

<.

HONORARY NATIONAL OFFICIALS
❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖•I*

Chairman:

Technical Queries
Secretary:

Regional Co-ordinator:

Treasurer:

So ftw are Librarian:

M em bership Secretary:

Editor:

V IC Co-ordinator:

Discounts Officer:

W ing Cdr. M ick Ryan
164 Chesterfield Drive,
Riverhead,
Sevenoaks, Kent TN13 2EH
Telephone: Sevenoaks (0732) 453530

Jim Tierney
11 Collison Place,
Tenterden,
Kent TN30 7BU
Telephone: 058-06 2711

Terry Devereux
32 W indm ill Lane,
Southall,
Middlesex UB2 4ND

Joseph Gabbott

Bob W ood
13 Bowland Crescent,
Ward Green,
Barnsley, South Yorks S70 5JP
Telephone: (0246) 811585 (work)

(0226) 85084 (home)

Jack Cohen
30 Brancaster Road,
Newbury Park,
Ilford, Essex IG2 7EP
Telephone: 01-597 1229

Ron Geere
109 York Road,
Farnborough,
Hants GU14 6NQ

Mike Todd
27 Nursery Gardens,
Lodgefield,
W elw yn Garden City,
Herts AL7 1SF

John B ickerstaff
45 Brookscroft, Linton G lade
Croydon CR0 9NA

Telephone: 01-651 5436

Assistant Editor: Tom Cranstoun

INDEPENDENT CDMMDDORE
PRODUCTS USERS GRDUP

Vol 5 No. 1 New sletter 1983
Europe's first independent magazine for PET users

Page Contents

2 Editor’s Notebook
3 A Bug in VAL and INT
6 MX-80 Tips
7 FORTH Column

10 Round the Regions
11 Vic Column
19 Commodore Column
21 64K Upgrade for a 2001-Series PET
23 VISICALC — Printing the Formulae
26 Technical Tips
31 KEYCHIP
37 Double-Density Plotting in COMAL
40 Disk File — Sector 4
53 BASIC/COMAL Disk ID Checker
61 Register Exchange
63 Discount Corner
64 2001-Series Conversion to BASIC 2.0 or 4.0
66 ICPUG Software Library
67 Ugly Bug Ball Time Again
68 Shop Window
70 Matters Arising
72 New VIC Expansion
72 Members Private Sales & Wants
73 COMAL Corner
75 Problems and Queries
76 Review —■ COMAL Handbook
79 Microchess on Ice — Part 2
81 Multiple Key-Press Detection
82 Some IEEE Observations
83 Review — BUTI
87 Review — DDS Sort
88 Superspell — a New Spelling Checker

The op in ions expressed herein are those o f the author and not necessarily those
of ICPUG or the e d ito r. Item s m en tioned in "Shop W in d o w " are cu lled from adver
tisers' m ate ria l and ICPUG do not necessarily endorse or recom m end such item s -
caveat emptor

2

EDITOR'S NOTEBOOK

As I write this, Christmas has yet to come and
computers are being advertised on television. Sales
outstrip supply and a number of suppliers have closed their
order books, Commodore included. UK stocks of the
best-selling Vic-20 expired and Commodore estimated that in
the three weeks prior to Christmas they could have sold a
further 17,000 machines. UK Vies are made in West Germany.
Incredibly, Vic sales have topped the million mark.
Commodore are again considering UK manufacturing after
closure of the short-lived Eaglescliffe factory, owing to
the capacity of the German plant being extended to its
limit and the huge increase in UK turnover.

Commodore's UK enterprise represented over 25% of the
year's sales and the proportion of Commodore's contribution
to world-wide micro-computer sales went up to 75%. When I
first bought a computer, over four years ago, I couldn't
help but wonder if I was about to back a loser. I could
equally have opted for Apple or Tandy, for in those days
one was limited for choice and there was little prior
knowledge upon which to base a decision. I now have that
feeling of satisfaction that comes from the knowledge of
having invested wisely.

During 1983 we could well see the introduction of a
number of useful products at 'Sinclair prices'. For below
£ 70, expect to see the introduction of a modem with
ancilliaries and a digitizer at 'affordable' prices.
Perhaps then 'information technology' will arrive, after
all, when you sit down and tot up the cost of getting
involved in Prestel, a lot of enthusiasm is necessary to
justify it.

Sign on an office wall: "Yesterday this was an Office
of the Future, however there has been a power failure and..

—oOo—

3

A BUG IN VAL
(or WHEN IS A BUG NOT A BUG?)

By Mike Todd.

When does a quirk of the machine become a bug? That's
often a very difficult question to answer. In this article
I'm describing what some would call a bug, while others would
say that it's not - it's just an oddity of the PET.

The argument against calling it a bug is that it doesn't
adversely affect the operation of the PET and requires no
action to put it right. On the other hand, it is an oversight
in the writing of the BASIC interpreter - so maybe it is a
bug after all! I’ll leave you to decide.

If you’ve got a Commodore computer that has its screen
RAM following immediately after the BASIC RAM space (e.g. a
32K PET or unexpanded Vic) then type the following:

10 A = VAL (TI$) : GOTO 10

With a Vic, you'll need the following to see the effect:

5 POKE 36879,11

RUN the program and you should see a flickering in the
top left hand corner of the screen. The top left hand
character is constantly being changed to and then put
back to what it was. I'm told it may not happen with BASIC 4.

If you just want to know that it happens and that it's
not too disastrous, then there's no need to read on. If you
do want to know, here goes:

The "bug” is in the section of the interpreter which
handles the VAL function. When a function like VAL is
encountered, the expression in the brackets is first
evaluated - in this case the string associated with TI$ is
set up.

The resulting sequence of digits now needs to be
converted to a floating point number and, as the operation is
exactly the same as handling a string of digits during READ
or INPUT, the same routine which converts a string into
floating point (known as the FIN routine) is used.

This reads and converts the ASCII digits until a non
numeric terminator character is encountered. Amongst other
things this could be a comma, a colon or a zero byte
depending on circumstances and the VAL routine puts a zero
byte terminator at the end of the string to be converted.

Unfortunately, VAL just whacks this into the byte
following the string, over-writing whatever was there first.
To stop other strings being corrupted by this, VAL sensibly
keeps a note of the original value of this byte and restores
it after the conversion has been done.

Going back to our example using TI$, the six characters
of TI$ will be placed as the last six characters in RAM (in
locations 32762-32767 on a 32K PET, or 7674-7679 on an
unexpanded Vic) and then the terminator is tagged on - and
goes into location 32768 on the PET or 7680 on the Vic.

This location is the first character on the screen, so a
zero is effectively POKEd onto the screen, and this results
in the "§" appearing. As I've already said, the VAL routine
restores the original byte which results in the simply
flashing on the screen.

Because the string TI$ is only needed when it is
accessed, it doesn't become a "permanent fixture" in the
string space and so the next time it is set up it appears in
the same place. So does the terminator, so we get a
constantly flickering

It can only occur when a VAL is executed on a string at
the top of RAM and so it is rarely (if ever) noticed. It's
just the exceptional condition of accessing TI$ constantly at
the start of the program that makes it occur so frequently.

4

5

If a computed string already exists in RAM when TI$ is
computed then TI$ will no longer be at the top and the
will not appear. For instance if a line 1 is included such as
A$="*" + then it won't occurs since the computed string
"**" is built into RAM and stops TI$ being put at the top.

So there it is - is it a bug or not? I would say that it
is, although not at all serious, especially considering how
rarely it occurs. However, I can see one very special
condition under which VAL would return an incorrect value.
This requires the terminator to be written into a byte which
has no RAM in it (eg the string being right at the top of RAM
on an 8K PET) and the "noise" value of the byte into which
the terminator is written happens to be an ASCII digit. In
this instance, VAL would include such "noise" bytes and it's
all very unlikely indeed.

— 0O0—

AND ANOTHER BUg [k„ s »)

The arithmetic routines also include a (minor?) bug
which shows up when using the INT function. This has been
known for a long time, but I thought I’d re-iterate it while
on the subject of bugs. Try the following (PETs and Vies):

PRINT INT(10 * .1) ; INT(.1 * 10)

You will get the results 0 and 1 - yet, of course, they
should both be the same since 10*. 1 = 1 and .1*10=1

The reasons are complex but are tied up with a failure
of the MICROSOFT interpreter to round the result of the
expression before taking the INT of it. A forced "round" can
be made by putting a dummy addition in such as:

PRINT INT(10 * .1 + 0)

--oOo—

6

MX-80 TIPS
By Barry Biddles

You have just printed a page, and torn it off. Now you
want to print something else, you find that you either have
to use friction feed or waste a sheet getting to the next
top-of-page. Wind the paper down, manually, until it is
about to come off the sprockets. At this point, not before,
engage friction feed by pushing the release lever back. Now
wind the paper down further, until you will be able to
print as close to the top of page as you require. The first
few lines are printed on friction, and you will find that
the paper enters the sprocket guard and engages perfectly.
As soon as possible after this, release the friction,
otherwise the paper may eventually ruck or tear.

A 12" steel rule may be placed, on its edge, behind
the two guides over the sprocket wheels of an MX-80F/T. It
will fit securely in front of the two tractor feed removal
levers, and forms a quickly applied tearing bar.

If you are handy with a file, and don't care about
guarantees, no doubt you could make up a permanent fitting
along these lines. For the rest of us, it is possible to
obtain a replacement lid looking rather like the one on the
MX 70, which incorporates a tear edge.

If you have one of those interfaces which let the last
disk command through to your printer, and spoil the top of
every file with rubbish like 0 : FILENAME,P,W, keep a piece
of scrap paper handy. Pull the roller bar back and insert
the scrap paper behind the print head and down as far as
possible. Hold it with one hand while typing <RVSX0><P>,
then <ST0P>, with the other. This will clear the interface.
Then you only have to worry about the top line of every
LINKED file...

—oOo—

7

FORTH COLUMN
By Ron Geere

Forth is one of those languages that you either love
or hate (well there's no point in being indifferent, is
there ?). In this series I will not be attempting to
'convert' you to become an adherent of the language, but
will set out to describe and examine some of its features
so you may make your own judgement. With some user
feedback, I may be able to assist in any Forth-related
problems.

New-comers start here....

A computer language is a means for the user to communicate
with the computer. Most computer languages have a fixed set
of words, or instructions, which must conform to rigid
grammar, or syntax. In the english language, when you want
to describe something completely new, one has to invent a
word for it and then define that word in terms of existing
words. The definition is kept in a dictionary. So it is
with Forth.

In Forth a word is anything between spaces. This means
that frequently used words can be made short, often only
one character. We are used to characters such as + or * but
in Forth ! ' and . among others have special significance.

One's own words can, and should be descriptive of the
task in hand. In Forth there may be several dictionaries so
that one may have the same word with a different meaning in
a different context as in english. For example, 'glasses'
means different things to an optician and a publican. Long
names can be used, (up to 31 characters) they are stored
only once. Some dictionaries store only the first three
characters plus the length.

What is Forth ?

Forth was invented by Charles H. Moore in the early
'70's. In the early days it received little exposure. As a
result the language had time to mature and, unlike BASIC,
few ’dialects' exist. Since Forth is extensible, a required
minimum standard word set exists upon which the user can
buiId.

8

Forth is many things. It is a high-level language, an
operating system, a list of words and definitions. It is
both compiled and interpreted. It is interactive; it is
fast, easy to test, quick to debug and test. The final
result is not always easy to read, but enforces programmer
to comment carefully. Forth is inherently a structured
language.

Let us have a simple example. If one had an
application to control a lamp, one could enter at the
keyboard LAMP ON or LAMP OFF to control a bit at the user
port. Now these three words must have been previously
defined. Suppose LAMP stored the address of the port on the
stack and ON were defined to put a '11 in that address.
Similarly OFF puts a 'O'. Thus a plain english statement
LAMP ON can be made to control a lamp.

How does one define a word in the first place. In our
example we could enter:-

: LIGHT LAMP ON ;
This expression will create, or compile, a new word LIGHT
defined as LAMP ON so that on entering the word LIGHT it
would be interpreted by searching in the dictionary and
executing its definition. The colon 1 is Forth's way of
saying 'make the following entry in the dictionary'. The
semi-colon marks the end of the definition.

Mention was made of the stack. In fact Forth uses two
stacks, the parameter stack, where values are stored while
being passed from word to word, and the return stack which
is used by the interpreter to store pointers to other
words.

Forth uses what is called post-fix, or reverse-Polish
notation for it mathematics, as in some calculators, e.g.
2 3 + to add 2 and 3. When a number is entered, it is put
on the parameter stack. In the example, first 2, then 3 is
pushed onto the stack. As mentioned before '+' is a Forth
word. Its definition causes it to remove the top two
numbers from the stack and replace them with their sum. In
BASIC this is like saying X=2+3 and we need to PRINT X to
know the result. The simple Forth word '.' prints the
number corresponding to the value on the stack followed by

9

a space. In so doing, it deletes the number from the stack.
Forth then outputs the prompt 'ok' to show it has done.

The dictionary is technically indirect threaded code.
This means it is a list of addresses of the words
comprising a definition. Each definition in the dictionary
contains a pointer, or link, to the next word. Since words
are defined in terms of other words one’s program is
eventually defined in terms of a single word, the program
name. This is often the last word entered in the
dictionary, so the search for it is short and fast. The
other words in it's definition have already been found
during compilation and entered as an address - no more
searching required. The address list is executed similar to
a sequence of assembler subroutine calls, e.g.
JSR ADDRESS1
JSR ADDRESS2
JSR ADDRESS3

except that in Forth the JSR (=G0SUB in BASIC) is not
required, so that only 2/3 of the memory is used. Forth
uses Little memory in comparison to its power.

Resources:
If this introduction has wetted your appetite the following
book is generally recommended: Starting Forth by Leo
Brodie. ■ It is available in the UK from Computer Solutions
Ltd., Treway House, Hanworth Lane, Chertsey, Surrey,
KT16 9LA for £ 15.60 as a paperback, or £ 19.10 hardback,
inclusive of post & packing.

If you're spending money, various implentations of
Forth may be obtained, but watch the price. Poly Forth as
its name implies is multi-user and costs. I don't think it
is implemented on any Commodore machine. PET-Forth and
Vic-Forth are available from Hampshire Data Systems, Unit
4, Lynx Estate, Yeovil, Somerset as a Vic ROM-pack or for
PET on disk, both priced at £ 59.95 including VAT.
Audiogenic supply a VicForth (VP076) at £ 24.95 including
VAT and p S p.

10

Forth is also available from Intelligent Artifacts,
and Datatronic AB. The latter's version is pricey, but
comprehensive. FullForth+ comes from IDPC Co., and a value-
for-money implementation is available from Supersoft. This
version is a full FIG-Forth model with all the Forth-79
Standard extensions, complemented by an 80-page manual.
Supersoft are at Winchester House, Canning Road,
Wealdstone. Harrow, HA3 7SJ. Tel: 01-861 1166.

The Forth Interest Group provide Fig-Forth and this is
a public-domain product. I hope to implement this on the
PET/CBM and ultimately the Vic-20/C-64 and place it in the
ICPUG Software Library in due course. (c) ICPUG 1983

R. D.G.

— oOo—

ROUND THE REGIONS

The Slough/Berks Region had a successful autumn and
have settled down to regular meeting dates (if not venues).
Second Thursdays of the month are the appointed time and
the venues are chosen from Slough College, Crane Packing,
Langley College and The Printers Devil [I've met him -
Ed.], (Stoke Road, Slough). The club room of The Printers
Devil has proved most convivial. The October meeting saw
Commodore's Steve Beats put the new 64 through its paces,
and those that missed it had the chance of an action replay
at the November meeting of the North Hampshire Region.
Slough's December meeting saw Compsoft's DMS package in
action. Future meetings are to include a look at the 500
and 700 series machines and a visit from Graham Sullivan to
talk about micros in education.

A new regional group has been formed at Chelmsford
with a dominant Vic-20 interest. Meetings are on the first
and third Tuesdays of each month at 7p.m. Contact for
further details is Tony Surridge, 97, Shelley Road,
Chelmsford, Essex. Tel: 0245 81878 (evenings).

— oOo—

11

VIC COLUMN
By Mike Todd.

We start the first Vic column of the New Year with what
appears to be a Vic bug - but isn't really.

When accessing external output devices (in other words a
printer or similar) it is not possible to use TAB(X) or
commas to format the output. The simple reason is that the
Vic uses the screen parameters to do the necessary arithmetic
to calculate the next print position and so it is unlikely
that the printer will respond correctly.

It’s not really a bug, it's more a limitation (!!)
because to provide the facility would require keeping a track
of where the cursor is on all output devices. This is a
virtually impossible task, especially considering that the
Vic would have to know how the device handled control
characters and so on since it needs to keep a count of
printed characters only.

If you do decide to use TAB(X), or SPC(X) in a PRINT#
command - don't have it as the first parameter after PRINT#
as there's a bug which will produce a SYNTAX ERROR as
follows:

10 OPEN 3,3
20 PRINT#3,TAB(10);"TESTSTRING"

This will not work, producing a SYNTAX ERROR in line 20,
and would also fail if the TAB(10) were SPC(10). It only
fails if this is the first item after the comma.

The problem is only likely to occur infrequently and
there is a simple fix - change the line to:

20 PRINT#3,"";TAB(10);"TESTSTRING"

The null string at the start is ignored, but is sufficient to
allow the syntax to work.

12

The bug is basically due to the fact that the routine
which sets up the output file device is slightly different in
the Vic than in the PET and it no longer preserves the
accumulator and other registers on exit.

MATTERS ARISING

Now it's time to correct the bugs in the last Vic
column! It seems to be the case that I spot the error just
too late to put it right - maybe a function of the speed at
which I'm having to work nowadays. I might inject at this
point that, as well as reading me (and seeing my picture!) in
VIC COMPUTING every other month, you'll be able to read me in
PRACTICAL COMPUTING as from the February issue where I'm
editing the PET/VIC OPEN FILE.

Anyway, enough of the personal plugs and down to the
first problem on page 298 of the last Newsletter.

I went to some length to explain that there is a bug in
the Vic which causes "DEVICE NOT PRESENT" error instead of
"FILE NOT FOUND" errors if you try to OPEN a read file beyond
an end-of-tape marker. I also said that the bug doesn't exist
if you LOAD beyond the marker. Well, it appears that it does!

Also on page 298, I mentioned that the +0K re
configuration of the Vic caused problems when using the SUPER
EXPANDER and I couldn't work out why. Well, as soon as the
copy had gone to the printers I realised.

The SUPER EXPANDER automatically reconfigures the memory
map of the Vic as soon as a GRAPHIC 1, 2 or 3 is issued. It
puts the screen RAM back to 7680 ($1E00) where it would be on
an unexpanded (or +3K) Vic and puts the character generator
down at 4096 ($1000) .

This means that, in a straightforward Vic with only +3K
expansion nothing has really changed other than the reduction
in RAM. However, if you've got 8K or more of RAM expansion,
your BASIC program would have started at 4608 ($1200) and the

13

screen at 4096 ($1000). So the SUPER EXPANDER moves the BASIC
program out the way at 8192 ($2000) and puts the screen RAM
back to where it was.

This is fine if you've configured your Vic to have +8K
or more of RAM, but if you’ve tried to configure it to have
+0K RAM (so that the screen RAM is moved), the SUPER EXPANDER
puts it back again and tries to put the BASIC program into
empty space. The pointers also tell it there's no more RAM
left - so you get an OUT OF MEMORY ERROR.

Aren't you glad you know now!

Finally, there’s an error on page 310 in the discussion
of the shift key flag (SHFFLG) - PEEK(653) would be 3 (and
not 7) if the CTRL and CBM keys are pressed together.

SUPER EXPANDER - GRAPHIC 4

Having said that, with 8K or more of RAM expansion, the
SUPER EXPANDER moves the BASIC program up out of the way and
then moves the screen and character generator about, there
appears to be a fifth GRAPHIC command (GRAPHIC 4) which will
put everything back again.

Note that the reconfiguration only occurs when GRAPHIC
1,2 or 3 is called whilst in GRAPHIC 0 mode.

I've not had a lot of time to investigate this one - so
more next time, I hope.

LIGHTPENS

I've been playing with the STACK lightpen recently and
thought you might like to know my findings.

First of all, the lightpen seems very expensive at
#25.00 - mind you, it is on a flexible cable and comes with a
simple, but reasonably good, memory game to be played with
the lightpen.

14

As I approached the TV with the pen, tension was placed
on the curly cord and I found that the large plug on the end
of the cable kept pulling out of the Vic's socket. I also
found the lightpen was a little erratic in use. The reason is
clear if you take a very close look at your colour TV screen.

The screen is covered by thousands of red, green and
blue dots or stripes which make up the colour picture. But
all the dots have a dark region between them and sometimes
the lightpen is placed in one of these dark areas (the light
sensitive tip is very small) and so doesn't trigger
correctly. I found that moving the pen about 1-2mm from the
screen made the world of difference, and I'm sure it would be
possible to put a small collar over the end of the pen to
keep it at this distance.

The lightpen also contains a touch sensitive switch
which is used to communicate to the program that the spot on
the screen has been selected and that the program should then
go and retrieve the lightpen's co-ordinates.

The co-ordinates of the pen are simply read by
PEEK(36870) for the horizontal position and PEEK(36871) for
the vertical. The touch switch is detected by looking at bit
4 (the joy2 line) of location 37137; if PEEK(37137) AND 16 is
zero then the switch is being touched. It is, of course,
possible to use the RJOY and RPEN functions in the SUPER
EXPANDER to get these values.

The range of values returned is theoretically 0-255, but
in practice it is considerably narrower. Whatever value is
returned will need to be scaled appropriately and this is
probably best done by starting any lightpen program with a
simple "calibration" test where the pen is placed at two
known positions on the screen.

ANOTHER BUG?

Assuming that you've got a basic Vic or one with only 3K
of expansion, try the following:

15

10 POKE 36879,11
20 A = VAL(TI$) : GOT020

Line 10 just sets up a black screen so that we can see
what's going on, and line 20 shows up the problem - you
should get a flashing in the top left hand corner.

The problem exists on PETs too and I've written an
explanation elsewhere in the Newsletter.

ICPUG SERVICES

If you've seen the list of national officers of the
group in the last Newsletter you'll realise that there are
many services offered to members and many of the officials
responsible have their addresses and phone numbers inside the
front cover.

If you wish to contact any of the other officials whose
addresses aren't published (on the subject of publicity,
PRESTEL, COMAL, projects for instance) then any of the other
officials would be happy to forward your letters. You'll also
find that you get a far faster response if you enclose a
stamped and addressed envelope.

Amongst the officials who are listed, Terry Devereux is
the man to contact if you want to set up a regional group or
want to know how to contact your nearest group.

Bob Wood is the software man and has quite a few Vic
programs as mentioned on page 323. If you send him a S.A.E.
he'll send you a list of what's available. He'll also accept
any of your contributions.

Technical queries should go first to Jim Tierney who is
our Technical Queries secretary and he'll pass them on to the
relevant expert. (But don't forget the problems page!)

Jack Cohen handles membership and subscriptions and also
provides the mailing list for the Newsletter distribution.

16

John Biekerstaff has the low down on discounts and if
you're after anything for your Vic (or PET for that matter)
contact him first in writing explaining what you want and
he'll get back to you (probably by return of post) with the
good news.

ADVENTURE SWAPS

Anyone who has played the Commodore Adventure games will
realise how addictive they can be, but once you've completed
a game (which could take days, weeks or even months!), it's
unlikely that you'll want to play it again for some time.

Brian Roberts of Luton has suggested that there may be
many interested in swapping their "used" Adventure game
cartridges with others and I think that this is a splendid
idea.

Brian has agreed to act as a "clearing house" for the
swaps and I would suggest that anyone who wants to do a swap
should write to him giving details of what cartridges are
being offered and what is wanted, but PLEASE don't send the
cartridges at this stage.

Once he's got swaps matched up, he'll get in touch to
arrange the swap, provided that you've also sent a stamped
and addressed envelope.

His address is:

7, Cowdray Close,
Luton,
BEDFORDSHIRE

Incidentally, Brian has also come across what appears to
be a bug in the PIRATES COVE game - it's not too serious and
is related to stamps and a box. I won't say any more in case
it spoils your enjoyment.

I've been playing PIRATES COVE over the last few days

17

and am totally hooked! It took me a long time to find out how
to stop drowning in the lagoon and Brian had to give me a
hint as to where to find the keys to open the doors. I
wouldn't have thought of looking under the But that
would be telling.

INPUT PROMPTS

A while back, I mentioned that, under certain
circumstances, the INPUT prompt can sometimes be included in
the input string. For instance, try the following:

10 PRINT "PROMPT";
20 INPUT A$

RUN it, and when you see the "PROMPT? " and flashing cursor,
move the cursor up and then down again, type something like
TEST and press RETURN.

If you now examine A$ (type PRINT A$) you will see that
it is contains the characters "PROMPT? TEST", which is likely
to cause problems.

There are several things that cause this, and there is
no truly easy way around the problem. However, the following
may at least provide one solution.

This has the effect of checking A$ to see if the prompt
string was included, and if so, only the characters after the
prompt and question mark are included in A$. If it is
necessary to input a numeric variable, use the same technique
but add an extra line at the end A=VAL(A$) which will set A
to the numeric value.

20 PRINT PR$;
30 INPUT A$
40 P=LEN(PR$)
50 IF LEFT$(A$,P)=PR$ THEN A$=MID$(A$,P+3)

10 PR$ = "PROMPT"

18

If you know that you only require, say, the first 5
characters of the input string, then you could add an extra
line A$=LEFT$(A$,5) which will ignore anything after the 5th
character. This could be used to good effect if there are any
"spurious” characters on the same line as the input prompt.

Of course, you could always "simulate” INPUT using GET,
although the programming required is much more complex but
much more versatile too. A very simple method is:

10 A$=""
20 GET X$: IF X$="" THEN 20
30 PRINT X$;
40 IF X$ <> CHR$(13) THEN A$=A$+X$: GOTO 20

Line 10 clears the string which will be built up, line
20 gets single characters from the keyboard, line 30 echoes
the characters so that you can see what you're typing and
line 30 builds up A$ until the RETURN key (equivalent to
CHR$(13)) is pressed.

There's nothing to stop you using a different character
to terminate the input, or improving line 30 to provide a
pseudo cursor. It is also possible to "trap" cursor controls
so that the user cannot move the cursor around on the screen
and it's even possible to restrict the input to only numbers,
letters or specific combinations of letters and numbers.

AND FINALLY

I'm sorry that the Vic Column is a bit shorter than
usual, but to make up for it there's a review of the BUTI
programmer's aid elsewhere in the Newsletter. It's by Richard
Allen, to whom I must apologise for not publishing it sooner.

If you've any comments on Vie products, why not write a
review - but remember to make it as objective as possible and
to cover all its features, not just the ones you like.

— oOo—

19

COMMODORE COLUMN

Lavatory Humour!

No this page isn’t degenerating; just what some people
get up to with their PETs. Reckitt & Colman have hooked a
defenceless PET up to a pneumatic controller which, in
turn, causes a whole room full of flush toilets to be
activated at once. We have no idea why they are subjecting
the computer to this work as the promotional material from
IT82 offices only tells us that it is being done!!

New 8000 Series PETs Unleashed.

The 8000 series machines (8032/8096) have been
released in a new case; that of the 500/700. This
incorporates a tilt/swivel screen, seperate keyboard and
the possibility of built-in disk drives - all complying
with the new EEC regulations. Dealers appear to be excited
about the new case, which will offer a few more years life
for the product, as customers found the old style case
1 dated'.

The following changes have been made during recasing:

1 IEEE-488 now on a standard connector.
2 User Port now on an IEEE-488 connector.
3 The second cassette port is no longer available.

Prices for these 'new' machines:
CBM 8032 - £ 995.00 excl VAT.
CBM 8096 - £ 1195.00 excl VAT.

It is possible that Commodore will make a 'conversion
kit1 available, for around £ 100.00, allowing oldies to be
in step with the fashion.

20

SmalLtaIk.

Commodore intends to make available the XEROX
developed SMALLTALK operating system/language, which
combines high resolution graphics with a sophisticated
editor, on the 700 in the near future. Datalink magazine
feel that any implementation of small talk will have to be
a cut down version as the screen resolution of the 700 is
nothing like that used by XEROX.

StacktaIk.

Stack Computer Services Ltd. have produced a
40/80-column card to allow Vic-20 users write programs in a
40-column or 80-column format - without losing any of Vic's
features. The card costs £115.00 and is being offered
exclusively to VICS0FT (Commodore's own club) members.

Stack's card works by generating a second display
independently of Vic's own. The Vic screen can be used
simultaneously; therefore you don't lose colour etc. or the
Stack board can be run on its own. It runs the full Vic
character set in upper/lower case, graphic symbols and
reversed field - it also incorporates the full Vic editing
facilities.

The second display is software controlled in character
size, line spacing and screen size, so that it is more
flexible than it first appears. Simple key combinations
allow you to change these parameters at will.

Take a Bow Commodore.

The world's first million selling computer has been
announced - The Vic-20.!! I wonder if number 1,000,000 was
made in gold!! USA sales top 850,000, European sales
200,000+ (50% of this in the UK).

21

Disk Desk.

It is possible that your dealer will have the latest
Commodore product in stock - that bastion of the electronic
office; a desk to put the computer onto. This is actually
made by Commodore, in Canada, so if you're looking for
matching office furniture or the specification attracts you
then pop down to your dealer. The desk has an 'Arborite'
top 1220 x 660 x 28 mm. steel legs and frame (don't get
caught), adjustable levelling mechanism, ventilated disk
compartment, and has a shelf with cable slots. As we go to
press the price is unknown.

Teachers Pet.

Commodore have appointed an education advisor, Graham
Sullivan, who has taken a one year break from his teaching
routine - he was headmaster of Lowbrook County Primary
School. Graham's job, as an independent advisor, is to
promote educational uses within the company, to make
Commodore aware of the needs within schools and, hopefully,
for Commodore to try and fulfill those needs. Workshops and
seminars are planned; suggestions put forward so far
include the production of educational software, information
sheets, contact with LEA advisors,and investigating turtle
and other control applications. Graham is enthusiastic
about the new 64 in terms of school use and the possibility
of selling the 64 complete with software and tuition. Most
of Graham's time will be spent on the road finding out what
teachers want, then trying to convince Commodore to provide
it.

T.C.

— oOo—

64K UPGRADE FOR A 2001-SERIES PET
By Nigel Peters

I spent a long time looking for a cheap way of
expanding the memory of my 2001-series PET. At Christmas of
last year I added another 8K of RAM, but I still needed
more, in order to run a number of 32K programs, and, in
parti cular. Super scri pt. In J uly of this year I acqui red a
64K dynamic RAM card, as used in the Acorn Atom. The card

22

has its own 6502 processor and it replaces the PET's
processor. The RAM was arranged as a single block of 64K,
but what I wanted was two blocks of 32K each. To make the
blocks, I took the most significant of the card's address
lines, (A15), and attached it to a switch, so that I can
hold it high or low depending on which block I want. A
complication with the memory map is that the PET needs to
be able to address ZERO PAGE on each of the two blocks. I
got around this by masking out the bottom 1K of each block,
and replacing that RAM with 1K from the PET's own on-board
RAM.

The only problem that caused any trouble was the PET's
clock. The CLOCK IN pin of the 6502 (pin 37) should
oscillate at 1MHz, but on the early PETs the frequency is
often lower than this. Because the RAM card is dependent on
the clock signal, the contents of the RAM are lost if the
clock is too slow! I solved this by changing the crystal
which controls the clock speed for a more suitable one.

The card produces power supply problems, as my PET is
one of those converted American ones in which the original
PET transformer has been replaced by a pokey little British
one. The extra load is almost all that it can manage! A
further difficulty is that the 6502 on the new card is not
buffered, and is now required to provide much more output
current than originally intended. It gets quite hot, and
gives up after about one hour's use, so if I want to run
Superscript I have to remove anything that is consuming
power unnecessarily, such as BASMON and PLUSDOS, and
restrict myself to about an hour only!

I usually only use 32K of my additional RAM, but it is
nice to know that I could use 64K if I wanted to! I am
planning on putting a 4K buffer above the screen so that I
can transfer data between the blocks. I have already
replaced the switch with a line to the user port, so that I
can change blocks under software control.

(c) ICPUG 1983
— oOo—

23

VISICALC - PRINTING THE FORMULAE
By Brian Grainger

I wonder how many of you have. Like me, been under the
misconception that one could not print to paper the
formulae used on the spreadsheet when using VISICALC. I
found this a source of great irritation and certainly
thought an additional program was required. As some
programs came out for this purpose when VISICALC first
appeared this idea stuck.

Just recently our illustrious Chairman, Mike Ryan,
pointed me in the direction of page 136 of the VISICALC
manual. This article is the result.

The simple way of printing the formulae is to go in
the file-saving mode but in response to the filename type
',tp,ca*. This will then print the formula to a Commodore
printer. A sample printout is given below.

>D4:+B4*C4.. 1
>C4:+C3+1... 2
>B4:+B3+1... 3
>A4: "R0W3... 4
>D3:+B3*C3...........5
>C3: +C2+1... 6
>B3: +B2+1... 7
>A3:"R0W2...
>D2:+B2*C2..
>C2:2.......
>B2:1.......
>A2:"R0W1
>D1:/FR"C0L3
>C1:/FR"C0L2
>B1:/FR"C0Ll
>A1 :/—
/ W 1

/ GOC........
/GRA........
/XH2........

.9
10
11
12
13
14
15
16
17

19
20

18

8

24

/ GC9 21
22
23
24
25
26

/X>A1:>B1:/TV..
/X>A1:>D1:;/GC9
/X>A1 :>C1:/TV..
>C2:/TH........
/ X>A1 : >D3: /WS. „

Let me try and explain the above listing. The
spreadsheet which gave the above printout, (note the dots &
numbers have been added by me for this explanation), was
rather simple. I had a horizontal window bar in operation
with titles fixed in both windows - they were fixed
differently in each window though. Lines 1-16 are simply
the formulae and formats used on each sheet entry. They
pretty well follow what is typed except for the delimiter,

and the use of 1,11 to start a label. You will note
that one entry is printed per line so if you have a Lot of
entries you need a good supply of paper. Another point to
note is that labels in lower case come out strange when
ASCII characters are used in the file name (,ca). This can
be resolved by using PET characters instead (,cp) but then
everything else comes wrong! Entries are printed in REVERSE
order!

I haven't worked out what line 17 means. It always
appears after the entry printout on all sheets I have
tested. Line 18 indicates the order of calculation (by
columns) and line 19 the recalculation mode (automatic).
Again these are printed as they would be typed. Line 20
indicates a horizontal window bar has been set at line 2.
Note that the 2 is a screen line and NOT a sheet row. This
is more apparent when a vertical window bar is set, e.g.
/XV12 which indicates a bar at screen column 12. It is
impossible to get 12 entries on a 40-column CBM screen with
standard width entries.

Everything from the window bar definition until the
occurrence of ';' defines parameters for the 1st window.
Line 21 gives the column width (9). Line 22 says that the
entries from A1..B1 are fixed as titles vertically. Line 23
starts by indicating that the top left of the display for
the 1st window is A1 and the cursor is at D1. The now
appears so the 1st window definition is complete.

25

The last item of line
width of the 2nd window is 9
from the first window. Line
A1...C1 are titles fixed verti
indicates entries to C2 are
Finally line 26 indicates th
2nd window is A1 and the cu
windows are synchronised in sc
If the cursor was to be positi
further would occur prior
i dent ifi cati on.

23 indicates that the column
as well. It can be different

24 indicates that entries
cally. Line 25 is new and

titles fixed horizontally,
e top left displayed for the
rsor is at D3. Finally the
rolling. One point to note,
oned in the first window a
to the synchronised scrolling

That covers most of the possibilities that will occur
in practice. If the sheet is less complicated those items
not included are omitted from the printout. Actually the
print is an exact copy of the keystrokes required to form
an exact copy of the spreadsheet. This in fact happens when
loading a file. There is an /X command but it has strange
effects. That is presumably why the format is in the order
that is printed.

To finish this article I must give one word of
warning. When one stores a file to the printer this way it
becomes a default for all future file storage. One must
redefine the disk and PET characters by appending ',td,cp'
to the filename. For more explanation of filenames I
suggest you read p.136 of the VISICALC manual.

— oOo—

NEWSLETTER BACK NUMBERS

The following are the current rates for ICPUG
publications: ££
Compendium UK 2.50

overseas 3.50
Back issues of Newsletter UK 1.25

Europe & Ei re 1.75
outside Europe airmail 3.00
surface mail elsewhere 1.75

The above may be obtained from
Secretary, Jack Cohen.

the Membership

--oOo—

26

TECHNICAL TIPS
Apologies !

I have been taken to task by Harry Broomhall for
perpetuating a Myth... There is no such animal as
"The-SAVE-with-replace bug".

Harry knows what he is talking about and all I can
say, in mitigation, is that that snippet of information
came from 'usually reliable sources - CBM'.

To repeat, there is no SAVE-with-replace bug!
Personally I have always ignored this 'bug' and used
SAVE"S)0:file",8 as it is much more convenient than SCRATCH
then SAVE.

To counterbalance the plethora of Vic & 64 information
now pouring into the Newsletter we present two sections of
interest to serious (no not Sirius!) business users; the
SuperPET and 9060/9090 hard disk drives.

Super PET.

Release 1.1 of the Waterloo languages, order code
WCS1.1, is now available from your dealer. The package
fixes all reported bugs from the original release, enhances
the APL interpreter and adds COBOL to the languages
available (with 339-page manual and 43 example programs)
all this for only £ 25.00 + VAT. The package also includes
50+ errata pages for the existing manuals.

SuperPET serial port.

This machine has an RS232 25-pin female D-connector
port inside it, to gain access you have to undo the two
screws at the bottom front of the machine. In RS232 terms
the SuperPET is a DATA/TERMINAL. Some devices require only
two connexions plus a ground to work - but the SuperPET
requires all 9 connexions. If the device at the other end
of the RS232, the DATA/SET device, cannot supply all the
connexions then the plug at SuperPET's end should be
jumpered as follows :-

27

Links Pin Number Name Descri pti on
1 gnd Protective ground
2 TxD Transmitted Data
3 RxD Received Data

to CTS RTS Request to Send
from RTS CTS Clear to Send
to DCD ---6 DSR Data Set Ready

7 gnd Signal Ground
to DTR — 8 DCD Data Carrier Detect
from DCD L- 20 DTR Data Terminal Ready
i.e. Pins 4 & 5 are linked and also pins 6,8 & 20.

This fools the SuperPET into thinking that the RS232
bus is connected properly. The technique can also be used
on other RS232 devices.

Warning: Commodore state that Pin 13 ALWAYS has +5
volts on it, you should take care never to connect anything
to this pin - or let stray wires touch it.

The SuperPET's serial bus is controlled by a 6551
Asynchronous Communication Interface Adaptor CACIA for
short). This chip features a software
(speed of working) generator; and can
half duplex modes. The ACIA is seen by
at the same address from $EFF0-$EFF3 (or in decimal
61424-61427) - the following registers being present :

controlled baud rate
be driven in full or
both microprocessors

Address
SEFFO
SEFF1
$EFF2
$EFF3

Write Access
Fill transmitter
Reset Chip
Command Register
Control Register

Read Access
Read Receiver
Read Status Reg
Command Register
Control Register

The control register is used to select the operating mode;
word length, number of stop bits, baud rate etc.

Function Data (HEX)
Number of stop bits 0=1 Stop Bit

1=2 Stop Bits
0=8 bits
1=7 bits

Control bits
7

6-5 Set word length

28

3-0 Select baud rate
15 different
for example.

2=6 bits
3=5 bits

baud rates can be selected
the following provide:

06=300
07=600
08=1200
0E=9600

The command register is used
generation/checking, receiver echo
functi ons:
Command bits Function

7-5 Parity options

to control parity
and transmit/receive

3-2

Echo /No echo

Transmitter control

Receiver
enable

i nterrupt

(Binary)
no parity
odd parity, Tx + Rx
even parity, Tx + Rx
Mark parity on Tx,
Rx disabled.
Space pari ty on Tx,
Rx disabled.
No echo
Echo for Receive.
Tx disabled, no

Request-to-send (RTS)
01= Tx enabled, RTS.

Tx disabled,RTS.
Tx disabled,RTS
(Transmit BRK).
Interrupt enabled.

Data
xx0=
001 =
011 =
101 =

111 =

0=
1 =

00 =

10=
11 =

0=

Data terminal ready
1= Interrupt disabled.
0= Disable

Receiver/Transmitter.
1= Enable

Receiver/Transmitter.

The status Register allows the programmer to
interrogate the ACIA, it is a read only register.

29

Status Bit Function (1= Error detected, 0= no error)

0
1
2
3
4
5
6
7

Pari ty
F rami ng
Overrun

★Receiver data register full.
★Transmitter data register is empty
No data carrier.
Data set not ready.

★Interrupt

*==Not error condi ti ons but neccessary for ef f i ci ent
programmi ng.

9060/9090 Winchester Hard Disk Drives.

The latest information from COMMODORE includes an
addenda for the manual of these disks which indicate the
tremendous capacity; the HEADER command (or NEW disk
command, from DOS support) will take appoximately 55
minutes for a 9060, and 1Hr 45mins for a 9090 to properly
format the disk. These drives come fitted with DOS 3.0, in
one of two ROM configurations (REV B,REV C), providing a
number of changes which were considered essential in the
use of hard disks:
The concept of 'cylinders' of data is introduced to CBM
equipment for the first time. A cylinder is the same track
on all surfaces of a disk drive (9060 having 4 surfaces,
9090-6). This speeds up data access if data is written in
cylinders in the first place. Generally programmers will
not worry about cylinder access; but its nice to know it's
there if an application demands it.
Track numbering starts with track 0, all floppies start at
track 1.
A bad sector list; which is an invaluable feature of hard
disks, as it is hard to throw away Mbytes of data because
one sector has gone down on the disk.
Larger relative files; through the concept of 'Super Side
Sectors', which point to groups of side sectors - which in
turn point to the data sector(s), it has been possible to
arrange a relative file maximum file size of 86, 400
sectors. However,more practical limitations raise their
head - there is only (ONLY says he!!) 29,376 sectors on a

30

9090 drive - the maximum number of relative records in a
single file is still 65,536.

P.S. Each of the side sector groups pointed to by the
Super Side Sectors is equivalent, in structure, to an
entire DOS 2.1/2.5 relative file.

Directory header format. Track 0 - Sector 0.

Byte Data Descri pti on.

0-1 00-01 Track-sector pointer (TSP) to bad sector
I i st.

2-3 00-255 Identifies DOS 3.0
4-5 76-10 TSP to first directory block.
6-7 76-20 TSP to disk name and ID block.
8-9 01-00 TSP to first BAM block.

10-11 48-49 Not identified.

12-255 00 Not used.

BAM Format.

Byte Descri pti on.

0-1 TSP to next BAM block. ($FFFF = on last block)
2-3 TSP to previous BAM block. (SFFFF = on first block)
4 Lowest track number mapped in this BAM block.
5 Highest track number+1 mapped in this BAM block.
6-255 Bit map of up to 50 tracks, for one

recordi ng surface.
T.C.

— oOo—

THOUGHT FOR THE MONTH

The probability of anything happening is in inverse
ratio to its desirability.

— oOo—

31

KEYCHIP A LOW PRICE PET AID.
'By Alfred Rose.

KeyChip is a 4K chip which provides a large number of
facilities for writing and debugging programs. All these
functions are activated by pressing the left shift and one
other key, none of them may be used from a BASIC program.
It is available for Commodore PET 9" screen models (3000,
4000 and 2000-BASIC 2.0 series).

At a price of fifteen pounds including VAT and
postage, it seemed too good to be true. Had the suppliers
Wirt Microsytems really broken the price barrier, or just
produced a shoddy piece of software? I was pleasantly
surprised to find that KeyChip was very well packaged. The
thirty page manual was typeset and excellently produced.
There were two strips of labels which had to be stuck above
the top row of keys to identify their new functions. The
labels and the functions on the back cover of the manual
were laminated with clear plastic, a welcome innovation to
stop the onset of premature greyness. The general standard
of presentation in this product puts the producers of
exorbitantly priced hardware and software to shame.

KeyChip is compatible with Toolkit and both chips were
used simultaneously during all my tests. The manual gives
the SYS commands to activate KeyChip in the preferred UD3
socket, although it can be supplied for any free ROM socket.

The most interesting KeyChip function is the ability
to scroll a BASIC program in both directions, either at
high speed or one line at the time.

Simply pressing "left shift L" will activate the List
function, causing the cursor to disappear and the program
to be listed from the beginning. Once in the List mode, the
screen is a window on the program which will fill all 25
lines of the screen. The program is still, however, quite
difficult to read, which is where the List format functions
come in. At the press of a key the line numbers can be
reversed, or the second BASIC line is indented clear of the
line number, or a space is created between BASIC lines or
any combination of these functions.

32

One of the features of PET program Listings, are the
strange cursor-controL symbols, e.g. reverse Q means cursor
down. KeyChip can change these to more recognisable
symbols. It can also fill spaces within inverted commas
with reverse dollar symbols. This makes it possible to
count spaces, e.g. when producing column headings.

After scrolling the program, pressing left shift will
bring back the cursor and the program can be edited. Then
"left shift R" will re-enter the list mode at exactly the
same place and the program can be scrolled again. How the
KeyChip manages to scroll the program in both directions,
while keeping track of all the List formats I can't
imagine. It even scrolls BASIC Lines which are Longer than
80 characters, and labels these "illegal" 3rd lines with a
reverse arrow symbol!

In everyday use I found it very helpful to load the
disk directories by using the DOS /$ and then, with KeyChip
I was able to scroll both directories from the one Loading.

As soon as KeyChip is activated all keys will repeat
apart from RETURN and RVS/OFF. ALL "Repeat" parameters can
be changed by POKEs, i.e. limiting repeat to the
cursor-control keys, or changing the delay before repeat or
the repeat rate.

Pressing Left shift and one of the Labelled keys at
the top of the keyboard, accesses a large number of screen
editing functions as described briefly below.

If the repeat key is too slow, then two dedicated keys
make it possible for the cursor to move in half-screen
jumps. This is useful for moving the cursor to the bottom
of the screen or to the centre of a line.

There is a function to instantly regain control of the
cursor when inverted commas have been entered. Similarly,
just pressing left shift will release the cursor when the
INSERT key has been used.

34

The screen can be scrolled in either direction or
closed/opened up at any point. The latter is useful when
inserting a line in a program.

The screen can be erased below or above the cursor or
from one line to any other. Lines can also be erased either
left or right of the cursor. There is a similar function
for BASIC lines which leaves the line numbers intact so
edited lines can be re-entered immediately.

Screensave is a unique function to store up to 10
complete screens in memory. There are many features, such
as swapping a stored screen with a current screen, storing
any rectangular part of the screen or recalling a stored
screen in reverse video. There are so many features that
the manual takes six pages to list them all. Screensave is
of special interest to users who do not have a printer and
have to resort to pen and paper to note down program
output. Parts of a program can also be altered while saving
the original version in case proposed "improvements" make
it worse. It is useful to be able to store small BASIC
routines, e.g. to print out certain variables during
debugging or for complex disk commands.

The conflict between the slower program with lots of
spaces and REMs and the fast incomprehensible program is
resolved with a routine to remove REMs and/or spaces.

Up to ten machine code subroutines can be activated at
a touch of a button after a few POKEs to tell KeyChip where
they are. The program produces a subroutine for "one key"
BASIC commands. In fact the ASCII data given produces
pictures of the author of KeyChip!

There are a number of screendump programs which print
the whole screen on a Commodore printer but unless they are
on a chip it, is very often impractical to use them, for
example a chess game cannot be interrupted to print the
positions of the pieces. The KeyChip Screenprint routine
works perfectly with Petchess and Microchess. The chess or
checkers program has to be loaded first, but not run until

35

KeyChip has been initialised. It can then be run normally
and any stage of the game printed out.

In summary after using KeyChip I consider that it is
as useful to programming as the wordprocessor is to
typewriting. It is a valuable addition to the PET a big
time saver and excellent value. Further details from Wirt
microsystems, 12, Alleyn Cres., London, SE21 8BN.

10 S=826:N=0:REM S=START OF SUBR.N=NUMBER OF K E Y (0-9)
20 S=S-1:H=INT(S/256):L=S-H*256:N=N*2+904:P0KEN;H:

P0KEN+1,L
30 F0RA=S+1TOS+99:READ B:P0KEA,B:IF B=0THEN50
40 NEXT
50 R=S+9:H=INT(R/256):P0KE S+4,H
60 DATA169,1 ,160,1 ,32,28,202,96
70 REM BELOW MESSAGE IN ASCII-TERMINATNTE WITH 0
80 DATA29.250,1 84 ,204,1 57,157,157,17 ,213,46 ,32,46 ,201 ,

157,157,157,157,157,17
90 DATA202,32,221 ,32,203 ,1 57,1 57,1 57,17,205 ,45 ,206,145 ,

145,145,29.29.0

Atari now expect to have a full trial in which they
claim that Commodore breached their copyright in Pacman by
marketing a game called Jelly Monsters. Atari is already
suing Philips over the same game and succeeded in the US.
However the US judgement has no legal bearing in the UK.

— oOo—

ATARI VERSUS COMMODORE

Atari has backed off
application for a temporary
Commodore (Newsletter p283).
possible for Atari's move is the
over software copyright.

and withdrawn its
injunction against
Among the reasons
weakness in the law

— oOo—

i We’re
coming to
get you ^

Qz commodore

37

DOUBLE-DENSITY PLOTTING IN COMAL
By Brian Grainger.

In the September 81 Newsletter I gave an example of
using COMAL procedures recursively. In this article I want
to show another use for COMAL procedures and functions,
namely how to implement new commands. To do so I will write
some routines to emulate my BEM1 double density plotting
(refer to Newsletter May 81). This introduced two commands,
SET(I,J) and RESET (I,J) and 1 function P0INT(I,J).

There are two special lines in the routines and they
have to be specially prepared. First of all type in the
following COMAL program from the keyboard:

0010 DATA 32,108,124,225,126,127
0020 DATA 226,251 ,123,98,255,254
0030 DATA 97,252,236
0040 PROGSTART:=PEEK(23)+256*PEEK(24)
0050 P0KESTART:=PR0GSTART+152
0060 FOR I:=0 TO 14 DO ________________
0070 READ K (c) ICPUG 1983
0080 POKE P0KESTART+I,K
0090 ENDF0R
0100 END
2020 DDCHARSS:="12345678901 2345"+CHR$(160)

Having entered the above program LIST it to disk by
LIST"0:GENLINE.L". Then RUN the program, DEL -100 and RENUM
5020. If you LIST the result you will see a single line
5020.

Now ENTER"GENLINE.L", RUN the program again and DEL
-100 again. LIST the result and you will see two identical
lines 2020 and 5020.

Add to these two lines the rest of the program as given
below. DO NOT OVERWRITE line 2020 or 5020.

0001 // written by b.d.grainger (icpug)
0002 // for comal version 0.12
0003 // prog. vers. 1.1 november 1982
0004 //

38

0005 // these routines allow double
0006 // density plotting by use of
0007 // set(x,y) and reset(x,y) command
0008 // where 1<=x<=80 and 1<=y<=50.
0009 // screen top left is x=1 , y=1.
0010 // point(x,y) will be true if a
0011 // point exists at x,y, otherwise
0012 // it will be false.
0013 //
0014 // lines 2020 and 5020 are special
0015 // do not try to enter them from
0016 // the keyboard
0999 //
1000 proc set(x,y) closed
1010 find(x,y,value,screen,sdchar)
1015 if not (sdchar mod 2tvalue-sdchar mod 2t(value-1)) then

sdchar:+2t(value-1)
1020 plot(sdchar,screen)
1030 endproc set ________________
1039 // (c) ICPUG 1983
1040 proc reset(x,y) closed
1050 find(x,y,value,screen,sdchar)
1055 if sdchar mod 2fvalue-sdchar mod 2f(value-1) then

sdchar:-2t(value-1)
1060 plot(sdchar,screen)
1070 endproc reset
1079 //
1080 func point(x,y) closed
1090 find(x,y,value,screen,sdchar)
1100 if sdchar mod 2tvalue-sdchar mod 2t(value-1) then

return 1
1110 return 0
1120 endfunc point
1999 //
2000 proc find(x,y,ref value,ref screen,ref sdchar) closed
2010 dim ddchars$ of 16
2020 ----------- AS CREATED ABOVE--------------------------------

39

2025 x : —1; y :-1
2030 value:=3; temp:=1
2040 if x mod 2 then value:=2; temp:=-1
2060 if y mod 2 then value:=value+temp
2080 x:=x div 2; y:=y div 2
2090 if x<0 or x>39 or y<0 or y>24 then error
2100 screen:=32768+40*y+x
2110 sdchar:=chr$(peek(screen)) in ddchars$
2115 if sdchar>0 then sdchar:-1
2120 endproc find
3999 //
4000 proc error
4010 print "plotting range error"
4020 stop
4030 endproc error
4999 //
5000 proc plot(sdchar,screen) closed
5010 dim ddchars$ of 16
5020 ----------- as created above-----------------
5030 poke screen,ord(ddchars$(sdchar+1))
5040 endproc plot

Having created the full routine LIST it to disk by
LIST"0:DDPLOTTING.L". You can now enter this program to
memory or add it to your programs as you wish. When
prepassed, the three commands, SET, RESET and POINT will be
available from the keyboard or to a program as if they were
defined in the COMAL language.

Once more the ?power. of COMAL procedures is shown. I
might add that at a recent club night (North Herts Branch),
a COMAL programmer Martin Simpson, added some further
routines to draw straight lines in various di rections. More
of that next time perhaps. COMAL LOGO is not far away!

—oOo—

40

DISK FILE - SECTOR 4
By Mike Todd.

I've had a couple of queries since I wrote sector 3, so
I'll handle these first.

Brian Grainger's article on "DEBUGGING AND DOSSING
AROUND" (page 370 of the November '82 Newsletter) raised
several points and there are two which I would like to take
up.

Firstly, Brian has pointed out a problem in nomenclature
between all the different DOS versions. They are often
referred to as D0S1.2, D0S2.1 and so on; they are also
referred to as D0S1, D0S2A and so on.

As Brian rightly points out, 2A, 2C are the formats of
the disks themselves, but these references cannot be used to
identify the different versions of DOS. For instance, the Vic
disk drive records to format 2A, but uses a totally different
version of DOS to the 4040 which also records to format 2A.
The only way to identify the different versions of the Disk
Operating System (which is what counts if you are going to
access memory locations within the disk drive) is to use the
terms D0S1, D0S2.1 and so on.

There are at least 5 versions of D0S2 (DOS 2.1 & 2.2
used in 3040/4040, the DOS's used in the 1540 & 1541 Vic
drives and the 2031 PET single drive), yet they all work with
2A formats and their disks are fully interchangeable - but
they all differ in internal memory usage.

So I would suggest that explicit reference to the DOS
type be made when doing anything with the internal RAM or ROM
of the disk drives, but the format can be specified if it is
related to the disk itself and is not DOS-dependent.

Brian also throws down the gauntlet on p371. He wants a
definitive answer to the structure of the U1 command.

41

I cannot be 100? sure that the following is true within
the DOS versions that I’ve not seen, but it is certainly true
for DOSI.O, D0S1.1, D0S1.2, D0S2.0, D0S2.1 and the VIC 1540
DOS (2.7?) and since the coding in all versions is absolutely
identical, I see no reason why the other DOS's (notably
D0S2.2, D0S2.5 and D0S2.6) shouldn't be the same.

The U1/U2 commands are generically the same as the "B-x"
commands which assume the general syntax as follows:

B-x: 999 T 999 T 999 T 999 T

where "x" is the command, "9" are ASCII decimal digits and
"T" are terminator or separator characters. The presence of
the colon following the command (whether "B-x" or "Ux") is
optional and if it is absent, the parameter list is assumed
to start at the fourth character, otherwise the first
character following the colon is taken as the first character
of the parameter list.

The separators are normally spaces, commas or cursor
right hence the fact that any of the following will work:

PRINT#15,"B-R:";CH;D R ;TR;SE = B-R: 99 99 99 99
PRINT#15, "U1",CH,D R ,TR,SE = U1 99 99 99 99
PRINT#15, "U 1:CH,DR,TR,SE" = U1:99,99,99,99

All of which are acceptable (assuming of course that you
substitute the correct numbers in the last one!) and all "B-
x" commands are treated in exactly the same way. In fact the
parameter string is parsed as soon as the "B" is identified
and the parameters stored in a table for use by the
appropriate routines. The "Ux" commands are not "pre-parsed"
but both "U1" and "U2" execute the same parsing routine
immediately on entry.

There is no way that a byte-oriented parameter string
can be acceptable to these commands, and the sequence
"U1:»;CHR$(CH);CHR$(DR);CHR$(TR);CHR$(SE) cannot function
correctly, although it is accepted by the parsing routine.

42

However, the memory oriented commands "M-x" work in a
totally different way and are not parsed. They are byte
oriented commands and must follow this byte oriented format.

I don't know where the myth of the B-x and U1 commands
having a byte oriented structure came from, but I have heard
several people mention it and it even appears in the PET
Bible by Ray West.

The other query I've had also stems from a myth which
has been propagated by many "authoritative" voices and is the
write-protect problem in D0S1 - many sources say, or at least
imply, that the write protect facility should not be used
with D0S1 under any circumstances.

Although I've covered the gory details several times
before (p 139 in July 1980 and p34l in November 1982 are the
most notable), armed with the coding details in the last DISK
FILE, I can give the precise reason why.

The actual formatting is performed by the FDC as would
be expected, but the actual routine to do it is stored in the
Interface Processor's ROM! The IP transfers this code into
RAM before the FDC can execute it.

There is a fair bit of house-keeping and other chores
executed before the routine starts to perform the formatting
- eventually, the following code is executed:

LDA #$DC
STA $4C ;select WRITE NORMAL mode (p339 Nov '82)
LDA #$08
AND $82 ;check write protect
BEQ START ;branch if OK

LDA #$08 Jflag WRITE PROTECT ERROR
JMP ERROR ;and exit

START start of main formatting routine

43

You will see that write current is applied to the head
BEFORE the write protect notch is checked! This is made
particularly disastrous since the ERROR routine doesn't
bother to turn it off and all subsequent operations assume
that the head is in the READ mode.

The result is that any subsequent operations (which may
occur on either drive and anywhere on the disk) are executed
with a head in WRITE mode ■■■ and data is casually erased in
the process. So, if the red error light comes on at any time
during a disk format, or the format routine seems to stop
stepping the head (the drive runs but the head stops its
gentle "ticking") open the drive doors immediately and turn
the disk unit off and on again. I'm afraid there is no easy
solution to this bug (other than upgrading to D0S2.1).

This problem only occurs with D0S1 and only during the
header routine (the D0S1 write routine does things in the
correct order), the other DOS's seem to do things in the
right order and will enter the ERROR routine in the read
mode.

THE DISK FORMAT

Last time I promised to describe the exact layout of the
data on the disk, unfortunately time has prevented me from
producing a diagram showing how this is organised and this
will have to wait until another time.

A format 1 or 2A disk has 35 concentric tracks numbered
1-35 with track 1 as the outermost track and 35 innermost
while 2C has 77 tracks. It is this increase in track density
that gives format 2C its increased capacity, together with a
small increase in density within the track.

The tracks have a variable number of sectors according
to where they are on the disk, with outermost tracks having
the largest number of sectors since they are effectively
"longer". The details are as follows:

44

—format 1— —format 2A— —format 2C—
track sector track sector track sector DISK
range range range range range range ZONE

1-17 0-20 1-17 0-20 1-39 0-28 0
18-24 0-19 18-24 0-18 40-53 0-26 1
25-30 0-17 25-30 0-17 54-64 0-24 2
31-35 0-16 31-35 0-16 65-77 0-22 4

The disk zones are those referred to on p159 (May >82)
and you will see that the only difference between 1 and 2A is
that each of tracks 18-24 in 2A has one less sector. The
result of this is that attempts to write to a 2A disk from
D0S1 may try to access a non-existent sector and writing to a
format 1 disk by DOS which expects a 2A formatted disk will
not use the extra sectors.

Because of the potential problems, any D0S2 will not
allow writing to a format 1 disk although format 1 and 2A
disks are READ-compatable since the 2A DOSs will recognise a
format 1 disk and accept the extra sectors.

Also note that the track numbering starts at 1 while the
sector numbering starts at 0.

Each sector on the disk is made up of two blocks - a
short "header" block (also referred to as the "address"
block) and a longer data block.

The header block is made up of a SYNC character (as
discussed earlier), a block identifier byte (BI) which for
the header is 08, a checksum byte (CKS), the sector and track
numbers (SCT and TRK) and finally the two bytes'of the disk
ID specified when the disk was initially formatted (IDL and
IDH) .

There then follows a gap (known as the HEADER GAP) and
then the data block starts with another SYNC character and a
block identifier (in this case 07). This is followed by 256
bytes of data (the first two of these are used as "link"

45

bytes, of which more at a later date) and finally there is a
checksum digit. There is then an INTER-SECTOR GAP before the
next header block starts.

When the disk is formatted by the NEW command, all the
header blocks are written onto the disk, correctly
positioned. On D0S1, dummy data blocks are also written
containing all zeros but on later DOS versions, there is no
data block, only a gap where it should be.

The size of the gap between a header and its data block
is fixed by the DOS. It can't be too small or the SYNC
character of the data block may have passed the head by the
time the DOS has gets round to reading the data block. If
it's too long, space on the track is being wasted and the
capacity of the disk is reduced.

On D0S1, the inter sector gaps were also fixed in
length, but this led to some problems on some tracks where
the number of sectors was being pushed to its limit. If the
speeds of the formatting drive and the drive writing data
were significantly different, it is possible that the last
sector on a track could "bleed" over into the first sector.

As well as reducing the density on tracks 18-24 (where
the problems had occurred), the formatting routine was made
intelligent enough to work out the total capacity of the
track from the disk itself (by timing its rotation) and then
work out the optimum sector spacings, having been given
minimum values to work from.

Some non-Commodore disk drives use sector interleaving
(that is the sectors are not in numeric order but are in a
special sequence such as 0-3-6-9-12-15-18-1-4-7 and so on).
This is because having read sector 0, the FDC may just miss
sector 1 and have to wait for the disk to fully rotate before
it can be read. This can cause long delays, but, by using
interleaving, sector 1 is a couple of sectors away and should
allow quicker access.

46

Commodore don't do this in this way, instead they have
their sectors running consecutively, but use the software to
choose the most efficient sector on which to write data.

Note that the FDC uses the header blocks to keep a check
of which track the head is on, to find the required sector
and also to maintain an ID check on the disk. The ID shown in
the directory is only an "aide memoire" for the user to
remind him of the ID on the disk and, as w e’re constantly
reminding you, should never be altered.

THE JOB QUEUE

In order to communicate with the FDC, the IP uses the
common RAM area to store the data and to pass read or write
requests to the FDC. I will leave full discussion of exactly
how the IP handles this for another time, but I will describe
the principles involved from the FDC point of view.

Each 256-byte buffer has an associated job request byte
in a job queue table. Each buffer also has an entry in a
header table and to read a specific sector into a buffer, the
IP puts a job request byte into the queue, puts the header of
the expected sector into the table and then waits.

Next time I hope to produce a diagram showing the
location and organisation of all these tables and buffers.

Bit 7 of the job request byte is set to 1 to indicate to
the FDC that this is a job request and the FDC returns a
status code with bit 7=0 when the job is completed. It is 01
if the job was successful.

The way the the FDC handles this job queue is quite
complex. It continually scans the job queue, picking out
which job can be executed most efficiently, bearing in mind
which drive motors are running, which track the head is on
and even which sector will pass under the head in the next
few milliseconds.

47

The codes used in the job queue are as follows. Note
that the drive number of the requested job is contained in
bit 0 so that a READ on drive 1 would have a job request byte
of $81.

$80 - READ a sector
$90 - WRITE a sector
$A0 - VERIFY a sector
$B0 - SEEK any sector
$C0 - BUMP head to track 1
$D0 - JUMP straight into machine code in buffer
$E0 - EXECUTE code in buffer with head, motor etc set up

Jobs $80 and $90 are self explanatory, $A0 is only used
at the end of a WRITE to make sure that data written reads
back exactly as it was written. The SEEK command allows
access to the ID of the disk and BUMP produces those horrid
grating noises as the heads are returned to track 1 so that,
from then on the disk drive knows where they are.

The JUMP command forces the FDC to execute the code in
the buffer as soon as the command is found in the job queue
(not implemented on D0S1), while EXECUTE waits for the drive
to be available and the head to be positioned on the correct
track.

It is not possible to use the M-R commands directly on
the FDC address space and so a small routine must be written
and transferred into one of the buffers and then executed,
using the EXECUTE or JUMP commands. This routine would
transfer FDC addressed memory into the common RAM area,
making it accessible by the IP and therefore by the PET.

As well as having bit7=0, the error codes are in the
range 1-16 ($01—$10) and, apart from the OKAY code, are
converted into numbers in the range 20-29 for sending to the
PET when the error channel is interrogated.

The following page shows these error codes:

48

FDC IP
CODE CODE DESCRIPTION

$01 — OKAY

$02 20 HEADER block not found - FDC has a limited number
of tries to find the header of the requested sector

$03 21 No SYNC character detected within time limit.

$04 22 DATA block not found - once FDC finds the requested
header it expects it to be followed by a DATA block
with block ID=07.

$05 23 DATA block checksum error - once all data is read
into buffer, a checksum is generated and compared
with the checksum read from disk.

$07 25 WRITE VERIFY error - a READ of the data written is
performed and compared with the data in the buffer.

$08 26 WRITE to WRITE PROTECTED disk attempted.

$09 27 HEADER block checksum error - whenever any header
is read a checksum is generated and checked against
the checksum on the disk.

$0A 28 DATA block too long - this was intended to identify
the fact that a DATA block had over-written the
next HEADER block but does not appear to be
implemented in the FDC.

$0B 29 ID mismatch - returned if the IDs of the HEADER
blocks read do not correspond with the ID given in
the requested header.

$10 24 Byte decoding error - once all data is read into
buffer, the FDC checks the ERROR flag which will be
set if one or more bytes were incorrectly read.

49

00
01
02
03
04

L O C A T I ON

05
06

07
08
09
0A
0B
0C

0D
0E
OF
10
11

12
13
14
15

16/7
18/9

1A
IB
1C
ID
IE
IF
20-3F

40-4F
80-BF

0400
0401
0402

Interrupt counter - used to time motor turn off delay
Motor delay counter for drive 0
Motor delay counter for drive 1
Drive Si head status flags and track log for drive 0
Drive & head status flags and track log for drive 1

Bits 0-5 track log
Bit 6 head settled flag (0 if settled)
Bit 7 motor up to speed flag (0 if up to speed)

Number of tracks for head to step for drive 0
Number of tracks for head to step for drive 0

Bits 0-6 number of tracks * 2
Bit 7 direction <0 if step IN)

Notes 05 and 06 are decremented/incremented as head is
stepped and are zero when the head is on the correct
track

D E S C R IPTION

temp store for *40 during interrupt routine
checksum work byte .. smallest track difference
Smallest actual track difference found in job queue
Difference between current track & track of job in queue
Difference between current sect and sect of job in queue
Smallest actual sector difference

IDH of current header block
IDL of current header block
TRAK of current header block _________________
SECT of current header block \ r r pur, I S’ T
CHKS of current header block (C-) I C P U G

Current drive number
Current track number
Current sector number
Number of sectors on current track

Current buffer address (points to first byte in buffer)
Current header address (points to first byte of header)

Current track number used during HEADER
Not used
Not used
Retry counter after error occurs in HEADER
Current job request code (bits 4-6 only)
Current buffer number
Hardware stack

6522 VIA chip
6530 RIOT chip (RAM Input Output Timer)

IRQ timer constant (sets number of interrupts per second)
Motor turn off delay constant
Flag set during RESET sequence to tell IP that FDC is OK

0403-0411 Job queue (indexed by buffer number *00-*0E)

50

LOC A T I O N D E S CRIPTION

0421-0498 Buffer header table (contains
each buffer *00-*0E

IDH IDL TRK SEC CKS for

0499-049C Number of blocks
049D Header gap size
049E Inter sector gap
049F Disk format iden'

0500-05FF Buffer *0
0600—0&FF Buffer *1
0700-07FF Buffer *2
0B00-0BFF Buffer *3
0900-09FF Buffer #4
0A00-0AFF Buffer #5
0B00-0BFF Buffer #6
0C00-0CFF Buffer #7
0D00-0DFF Buffer #8
0E00-0EFF Buffer #9
0F00-0FFF Buffer #A
1000-1OFF Buffer *B
1100-1 IFF Buffer #C - BAM
1200—12FF Buffer #D - BAM
1300—13FF Buffer #E - Not

(set up by IP)
(set up by IP)
(set up by IP)

ATTENTION
COMMODORE

DISK OWNERS

1 in D0S2.1 (workspace for IP)

FDC ROM ROUTINES
NBs These routines only give a rough guide and are not intended as a

full programmer’s guide.

FC00-FC03
FC04
FC09

FC54
FC60
FC65
FCBA

FC92
FCAC
FCB3
FCBC

FCD3
FCE0

FCF4
FCF8
FD20

FD1A

FD3F

FD98

FDA5
FDBB

Main holding loop and error routine vectors
"hold" routine for reset entry from IP
RESET - set stack pointer, check RAM, set I/O chips

Main holding loop - start scanning queue for job request
■•- JyMP code ($D0) found - so go and do it
... turn drive motor on & start turn off delay
... exit loop if head is settled on current drive

Scan job queue for all jobs on current track
... BUMP code (*C0) found - so go and do it
... are we on the right track? exit to FCF4 if we are
... note job whose track request is nearest current track

Loop has given up - we’re not on track of any job so ...
... set heads to nearest track requested and goto FC54

On right track, but is drive up to speed?
If head St motor OK, work out zone & number sects on track
... EXECUTE (*E0) code was found so go and do it

BUMP head to track Is force head IN max number of traks

Look for job on queue on current drive & track and
nearest to current sector
... found one, set pointer to its header and go and do it

Subroutine to set job parameters such as header pointer
Force current sector to requested sector then goto FD3F

51

FDC4

FDCB

FDDD

FDF4

FE11

FE4A

FE57

FE6B
FE76

FE82

FEBC

FECB
FECF

FED3

FF02

FF08

FF24

FF2C

FF3E

FF58
FF79

FF82

FFBE
FFB7

FFE8
FFFC
FFFE

L O C A T I ON

Identify job request (READ, WRITE & VERIFY)

READ routine) find start of specified DATA block & read
bytes into buffer. When complete check checksum at FE6B

Subroutine to find start of specified DATA block ...
... search for specified HEADER, wait for following block
... check it’s DATA block (BI“07) - ERROR #04 if not

WRITE routine: check write protect - ERROR #08 if on
... search for specified HEADER, wait (*049D) bytes ...
... write 3 SYNC bytes, DATA block ID (07) & write data
... write checksum and terminate WRITE
... turn WRITE request into VERIFY, then go to FDBB

VERIFY routine: find start of specified DATA block
... read and compare with buffer - ERROR #07 if mismatch
... read checksum ... ERROR #05 if not OK
... check ERROR flag .. ERROR #10 if set

Read any HEADER block and set track log from it ...
... check for SEEK (*B0) request and goto FEBC if it is
... otherwise, compare ID from disk with ID from IP

SEEK routine: transfer header from disk into header table

ERROR #09 — checksum error in header
ERROR *0B - disk ID mismatch

Subroutine to find specified header: set retry counter
... read first header available and compare with request
... if they don’t match, try again preset number of times

Subroutine to find ANY header block - will try only .X
times, ERRDR #02 if not found after .X tries

ERROR handler: flags error in job queue, reset stack & go
back to join main holding loop at FC54

part FF02 routine — wait for any block 8t identify it

Subroutine: identify SYNC within -X characters (used by
HEADER routine only)
Subroutine: search for any block - set time out delay ...
... wait for SYNC until time out occurs
Subroutine: terminate WRITE mode ... restore READ
Subroutine: output byte from .X

INTERRUPT routine: save .A & .Y, reset IRQ timer ...
... increment IRQ count in *00 & then, for each drive
... handle turn off and up-to-speed delays & set flags
... handle head stepping

Masks for head and motor control bits
RESET VECTOR - FC09
IRQ VECTOR - FF82

D E S C R I P TION

52

Armed with all this information, here is a summary of
the way that the FDC operates.

SCANNING THE JOB QUEUE

The queue is constantly scanned and as soon as a job
request is found, it is checked. If it is the JUMP command
then execution continues at the first byte of the appropriate
buffer. If it's not, the appropriate drive is turned on and
the up-to-speed delay is started. Then a check is made to see
if the head has settled and the loop continues until a job
whose head has settled has been found.

If the the job request was BUMP, the head is settled and
the correct drive is set up, the FDC will drive the head back
to track 1 and return to the main holding loop.

If not BUMP, a check is made to see if the head is at
the same track of the selected job. If it is, a quick check
is made to confirm that the drive is available and the
routine exits to handle the job.

If the job is not on this track, the job queue is
scanned for a job nearest the current track and a request is
made for the interrupt routine to move the head to the
required track. The loop is then rejoined and is only left
when the head has arrived.

Once the correct track has been found, the necessary
zone timings are set up and the number of sectors on the
track is worked out. It is at this point that the EXECUTE
command is identified and execution continues at the first
byte of the appropriate buffer.

The first available header on the disk is then read, its
checksum checked, and the FDC's own track record is updated.
If the job request was SEEK, then the header read from the
disk is transferred into the header associated with the
current buffer and that job is complete.

53

The only jobs left are READ, WRITE and VERIFY and the
FDC procedes to check that the ID just read from the disk is
the same as the ID provided in the buffer header.

If all is well, a sector two sectors ahead is considered
the current sector and the job queue is searched for any
request for this sector. If not found, the job which is
closest is chosen and the READ, WRITE or VERIFY routine is
entered as approriate.

READING A BLOCK

A subroutine is first called which waits until the
header of the requested sector is read. This is done by
reading every HEADER block on the track until its contents
exactly match the requested header.

The routine then waits for the SYNC pulse of the next
block and reads the first byte, which should be the block
identifier 07. If it's not, error 07 is generated.

Then, all 256 data bytes are read and placed into the
correct buffer. A check is made of the checksum and of the
ERROR flag and if all is well, the OKAY code is returned in
the job queue.

WRITING A BLOCK

First, the write protect notch is checked and if it is
not covered, the routine waits for the correct header to be
found in exactly the same way as for READ.

Before starting to write the data, a delay loop waits to
allow the inter-block gap to pass the head and then the drive
is switched to write mode, three SYNC bytes are written
followed by the DATA block identifier and then the 256 bytes
from the buffer are written followed by their checksum.

Once complete, the WRITE routine cunningly turns its job
code from $90 to $A0 and rejoins the main loop. This will

54

result in the data just written being verified on the next
rotation of the disk.

VERIFY DATA

This acts exactly like the READ routine except that each
byte read is compared with the buffer contents.

INTERRUPT SERVICING

The only section of the FDC I've not covered is the
interrupt routine. This is called approximately 65 times a
second (although it resets the IRQ timer from $0400 and so
the timing can be altered) and has two distinct sections.

The first handles the drive motors. There are two delays
associated with each motor. There is the up-to-speed delay
which notes that a motor has just been turned on and sets bit
7 of 03/04 (drive 0/1) until the delay has expired.

The other delay is the one which turns the drive off if
it is not accessed for a while.

The second half of the routine looks after the two head
stepper motors. A signed byte in 05/06 (drive 0/1) is set up
when the FDC wants the head moved. This byte indicates how
many tracks, and in which direction, the head should move.

The interrupt handles this stepping and sets bit 6 of
03/04 (drive 0/1) until the head has settled on the track.

The rest of 03/04 is used by the FDC to keep a note of
the actual track on which the head is currently positioned
and this information is not used by the interrupt routine.

FINALLY

That’s all for this DISK FILE. I don’t know what’ll be
in the next one, but in the meantime here are some memory
maps of RAM & ROM used by the FDC.

- ~ 0 0 o - ~

55

BASIC/COMAL DISK ID CHECKER
By Dennis Lyons and Brian Grainger

The idea for this article is twofold. Firstly to
introduce a simple but useful program and secondly to show
a comparison between a BASIC program and a similar program
written in COMAL. Following warnings in earlier Newsletters
about not duplicating disk IDs a friend of mine, Dennis
Lyons, sat down and wrote two programs in BASIC. One to
print all possible ID codes for disks to use as a chart.
The second to keep a record of all IDs used and to check
that new ones have not been used before. The two programs,
as written in BASIC, follow:

PROGRAM 1

100 dim id$(1296)
110 pri nt"<cIr,19spaces>PR0GRAM TO CHOOSE

2 CHARACTER DISK ID
200 rem disk id check progrem
210 rem print used id's to disk and
220 rem read them back against
230 rem keyboard input
300 open8,8,8,"used ids,s,r"
320 input#8,a$:printa$:rem filler
330 i = i+1:i nput#8,id$:pri nti d$,:i d$(i)=id$
340 if st then 400:rem end of used id's
350 go to 330
400 rem ** input *
410 print
420 print"choose 2 character id": input id$
440 iflen(id$X>2then41 0
500 rem * check with input array *
510 for x=1 to i
520 ifid$=id$(x)thenprint"id "chr$(34);id$;chr$(34)

" already in use": x=i:goto410
530 next
600 rem * append new id to disk *
610 append#2,"used ids":print#2,id$:dclose
620 print"chosen id ”chr$(34);id$;chr$(34);

" now added to disk record used ids

990 end

56

1000 open8,8,8,"30:used ids,s,w"
1010 print#8,"id's used up so far"
1020 dclose

PROGRAM 2

100 REM * PROGRAM TO GENERATE A PRINT OF ALL POSSIBLE
ID'S *

101 PRINT"<cIr>PR0GRAM TO GENERATE A PRINT OF ALL
POSSIBLE ID'S

105 PRINT"<dn>PLEASE HAVE PRINTER READY
106 PRINT"<dn>PLEASE PRESS RETURN TO PRINT
107 GET A$:IFA$<>CHR$(13)THEN107
110 0PEN4,4:PRINT#4,CHR$(27);CHR$(69);
120 PRINT#4," DISK ID'S":CL0SE4
130 A$="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
140 F0RX=1TOLENCA$):0PEN4,4:PRINT#4,MID$CA$,X,1);" :

C=C+1:CL0SE4:NEXT
150 F0RX=1TOLENCA$)
160 F0RY=1T0LEN(A$)
170 0PEN4,4
180 PRINT#4,MIDCA,X,1);MIDCA,Y,1);"
190 C=C+1:CL0SE4
200 NEXT:NEXT
210 0PEN4,4:PRINT#4
220 PRINT#4,C;" ID'S GENERATED"
230 PRINT#4:CL0SE4

Having written the above programs in BASIC, Dennis
decided to get to grips with COMAL- at Long Last! What
better way to start but by writing the same programs in
COMAL. You wiLL see from the resuLts beLow that the
programs have become Longer. This is partLy due to improved
Layout and error checking from the originaL BASIC programs.
However this is more than compensated for by the fact that
the programs are far more understandable and easier to
write. The way Dennis has used the very powerful procedures
of COMAL to write the revised programs is a credit to him.
Well, so much for the words, here are the COMAL programs:

PROGRAM 1 (Be sure to SAVE as "CHECK'DISK'IDS)
Note: to run this program put the program disk in drive

0100 // comal utility
0110 // by dennis Lyons
0120 / / =

0130 // program to store used disk id's
0140 // on disk and check a randomly
0150 // chosen disk id against disk
0160 // ================================

0170 dim id$ of 4, iden$(500) of 2, disk'error$ of 22
0180 count:=0; e#:=0 // error flag
0190 // ==============================

0200 get'used1 ids
0210 //
0220 choose'new1 id
0230 // _______________
0240 check'id (c) ICPUG 1983
0250 //
0260 add'id'to'disk
0270 //
0280 re'run //until '00'is entered
0290 //
0300 // ==============================

0310 proc get'used'ids
0320 print " disk id program
0330 print "used id's.."
0340 open file 2,"1:used id's",read
0350 get'disk'status
0360 if e# then
0370 e#:=0
0380 make'id'fi le
0390 close
0400 get'used'ids
0410 open file 2,"1:used id's",read
0420 endif
0430 repeat
0440 count:=count+1
0450 read file 2: id$
0460 print id$;

58

0470 iden$(count):=id$
0480 until eof(2)
0490 print " "
0500 close
0510 endproc get'used'ids
0520 //
0530 proc choose1new1id
0540 input "type in 2 character id (00 to end)": id$
0550 if id$="00" then end
0560 lenid:=len(id$)
0570 if lenid<>2 then
0580 choose'new'id
0590 endif
0600 endproc choose1new'id ________________ _
0610 // (c) ICPUG 1983
0620 proc check1id
0630 for check:=1 to count do
0640 if id$=iden$(check) then
0650 print "id ";chr$(34);id$;chr$(34);" already in use"
0660 for delay:=1 to 1000 do null
0670 re'run
0680 endif
0690 endfor check
0700 endproc check'id
0710 //
0720 proc add1id'to1disk
0730 open file 2,"1:used id's",append
0740 write file 2: id$
0750 close
0760 print "chosen id ";chr$(34);id$;chr$(34);

" now added to disk"
0770 endproc add'id'to'disk
0780 //status procedure
0790 //use this after disk commands
0800 proc get'disk'status
0810 disk'error$:=status$
0820 if disk'error$(1:2)<>"00" then
0830 print "disk error #";disk1error$
0840 e#:=1
0850 endif
0860 endproc get'disk1status
0870 // make id file if not existing

59

0880 proc make'id'fiLe
0890 cLose
0900 open fiLe 2,"used id's",write
0910 write fiLe 2: " "
0920 cLose
0930 endproc make'id'fiLe
0940 //
0950 proc re'run
0960 chain "1:check'disk'ids"
0970 endproc re'run

PROGRAM 2

0100 //a comaL program to generate
0110 //a L L possible disk ids
0120 //
0130 //set up strings & etc _________________
0140 // (c) ICPUG 1983
0150 zone 3
0160 count:=0
0170 dim id$ of 36, starterS of 1
0180 id$:="0123456789abcdefghi j klmnopqrstuvwxyz";

len'id:=len(id$)
0190 //-----------------------------------
0200 input "press return to start*": starterS
0210 select output "Ip"
0220 print " all possible disk ids"
0230 print1id1
0240 pri nt'id2
0250 print
0260 print count;" disk ids"
0270 end
0280 proc pri nt'id1
0290 //first print all single chr ids
0300 for f i rst'i d :=1 to len'id do
0310 print id$(first'id),
0320 count:=count+1
0330 endfor first'id
0340 endproc print1id1
0350 proc print'id2
0360 //next print all 2 chr ids
0370 for first'chr:=1 to len'id do

60

0380 for second'chr:=1 to ten'id do
0390 print id$(first'chr);
0400 print id$(second'chr);
0410 print " ",
0420 count:=count+1
0430 endfor second'chr
0440 endfor first1chr
0450 endproc print'id2

I would just like to finish this article by mentioning
that since writing these COMAL programs Dennis has been
doing more work in COMAL. By his own admission he was not a
perfect programmer in BASIC. With the help of Atherton's
book and the CBM COMAL he has now 'seen the COMAL light'
and considers the language essential and sufficient to
write programs for his needs.

— oOo—

2031 DRIVE PATCH

There cannot be many of you trying to operate a 2031
single disk drive unit from an upgrade ROM (2.0) PET, but
if so you may have a problem. The fix is a patch in the
PET $F000-R0M as follows:

F17F 4C ED FF
F182 EA

FFED AD 40 E8
FFF0 29 FB
FFF2 8D 40 E8
FFF5 A9 5 F
FFF8 4C 87 F1

You can either program a substitute EPROM, or obtain
one from Wilserv Industries, P.O. Box 456, Bellwamr,
NJ 08031, USA. Price $15 (probably more in UK).

—oOo—

61

REGISTER EXCHANGE

I required a subroutine which exchanged the contents
of the accumulator with the Y register, without affecting
the contents of other registers or memory locations.
Similar programs can be written to swap the accumulator
with the X register or swap both X and Y registers.

The stack is used for the various manipulations, as
well as X/Y registers, Stack Pointer and Accumulator. After
each subroutine call, the stack pointer and status register
assume their original states. It is important that the
interrupt flag is conditioned properly in order to stop
interrupt routines writing over the middle of the stack.

By Andy Scott.

PHP ;PRESERVE STATUS REGISTER
SEI ;PREVENT IRQ'S AFFECTING

PHA ;PRESERVE ACCUMULATOR
TYA
PHA ;PRESERVE Y REGISTER
TXA
PHA ;N0W X

; INCREMENT STACK BY 3
PL A ;1.. OLD X REGISTER
PL A ;2.. OLD Y REG
PL A ;3.. OLD ACC

TAY ■GOT OLD ACC NOW PUT IN Y

TSX ■ADJUSTING STACK POINTER
DEX ; BACK TO WHERE
DEX ;IT SHOULD HAVE BEEN
DEX
TXS ;MAKE GOOD

PLA ;GET OLD X
TAX
PLA ;GET OLD Y (INTO ACC NOW)
PLP ;THROWAWAY OLD ACC (IN Y

PLP ■GET OLD STATUS BACK
RTS ;GO HOME

62

Although the interrupt flag was set at the beginning of the
routine (SEI instruction) it is not necessary to clear it
at the end. The second from last instruction (PLP) restores
the old status register - clearing or setting the interrupt
flag to what it was before! The SEI instruction, following
PHP is essential to ensure that the stack is uncorrupted.

— oOo—

No, I didn't mean put the w-hole thing on a chip!

THE PET INDEX

Mick Ryan's book "The PET Index" (reviewed p216, July
'82 issue) is now reduced in price to only £ 6.95 plus
£ 1.00 post & packing. Please send your order direct to
Gower Publisning Company, Readout Publishing Co. Ltd., 8,
Camp Road, Farnborough, Hants. The PET Index Disk (state
4040/8050) is £ 18.25 (incl. VAT and p & p). Book and Disk
together £ 22.75 incl.).

— oOo—

63

Discount Corner

For discounts on CBM hardware (17.5%) and CBM software
(20%) please write to me stating your requirements
enclosing an SAE.

For 5.25" single-sided, single- or double-density
disks with reinforced hub rings, please order directly from
me enclosing payment by cheque made out to ICPUG. Ten disks
cost £ 16.60. An addressed 'Jiffy Bag' with 56p in stamps
should be sent with your order, which will usually be met
by return of post.

Superscript is once again available to ICPUG members
at a special price of £ 75.00 plus VAT. Superspell will
also be available for the same price. Alternatively the two
can be provided at £ 150.00 as one unit complete with a
security key. Updates for your existing Supercript are
£ 5.00 plus V.A.T. and new manuals at £ 11.00 each. Please
apply to me in the first instance enclosing a stamped
addressed envelope advising which format, 3040/4040 or
8050, you require. Only one copy of each program can be
supplied to any member.

It is hoped that Ray West's book "Programming the
PET/CBM" will soon be obtainable from Group secretaries.
Otherwise, please write directly to me sending a cheque for
£ 10.50 made out to ICPUG and a stamped 'Jiffy Bag'
(Postage for 1 kilogram for first class is currently
£ 1.57, or parcel postage £ 1.20 UK rates). The jiffy bag
should be large enough to take the 10.25" x 7.5" x 1" thick
book.

Please note my new address which is: —
45, Brookscroft,
Linton Glade,
Croydon CR0 9NA.

Tel: 01-651 5436
I will be pleased to search for discounts on any hardware
or software required for your Commodore System, but please
enclose a stamped self-addressed envelope for my reply.
Jiffy bags can now be bought from the Post Office.

— 0 0 o —

By John Bickerstaff

64

24-PIN 1OLD-ROM' 2001-SERIES By Mick Bignell
CONVERSION TO BASIC 2.0 OR 4.0 Cc) ICPUG 1983.

Owners of the old 2001-series PETs, fortunate enough
to have the 24-pin ROMs fitted to their main logic board,
may easily convert the pcb to accept the latter versions of
BASIC (i.e versions 2.0 and 4.0) plus the additional
sockets for ROM expansions such as TOOLKIT, POWER, ARROW
etc.. These are only available on-board on the later
dynamic RAM machines.

These instructions refer only to printed circuit
boards marked:- 'PET MAIN LOGIC ASSY 320137' and when the
conversion is complete it will not be possible to use the
machine with the old BASIC 1 chips again.

Remove the power supply socket from J8, keyboard
connector from J5 and the video socket from J7. Remove
three screws holding the main logic board in position (2 at
rear and 1 on right), while gently lifting the board
release three nylon pillars (2 at front and 1 on left).
Remove board from machine.

There are seven ROM sockets in row 'H ' (conveniently
the same as later PETs), remove the old 2K ROMs and
discard. At this point it is possible to fit BASIC 2.0 4K
ROMs directly into the sockets H1 to H4, leaving the H5 to
H7 empty, with no further mods required. This is because
BASIC 2.0 consumes the same amount of memory space as
BASIC 1 ($C000-$FFFF). However the empty sockets cannot be
used at all as they also address at some of these
locations. Fitting an extra chip in any one of these
sockets would cause a conflict on the data bus and prevent
the machine from powering up.

On old PETs the hardware assumes that addressing
anywhere in the range $9000 to $BFFF will be to an external
device and therefore enables the data bus buffers
associated with the memory expansion port. These buffers
must be disabled if we are to use the on-board three spare
sockets at these addresses. If not disabled, when the
processor reads a ROM at these locations the buffers will
switch on and again corrupt the data on the bus.

65

The mods to the PCB alter the three spare sockets to
address in the $9000, $A000 and SB000 4K blocks and also
disables the offending buffers anywhere within these 12K of
locati ons.

HARDWARE CONVERSION.

N.B. All integrated circuit pins are numbered counting
in an anti-clockwise direction. Looking from the top of any
chip with the 'notch' end on the left, and the numbering
the correct way up for reading, pins are counted from left
to right on the lower edge and right to left on the upper
edge.

On the top side of the pcb, cut track between pin 5 of
chip G4 (74LS21) and 1K resistor/G3 pin 9 (74LS00), using a
sharp modelling knife or scalpel. From the under-side of
the board cut track between pins 4 & 5 of G4. On socket H7
pin 20 there is a track leading to a plated-through hole,
from the upper side of the PCB, cut the track near this
hole. Also repeat the same track cut for sockets H6 and H 5 .

Using some thin wire CKYNAR' wire-wrapping wire is
ideal), connect pin 20 of socket H5 to pin 13 of G1
(74154). Also the same pin 13/G1 should be connected to G4
pin 4. This part of the mod will cause socket H5 to address
at $B000-$BFFF and disable the buffers. Pins 4 S 5 of G4
are spare inputs to a 'FOUR-INPUT AND1 gate used to disable
the data bus buffers when addressing ROM area.

One of these inputs we have now used for the $B000
socket. This leaves two sockets but only one remaining
spare input on the gate G4. The logic we require to disable
the buffers for two sockets with only one input is the 'OR'
function on this gate's last spare input. As there are no
spare 'OR' gates available this may be achieved using two
high speed diodes of the 1N4148 type connected as a 'wired
OR pair'. Solder together the two anodes of the diodes
(anode = the end without the band) and each cathode (band
end) to each of the plated-through holes connected to H6

66

pin 20 and H7 pin 20. Solder wire from the diodes common
anode connections to pin 5 of G4. Solder wire from pin 20
of H6 to pin 10 of G1 and wire from pin 20 of H7 to pin 11
of G1.

THAT'S IT!
reverse order of
table:-

Refit the board into the machine in the
dismantling. Fit the new ROMs as per

Socket H1 H2 H3 H4 H5 H6
Start address $C000 $D000 $E000 $F000 $B000 $9000
BASIC 2.0 ROMs -01 -02 -24 -03 ----
BASIC 4.0 ROMs -20 -21 -29 -22 -23 ----
Equivalent locations ion dynamic
RAM boards: UD6 UD7 UD8 UD9 UD5 UD3

H7

UD4

Any problems relating to this conversion or the
interpretation of these instructions telephone Mick Bignell
on 01-953-8385.

— oOo—

ICPUG SOFTWARE LIBRARY

Things are moving fast in the domain of the ICPUG
Software Library, so much so that things are often out of
date by the time one gets to hear of them. Many sources
recommend the public domain program 'COPY/ALL1 or its
upgrades, now all of these are superseded by 'COPY/FAST1.
'COPY/FAST' will copy from ANY Commodore disk (hard or
floppy) to any other (space permitting !), including
relative files.

If you would like to assist in the cataloguing and
collating of the programs in the library- please contact
Carl Millin, 31, Northleigh Close, Loose, Maidstone, Kent,
ME15 9RP.

— oOo—

67

UGLY BUG BALL TIME AGAIN

It would seem the dreaded disk drives are out to bug
me forever! After last time's identification of errors in
the disk to tape saving program due to disk problems I
found another one! This time because of the 2031 disk
drive. Apparently this drive gets upset, when using BASIC2,
if the error channel is accessed after the GET# command in
certain circumstances. Thus in the revised line 2430 for
the disk to tape program given last Newsletter remove the
G0SUB2000. It now becomes:

2430 F0RB=1T0255:GET#4,A$

Also on this drive, the disk buffers are in a different
part of memory so line 2410 should be changed with this
drive to read:

2410 PRINT#15,"M-R"CHR$(0)CHR$(3).

Moving away to the goodC?) old 3040. It caused me
great pain a few weeks ago when I could not ENTER, using
this drive, some COMAL LISTed files. It worked perfectly
during my preparation on a 4040. It didn't work when I came
to giving a presentation at the COMAL User Group! Similarly
early PET REVAS versions had problems with 3040 fitted with
D0S1. The reason is that on this drive if you use
secondary address 0 or 1, it expects a PRG file. Any other
causes a filetype mismatch error. COMAL uses these
addresses of course! So be warned. An up-to-date copy of
PET REVAS to solve this problem can be obtained from Tom
Cranstoun (address last Newsletter). COMAL will not be
updated so get D0S2.

Talking of PET REVAS, users may have noted that a CPY
immediate instruction gets translated into CPY 0 page. The
solution is simple. IMMEDIATELY after LOADing PET REVAS you
should find PEEK(2239) is 40. P0KE2239,41 and SAVE
IMMEDIATELY and all will be well in future.

By Brian Grainger

— oOo—

68

SHOP WINDOW

Now I'm always pleased to announce a first in these
pages, so when I see that Nottingham-based Keen Computers
claim a first for their local area network for the CBM/PET
series, I wonder if they have heard of Cluster One (at the
first PET Show), Hydra and Commodore's Keynet, to cite but
three. The Corvus Constellation is available on many
machines and now interfaces to the PET using the Small
Systems Engineering Corvus/IEEE-488 interface.

Small Systems also do a range of scientific and
industrial interfaces. Their address is 18/19. Warren
Street, London, W1P 5DB. Tel: 01-387 7388. Similar
interfaces come from Biodata Ltd., 6, Lower Ormond Street,
Manchester, M1 5QF. Tel: 061-236 1283. Also from Lee
Dickens Ltd., Desborough, Kettering, Northants, NN14 2QW.
Tel: 0536 760156.

I've always fancied an XY-plotter for producing
diagrams for the Newsletter. One of the cheapest I have
seen comes at £ 596 + VAT from J.J.Lloyd Instruments Ltd.
The PD4 plotter is suitable for direct connection to the
PET and has optional software available, including
character generator. The address to contact is Brook
Avenue, Warsash, Southampton, S03 6HP. Tel: Locks Heath
(04895) 4221 .

Now that the Commodore 64 is out, Oxford Computer
Systems have produced a suite of cross-compilers which will
compile 8000- or 4000-series source programs to C-64
compiled code and from Vic-20 to C-64. Also from 0CS comes
the Interpod, a 'universal' interface to convert between
Vic-20 and C-64 serial interfaces and RS232 or IEEE-488,
in either direction. The price is £ 95.95 + VAT from Oxford
Computer Systems (Software) Ltd., The Old Signal Box,
Hensington Road, Woodstock, Oxford, 0X7 1JR. Tel:
(0993) 812700. Commodore are reported to be negotiating
with 0CS regarding production of the Interpod. The PETSpeed
BASIC Compiler from 0CS is now available for the C-64 at
£ 125.

69

If you need IEEE-488 cables and have fallen out with
your friendly dealer, they may be obtained nowadays from
many sources. Some of these are as follows: Cableforms and
Connectors Ltd., 151, London Road, Camberley, Surrey,
GU15 3JY. Fast Express Ltd., Bowater Road., London,
SE18 5TF., Tel: 01-855 4344 or 9821. RS Components Ltd.,
P.O.Box 427, 13-17, Epworth St., London, EC2P 2HA. Tel:
01-250 4000 (queries), or 01-253 3040 (orders), and for
real value, Supersoft - 2 metres for £ 32 + VAT. Tel:
01-861 1166.

Hackers and hardware enthusiasts may be interested in
the catalogue from Control Universal which contains 6502
and memory boards, card frames and 65xx series interfaces.
Control Universal are at Unit 2, Andersons Court, Newnham
Road, Cambridge, CB3 9EZ. Tel: (0223) 358757.

Wordcraft has been available for some years now and in
that time it has had several modifications. The latest
version resides in ROM, rather than in overlays during use,
and has some improvements in the screen editing functions,
such as highlighting text that is to be moved.

'Video-Glasses' anti-glare screens are designed to
reduce glare and enhance clarity at a price of £ 16.75,
including post, packing and delivery from File Binders
Ltd., 153-155, High Street, London, SE20 7DS.

If you are in the habit of pouring coffee over your
keyboard, you can obtain a transparent silicone rubber
keyboard cover which will fit all large-keyboard Commodore
models for £ 6.00 + 90p VAT. Contact D.B.M. Products,
P.O.Box 6, Melton Mowbray, Leicestershire, LE13 1YL.

Another chip to add commands to BASIC is offered,
called Microbis. This adds 22 business-orientated commands
to 8000-series machines - SORT can handle 1000 records in
half a minute, KEYED random access commands, PAD a field
with any character, FLASH selected screen messages, ENTER 8
validate data in screen windows, PACK & UNPACK data to
conserve disk space, et al. The chip costs £ 46 from
Microcomp, Homes Cottage, Reeds Lane, Liss, Hants. Tel:
073082 2512.

70

Your CBM/PET can act as a microprocessor development
station for £ 999. A choice of processor modules from 6502,
6802, 6803 or 6809 housed in a half-width Eurocase,
software controlled full-speed in-circuit emulator, user
interrupts, hardware address trap and IEEE-488 interface
are just some of the features. The software has a fast
assembler with macro facilities and includes an extensive
monitor/debug package. Details from Tylek Ltd., 2, Parkview
Drive, Cashes Green, Stroud, Glos. Tel: 045 36 77257.

— oOo—

MATTERS ARISING

The program on p174 (July issue) to perform a printer
presence check made references to a non-existent line 200.
Furthermore the subroutines ended not in RETURN, but
G0T0200. Naturally this caused some confusion but perhaps
line 200 will help:

200 SYS50583:....rest of program...
This calls the back end of the CLR routine at the point
where it sets the stack pointer to $FA after saving the RTS
address. Hence any F0R-NEXT loops or subroutines left
incomplete are cleared from the stack, yet no variables are
lost, nor pointers altered. This enables nested subroutines
to be aborted to some default point in the program, such as
a menu of options. The call address for BASIC4.0 is 46610.

The article on p291, last issue, was not from an IEE
circular, the item that was went astray at the printers.
Pages 357 and 359 were transposed and the page number
referred to in the editorial was 372.

Finally, the last term in the Karnaugh function (p349)
should be 'D1 and not its complement.

— oOo—

“THIS
ADVERTISING

SPACE
RESERVED FOR

RAM
ELECTRONICS

FLEET”

72

NEW VIC EXPANSION

Recently released from RAM Electronics of Fleet is a
new super 32K RAM pack that, with the on-board capacity of
the Vic's 3.5K gives a massive 35.5K+ bytes for use on your
Vic. However, only 27K is directly useable by BASIC. The
unit comes in an attractively styled custom injection
moulded case, with three switches on the top, enabling it
to be plugged directly or via RAM's 4-slot mother board.

The switches can enable combinations of 8K expansion
blocks giving maximum flexibility when working with
dedicated games, machine code or large programs.

Normal retail prices are:
32K RAM Pack £ 69.95
16K RAM Pack £ 44.95
4-slot Mother Board £ 24.95

all prices include VAT. Contact the discounts officer for
special ICPUG Member prices.

— oOo—

MEMBERS' PRIVATE SALES 8 WANTS

Our auditors, J.G.Feingold & Co. have for sale a CMC
non-addressable interface PET to RS232 for £ 50.00 -
further details phone 061-792 1257.

The editor has for disposal three 'Practical
Computing' binders; offers welcome.

3000-series PET plus 3040 disk drive for sale, both
upgradable, at £ 399 each. Regularly serviced with free
diskettes and games. Contact R.D.Osner, Roxburghe
International Ltd., 166, High St., Hounslow, Middx. Tel:
01-570 5783.

BASIC 2 Toolkit chip and manual for sale at £ 15;
Disk-0-Pro Chip and manual at £ 25, Contact Laurie
Faulkner, 136, Kingsway Road, Stoneygate, Leicester,
LE5 5TT. Tel: 0533 704676.

— oOo—

73

COMAL CORNER

The COMAL arena is changing again now after a quiet
period. The previous version for BASIC4, 0.12, has been
slightly modified. I have dubbed it revision 1 and have
been distributing it as C0MAL80-0.12/1. Anybody who wrote
to me after my articles in the September Newsletter will
have this version. Three differences from the earlier one
have been noted. Firstly a bug where the error message
remained on the screen even after error correction has been
removed. Secondly, while the interpreter will accept a NEXT
statement, (as in FOR...NEXT), it gets translated to ENDFOR
which is the COMAL Kernal syntax. Using ENDFOR maintains
the type of structure syntax which occurs with
WHILE...ENDWHILE, CASE...ENDCASE. Finally another 500 bytes
program space is made available, making 5612 in total. In
conjunction with this BASIC4 update, the final released
version of 1.02 arrived for the 8096. It is version 1.02J.
Not having an 8096 I do not know what differences exist
between 1 .02A and 1.02J. These versions are, as far as I am
aware, only available from me at present and not in the
software library. We are in the process of bringing some
order to the library chaos and until that is complete the
best place to come for COMAL copies is myself.

I have found two further differences between COMAL
version 0.11 and 0.12/1. The former rejected a shifted
'space' while entering programs. 0.12/1 will automatically
convert this to an unshifted 'space'. This even occurs if
the shifted 'space' occurs in a string constant, which can
be a nuisance.

Another benefit of 0.12/1 is that more than one
procedure can be called with a single COMAL statement.
Previously only multiple arithmetic expressions were
allowed in single statements. As an example the following
statement is now valid:

IF NOT FINISHED THEN READ'SOME'MORE ; PROCESS
where READ'SOME'MORE and PROCESS are valid PROC names.

By Brian Grainger

74

I have heard that a COMAL version 2 is to be made
available, but as yet no details have appeared. I have a
hunch it may be for the Commodore 500 or 700 series. I am,
(at the beginning of December), eagerly awaiting a revised
version of Borge Christensen's COMAL notes to see if this
gives any clues. I have heard rumours of using disk space
like virtual memory.

To finish this month's COMAL CORNER I want to give the
current program status to aid the confused:

C0MAL80IN, C0MAL80EX is the BASIC4 split version at 0.11
standard. An 0.12 standard split version does not exist.

C0MAL80-0.12/1 is the BASIC4 full version.

C0MALB3 is the BASIC2 full version at 0.11 standard.

C0MALB3IN, C0MALB3EX is the BASIC2 split version at 0.11
standard.

C0MAL4C1 is the version for users with cassettes only on
BASIC4. It is aimed at giving an introduction to COMAL for
these users. Very careful use is required so it is not
suitable for teaching purposes. It is at 0.11 standard

C0MAL3C1 is the version for users with cassettes only and
BASIC2. Careful use is again required and it is at 0.11
standard.

No 0.12 standards for BASIC2 exist at present.

COMAL 80 R1.02J is the latest 8096 version.

— oOo—

8032 NOTES
By Martin Guy.

Both <SHIFT> keys and <2> puts you instantly into
UPPER CASE/GRAPHICS mode. Both <SHIFT> keys and <2> and
<CRT> gives SCROLL DOWN.

— oOo—

75

PROBLEMS & QUERIES

I'm writing this only just as responses are coming in
from the the previous problems page, but the signs are that
people are rallying round. Some of these replies are worthy
of printing in the Newsletter as complete articles and this I
will endeavour to do next time.

It therefore strikes me that replies to the problems
should continue to come via me so that I can pick out the
details and give everyone the benefit of the expertise.

If you do have a query, please send it to me, and try to
word it succinctly to save me having to condense a four-page
letter into a paragraph!

I would suggest that the most common queries are likely
to be along the lines of "I wonder if anyone has written a
program to do " o r "Does anyone know how to and
remember that there will inevitably be a delay before the
query appears and replies are received.

Anyway, to this month's queries:

COMPUTHINK & IEEE

A reader writes (sounds a bit like Marj Proops!) "I have
a 3032 with dual Computhink drives and an IEEE printer.

"I would now like to use a number of utilities like
Visicalc, POWER etc., but these are not available for
Computhink systems. Dealers offer little help, other than
suggesting scrapping the Computhink drives and replacing with
Commodore. However, I have a lot of software for the
Computhink that I don't want to rewrite.

"What I propose is to add a single Commodore disk drive
to the IEEE bus then, using a ROM pager, to switch out the
Computhink ROM and patch in the CBM.

By Mike Todd.

"Is this possible? Is there anyone who has such a
multiple disk system with whom I could discuss the hardware
modifications? Is there a better/cheaper alternative?"

EPSON PRINTERS MX80 & M X 100

"I have an EPSON MX100 (identical to MX80 except faster
and bigger) and have a couple of queries.

"(1) The auto line-feed and slashed zero features
selectable on the DIP-switch inside are extremely awkward,
especially as it requires the removal of the IEEE interface
board everytime I want to change the switches. Does anyone
know of a simple way of either extending the DIP switch to
the outside world without voiding the warranty, or is there a
software method using ESC sequence which EPSON don’t publish?

"(2) Does anyone know exactly what the JPET/JNORM DIP
switch on the IEEE board actually does? EPSON don't seem to
know themselves!

"(3) Does anyone have a program which allows PET
graphics characters to be sent to the printer using the bit
image mode? I can see a way to do it, but haven’t the time to
write the program. In fact, are there any EPSON graphics
programs around?

"(4) Does anyone have any technical data (mainly the
instruction set) on the MPU used in the EPSON (a 8049). I've
got a dump of the ROMs and would like to have a rummage
around to see what's going on."

FINALLY

Finally, a query from me - does anyone know where I can
get a Visible Music Monitor without the hardware. I would
like the VMM but already have a very good DAC and don’t want
to have too buy another.

Well, that's it - I look forward to hearing from you.

—oOo—

77

REVIEW
COMAL HANDBOOK
LEN LINSAY

Prenti ce/Hal I,
Hemel Hempstead.

This book on COMAL, the third to make an appearance in
this country is undoubtedly what everybody has been waiting
for. In a manner somewhat akin to Raeto West's treatment of
BASIC, Len Lindsay has produced the definitive reference
work for COMAL on the CBM.

The handbook starts with a quote from an anonymous
Danish student- "I'm tired of BASIC but scared of Pascal"!
This is followed by a brief introduction to COMAL by Borge
Ch ri stensen.

The first few pages of the book proper are spent in
outlining how the book is to be read and defining some
common terms used throughout the book. These include disk
file names, variable identifiers, the various versions of
COMAL and a brief introduction to the editing facilities of
the CBM machines.

The bulk of the text is the 160+ pages, each in a
standard format, devoted to explaining each of the COMAL
keywords. For each keyword a description of its purpose is
given, the FULL syntax, some examples of use and a simple
sample program using the keyword. In addition, the versions
of COMAL to which it is applicable are also identified.

There are a number of appendices. The first describes
the various COMAL structures in great depth. String
handling, which is fundamentally different from Microsoft
BASIC, is covered in the second. Another very useful
appendix contains procedures for general use with COMAL
programs. A number of these emulate functions in version
1.02 that are not available in 0.12 and therefore need a
special procedure. The full COMAL Kernal definition is
included in another appendix.

For those who are going to use COMAL regularly this
book is a must. It is very comprehensive although some
minor items are missing, most important being the

78

abbreviations one can use for some keywords. Although the
book is biased towards the new COMAL versions 0.12, 1.02
some mention is made of 0.11 and 1.01 but the approach to
these versions is not systematic. Nevertheless the book is
essential to programmers using those COMAL versions as well.

My final observation is that the book is so
comprehensive that sometimes one feels a small quick-
reference is required to have ready access while
programming. I'm working on that!

All in all this is an excellent REFERENCE book on
COMAL and while not cheap (£ 15.15) represents very
good value. By the time you read this it should be
available from Prentice/Hall at 66, Wood Lane, Hemel
Hempstead, Herts. (0442) 58531/212771.

B. D. G.

— oOo—

AVOIDING THE 'INPUT' CRASH

Those of you that are new to Microsoft BASIC will have
found that when using the INPUT statement, pressing the
<return> key on its own with no other input will cause a
program to abort. Over the years various methods of
avoiding this have been devised, each with various merits
and disadvantages. Here is a little known method that will
not abort with either a null input, or the <ST0P> key:
100 N=16:REM N=3, 14 or 16
150 POKE N,1 : INPUT A : POKE N,0 : PRINT

The value of N is determined by which version of BASIC
is in use (see Newsletter p199, July '82), the one shown is
for BASIC4. Vic's BASIC has been revised to overcome the
problem.

R. D . G.
—oOo—

79

MICROCHESS ON ICE - Part 2

Note:- This article is intended to be read as a follow
up to Part 1 on page 219 of Vol4 No.5. It only deals with
the old ROM Microchess however.

In order to cope with the various Microchess versions,
the previous article put the subroutine for 'Return to
BASIC1 at $1800 and the Duplicate chess piece set at $182D.

With the old-ROM Microchess put the subroutine at
S17F0 and modify $05B9 and $05BA to $F0 and $17
respectively. The duplicate chess piece set should start at
$181D. When the duplicate set is at this location P0KE1188
with 20 or 24 will give the option of either set of chess
pi eces.

LOAD but do not RUN the modified Microchess. Enter in
Direct Mode F0RI=6173T06206 : P0KEI,187:NEXT. Now RUN
and you will see an empty chessboard. F0RI=5149T05182 will
do the same with the cassette as bought.

To set up a problem involving few pieces carry out the
above and POKE the pieces; i.e. P0KE5149,3 will put the
White King on E1. ANY GAME AGAINST PET OR PLAYER CAN BE
SAVED AND ONE CAN RETURN TO ANY POSITION TO PLAY ANOTHER
MOVE. SEVERAL POSITIONS CAN BE STORED AND CALLED AT WILL.
In order to do this I have pinched the following:

'*', 'X', 'N' and 'P'
Modify the text to give:-
05C0: 4C 50 18 ='*'= Memorise position v. PET
04ED: 4C 60 18 ='X'= Restore position v. PET
0549: 4C 70 18 = 'N' = Memorise position v. opponent
0520: 4C CO 18 ='P'= Restore position v. opponent

The subroutine given as at $1850 in the previous article
should be moved to an unused place in memory and $055D
modified accordingly. Then 1850 can be replaced with:
1850: A2 21 B5 90 9D 90 18 CA
1858: 10 F8 4C D3 04 ...

By Walter Green

80

Playing against PET, should you wish to return to the
present position, simply type This will appear on the
screen but will vanish as you press "return1. Nothing more
will happen and you should carry on playing. The subroutine
copies the position into $1890. The same subroutine in
reverse is entered at $1860. To return to this position,
type 'X' AND MAKE YOUR NEXT MOVE. Your move will be made
followed by the stored position. To illustrate this make a
copy with SYS2062 and LOAD the copy. Now F0RI=6173T06206 :
P0KEI,187 : NEXT and RUN. The empty board will be
displayed. Now make your move. The piece will appear out of
the blue and move, followed by the rest of the board !

1870: A2 21 BD 1D 18 9D DD 18
1878: CA 10 F7 4C D3 04 ...

This puts a copy of the duplicate chess set at $18DD
when you type 'N'. POKE a problem/end game and store it
there. The same subroutine in reverse placed at $18C0 will
restore it when 'P 1 is typed. Save with SYS2062 and with
the copy loaded and RUN you have the choice of three
posi ti ons.

Anyone with an old-ROM 8K PET would be advised to get
a TIM Monitor relocated to $7183. This will make page $1B
available for storing positions. The jump address in
$1820/1 will then read 4C FE 1D.

When moves are POKEd, captured men must be removed by
POKEing the value 187. A piece retains its original
identity. Combining these two facts:-
WHITE moves- P0KE6189,51 OE2E4)
BLACK moves- P0KE6205,68 (=D7D5)
WHITE moves- P0KE6189,68:P0KE6205,187

Note: After typing 'P ' one must return to BASIC with
and then RUN to restore the memorised position v. opponent.

Brian Grainger Note! Since this article was received
for the Newsletter further enhancements to Microchess have
been made to enable, for example, PET to play by itself
with no human intervention. Another enhancement is replay
of a stored game. The author, at 151, The Hatherley,
Basildon, Essex will be able to expand on these
improvements should you be interested.

— oOo—

81

MULTIPLE KEY PRESS DETECTION
By Brian Grainger

I do not claim any originality for the ideas of this
article. I have not seen anything on it in the ICPUG
Newsletter so I thought I would bring it to the members
attent i on.

The memory location $9B always holds the same contents
as $E812. This location is the keyboard output value which
indicates the column of the keyboard matrix in which a
depressed key is located. Now the keyboard is scanned per
group of 7 or 8 keys but the scan routine finishes with the
scan of the bottom row of the matrix. Thus one can
PEEKC155) to identify which keys of this 'bottom' row are
pressed. It will not only detect a single key press but any
combination of the bottom row keys. Check this table:

0 RVS
1 I
2 SPACE
3 <
4 RUN (if STOP key disabled)
5 detects no keys
6 .
7 =

For each key pressed check tne associated number from the
above table and raise two to the power of that number. Do
this for each key and sum the results. If you take away the
final result from 256, that will be the value of PEEK(155).
For example if the RVS and SPACE key are pressed
simultaneously we have

2t0+2t2 = 5
This value from 256 gives 251 which will be the value of
PEEK(155).

What uses does this have. Well sometimes in games it
is useful to press more than one key at once and do
different things dependent on the combination of keys
pressed. One cannot use a GET command for this but if the
right keys are chosen one could use PEEI<(155).

To finish here is an odd 1-Liner. Input the Line,
clear the screen, do a few cursor downs and RUN. The result
on my 3032 upgraded PET is quite extraordinary. Presumably
it is a timing problem:

10 PRINT"<home><4 spaces><home>";PEEK(155):G0T010

— oOo—

SOME IEEE OBSERVATIONS
By Simon Tranmer

The following observations may save you the couple of
hours it took me to find out what was happening. I have an
8032 normally connected to a 4040 and an 4022. On many
occasions when using the machines, I know that I will not
need the printer and therefore used not to bother to switch
it on, however the IEEE cable was stiLl connected. In these
circumstances there is not usually any problem. You can
Load and save files and look at the directory of your disks
with impunity. However if you try to do anything involving
long disk access (e.g. assembling Large programs) some very
odd things start happening. You may not be able to find
programs on the disk that you know are there, the files may
read in corrupted when they are ok on the disk or any one
of a number of errors occurs. It all seems to be related to
the bus loading. Switch the printer back on and everything
is ok.

One day when my printer was off by mistake I could not
read any disk directory, and data transfer when it occurred
was about 50 times slower than usual. I have seen the same
thing happen with two disk drives connected and one
switched off and also two PETs connected to one disk drive
with one PET switched off. The moral of the story is, if
you have a device on the bus Leave it switched on, even if
not in use, otherwise it may look as though your disk
drives have died...

— oOo-

REVIEW - BUTI
BASIC UTILITY CARTRIDGE

Richard Allen.

The BUTI (pronounced "beauty") programmers utility ROM
is available from AUDIOGENICS and it comes with 3K of RAM
expansion adding 17 new commands to Vic's BASIC.

Once plugged in and the Vic switched on, the toolkit is
automatically activated, although you can KILL the ROM and
there is a SYS command to reactivate it again.

Commands include automatic line numbering and
renumbering. There is an APPEND command to allow a program to
to be added to the end of one in memory although this will
not merge them, and DELETE takes out any lines you don't want
in the program.

Typing DUMP after stopping a program, will display the
variables used in the program. It's also possible to specify
which type of variable you want to display. FIND enables you
to find where a command or instruction occurs in your program
and EDIT provides the facility to change commands or
instructions.

There is a HELP command which clears the screen and
shows a list of the new commands available. This is unlike
other toolkit HELP commands which shows up the approximate
area of a program line where an error has occurred. With
BUTI, when an error message comes up, the line in question is
automatically displayed.

STEP allows a program to be executed line by line and
TRACE executes the program slowly. In both cases there is the
option of having a reverse field window on the right
displaying line numbers as they happen. And there is a hex to
decimal and binary and a decimal to hex and binary converter.

When you type NEW on the Vic, you are not actually
erasing the previous one completely. Instead you just reset

84

the memory pointers. Provided that you have not typed any
further instructions on the Vic, by using the UNNEW command
you can bring an old program that has just been NEW'd back
into memory. If changes have been made since the NEW command
then you'll just get garbage.

When you expand your Vic's memory, the locations alter
and you have to make changes in your programs to enable them
to function correctly. By using the VIC command you can
configure the Vic to become a standard machine again. VIC3
expands it to the 3K memory limit and VIC8 raises it to the
maximum memory you have available.

Most of the commands can be abbreviated. The manual
suggest using just the first three letters, but I have found
that they can be abbreviated in the same way as the normal
Vic commands. That is, by typing the first letter (or in some
cases the first two) and then, with shift pressed, typing the
second (or third).

After using the BUTI, I have found it extremely useful.
Unlike Commodore's utility cartridge, the BUTI does add to
the Vic, though you are not able to use the function keys and
there are some differences in the toolkits. I would not
hesitate to recommend BUTI.

— 0O0—

COMMENT: The BUTI costs £39.99 and now comes with a machine
code monitor. My own feeling is that the Commodore
Programmer's Aid provides very much the same commands (with
the exception of UNNEW, VIC and hex-decimal-binary
converter). It doesn't allow use to be made of the function
keys, and the many extra commands in the Commodore Aid are
very useful.

BUTI does at least come with 3K of RAM and a machine
code monitor, so it may be considered to be better value.

M.R.T.
— 0O0—

The Electronic Cash Book
Micro-Simplex makes
Retailers Accounts
and Stock Control
sim ple...

Unique features:
• Based on Britain’s No. 1 cash

book system
• Uses Britain’s No. 1 business

micro computer
• The only one recommended by

Vyners, publishers of Simplex
books

• The only one offering all retailers
special V.A.T. schemes

M IC R O -
S IM P L E X

Other features include ...
• Stock control linked to cash

registers
• Simple and familiar layouts
• Easy to use
• Automatically produces:

(a) Statements to customers
(b) Lists of unpaid bills
(c) Simple profit and loss

accounts

m

(k commodore
COMPUTER

Contact Any Commodore

Dealer or

Micro-Simplex Limited,

8,Charlotte Street West,

Macclesfield, Cheshire.

Tel: 0625 615000

86

I N T E L L I G E N C E R E P O R T

THE NEW OLYMPIA ESW 3000 HIGH SPEED

DAISYWHEEL PRINTER.

Trade D i s t r i b u t i o n and Sales:

Intelligent Interfaces Ltd.,

P.O.Box 30,

Stratford on Avon,

Warwickshire.CV37 7BH.

Telephone:0789 295385.

CLUB SOFTWARE REVIEW - DDS SORT

87

By Brian Grainger

For this month's club software review I turn my
attention back to Hertfordshire and Mick Bignetl. He has
made available for the public domain a program which sorts
the disk directory into alphabetical order. It is extremely
quick and has a few good features thrown in.

After loading DDS SORT you run it and it will tell you
to put the disk requiring directory sorting in drive 0 and
a spare disk for a scratch file to be placed in drive 1.
Having done this and pressed a key the process starts. An
option to keep the first program on the disk as the first
program irrespective of name is given. This enables
programs that are run by the RUN key to maintain their
priority. One can also subdivide the directory sort so that
files of the same type appear together. After having
answered the two option questions the work is done in a
flash and you have a nicely sorted directory.

This program works on BASIC2 or 4 and 3040 disks
upgraded to D0S2, 4040 disks or 8050 disks. A super utility
which is very handy.

— oOo—

4022 PRINTER - A SEQUEL
By Simon Tranmer

Both Dave Prentice and myself have changed the ROM in
our 4022 pri nters as suggested on p171 , July, '82 issue.
The new ROM makes the printer bi-directional and the time
saving on long listings is quite considerable. I would
recommend the upgrade to all 4022 users. The part number of
the new ROM for those interested is 901631-02 or 325301-01.
Your printer must apparently have a 8Mhz crystal fitted for
these ROMs to work.

— oOo—

SUPERSPELL - Simon Tranmer's new spelling checker
By Barry Biddles.

New to the market is Simon Tranmer's program.
Superspell. Superspell is not a spelling corrector, but a
spelling CHECKER. The difference is several hundred pounds
and a lot of code! A word may be correct in one part of the
text, but wrong in another, or its spelling may depend
upon one of the many little rules of the english language
which must terrify foreign school children. What Superspell
does is to look up each word of the textfile (local or
global) in its 31,000-word dictionary, and report words not
found, so that the user can decide what to do. He may
correct the word, using screen editing, and has the option
of storing the result in a 'user dictionary'. This
dictionary may easily be edited or corrected, and may
finally be merged with the main dictionary.

Super spell also reports the number of words used, of
great use to authors, and lists the different words used,
with the number of occurrences of each. In addition, it
supplies a paragraph count and a sentence count. Naturally,
Superspell is a machine code program, since extreme speed
is required for such a program. Even having said that,
however. Superspell is exemplary among spelling checkers,
in its speed of operation, handling a maximum-size
Superscript file of about 2,000 words in about 90 seconds,
and in the size of its dictionary, 31,000 words stored in
only 85Kbytes! (That speaks of some rather clever coding.
Perhaps Simon can be persuaded to tell us all about it some
day?).

Superspell is to be made available on a 'dongled'
disk which also contains Superscript, for the PET (also
available as 'Easyspell' for the C-64). Interested
non-members should contact Precision Software. Members
should contact John Bickerstaff for details of the special
prices arranged through ICPUG for members. John's address
is 48, Martin Down Road, Whitstable, Kent. CT5 4PR. Tel:
(0227) 272702. Precision Softw are are at 4, Park
Terrace, Worcester Park, Surrey, KT4 7JZ. Tel: 01-330 7166.

88

— oOo—

W ell I still th in k we sh ou ld w rite to “J im 'll F ix I t ”. ..

Printed and distributed by Richardson Printing Ltd., Unit 23, Colville Road Works,
Colville Road, Oulton Broad, Lowestoft, Suffolk NR33 9QS. Telephone: (0502) 67029

