— oOo—

PI WITH THE BUSINESS KEYBOARD

Users of machines with the business keyboard, as on
8032 models, may find the lack of the pi-function a
disadvantage. Actually the function isn’t missing, it's
just that the symbol does not appear on the business
keyboard.

The following is the technique that I use to develop
programs that are to contain pi: first clear the screen,
then enter:

<dn>P0KE32788,94 (the POKE code for pi)
<hcsr>0 REM <cr> (enter line 0)

now line 0 of the program contains pi, so that when pi is
required in a line simply LIST0 and screen edit the line
to, for example, 150 Y = R * SIN(7T * X)

At the end of program development line 0 could of
course be deleted. Finally pi can be produced in output by
PRINT CHR$(255).

R. D. G.
— oOo—

362

SHOP WINDOW

Vic-20 users struggling to find a cheap printer may
care to consider the Amber 2400 model aimed at the home
computer market. It features a range of serial and parallel
input capabilities as standard to interface with as many
different computer makes as possible. The printer is
unusual in having four print solenoids, oscillating from
side to side, and each covering a quarter of the paper
width. The paper then advances one dot height to form the
next part of the character. The printer can handle
continuous graphics and costs £ 69.95. Full details are
available from Amber Controls Ltd., Andover, Hants.

The Tandem expandable expansion system for the Vic-20
costs £ 34.95 and gives 1 + 3 expansion slots for Vic
cartidges. No additional power supply is required. Contact
Stonechip Electronics, Unit4, Hoskins Place, Watchetts
Road, Camber ley, Surrey. Tel: (0276) 681131.

In the early PET days, a high-resolution graphics
package was produced by IJ J Design Ltd., and is still going
strong. Currently versions are produced for 3-, 4- and
8000-series models, including 8096. Shortly to be produced
is a pixel-resolution light-pen. Sales and marketing are
now handled by PMS (Instruments) Ltd., 107/109, King
Street, Maidenhead, Berks, SL6 1DP. Tel: (0628) 76688.

The Personnel Manager is a software package to assist
in the day-to-day management of a personnel department. The
system features multi-level password protection from
access and can report on head count, turnover, recruitment
and salary analysis. The standard system (8096, 8023 and
8050) including hardware, software, communications, desk
and sundries comes to £ 6250 + VAT from Missing Link
Computers Ltd., Abacus House, 53-55, Ballards Lane, London,
N3. Tel: 01-349 4711. Various options are also available.

Also available from the above is a Replacement Window
System to handle ordering, material utilisation, pricing,
et al.

363

CP/Maker is a circuit board add-on and CP/M software
add-on which increases RAM to 96K on 3-, 4- and 8000-series
machines, adds a Z-80A microprocessor that runs
concurrently with the 6502, can emulate the Hazeltine 1500
VDU, among other features. Price is £497. UK distributors
are Tamsys Ltd., 12a, Sheet Street, Windor, Berks, SL4 1BG.
Tel: Windsor 56747.

— oOo—

OFFICERS ELECTED AT THE AGM.

The following officers were elected at the A.G.M.:

Chai rman: Mick Ryan.
T reasurer: Joseph Gabbott.
Membership Secretary: Jack Cohen.
Regional Co-ordinator: Terry Devereux.
Edi tor: Ron Geere.
Vic Co-ordinator: Mike Todd.
Publicity Officer: David Annal.
Assistant Publicity Officer: Rod Eva.
Software Librarian: Bob Wood.
Software Organiser: Carl Millin.
Discounts Officer: John Bickerstaff.
Minutes Secretary: Alan Birks.
Hardware Projects: Fred Offler.
Software Advisers: Harry Broomhall,

Tom Cranstoun,
and Ray West.

Comal Representative: Brian Grainger.
Prestel Representative: Stephen Rabagliati.
Exhibition Co-ordinator: Stephen Rabagliati.
Assistant Editor: Tom Cranstoun.
Technical Queries Secretary: Jim Tierney.

The editor wishes to acknowledge the assistance
proffered by many 'behind the scenes' members who do not
hold an official position, but without whose help many
tasks would remain uncompleted.

— oOo—

.■
jq
-

364

365

SOME READERS PROBLEMS
By Mike Todd.

I receive a huge number of letters from members (at one
time I got over 45 in one week!) asking for advice and help
with problems they’re having, and as far as possible I try to
reply to them all personally. Unfortunately, with all the
work that I am doing I have acquired a significant backlog
and to those who have not received a reply I apologise.

It struck me that some of the problems tnat people are
encountering, and that require some research on my part, may
already have been solved by other members so I intend in this
and the next issue to list some of these problems and if
anyone has solved them, please let me know and I will forward
your replies immediately to the originator of the query.

I considered giving contact names and addresses but this
may not be fair on those who would rather not have their
names and addresses published, but in future columns I will
publish names and addresses with the hope that those with
solutions can get in touch directly, unless of course I am
instructed otherwise!

Although only an experiment, if you do want to have your
problems aired in this way, don't hesitate to drop me a line
and let me know if you're happy for your name and address to
be published. It may be that this sort of column is very
popular and could become a regular feature.

VIC - LOAD ERRORS

One member has had problems while typing programs from a
magazine. He sensibly SAVEs it at various stages during the
typing, rewinding it to the beginning each time, but has
found that the program has become corrupted, sometimes beyond
all recognition. This is something I've not come across
before and it may be due to tape reading errors which have
not been reported by the "LOAD ERROR" message.

366

Perhaps the simplest answer would be to VERIFY the tape
every time it is SAVEd - I know it is time consuming, but not
as time consuming as having to retype the whole program! Has
anyone come across anything like this, or can offer a

solution?

VIC - SUPER EXPANDER & PROGRAMMERS AID

There appears to be a problem reported by one member
when using the Commodore Super Expander and Programmers Aid
cartridges at the same time. If he uses the RJOY function on
the Expander and then tries to FIND something with the
Programmer's Aid, it always stops at the line containing RJOY

and then hangs up.

He wants to know if there’s anything can be done about
this, other than removing all the RJOYs before using FIND.

I'm not in a position at the moment to try both these
cartridges simultaneously but I suspect it may be due to the
fact that RJOY is converted to a new, and perhaps as far as
the Programmer's Aid is concerned, unrecognisable token - in
fact the new token is 220 for RJOY. It may be this which
upsets the FIND operation - or is it just that there is some
sinister interaction between the two cartridges, perhaps
through common memory usage, which is causing the problem?

VIC - ROBOTS & INTERFACING

One member wants to do some "robot-arm" and similar type
controlling with the Vic - the easiest way would probably be
the Vic-REL relay cartridge which has 6 relay contacts rated
up to 24v at 10W. He would like to know a suitable source of
12volt motors and also some idea of how to use stepper
motors, either with Vic-REL or some other way.

In fact, I'm sure that there are many who have attempted
this sort of project before and could give a newcomer some
sound advice and/or assistance.

367

4032 (12”) and SIMPLY-WRITE

One member has the Simply-Write word processor which he
uses with a FAT-40 and 4022 printer. Although he can set the
programmable character on the 4022 to generate a pound sign,
but he cannot find a way of accessing it from his program.

I suspect the problem is one of generating CHR$(254)
(ASCII $FE) which is the printer's programmable character.
Somehow, Simply-write's output routine needs intercepting and
whenever some arbitrary character (perhaps "$" or "#") is
printed, it is instead substituted by ASCII $FE.

If anyone has done this with the Simply-write
wordprocessor, or is prepared to have a go, I'd like to hear
from them.

8050 DISKS

Many will know of the bug in the 8050 disk drives (p211)
which prevents a successful "COPY D1 TO DO" being executed.
Commodore admit to this and suggest that the program "COPY
DISK FILES" (available in the ICPUG software library) be used
instead. I suspect that there is no obvious solution to this,
but has anyone succeded in cracking it - perhaps with an
explanation as to why it happens?

VIC (& OTHER COMMODORE PRODUCTS!)

I am a radio amateur and spend a lot of time listening
around the short wave bands. I also use the Vic as a morse
code and teleprinter decoder. Unfortunately, the interference
generated by the Vic (also the 3032 and 3040 disk drive)
often obliterates the bands even at a great distance from the
receiver and aerial.

I . would be very grateful to know if anyone has suffered
the same - and better still, what their solution was.

— oOo—

368

COMMODORE COLUMN

Christmas comes but once a year is a saying which I am
glad to say is true. The potential micro-buyer would
probably wish it were a year-round event. Micros, in one
shape or another, are the 'in' present this year and
manufacturers are lining up tempting dishes. Goodies lined
up from Commodore for this Christmas include: The release
of the 64 (brought forward from the original date of
January 1983 to quantity delivery in November '82) which
can now be seen at your local dealer, but not yet bought by
the general public. If you get one this year consider
yourself lucky, Commodore expect to be sold out until
beginning '83, judging by the response to their initial
adverti si ng.

Disk drives may find their way into your Christmas
stocking; VIC-1540 drives (single, 4040-compatible drives)
have been reduced in price by 100.00 pounds to 299.99
including VAT. This is a truly amazing price for an
intelligent drive - the same drive will work on the 64
(with yet another DOS upgrade ROM to be fitted first).
Commodore promise a 1541 drive which will work on both
VIC-20 and 64. I wonder if this new price will be reflected
in the 2031 PET/CBM single disk drive (currently £ 395+VAT)
one can hope! As an aside, is anyone interested in a Serial
VIC bus (sometimes, wrongly, called a SERIAL IEEE BUS) for
the PET thus allowing us ageing PET owners to obtain
'cheaper1 peripherals. If you are interested in this
project, which will be software only, could you contact Tom
Cranstoun. If you have already produced it donate a copy to
the ICPUG library.

Commodore have told us that the VIC-1010 expansion
board is now available at a price of £ 119.95 inc VAT. (Is
this good news or bad!!). 38 new packages are planned for
Vic-20, the first few now available; BBC MASTERMIND and
QUIZMASTER games among them. Offerings for business users
will follow next; software for General Practitioners &
Civil engineers; Electronic spreadsheet program
(something-CALC no doubt); word processing and database
management. Watch this space for news as it arrives.

369

Commodore have Launched a VICSOFT software club for
Vic-20 owners. This is not really a Christmas ploy it is
intended to be part of Vic for a long time. This is a mail
order service intended to complement the big chain stores
who are happy to sell low price computers but unable to
offer the full software and peripheral range. Vic users who
joined before the end of September received a dust/cover
for their Vies (personally if you were that keen to join I
don't see how your Vic will gather any dust). Moves are
afoot to combine VICSOFT and ICPUG membership; more details
next issue. Also see the Vic Column for further information.

Commodore have recently set up a speech technology
division in the States which, it is hoped, will develop a
variety of products based on voice input/output to be used
with its existing range. Commodore aim to get 10% of the
expected $500 million dollar speech market, the majority
use is expected to be education, followed by entertainment.

US NEWS: Vic currently has 30% of home computer market
in US, followed by Atari 27% and TI 17%. Average price of
Vic-20 is $229, although TI have slashed yet another $100
off their TI99/4A, with a short term rebate scheme making
this machine $239 dollars - a serious contender for Vic.
Atari is offering up to $60 refund on software packages (at
$10 a time) ATARI is not reducing the price of their
machines as 'they have sold out this years stock'. It looks
like a micro war in the states to match our
BBC/Vic/Sinclair/Acorn on this side of the Atlantic.

The Commodore 500 is now in the UK! (only in the
firm's Engineering Dept at the moment.) It is expected to
be available in late October 82. The Commodore 700 is in an
advanced state of pre-production testing.

Integral disk drives are on time (this means all
delays will be Commodore's fault as they manufacture
everything but disk drives). A launch is expected in
November.

T.C.
— oOo—

370

DEBUGGING AND DOSSING AROUND
By Brian Grainger

Since writing my disk to tape SAVE routines and disk
rename program I have had some tetters pointing out they do
not work! Sometimes the problems are simple, such as
incorrect typing and using the programs on equipment for
which they were not written! The answer to the first
problem is simple. Always check the listing first. On the
second problem I do try to specify with what hardware
programs will work but maybe some clarification is needed
with regard to disks.

I tend to specify disk formats in the form D0S1, 2A or
2C. I do this rather than D0S1, 2.1 or 2.5 because one can
read the 1,2A or 2C by displaying the disk directory and
noting the top right of the the first line. D0S1 was used
on 2040 and 3040 disk units. D0S2A is used on 4040 disk
units. D0S2C is used on 8050 disk units. I have no idea
what is used on the single disk drive or the VIC disk so I
give no guarantee that any of my programs will work with
these units.

Despite the above notes there ARE bugs in the
programs, mainly because I fell for the old trick of
assuming because a standard manual command works in D0S2A
it ought to work in the same way on D0S1. As I no longer
have D0S1 I do have a problem in testing ! Anyway let's
up the bugs.

First of all looking at Universal Disk Rename (Vol.4
No.3 P.107) line 240 should read

240 IFV$=""THENV$="N0THING":G0TO260
Also line 230 should be deleted to conform with the Editors
warning on disk ID changing. I now realise a problem exists
and I had not seen it as the correct conditions for the
problem had never occurred in use.

Secondly let us turn to disk to tape saving (Vol.4
No.4 P.204). Replace line 260 with

260 0PEN15,8,15,,,I0":0PEN4,8,4,"#"+"0":Z$=CHR$(0)
Replace line 2330 with:

371

2330 D0$=CHR$(A(165)+CHR$(A(166)):IFD0$=CHR$(32)+
CHR$(160)THEND0$="1 "

2340 RETURN
Now replace lines 2400-2410 with:

2400 PRINT#15,"B-P";4;1
2410 PRINT#15/'M-R"CHR$(0)CHR$(17)
2420 GET#15,AS:A(0)=ASC(A$+Z$)
2430 F0RB=1T0255:GET#4,AS:GOSUB2000
2440 AS=A$+Z$:A(B)=ASC(AS):NEXTB:RETURN

Finally one should replace line 2560 to be on the safe side
(in other words I do not know why but it works if you do!).

2560 NEXTB:IFS<>255THENT=18:G0T02500
The above changes are because of a bug with D0S1 in the B-P
command which has not been well publicised. Even Raeto
West's book did not cover it. Apparently trying to move B-P
to the 0 position and reading the 0th byte by GET# will
only allow access if the last character pointer is NOT 255.
A pity therefore that the U1 command which is used instead
of B-R because of a bug forces the last character position
to 255! The solution is to read the byte in positon 0 by a
memory access command to the disk buffer.

I would now like to make a plea. I have seen the U1
command in various sources being used in the following way:

PRINT#15,"U1";CH;DR;TR;SE
PRINT#15/'U1 ",CH,DR,TR,SE
PRINT#15/'U1:"CHRS(CH)CHRS(DR)CHRS(TR)CHRS(SE)
PRINT#15,"U1:CH,DR,TR,SE"

These variations apply in a similar way to the block
commands as well. Now under D0S2A all variations seem to
work for the B-P command although I cannot think how the
Last two can be equivalent. Would somebody (Mike Todd?)
please tell me what will work on the various DOSs and if
possible give me a single command which will work on any
DOS!

To finish this article on disk problems I would like
to mention a problem when using the UNIT TO UNIT copying
program that Commodore produced. It doesn't work when
copying large (approx. 100 block) files. The solution is
simple. Use Jim Butterfields COPY/ALL which should be
available in the ICPUG library.

— oOo—

372

WRITING FOR THE NEWSLETTER

Contributors to the Newsletter can save the editor
considerable typing time if items submitted for publication
are in a form that can be read by the computer. If your
item is more than say, half a page, send it on cassette
(returnable) in the form of a program thus:
10 0PEN1,3
20 PRINT#1,"The text of your article here."
30 PRINT#1 /'More text, etc. using UPPER and lower case"
40 CL0SE1

Enclose with your cassette a hard-copy listing of your
program or text in case it fails to load. Keep a back-up
copy yourself, and include your name and address on the
cassette so that it can be returned to the rightful owner.
Should you prefer to use a diskette, then unless the
article is somewhat lengthy, 8050 formatted disks should
not be used. Do ensure disks are adequately protected for
transit through the post.

If you are writing using a word-processor, text can be
accepted on Papermate, Superscript, Wordpro and Wordcraft
formats, but to save much detective work, do please state
which you have used. ASCII sequential files can also be
accomodated.

Formatting should be kept to a minimum since it
differs for each word processor and it will probably be
changed anyway. Do not include cursor controls in ASCII
text strings, they may stop your printer producing
graphics, but they can produce havoc with ASCII printers !

Certain regular contributors have special arrangements
and for them the above notes do not apply. But for all,
please note the language BASIC is upper case (Pascal is
not), flat round-shaped items are discs, but the floppy
variety are, by convention, disks with a 'k1. Please use k=
kilo = 1000, and 'K ' for Kbyte = 1024. Note that the last
date for machine-readable material is the 2nd week of even
months, otherwise, the first week.

— oOo—

373

The Commodore 720 Computer

374

The Keynet Hardware

375

The stack 40/80 column card fo r the Commodore VIC-20

ting Ltd., Unit

