

❖ •> •>*><«<£♦❖❖<♦ <•❖<*❖❖❖❖ •> •> ❖ ♦> ❖ ❖
HONORARY NATIONAL OFFICIALS

* * * * .5. * * * * *

CHAIRMAN

TECHNICAL QUERIES
SECRETARY

REGIONAL CO-ORDINATOR

TREASURER

SOFTWARE LIBRARIAN

MEMBERSHIP SECRETARY

EDITOR

VIC CO-ORDINATOR

DISCOUNTS OFFICER

Wing Cdr. Mick Ryan
164 Chesterfield Drive
Ri verhead
Sevenoaks, Kent TN13 2EH
Telephone: Sevenoaks (0732) 453530

Jim Tierney
11 Collison Place
Tenterden
Kent TN30 7BU
Telephone: 058 06 2711

Terry Devereux
32 Windmill Lane
Southall
Middlesex UB2 4ND

Joseph Gabbott

Bob Wood
13 Bowland Crescent
Ward Green
Barnsley, South Yorks S70 5JP
Telephone:(0246) 811585 (work)

(0226) 85084 (home)

Jack Cohen
30 Brancaster Road
Newbury Park
Ilford, Essex IG2 7EP
Telephone: 01 597 1229

Ron Gee re
109 York Road
Farnborough
Hants GU14 6NQ

Mike Todd
27 Nursery Gardens
Lodgefield
Welwyn Garden City
Herts AL7 1SF

John Bickerstaff
45 Brookscroft, Linton Glade
Croydon CR0 9NA
Telephone: 01 651 5436

ASSISTANT EDITOR Tom Cranstoun

I N D E P E N D E N T C D M f f l D D D R E

P R O D U C T S U S E R S G R D U P

™L3 Newsletter Zl
«.»»»»•»»»•»«•>»«»»»»♦»»»♦»»»»«»■»♦»♦•>»»♦»»»♦»»»•!• »

Europe's first independent magazine for PET users
...

241

Page Contents

242 Editor's Notebook
243 Shop Window
245 Comal Corner
248 More 8032 Notes
251 BASIC-Pascal Communications
256 The VIC Column
268 DS, DS$ & 'OPEN' Command .
270 Round the Regions
272 C-64 - Machine Code 'OPEN' and 'CLOSE'
274 Visicalc - Piracy and Look-up Tables
280 Matters Arising
282 VICREL - A Vic Interface
283 Vic/64 Character Sets
290 Club Software News
291 Pound Signs with 'Simply Write'
292 Commodore Assembler Extensions Revisited
294 Di sk Fi le
303 Forth Column
304 BASIC 4 Lower Case Lister
308 Strictly for Beginners
313 Review - Delph Converter Board
315 Late News

The opinions expressed herein are those of the author and not necessarily those of
ICPU6 or the editor. Items mentioned in "Shop Window are culled from advertiser*’
material and ICPUG do not necessarily endorse or recommend such items-
caveat emptor

242
EDITOR'S NOTEBOOK

Commodore appear to have succeeded in changing their
image in the U.S.A. due mostly to the success of the Vic-20
and the 64. In the U.K. too, the smaller machines are
proving very popular. This popularity has resulted in a
number of Commodore specific publications, such as 'The
Commodore Gazette', 'Commander' for Vic-20/64/Max (it says)
and 'Commodore User'. A number of new magazines are also in
the pipeline.

On the business side. Commodore appear to be losing
ground. Could it be that 8-bit machines are not fashionable
with the media? For word-processing little is gained with a
16-bit machine and the performance margin when the 16-bit
price is considered is not that great for a substantial
number of business applications. Or could it be the lack of
availability of the new machines and information. At the
February Commodore 'open day', I was hoping to have a good
session with the 500 and 700-series machines, but in many
cases the dealer had only seen the computer for the first
time that day. They were the lucky ones. One dealer had to
cancel his hotel booking because he was too late to get any
equipment to demonstrate. Since then the situation has
somewhat worsened and by ApriI there were more products
unavailable than obtainable.

I had an interesting time as 'honorary salesman', but
failed miserably in explaining what one gets for an extra
£ 300 difference between the 500 and 700 models other than
the loss of colour. After much coffee and some excellent
sandwiches, myself and three other engineers came to the
same conclusion - insufficient data.

We did find some interesting items, though, such as
?FRE(0) returns zero bytes free which I suppose makes sense
with bank switching, and of course the clock functions are
different. But with little 'ready-to-run' software we had
to write our own off the cuff and get used to yet another
keyboard layout!

What we didn't find was that ?FRE(1) gives the number
of bytes free in Bank#1, and so on.

Much of the editorial mail is good stuff of a standard
acceptable for this magazine, but recently I had the
ultimate in junk mail, addressed to me as editor of the
User Group and enclosing my 'lucky draw certificate'. I
only got away from 'Time-Life Books' by moving house three
ti mes.

243

I sometimes wonder if 'Superscript' would help...

SHOP WINDOW

Trouble with your mains can give rise to all sorts of
consequences and even the leaflet warns 'unfiltered power
can damage your computer's health'. 'The Plug' is an RFI
filter and transient suppressor incorporated in an oversize
13A plug. Priced at £ 12.95 each plus post and packing,
total £ 15.50 per plug and available from Power
International Limited, 2A, Isambard Brunei Road,
Portsmouth, Hampshire, P01 2DU. Tel: (0705) 756715.

Of course if the power glitch is large enough, like
half-an-hour, you may want something more expensive. A Sola
Mini UPS (uninterruptable power supply) gives a clean,
no-break, no-dip regulated power source from your noisy
mains and for up to 24 minutes after your supply has died.
Various models are available from Sola, 28, Luake Street,
Bedford, MK40 3HU. Tel: (0234) 40094. Alternatively 'The
Power Bank' will give similar results from Power Testing
(Sales) Ltd., 65a, Shenfield, Brentwood, Essex, CM15 8HA.
Tel: Brentwood (0277) 233188.

A range of stepping motor driven, programmable
positioning devices controlled via the IEEE-488 bus is'
available from Bentham Instruments Ltd., 2, Boulton Road,
Reading, Berks. RG2 ONH. Tel: (0734) 751355.

I have seen the PET plot, speak, receive data over the
■ phone and now it can see! MicroSightl is a CCTV-based
vision system which uses a standard CCTV camera to capture
images and a 'Micro Eye' interface to process them into
8-bit digitised video. The system is suitable for text
recognition and robots for example. MicroSight comes
complete with documentation, listings and explanations.
Complementing Microsight1 is MicroScale, an image analysis
sofware package at £295. MicroSightl is £495 - MicroSight2
is £ 2995. Detai Is ~ f rcrni Digithurst Ltd., Leaden Hill,
Orwell, Royston, Herts., SG8 5QH. Tel: (0223) 208926.

Mator Systems have appeared in these columns a number
of times, in this instance mention is made of the Mator
Dolphin 3 which is a PET protocol converter costing £ 850.
The unit is considerably smaller than the Dolphin 1 or 2
units and is designed to interface between IEEE-488 and
RS232/V24 ports using a choice from a number of mainframe
protocols. Full details and prices are available from Mator
Systems Ltd., 134-140, Church Road, Hove, Sussex, BN3 2DL.
Tel: Brighton (0273) 726464.

R.D.G.

244

— oOo—

245

COMAL CORNER
By Brian Grainger

COMAL Corner this time brings a mixed bag of news and
tips. I shall start off by highlighting some points about
string variables. Following severe head scratching by a
friend of mine writing some business programs in COMAL for
the 8096 it is clear that some explanation is necessary.

Unlike BASIC one must declare the Length of a string
in COMAL by means of the DIM statement.
e.g. DIM NAMES OF 12 will allow NAMES to hold a maximum of
12 characters.

If you try to assign a string longer than this to
NAMES the long string will be truncated to 12 characters
and the remaining characters lost. In COMAL, substrings can
be referred to simply by specifying the start and end
character of the substring.
e.g. NAME$(5:7) refers to the 5th, 6th and 7th characters
of NAMES.

When a COMAL string variable is first DIMensioned it
has 0 length. When a string value is assigned to the
variable the length of the string variable will be the
length of the string value, EVEN IF THE STRING VARIABLE HAS
BEEN DIMENSIONED TO A HIGHER VALUE.
e.g. NAME$:="FRED" will mean NAMES has a length of 4 NOT 12.

Once the above points are noted there is a simple rule
to remember. Do not refer to substrings which include
characters above the length of the current string value,
e.g When NAMES:="FRED" an attempt to set
NAMESC6:10):="12345" would result in an error as would
PRINT NAMESC6:10).

The above operation of strings is very useful because
it means they can be redefined to a new value without the
worry of any trailing characters being left. So that if
NAMES:="GE0RGE" originally and is then set to "ADA" then
PRINT NAMES will result in ADA not ADARGE.

246

However, what do you do if you wish to refer to a
substring when the string has not been assigned a value.
The solution is to fill the string with spaces. This can be
done by e.g. NAME$(1:12)="". Note that NAME$="" is not
sufficient.

Another point to be careful of with strings is when
they are INPUT. As with BASIC, the INPUT command takes the
input from the screen line, NOT up to the point where the
return key was pressed. So if, for example, you have a
pretty screen layout which accepts input inside a graphic
pattern take care that the string length is not so long
that the graphic characters will be input as well. This can
lead to some very confusing results!

A last point to note with strings is that when
outputting strings to a Commodore printer under FORMATTED
output, the print separator must be CHR$(29) NOT

Moving away from strings now I have found another
source of problems with people using COMAL is that logical
file numbers must be in the range 2-254. COMAL itself uses
1 and 255 so if you use these values strange things may
happen.

I have found in using the new versions of COMAL that
the DO command is optional in both the one-line and
multi-line FOR and WHILE statements. Previously it was only
optional in the multi-line structures. As usual the
interpreter will add the word automatically.

With regard to the new versions of COMAL to appear, I
have heard that the version 2.0 for the new Commodore
mach’ines is likely to have a FIND command, DEL Procname
facility as well as enhanced entry time error checking.
These are in addition to the facilities I mentioned last
time.

Finally for this time here is a FUNCtion which will
give COMAL a bitwise AND, OR, EOR (Exclusive OR) facility.

247

3000 FUNC BITWISE(OPERATORS,NO'1,N0'2) CLOSED
3010 RESULT:=0
3020 FOR I:=1 TO 8 DO
3040 BIT'1:-SGN(N0'1 ROD 2tl - N0'1 MOD 2t(I-1))
3060 BIT12:=SGN(NO'2 MOD 2tl - N0'2 MOD 2t(I-1))
3070 CASE OPERATORS OF
3080 WHEN "AND"
3090 TEMP:=BIT'1*BIT'2
3100 WHEN "OR"
3110 TEMP:=SGN(BIT'1+BIT'2)
3120 WHEN "EOR"
3130 TEMP: =B IT11 O B I T 12
3140 ENDCASE
3150 RESULT:+TEMP*2t(I-1)
3160 ENDFOR I
3170 RETURN RESULT
3180 ENDFUNC BITWISE

An example of use would be:

A=BITWISE("AND",27,59)
which would be equivalent to the BASIC: A=27AND59.

— oOo—

MICRO-APL

Devotees of APL on the 9000-series machines may be
interested in a newsletter put out by MicroAPL Ltd. About
the same size as this issue, it contains information and
articles on APL as implemented on a number of
microcomputers, mostly 16-bit jobs with mini-computer price
tags. The magazine is circulated to customers "and to
others at our discretion" without charge. If you would like
to join the mailing list, write to: The Editor 'MicroAPL
News', MicroAPL Ltd., 19, Catherine Place, London,
SW1E 6DX.

— oOo—

248
MORE 8032 NOTES

By Paul Barden*

Further to Martin Guy's 8032 notes (Jan issue p74) the
following may be of interest:
rvs/esc/k produces delete line.
rvs/esc/shift/k produces insert line.
esc/k/z produces set top.
esc/shift/k/z produces set bottom.
esc/left shift/k produces scroll down. » « ;

A NICE RUNCti y
k/c/s produces scroll up. 0fcha*Acr**s

A sort of explanation for this can be found by
inspecting the keyboard decoding chart on p438 of Raeto
West's book. The keys given define three corners of a
rectangle, the fourth of which is a normally unused byte
which is CBM ASCII for the character produced and has been
left lying around in the table for no obvious reason. Where
a shift key is used without specifying which one, this is
just to add 128 to the ASCII code produced. I've no idea
what the mechanism of all this is.

The most useful of the above characters is set top.
This can be used for block deletion (to perform DELETE
n1-n2) thus:

a) list n1-n2
b) Position cursor immediately after line number n1 .
c) Type esc/k/z to set top.
d) Type <clr> to delete the BASIC text leaving the line

numbers.
e) Type <home><home> to reset top.
f) Delete any inadvertently produced k's or z's.
g) Use <return> to delete lines as as required.

— oOo—

PHOTO

A new C2N cassette unit has been introduced in Britain
having a new sturdy and more visually appealing casing. The
price remains unchanged at £45.95 inc VAT.

— oOo—

249

THEN STOP.

BREAK OUT C
GET AN tNCX
SKILLS.

* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * *

* * * * * * * *

If you th ink tha t your programming ability could
provide you w ith an income, but are hampered by

lack o f expensive hardware, then M r.S o ftw are may

W e're currently looking fo r programmers, skilled in
both "B A S IC " & 6 5 0 2 Assembly Language who

have a fla ir fo r graphics and a lively imagination. If
the description applies to you, w hy not send

M r.S o ftw are a sample of your program at the
address below.

If your w ork shows ta lent and promise we w ill lend
you the hardware to enable you to earn an income

have the answer.

from your programming skills.

M r.Softw are
1 8 -2 0 Steele Road,

Park Royal Industrial Estate,
London NW 10.

251
BASIC-PASCAL COMMUNICATION.

(c)ICPUG 1983

It would be unfortunate if people were deterred from
using the superior facilities of the UCSD Pascal system by
the incompatibility of its data files with those of the
Commodore Basic system. The programs described here supply
a simple solution to this problem (for the 8050 disk drive;
the 4040 is presumably similar).

The key to transferring data between the two systems
is the rule by which the 512-byte blocks of the UCSD system
are mapped onto CBM relative files. This rule is not to be
found in the UCSD user manual. However, it is quite simple:
the record length of the three CBM files "pascall",
"pascal2" and "pascal3" is 128 bytes. There are thus 4 CBM
records to each UCSD block. The UCSD blocks are stored in
their natural order in the CBM files, blocks 0-334 being
"pascall", 335-669 in "pascal2" and 670-1004 in "pascal3".

The programs were developed on a CBM8096. The UCSD
utility Patch was put to good use for inspecting the
contents of files written by both the BASIC and Pascal
systems.

INSTRUCTIONS
for the use of the programs 1BASICTOPASCAL1 and
1PASCALTOBASIC1:

Both of these programs run in the BASIC environment.
BASICTOPASCAL takes a CBM sequential file and copies it to
a UCSD Datafile, which to Pascal is of type Text (or File
of Char). PASCALTOBASIC takes a UCSD Datafile (type Text or
File of Char) and copies it to a CBM sequential file. In
both cases the original file is on the right-hand drive and
the new copy on the left-hand drive of the disk unit.

BASIC TO PASCAL:
Before running the program, first use the Make option

of the UCSD Filer to reserve a file of adequate size for
the data to be copied. The file must NOT be created with

By John Palmer.

the suffix '.text1 as it must be a Datafile to the UCSD
Filer (this does not preclude it being of type Text to
Pascal).

Next use the Ext-dir option to ascertain the position
and size of the reserved file: note the starting block (to
the right of the date) and the length in blocks (to the
left of the date). Write these down, now terminate the UCSD
system.

Load and run 'BASICTOPASCAL'. It will prompt you to
insert the files in the drives and to give the name of the
BASIC file and the start block and length of the UCSD file.
The file will then be copied. On reaching the end of the
BASIC file the remainder of the current UCSD block is
padded with nulls Cchr(O)] and any completely unused blocks
will contain rubbish.

When reading the resultant file in Pascal, do not rely
on the 'eof' function to detect end-of-data; it will not be
true until the end of the last block reserved by the Filer,
which may be beyond the end of the valid data.
BASICTOPASCAL will not write beyond the end of the reserved
file.

PASCAL TO BASIC:
The file to be copied must be a Datafile that has been

written by Pascal as type Text or File of Char. The last
character written MUST be <etx> Cchr(3)H. This is important
as BASIC cannot recognise the file-end information kept by
the UCSD system.

Use the Ext-dir option of the UCSD Filer to ascertain
the start block and length in blocks of the file to be
copied. Next terminate the UCSD system, and in the BASIC
environment, load and run 'PASCALTOBASIC'. The program will
prompt you to insert disks and to give the name of the
destination file (which must not already exist) and the
start and length of the UCSD file. The file will then be
copied. The final <etx> will be omitted.

252

Both programs display 'End of file' on completion.

2 rem program pascaItobasic;
4 rem for commodore 8050 disk units;
6 rem copies an ucsd datafile (file of char to pascal)

on drive 0 to
8 rem a basic sequential file on drive 1;

10 print "Program PascalToBasic"
12 print "Put UCSD disk in drive 0"
14 print"Number of first block of UCSD file?"
16 input bO
18 if b0<6 or b0>1004 then print"Illegal block":goto 14
20 print "Number of blocks in UCSD file?"
22 input b1: b1=b0+b1-1: rem last block number
24 if b1>1004 then print"Impossibly long":goto 14
26 sf=1: if b0>334 then sf=2: if b0>669 then sf=3
28 open 1,8,5,"0:pascaI"+right$(str$(sf),1)
30 if ds>19 then print ds$:print#1:close 1:goto 12
32 print "Put BASIC disk in drive 1"
34 print "Name of BASIC file (must not already exist)?"
36 input f$
38 open 2,8,6,"1:"+f$+",s,w"
40 if ds>19 then print ds$:print# 2 :close 2:goto 32
41 rem both files open
42 gosub 100: rem limits of file pascal<sf>
48 r.ecord#1 ,((b0-bs)*4+1)
50 bn=b0: en=0: rem blocknumber, eof flag
51 rem loop
52 gosub 300: rem transfer a block
54 if bn=b1 or en=1 then close 2:close 1:print"End of

fiIe":stop
56 bn=bn+1
58 if bn<=bf then 52 _______________
60 rem when end of file pascal<sf> (c)ICPUG 1983
62 close 1
64 sf=sf+1
66 open 1,8,6,"0:pascal"+right$(str$(sf),T)
67 gosub 100: rem limits of file pascal<sf>
68 goto 52

100 rem proc filelimits; extreme blocks of file pascal<sf>

253

254

102 if sf=1 then bs=0: bf=334
104 if sf=2 then bs=335: bf=669
106 if sf=3 then bs=670: bf=1004
108 return
300 rem proc transferblock: must end new file at <etx>
302 ib=0
304 qbS="": rem qb$ is a quarterblock
306 jb=0
310 get#1,a$
312 if a$=chr$(3) then 330: rem expects <etx> to mark eof
314 qb$=qbS+a$
316 jb=jb+1
320 if jb<128 then 310
322 print#2, qb$;
324 ib=ib+1: if ib<4 then 304
326 return
328 rem eof return
330 en=1:print#2,qb$:return

2 rem program basictopascaI;
4 rem for Commodore 8050 disk units;
6 rem copies a BASIC sequential file on drive 0 to an

ucsd file on drive 1;
8 rem the latter is a datafile to the filer, and file

of char to pascal.
10 print "Program BasicToPascaI"
12 print "Put BASIC disk in drive 0"
14 print "Name of Basic file?"
16 input f$
18 open 1,8,5,"0:"+f$+",s"
20 if ds>19 then print ds$:print#1:close 1 :goto 12
21 print "Put UCSD disc in drive 1"
22 print "Number of first block of UCSD file?"
24 input bO
26 if b0<6 or b0>1004 then print"Illegal block":goto 22
28 print "Number of blocks reserved for UCSD file?"
30 input b1: b1=b0+b1-1: rem last block
32 if b1>1004 then pri nf'Impossibly long":goto 22
34 sf=1: if b0>334 then sf=2: if b0>669 then sf=3

255

36 open 2,8,6,"1:pascaL"+right$(str$(sf),1)
38 if ds>19 then print ds$:print#2:cLose 2:goto 21
40 rem both files open
42 gosub 100: rem limits of file pascal<sf>
48 record#2,((b0-bs)*4+1)
50 bn=b0: en=0: rem blocknumber; eof flag
51 rem Loop
52 gosub 200: rem transfer a block
53 if en=1 then close 2:close 1:print"End of file":

stop
54 bn=bn+1
56 if bn>b1 then close 2:close 1:print"New file space

too small":stop
58 if bn<=bf then 52
60 rem when end of file pascal<sf>
62 close 2
64 sf=sf+1
66 open 2 ,8 ,6,"1:pascaL"+right$(str$(sf) ,1)
67 gosub 100: rem limits of file pascal<sf>
68 goto 52

100 rem proc filelimits: extreme blocks of file pascal<sf>
102 if sf=1 then bs=0: bf=334
104 if sf=2 then bs=335: bf=669
106 if sf=3 then bs=670: bf:=1004
108 return
200 rem proc transferblock
202 for ib=0 to 3
204 qb$="": rem qb$ is a quarterblock
206 for j b-0 to 127
210 if en=1 then qb$=qb$+chr$C0):goto 220: rem pad with

nul Is
212 get#1, a$
214 if st<>0 then en=1: rem eof flag
216 qb$=qb$+a$
220 next jb
222 print#2, qb$
224 next ib
226 return: rem from transferblock

— oOo—

256
THE VIC COLUMN

In the last VIC COLUMN, I briefly mentioned two chess
playing programs for the Vic, and David Beasley from Reading
has written in with the following review of BOSS, SARGON II
and a third, BUG-BYTE CHESS.

BUG-BYTE CHESS

This requires 16K expansion and takes quite a while to
load from cassette.

You first set the required level of play (1-9.99) and
you have the choice of playing black or white with the
board re-orienting itself through 180 degrees if you
choose black.

The graphics are adequate, but not as good as the other
two programs and, during the game, there is no
indication that the computer is thinking, no indication
of level of play, no list of previous moves, no clock -
no nothing!

The instructions suggest a starting level of play of
2.10, but at this level the game is fairly weak and
David (who, by his own admission is not a great player)
won fairly quickly and at level 5.55 he still won
without too much bother although the game took longer to
Play.

Each piece flashes just as it is about to move, and
again when it has moved and, when a pawn reaches the
other side, you are given the choice of promoting it to
a Queen, Rook, Knight or Bishop.

Any position can be set up, the level of play can be
changed during the game, moves can be listed and if you
run out of time, the position can be saved to tape for
continuation at a later date.

By Mike Todd

257

BOSS CHESS

This requires only 8K of expansion and, on running, it
assumes that you want to play white and at level 1,
although both of these can be changed immediately if
required.

The display is excellent with very good graphics and an
indication that the program is "thinking”. There's also
an indication of level of play, how far the program is
looking ahead, the last move made and there's a clock
for both players.

Response time is fast at the lower levels, and you get a
very good game although it is sometimes difficult to see
which pieces have moved because they move so quickly.

You can't set up a game or save a game to tape, but
despite that the program is very good.

SARGON II

This is a games cartridge with very good instructions
provided. The graphics are good, and you can even change
the screen colours.

As well as the keyboard, a joystick can be used to move
a cursor around the screen and "pick up" pieces and each
piece flashes as it is moved. There’s also a list of
moves displayed at the side of the board together with
an indication that the program is "thinking".

Any position can be set up which can be useful for
solving chess problems but there are no facilities for
saving a game on tape. It is even possible to ask the
program for a suggested move.

All in all, the program is well presented and plays a
very good game.

258

SUMMARY

At £7.95. BUG-BYTE is the cheapest but doesn't offer a
very challenging game; but it does have features not
available with the others.

SARGON II offers nearly everything that you could want,
but is the most expensive of the three at £24.95.

BOSS costs £14.95 and offers the best of everything,
the only serious limitation being that you can't set up
positions with it. As long as this is not a serious
restriction, David suggests that this is the best buy of
the three.

He also adds that a fourth game, Audiogenic's GRAND
MASTER is also available, although he hasn't tested it.
It costs £19.95 and could be worth considering.

THE SOFTWARE TQP-20

Whilst on the subject of games, in the last issue I
covered the T0P-20 software products. This in fact was the

situation for January 1983.

Commodore have now released their TC)P~20 for March 1983
and on the following page is a list of these items, with the
position in February given in brackets.

It is interesting to see that the SUPER-EXPANDER and
PROGRAMMER'S AID now feature in the list and that
INTRODUCTION TO BASIC parts 1 & 2 are both still at the top,
although SARGON II has now pushed part 2 down to number 3.

It's also curious to wonder why the Adventure games are
only represented by ADVENTURELAND, which has dropped from 6th
position in January to 19th position in March. I suspect that
people are begining to realise that Adventure games have a
limited life.

VIC-20 T0P-2C)

259

1 (1) Introduction to BASIC part 1

2 (14) Sargon II chess

3 (2) Introduction to BASIC part 2
4 (3) Blitz
5 (4) Hoppitt

WtflT UTILE O f \
r(o^\6£fi., J.— J6 (29) Race

7 (12) Strategic Advance
8 (22) Lighthouse and Subtraction

p y9 (20) Know your own IQ
10 (21) Super-Expander
11 (27) Money Manager

v--

12 (9) Omega Race
13 (10) Gorf
14 (17) SimpliCalc

15 (—) GCE/CSE Revision - Physics

16 (—) Cosmic Cruncher

17 (15) Gortek and the Microchips
18 (34) Engine Shed
19 (7) Adventureland
20 (31) Programmer's Aid

VIC REVEALED

I don't think that I need remind anyone that the
original edition of this book was something of a disaster and
that I prepared an error list which ran to 17 pages (still
available, free of charge to members who send me a large SAE)

Well, the promised second edition has arrived complete
with a sticker on the front cover proclaiming that it is a
"NEW EDITION - Corrected and revised". Don't be fooled by
this into thinking that all the errors have been corrected or
that the presentation has been revised, because it hasn't.

True, some errors have been put right, but in fact only

about thirty at a rough count and many of the more serious
errors still exist. I will therefore try to modify the error
list accordingly to make it suitable for both editions.

If you look at the back cover of the new edition, you
will see a quote from me! It says "The only reference guide
available - Mike Todd in ICPUG".

I'm sorry to say that I probably did say these exact
words at some time - but prefixed by the words
"Unfortunately, it is"

Duckworth (who have now taken over the publication of
the book) were shocked when I contacted them about the
implied endorsement and will remove it from the third edition
when it appears. They may also incorporate some corrections
in this edition!

VIC GRAPHICS

The same author has also produced VIC GRAPHICS, and I
have to say that this is certainly better than VIC REVEALED.

But, don't let the title mislead you. It doesn't cover
graphics in any more detail than the VIC REVEALED, but it
does have many programs to allow you to draw graphcs,
patterns and shapes and to scale, stretch, rotate and move
shapes drawn on the screen. There's even a section on 3D
graphics including the facility to rotate or change the
viewing position of an object as well as a hidden line
removal program.

These programs are given with specific shapes included
and with little description of what the program is doing, but
there should be adequate scope for further experimentation.

All the programs in the book are on two cassettes
(£7.95 the set) available from the publishers.

One thing that is only mentioned on a sticky label on
the back cover is that a SUPER EXPANDER is needed to run the
programs in the book, as they use the graphics commands -
although there are a couple which don't need it.

260

261
I think the book is worth considering, but be warned

that to adapt some of the programs to your own applications
will need a fair bit of work. At least it's not too bad an
introduction to some of the techniques involved.

THE HIGH RES SCREEN

Two questions have "crept" into my mailbag recently
regarding high resolution graphics on the Vic: (1) how can
the normal high resolution techniques be used on a Vic with
8K or more expansion, bearing in mind the fact that the
screen memory moves around; (2) what is the biggest high
resolution screen that can be used ?

Taking the second question first, there is a limit to
the size of the hi-res screen on the Vic, and this is
dictated by the amount of RAM available. The VIC chip can
only use internal RAM and not RAM expansion which means that
the total RAM available is actually 4K (address 4096-8191).

The normal screen requires a 0.5K block allocated to it,
which is normally 7680-8191, leaving a total of 3.5K for the
necessary re-definition of the character generator used to
create the high resolution graphics.

This is a maximum of 3584 bytes, or 28672 bits - each
bit being used to "map" to a point on the screen.

The existing screen is 22x23 or 506 characters - each of
which is 8x8 dots and this would require 8x8x506 bits to
fully represent in high resolution graphics. In other words,
32384 bits (4048 bytes) But, as already stated, the maximum
possible is 28672 bits (3584 bytes) - so you can't even fill
the existing "window" with graphics! In fact, the practical
maximum is about 21x21 (441) characters, or a total of 28224
dots (3528 bytes).

The SUPER EXPANDER actually uses 20x20 (400) character
cells of 8x8 and therefore there are 160x160 dots (25600)
which comfortably sit in the available memory space.

262

Of course, those who have actually played around with
the high resolution graphics will know that the character
cells used are actually 8x16 dots and the vertical screen
size becomes 10 characters, but the number of dots remains
the same.

Because of the fact that the screen moves when there is
8K or more of expansion, life becomes a bit tricky if you
want to use existing high-res techniques as well as getting
the most out of the available memory.

The SUPER EXPANDER handles this by swapping everything
back again as soon as the first GRAPHIC command is issued to
set high or medium resolution. It also has to move any BASIC
program out of the way.

It is not really practical for a BASIC program to move
itself out of the way, so the easiest way is to reconfigure
the Vic before the BASIC program is loaded.

This couldn't be easier, just execute the following
short program and all will be well:

20 POKE 648,30
30 POKE 642,32 : "SYS6 4 82 4

Line 20 tells the operating system that the screen RAM
now starts at $1E00 (7680), line 30 tells the operating
system that the lowest available RAM byte is at $2000 (8192)
and the SYS command resets BASIC with the new values of
screen and RAM pointers.

All this must be done before loading or writing any
BASIC program as it completely resets the Vic.

Now, to get high-res graphics, you simply use the same
methods as you would with no RAM or with only 3K RAM - but
don't use any of the POKEs which you would normally use to
protect the BASIC program from being overwritten by the
graphics. These would normally be POKE 55 or POKE 56 (or in

263
fact anything between 51-56) and such POKEs should be left
out as any BASIC program will be quite safe as it is nowhere
near the graphics.

SETTING THE SCREEN AND CHARACTER MEMORY

Those of you with copies of the error list for VIC
REVEALED will have seen the tables showing all possible
values for the screen and character registers in the VIC
chip. For those who haven't, here they are again but pay
special attention to the notes given as only a few of the
combinations are normally valid.

Register $9005 Char generator
bits 76543210 start address

* xxxxOOOO $8000 32768 ROM (upper case
* xxxx0001 $8400 33792 ROM (RVS upper
* xxxx0010 $8800 34816 ROM (lower case
* xxxxOO11 $8C00 35840 ROM (RVS lower

xxxxOI00 $9000 36864 note (3)
xxxx0101 $9400 37888 note (3)
xxxxO110 $9800 38912 note (3)
xxxxOI11 $9C00 39936 note (3)

xxxx1000 $0000 0 note (4)
xxxx1001 $0400 1024 note (5)
xxxx1010 $0800 2048 note (5)
xxxx1011 $0C00 3072 note (5)

* xxxxl 100 $1000 4096
* xxxxl101 $1400 5120
* xxxxl110 $1800 6144
* xxxxl111 $1C00 7168

Register $9005 $9002 Screen RAM Colour RAM
bits 76543210 bit 7 start address start address

264

OOOOxxxx 0 $8000
OOOOxxxx 1 $8200
OOOIxxxx 0 $8400
OOOIxxxx 1 $8600
OOlOxxxx 0 $8800
OOlOxxxx 1 $8A00
0011xxxx 0 $8C00
0011xxxx 1 $8E00

OlOOxxxx 0 $9000
OlOOxxxx 1 $9200
0101xxxx 0 $9400
0101xxxx 1 $9600
011Oxxxx 0 $9800
011Oxxxx 1 $9A00
0111xxxx 0 $9C00
0111xxxx 1 $9E00

1000xxxx 0 $0000

lOOOxxxx 1 $0200
1OOlxxxx 0 $D400
1OOlxxxx 1 $0b00
101Oxxxx 0 $0800
101Oxxxx 1 $0A00
1011xxxx 0 $OCOO

1011xxxx 1 $0E00

11OOxxxx 0 $1000
* 11OOxxxx 1 $1200
s 11Olxxxx 0 $1400
• 11Olxxxx 1 $1600

111Oxxxx 0 $1800
* 111Oxxxx 1 $ 1A00
* 1111xxxx 0 $1C00
« 1111xxxx 1 $ 1E00

$9400 37888 note (6)
$9600 38400 note (6)
$9400 37888 note (6)
$9600 38400 note (6)
$9400 37888 note (6)
$9600 38400 note (6)
$9400 37888 note (6)
$9600 38400 note (6)

$9400 37888 note (3)
$9600 38400 note (3)
$9400 37888 note (3)
$9600 38400 note (3)
$9400 37888 note (3)
$9600 38400 note (3)
$9400 37888 note (3)
$9600 38400 note (3)

$9400 37888 note (4)
$9600 38400 note (4)
$9400 37888 note (5)
$9600 38400 note (5)
$9400 37888 note (5)
$9600 38400 note (5)
$9400 37888 note (5)
$9600 38400 note (5)

$9400 37888
$9600 38400
$9400 37888
$9600 38400
$9400 37888

$9600 38400
$9400 37888
$9600 38400

32768
33280
33792
34304
34816
35328
35840
36352

36864
37376
37888
38400
38912
39424
39936
40448

0
512
1024
1536
2048
2560
307 2
3584

4096
4608
5120
5632
6144

6656
7168
7680

265

note (1): "x" indicates a bit which is not relevant - unless
being changed deliberately, these bits should be
preserved

note (2): "*" indicates a practical configuration - all
others are given for information only

note (3): Locations $9000-$9FFF contain the I/O chips and
therefore cannot be usefully employed for the
screen

note (4): Locations $0000-$03FF contain operating system
variables and should not be used for the screen

note (5): Addressing restrictions on the memory expansion
port prevent the use of any RAM expansion for the
screen. Locations $0400-$0FFF cannot therefore be
used

note (6): Locations $8000-$8FFF contain. the character
generator and cannot therefore be used as video RAM

SOME OTHER PRODUCTS

Two Vic products are sitting on my desk - the first is a
book called "Beginners Assembly Language Programming for the
Vic-20" in the "Dr. Watson Computer Learning Series" and
written by Dr. P. Holmes. It is published by Glentop, and is
available from Honeyfold Software Ltd., Standfast House, Bath
place, High Street Barnet, London (01-441-4130).

I've not yet had a good chance to read right through it,
but it appears to be a fairly well put together introdution
to programming in assembly language (which, for beginers, is
a "user friendly" way of writing in machine code - the code
that the microprocessor itself understands).

The book is not quite as logically presented as I would
have liked, and the assembly "language" used is different to
the industry standard. It uses such mnemonics as LDAZ to
indicate a zero page address, and LDAIM for immediate
addressing. This may be easier to assemble, but are not the
same as those used in the Commodore machine code monitor for
instance, and which may cause confusion at a later date.

This criticism aside, the book does handle machine code
in as straightforward a way as possible and it even contains
the listings for two assemblers (one of which contains a very
simple machine code monitor) and there's also a couple of
tutorial type programs to help you learn binary and hex
notation - both of which are essential if you're going to use
machine code seriously.

As well as giving many example programs, methods are
shown of incorporating machine code into BASIC programs and
there's even reference to some of the arithmetic routines
within the ROMs of the Vic.

This sort of programming is not easy, and the book seems
to make the path through the jungle reasonably easy going.
There are a few places in the book which seem to cloud the
issues, but overall, at least on first reading, I would
recommend it as an introduction.

64K VIC!

The other item on my desk is a 64K RAM expansion board
for the Vic. It costs about a hundred pounds, is distributed
by Spectrum and should be available through dealers.

Now, before you get too excited, plugging the SUPER-X2
64K RAM expansion pack into the Vic does not give you 64k of
RAM to play with - well not directly anyway!

The RAM is divided into 16x 8K blocks and, by means of
small switches on the board, these blocks can be positioned
to suit most needs. You can configure the 64K RAM to occupy
memory blocks 1, 2, 3 & 5 (in other words at addresses $2000,
$4000, $6000 and $A000) in quite a variety of ways.

Normally, you would have 2x8K occupying blocks 1 & 2

($2000-$5FFF) which, at switch on gives you 19967 bytes free.
The remaining six blocks can occupy block 3, block 5 or both
simultaneously, which would give a maximum of 28159 bytes
free on switch on.

266

267
So, how do we get 6x8K into 8K of memory space? Well,

the answer is called "bank-switching". By POKEing location
39000 with a number from 0-5, we can select any one of the 8K
memory banks. This is really of practical use only to those
who have the know-how to. use it and for most Vic users is of
little use although a simple 10-line program is given in the
instruction leaflet to allow several BASIC programs to sit in
the Vic at any one time, and makes it possible to switch
between them as required.

Because it is possible to have RAM in block 5 ($A000)
where games cartridges are normally situated, it is (at Least
theoretically) possible to transfer a games cartridge into
the RAM, save it to tape and then load it back again as
required.

I have found the board extremely useful in experimenting
with the Vic, and with some clever software, I've no doubt
that someone, somewhere, could make very great use of this
amount of RAM. But, for the novice, it is an expensive way of
getting a "full" Vic and I would suggest buying the cheaper
16K or 24K RAM - unless you're prepared to learn how to use
the extra RAM. At least the instruction leaflet explains the
operation of the board fairly well.

Surprisingly, the board is absolutely tiny! It is
smaller than most cartridges that I've come across.
Unfortunately, the small bank of switches needed to do some
of the configuration is situated next to the edge connector
so that, with the board plugged straight into the expansion
socket, it is impossible to get at. Even on a mother board,
these switches are difficult to get to, although it could be
argued that you don't really need to touch them once the
board is plugged in. But I do!

Overall, the board is quite good value, but only-if you
know how to use i t !

— oOo—

DS & DS$ AND THE 8 OPEN1 COMMAND
By Nigel Richman

When using the CBM disk drive it is advisable to test
the error channel to ensure that the command was
sucessfully completed. With BASIC 2.0 Commodore recommended
the following short routine:-

10 OPEN 15,8,15
20 INPUT#15,EN,EM$,ET,ES
30 CLOSE 15

This was a very tedious process that could only be run
within a program. The CLOSE 15 also closed any open file
which then needed to be opened again. This effect could be
overcome by opening the command channel at the beginning of
the program and closing it again when all disk operations
are complete.

The DOS SUPPORT program was a great help in the direct
mode but not in program mode. Commodore then released
BASIC4.0 with DISK commands including the reserved
variables DS and DS$ to access the DISK STATUS in both
direct and program modes. Having read the error channel the
disk drive resets to '00, OK, 00, 00'. BASIC4.0 keeps the
values of DS and DS$ since the last disk command. This is
to allow repeated tests of DS or DS$ without it restoring
to 'OK1. When you ask the operating system for DS or DS$ it
tests a byte (SOD) in zero-page. If this is zero then the
OS OPENs a channel to the disk drive and reads in the error
message. If the byte is not zero (normally $28) then the
last message read in is printed or used in the test. When
used after a DISK command (such as D0PEN, DCL0SE, SCRATCH
etc.) DS and DS$ return the latest error message. However
if you are modifying BASIC2.0 programs to take advantage of
the new reserved variables the following information must
be born in mind.

A typical program using OPEN, rather than D0PEN, to
access a file is

268

269
100 INPUT "ENTER FILE NAME";NMS
110 OPEN 2,8,2,"0:"+NM$+",S,R"
120 IF DS=0 THEN 170
130 PRINT "<clr><rvs>DISK ERROR"
140 PRINT "<rvs>" DS$:CL0SE2
150 GET A$:IF AS ="" THEN 150
160 GOTO 100
170 ___REM PROGRAM CONTINUES

Now line 160 loops back so that another file name can
be entered. But if the error was '62 FILE NOT FOUND ERROR'
DS would remain at 62. In fact if DS had been called
earlier in the program then line 120 could easily have
failed. This is because the OPEN routine does not reset DS
and DS$. (It does of course, reset ST). Therefore to be
certain that the DS given to us by the OS is the latest we
need to reset it before reading it. This can be done in two
ways:
1) Simply POKE 13,0 to reset the string descriptor for DSS.
This does not reset the back-pointers at the end of the
stored string DSS.
2) SYS 56289 which resets DS, DSS and ST in addition to the
in addition to the back-pointers.

Both methods are effective but the second method is
best if harder to remember. The first method may result in
GARBAGE COLLECTION problems due to the back-pointers being
left.

So the best test of a successfully OPENed (rather than
D0PEN) file is: —

100 INPUT "ENTER FILE NAME";NM$
110 OPEN 2,8,2,"0:"+NMS+",S,R"
120 SYS 56289: IF DS = 0 THEN 170
130 PRINT "<clr><rvs>DISK ERROR"
140 CLOSE 2:PRINT "<rvs>"DS$
150 GET AS:IF A$="" THEN 150
160 G0T0100
170 continue program

270

So be careful when you use the variables DS and DS$
with the BASIC2.0 OPEN command to disk. It would of course
be even better to alter the OPEN commands to DOPEN for all
disk commands. Do not access the disk drive with a mixture
of OPEN and DOPEN commands. This is because DOPEN allocates
a free secondary address to the given logical file number
and use of the same secondary address in an OPEN command
could cause untold problems.

In case you are not quite sure of the DOPEN command
the above program is given in full BASIC 4.0 format.

100 INPUT "ENTER FILE NAME";NM$
110 DOPEN#1,(NM$),D0:REM add ',W' for WRITE instead of READ
120 IF DS = 0 THEN 170
130 PRINT "<clr><rvs>DISK ERROR"
140 DCL0SE#1:PRINT "<rvs>"DS$
150 GET AS:IF AS = "" THEN 150
160 GOTO 100
170 continue program.

Have fun with BASIC 4.0 and Commodore's lack of
information.

— oOo—

ROUND THE REGIONS

The March meeting of the North Herts Region had the
40/80-column board for the Vic-20 on display. It was quite
acceptable in the 40-column mode, but the 80-column display
really needed a video monitor.

The Watford Group had the pleasure of Simon Tranmer
and Tom Cranstoun demonstrating 'Easy Office', • their new
database package for the C-64. Following their example the
North Hants Region were treated to a similar evening, with
Superscript and Superspell thrown in.

— oOo—

271

A f e a s t f o r
e v e r y o n e in t e r e s t e d

i n c o m n u t e r s .
_1 J-J £ Q T J _ ^

l o n ^ ^ - r

..h a r d w a r e

Portable m d h m d h e ld ^ m w Products
w h e e l p n n t e r s i d 0afaur®rf

d ° f °ow se the VIC20 C m m nnit.™rnonitor.
50 0 m d 7 0 0 s S d °re64’8 °00,\

A c a r e f u l l y c h o s e r F T W A R E

nf J ! ? tS: WordProcessin J rn?atlon retrieval
0fedu^ i o n d sofZ S ^ a w holeran^

for business and the h om J0n'U med
a n d m o r e

P l^ S rT m ^ lto r lm d ^ 68’ Ptinters’
t h e p e r f e c t a c c o m p a n i m e n t t o f a a b o v e

L :

H - 1 0 a

™ ■]0 a m - 5 pm

s a t u r ^ V y u ,n * I 0
I>M - 6 pM

J U N E 11 0 a m ~6i>,

C-64 - MACHINE CODE 'OPEN' AND 'CLOSE'
By Brian Grainger

The main purpose of this article is to highlight a
potential problem area for those enthusiasts converting
machine code programs from a CBM/PET to use on a C-64.

Let me briefly mention one general point about machine
code programs on the C-64. It has been mentioned a number
of times in the Newsletter that the Vic will automatically
load programs to the current start of, BASIC memory area.
This is equally true of the C-64. If you cannot understand
why your machine code routines do not load properly this
may be the problem. For example DOS 5.1, the DOS Support
program for the C-64 should be loaded into SC000+ but a
standard LOAD will load it to $0800+. The solution is
identical to that for the Vic. Use a secondary address of 1
with the LOAD command.

e.g. L0AD"D0S 5.1",8,1 if loading from disk.
L0AD"D0S 5.1",1,1 if loading from cassette.

Now to get down to the nitty gritty of this article.
When converting some machine code using BASIC4 to use
BASIC-64 instead I found some inconsistencies in the C-64
routines for OPEN and CLOSE.

Looking at OPEN first the BASIC4 routine called by the
Kernal vector at SFFCO does three things.

(i) Fetch Parameters (JSR $F50D)
(ii) Loads the accumulator with current logical file number

(LDA $D2)
(iii) Performs OPEN

Bearing in mind that the idea of a Kernal vector is to
allow machine code to be independent of the machine it runs
on what would you expect a call of $FFC0 on the C-64 to do?
If you think it will be the same three steps above you are
wrong! Step (i) is NOT carried out. It is assumed to be
already done. The other 2 steps are OK though. If you wish
the equivalent routine to BASIC4 SFFCO on the C-64 you need

272

to call $E1BE. If you do this step (i), fetch parameters,
is done, and then a JMP through $FFC0 is carried out. This
will Lead to a JMP through a RAM Location C$031 A) which
will load the accumulator with the logical file number ($B8
in C-64) and then perform the OPEN.

If you think the OPEN command is inconsistent just
wait till you hear about the CLOSE command. On BASIC4 the
procedure is clear.

(i) Fetch parameters
(ii) Load accumulator with logical file number

Ciii) perform CLOSE

As with the OPEN command the C-64 Kernal vector for CLOSE
expects the parameters to be already obtained. However it
also expects the accumulator to be loaded with the logical
file number! The C-64 equivalent to BASIC4 $FFC3 is $E1C7.
If we look at the code from $E1C7 we find a routine is
called to get the parameters, then LDA $49 (!!!) and then a
JSR through the Kernal vector $FFC3. What is this LDA $49
you ask. Well, I did any way. It so happens that the
routine to fetch the parameters as well as storing the file
number in $B8, where it should be, will finish with $49
also holding the logical file number. Thus the accumalator
is loaded with the logical file number before calling the
Kernal vector, but in a very non-standard way. So what, you
say ? Well consider the case where some machine code for
BASIC4 used to set the parameters manually and then simply
called the code for CLOSE skipping the bit that set the
parameters (JSR $F2E0). The expected solution for C-64
would be to set the parameters manually and then call JSR
$E1 CA. However, because of the $49 being used and not the
correct $B8, the whole thing gets messed up which entails
additional code to store the contents of $B8 in $49 before
calling $E1 CA. Now for those without a reverse Assembler
this extra code is going to cause problems as all the
subsequent JMP/JSR references could be incorrect-

Now I fully agree with the concept of Kernal vectors.
I could even perhaps accept the fact that the C-64 Kernal
vector code is not QUITE the same as the BASIC4 version, IF

273

274

IT LEADS TO IMPROVEMENTS. The CBM was only a testbed for
the Kernal technique after all. However, picking data from
a temporary location rather than its permanent home is just
not on and in my opinion is poor programming! My faith in
the Kernal vector concept has been severely dented! I do
not think much of Commodore's Software Quality Assurance
either if such inconsistencies are introduced to what is in
effect a developed product (BASIC2 having been with us a
long time).

— oOo—

VISICALC ~ PIRACY & LOOK-UP TABLES
By Brian Grainger

I want to start this article by recounting a little
story. When VISICALC first appeared I was asked by a friend
to look at making it work without its ROM. I did so and
after about a month of work on and off I got a de-ROMed
version working. This meant I had got a copy free although
I had probably spent my 125 pounds in time although of
course it did not go to the originators. Because I felt the
program was worth the money and I did not want my version

to be treely circulated around ICPUG regions as a freebee 1
only gave two copies out. Each to well known ICPUG members
and both with instructions not to circulate for the reasons
given above. I also had made some notes on how the program
was deROMed which went with the program copies. On my
deROMed version I included my name and former address.

Lo and behold I received a letter in March at that
same address requesting some info on VISICALC. The letter,
which as far as I am aware came from somebody totally
unrelated to where the program copies went, pointed out
that a deROMed version was used. I also know that a copy of
my notes have been seen in the North of England. There is a
lesson to be learned here. With the best will in the world
you cannot stop people, no matter how reputable, from
distributing illicit copies of programs. The only way to
stop it is not to make copies available in the first place.
In this case the software writers have probably gained
since I know my 'free' version encouraged some additional
sales but it does show an aspect of piracy I had not fully
appreciated before.

To return to more useful topics, I mentioned in my
article on printing the VISICALC formulae (Vol.5, No.1,
p.23) that labels in lower case came out strange on the
printout. Laurie Faulkner wrote to tell me of the technique
he uses with his CBM 4022 printer and the BASM0N/PLUSD0S
utility chips (available from ICPUG). To display the
formulae on the screen he puts the computer into lower case
mode (POKE 59468,14) and then does a SEQ"filename". To
produce hard copy Laurie sets his printer to upper/lower
case mode by:

OPEN 7,4,7 : PRINT#7 : CLOSE 7
He then spools the VISICALC file to the printer using the
PLUSDOS utility 'filename. Apparently this does not cause
case problems and he sent me a listing to prove it.

I want to end this piece by discussing the QL00KUP
command. These notes are a combination of two articles I
have seen on the subject. One by Mick Ryan in ICPUGSE news
and the other by Robert Ramsdell in Byte. I have added some
contributions of my own.

275

The 3L00KUP command, probably the most difficult to
understand, enables a user to search a table for the
nearest number, NOT GREATER THAN a given number. It then
returns a value corresponding to the number found. If the
table is given in a row the value returned is given by the
entry in the row below opposite the table entry found. If
the table is in a column, then the value is in the column
to the right of the table.
e.g. If we set a table in column A of the spreadsheet with
the values in column B.

276

A B
1 1 1
2 2 2
3 3 9
4 4 16

then 3L00KUP(VALUE,A1.A4) is equivalent to the BASIC:-
10 FOR 1=1 TO 4
20 IF A(I)>VALUE THEN 40
30 NEXT I
40 RESULT=B(1-1)

To give an example of the use of this function suppose we
wish to determine what day of the year a given date will
be. We could set up the following spreadsheet.

A B C D E

1 DAYS MNTH DATE

2 31 1 0 MONTH 5

3 28 2 31 DAY 7

4 31 3 59--------

5 30 4 90 ANSWR 127

6 31 5 120

13 31 12 334

277

Columns A and B of the above sheet give the number of days
(Col.A) in each month (Col.B). Column C gives the number of
days in the year immediately before the corresponding
month. Thus C3=A2+C2 and C3 can be replicated from C4..C13
using Relative changes for both variables. The month and
day of the date are input to E2, E3 respectively. The
result will be given in E5. The formulae for E5 will be:~

aL00KUP(E2,B2.Bl3)+E3

This works by searching entries B2 to B13 for the nearest
value not greater than E2 (5). The nearest value not
greater than 5 IS 5 in entry B6. The aLOOKUP thus returns
the value of C6 (120) to which E3 (7) is added giving the
answer (127) .

This particular example could easily be extended to
cover the number of days between two dates, (useful for
calculating interest payments maybe), or to include years
in the date given.

One word of warning when using aLOOKUP. Be aware of
the way VISICALC orders its calculations. In the example
above it calculates A1,A2..A13, then B1,B2..B13 and so on
down each column. Thus to work correctly, the date, month
and answer formulae had to be located to the RIGHT of the
table columns- in Col.E. If they had been located in Cols A
and B it would have given incorrect answers as the results
of Column C which are needed for the aLOOKUP function would
not be calculated when columns A and B are evaluated.

— oOo—

Compuprint Computers Ud
278

PRINIING_AND_COMPUIING_SERyiCES

Compuprint Computers Ltd provide a unique combination of
printing and computing which offers;

Wordgrocessjncj - producing letters, reports, booklets,
brochures and price lists at very competitive
pri ces.

M5 iLiQ2 _Lists - bi>th clients closed lists and open lists for
general use are processed. Extensive sorting and
coding makes the system ideal for directories,
indexes etc as well as address work.

- for accounting, payroll etc.

Software - special packages for Commodore equipment.

EniQtiQa - full range of general commercial work inluding
full typesetting facilities. Let us quote for your,-
leaflets, letterheads, brochures, booklets etc.

The combination of the above give a complete service to
advertisers, publishers of all sizes. We can set, print and
distribute a wide range of material. Ready processed work on
Commodore discs is accepted.

If any of these services interest you then please contact
Grahame Worth on 091 488 8936

--- oOo---

£2Q£iDu°us_E!lin£ec* _stati_oner^_and__iSbel^s^gri ce__on_reguest

--- oOo---

SPECIAL OFFER TO ICPUG READERS

Boxed sets of personal stationery, normal selling price
£7.95, available for limited'period for £6.00 inc P+P

Each set includes 40 sheets printed in italics, 40 plain
sheets and 40 envelopes, all made from finest quality laid
paper. Available in Cream, White or Blue.

Compuprint Computers Ltd
279

COMPyiER_SUPPy.ES

ALL our supplies are available in small quantities if
required. The prices shown below lQ£ludes_VAT. Postage will
be charged by weight, add up the weights of your selected
items, postage and packing is £1.50 plus 25p per kilo.

Orders are accepted on a cash with order basis only. We
regret we are unabLe to accept credit cards.

Min order quantity Pri ce Wei gh
Di^scs top brand names.

Single side S/D for 3000/4000 5 14.35 0.1
Single side D/D for 8050 5 17.25 0.1
Double side D/D for 8250 5 20.00 0.1

£§ssettes_£C12) 5 3.00 0.1

Ribbons
Fabric type for 3022 each 3.00 0.1

4022 II 8.28 0.1
3023 II 6.90 0.1
8024 II 7.24 0.1

Single Strike 8026/7 II 3.95 0.2
Pager

Plain/Ruled
1 part 9.5" x 11" 500 4.95 1.9
2 part 9.5" x 11" 500 9.90 3.8

Labels (Nominal sizes)
375"~x 2" 1~wTde 1000 4.00 0.9
3.5" x 1.5" 3 wide 1000 3.45 0.7
2.75" x 1.5" 2 wide 1000 1.65 0.2
2.75" x 2" 3 wide 1000 2.90 0.4

other sizes/widths available on request.

Plain A4 paper (80g) 500 3.75 2.5
Binders-Plastic for 11" x 9.5 each 2.70 0.1

Card for 11" x 14” each 1.60 0.1
Program pads (50 sheets) each 1.75 0.25

COMPUPRINT COMPUTERS LIMITED,
4 SANDS ROAD, SWALWELL, TYNE AND WEAR, NE16 3DJ
TELEPHONE 091 488 8936

280
MATTERS ARISING

In the article on multiple key-press detection (p81
Jan),. Brian Grainger points out that the hex to decimal
conversion was out by one. References to 256 should read
255 and as a result 251 should read 250.

Colin Pipe suggests that the 'input crash' (p78) can
be resolved by typing 'CONT'. The program will continue
with variables intact as if nothing has happened. However,
I should point out that if one had not noticed the program
break out of 'RUN' mode and entered say 20 in response to
the anticipated INPUT, this would be seen as an attempt to
delete line 20, if any. This would destroy all variables
and prevent CONTinue.

One member queried what line 50 did on p35, January
issue, well not a lot. Alfred Rose tells me that following
the second colon, insert

L=R-256*H:POKE S+2,L:
In addition for BASIC 4, 28,202 in line 60 should be 29,187.

The printer presence check (p174 July and p70 Jan.)
still creates interest. Malcolm Friend points out an easier
method. The old-ROM program segment following uses an IEEE
routine to send an Attention sequence to the bus. Like most
solutions it will not work if another device is active on
the system. For BASIC2, still use SYS61622, but for BASIC4
use SYS61650. In both cases alter the P0KE524,0 tc
P0KE150,0 to clear the status byte.

_ n _
100 SYS61622:IFST=-1 28THENPRINT"PLEASE SWITCH THE' •"*

PRINTER ON!" ' I J

110 IFST=-128THENP0KE524,0: SYS61622:G0T0110

The techniques on register exchange presented on pp61
and 215 appear unnecessarily tortuous and a more elegant
solution is presented by Paul Barden. A & Y may be simply
exchanged by:

281

PHP
STA $0140 ;lowest address of BASIC stack
TYA
LDY $0140
PLP

If there is room on the stack for the three PHA's used in
Andy Scott's technique, there is certainly room to use the
lowest location as a temporary store.

The March issue was larger than most, so it was
inevitable that more pages meant more gremlins. At the foot
of p180 add the words:
'base are used in the same manner as in standard character
mode. The COLOUR MATRIX is used differently.'

The Discounts page (223) went a little odd, but little
things can mean a lot. John's request should have read 'Do
not telephone UNTIL after 7.30p.m. weekdays. The reference
to the 'Compendium' on p238 was misleading, it is not
restricted to PET members only (we are all Commodore
equipment users), it is still available to all, and in
conjunction with the ROM list article on p188, is of use to
Vic/64 users also. If you don't have one, there are still
some left (£ 2.50 from the Membership Secretary), but don't
be surprised if they all go at the Commodore Show.

Finally, with reference to the SYSRES review, the
problems that were mentioned on p232 were not due to the
SYSRES program but the program that I was using for test
purposes. I had unwittingly picked on one of the few I have
in BASIC which still use the second cassette buffer and
which conflicted with the working space required by S.YSRES.
Sandra Boden of Solidus informs me that it is possible to
use SYSRES on the 8250 disk drive, but the boot disks must
have been created on an 8050 drive. Don't forget the
members' discount available on SYSRES via John Bickerstaff.

— oOo—
R.D.G.

VICREL - AN INTERFACE FOR THE VIC TO THE OUTSIDE WORLD
282

Peter J. Pengi L Ly.

I recently purchased a VICREL (Datatronic ab.) add-on
for the Vic and thought that my experience could prove
useful to ICPUG readers. This device fits to the User Port
on the back of the VIC and provides the following
f aci lities':-
1. Six outlet controlled ports max 24 volts, 10 Watts.
2. Two inlet ports.
3. 5-volt supply current.

Connections are made to the device very simply (no
soldering) and the 5-volt supply can be used to provide
current for the input ports if required.

This means that the Vic can be used for all sorts of
control work very easily. Sophisticated burglar alarms can
be built, model trains controlled and robot experiments
carried out.

If control of mains devices is required this can be
done by making up an opto-isolator (a suitable one is
marketed by T. K. Electronits of 11, Boston Road, London,
W7 3SJ at 2.40 pounds.)

The VICREL was purchased using the Group's discount
arrangements and retails at £28.95.

The instructions for programming are very simple and
anyone wanting to use the Vic for control is strongly
recommended to consider it.

— oOo—

THOUGHT FOR THE MONTH

YEA, from the table of my memory I'll wipe away all
trivial fond records. - Hamlet (Act 1, Sc 5 line 98).

— oOo—

283

VIC/64 CHARACTER SETS

(c)ICPUG 1983 By Mike Todd

There are three ways of getting characters on to the
screen of a Vic-20 or CBM-64. You can either print character
strings, print the CHR$ values of the characters or POKE the
character straight into the screen memory.

There are also two modes of display, the graphics mode
and the text mode. The former is how the Vic/64 powers up -
capital letters are produced unless the shift key is used, i
which case we get graphics characters.

In the text mode, the normal character is the lower case
letter and shift produces the capital, just like a
typewriter. But, whether you are in text or graphics mode,
the characters in the screen memory remain the same, it is
purely the character generator that is switched.

Although BASIC normally uses capital letters for
keywords and so on, it is the un-shifted letters which must
be used - this explains why, in text mode, the capital
letters (which are shifted) do not work.

The first two tables that follow show the complete
character sets and their screen POKE values - first in
graphics mode, and second in text mode. The small numbers
under the characters show the actual decimal POKE values,
while the column/row numbers could be used to find the hex
codes.

The remaining two tables show the same character sets,
but as they appear when used with the CHR$ command - thus
PRINT CHR$(54) would produce the figure "6".

There are no reverse field equivalents irv the CHR$
character set, as these are obtainable using the RVS ON key
(CHR$(18)). This character is one of a theoretical maximum of
64 special control characters which, when printed normally,

284
don't generate a character, but instead perform some screen
control function.

For instance, CHR$(17) is the same as the cursor down
key and PRINT CHR$(17) would have the same effect. All the
CBM-64 control characters are listed, including the extra
colour codes which the Vic-20 doesn't have (129 and 149-155).
When you use GET, and then find the ASC value of a key
pressed, you will get the same character values shown which
is why the function keys are also listed.

Most of these control codes are self explanatory,
although the LOCK and UNLOCK commands may be unfamiliar. They
simply lock the computer into its current display mode
(graphics or text) such that the user cannot alter them using
the CBM/SHIFT key combination, while the program can still
alter the mode using the TEXT and GRAF control codes.

When you press a control key on the keyboard, the
appropriate control code is generated and the correct action
is taken - unless you have typed an odd number of inverted
commas. This is to allow the codes to be incorporated into
character strings - the so-called "progammed cursor" mode.

To help (?!) identify these codes, the computer
generates a reverse field character which, for control codes
in columns 0 and 1 are the same characters (but in reverse
field) as those in columns 4 and 5. Similarly, for the
shifted control characters in columns 8 and 9, they appear as
the reverse version of the corresponding characters in
columns C and D.

This means that control codes, which can't be generated
directly by pressing a key, could be generated in two ways.
By using their CHR$ values or by "fooling" the computer into
thinking that the character embedded in a string is a control
character.

Let's say you're in graphics mode, and want to include a
TEXT control character. The simplest way would be to PRINT

285
CHR$(14), but it could be incorporated in a character string,
say A$. First type the command A$="" (note the two quotes!)
and then, using the DEL key, delete the second of these
quotes. After the first quote the computer goes into
programmed cursor mode, the second reverts to direct mode.

Now, select reverse field (RVS-ON) and type the
corresponding letter in the 4th column ("N"), cancel the
reverse field mode (RVS-OFF) type the closing quotes and
press RETURN. Now, the TEXT control character is part of A$,
and PRINT A$ should flip the display into TEXT mode!

This technique can be extended to include nearly all
control characters but beware trying to use CHR$(0) or
CHR$(13) as this could cause problems.

When a program with control codes is LISTed, most will
appear in their normal reverse field form, but those which
have to be actioned regardless of the quotes mode (such as
DEL) will actually be actioned during the LISTing. This means
that, by using the above technique of forcing a control
character such as DEL (using RVS-"T"), characters on a BASIC
line can be deleted during listing. This could be useful for
hiding passwords or quiz answers and is worth experimenting
with - although, don't place too much reliance on this method
of security as it is very easily broken by someone with a bit
of inside knowledge.

In the CHR$ tables, columns 6 and 7 are a repeat of 2
and 3, similarly E and F are repeats of A and B. This is a
quirk of the way the Vic handles characters for output and,
although they could be used if required, I would suggest that
these repeated character values are avoided.

With the exception of some of the control characters and
the pound sign, CHR$(92), these lists also apply equally well
to PETs, although I will be producing similar tables for
these machines at a later date.

— oOo—

286

0 1 <£>"7

□ □ □ l i e a t s n s D a B n u a
066 *16 632 04B 064 08ft 696 112 128 144 l i t 174 192 208 224 240

i H G j a H s c a i i i j a. CRSR

U H
601 017 633 049 065 097 113 129 145 161 177 193 209 225 241

u S C H S I S B H S n i i l H B D D Q H H
002 018 034 650 066 082 098 114 130 146 162 ' 178 194 216 226 242

u§B[30iSB13n@uffl0l!D.S]
003 019 035 051 067 083 099 115 131 147 163 179 195 211 227 243

□ H i a i s a i s s n s i j E B B a o
004 020 036 '052 068 084 100 116 132 148 164 1B0 196 212 228 244

SaglSiEIHiEiSBSOEnaDE
005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245

□ □ SIS E 0 H S
022 038 054 070

□ □ □ 0 jCj] 0 Q 0
007 023 039 055 071 087 103 119

B D S i l B i S S S
007 023 039 055 071 087 103 119 135 151 167 183 199 215 231 247

UN
LOCK

024 040 056 072 088 104 120 136 152 168 184 200 216 232 248

Trai nri
BRN I

025 041 057 073 089 105 121 137 153 169 185 201 217 233 249

O

D

□ B M O
102 118 134 150 166 182 198 214 230 246

□ □ m a n
167 183 199 215 231 247

H H DO ffl H H
168 184 260 216 232 248

BHEQBfl
169 185 201 217 233 249

□ □ f f l B a s f f l Q H m a a a a a
010 026 042 058 074 090 106 122 138 154 170 186 202 21B 234 250

□ □SQ BESG JSSLBflS ff iC BB
611 627 643 659 675 091 107 123 139 155 171 187 203 219 235 251

□ BUSBSG JEBHG JaDIDaa
012 028 044 060 076 092 108 124 140 156 172 188 204 220 236 252

t M l S B S E O D B B S I I H E l S C C H E]
013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253

BB&SiSfflQSBEBEiZISSE
014 030 046 062 078 094 110 126 142 158 174 190 206 222 238 254

□ 0 0 0 0 0 0 0 □ B U H D H U IS
•15 031 047 063 079 095 111 127 143 159 175 191 207 223 239 255.

CHR* VALUES — GRAPHICS MODE
V/ I C — SO CBM —<£>̂

287

i B G a s B D a i s J i a s P i i r i
a ee 016 032 # 4 8 »64 t e n 0 9 6 * >2 128 144 160 174 192 208 224 24e

i a a f f i i g s i j f f i i i i i i i Q s s
M l 0 17 0 3 3 0 4 9 0 6 5 081 097 113 129 145 161 177 193 209 225 241

@BC!ii2]SiSHB!afflll§Bi3f3a
0 02 e ia 034 ese 066 082 099 114 130 146 162 178 194 210 226 242

003 019 035 051 067 083 099 115 131 J47 163 179 195 211 227 243

a f f i s a m a c s a s s s i i i i
004 020 036 052 068 084 100 116 132 148 164 180 196 212 228 244

IHSSEOO ljSS IfflS lllBan
005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245

f f lB S S E B ia s s i ia ia s iB i i
066 0 2 2 0 3 8 0 5 4 * 0 7 0 0 8 6 102 11B 134 150 166 182 198 2 1 4 2 3 0 246

i a n s n a s i s s iB H
071 087 103 119 135 151 167 183 199 215 231 247

B M H H S3 3 1 @ El H B B
00b 0^4 040 0 56 0 72 088 104 120 136 152 168 184 200 216 232 248

i£SQ]@[Zil3gQflfllBHflSB
009 025 041 057 073 089 105 121 137 153 169 185 201 217 233 249

jjiz a L LI E LI :/ SI 5 S3 BII ISi 1 19
010 026 042 058 074 090 106 122 138 154 170 186 202 218 234 250

EESCDEffitEEIBHBBiaSliFI
011 027 043 059 075 091 107 123 139 155 171 187 203 219 235 251

[l i S Q I S I Q B H a D a i a H l B K
012 028 044 060 076 092 108 124 140 156 172 188 204 220 236 252

M BSB ICEH S lilBB IBD B fl
013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253

a a a s s s a H i i f l a s i i i s a a
014 030 046 062 078 094 110 126 142 158 174 190 2 * 4 222 238 254

SSBi30SG8fe:!^0S!iiHj
015 031 *4 7 063 979 095 111 127 143 159 175 191 2 *7 223 239 255

POKE VALUES — TEXT MODE
V/ I C — 2 0 8c CBM-A 4

288

O l : 2 3 4 S < £ » : 7 r O <̂ A B G D E F r

B D lB D D Q S l IP IS iP i
000 e i6 032 040 064 000 096 112 128 144 160 17& 192 208 224 240

H S E f f i l i B H M l i G O a a i
001 017 033 049 065 081 097 113 129 145 161 177 193 209 225 241

S S M E D H B B S IS B B H S !
002 018 034 050 066 082 098 114 130 146 162 178 194' 210 226 242

s i i i s i B a n f f l s s s s s a i s
003 019 035 051 067 083 099 115 131 147 163 179 195 211 227 243

H Q llSaBO U D H IiSS fiia i
004 020 036 052 068 084 100 116 132 148 164 180 196 212 228 244

BOiESnQDCSfflfflSBSlQI
005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245

006 022 038 054 070 086 102 118 134 150 166 182 198 214 230 246

M C M m n s i i a B a s B a
007 023 039 055 071 087 103 119 135 151 167 183 199 215 231 247

BHuyiinfflflHfflfflBaBBlH
008 024 040 056 072 088 104 120 136 152 168 184 200 216 232 24B

CE0Gj0QQHfiflSIil@HB3B
009 025 041 057 073 089 105 121 137 153 169 185 201 217 233 249

H B lQ Q fflQ U B B O B B C ll
010 026 042 058 074 090 106 122 138 154 170 186 202 218 234 250

BEfflEHfflfflBSHllBBHBfl
011 027 043 059 075 091 107 123 139 155 171 187 203 219 235 251

o s Q E L J B a a a s a a ia B S
012 028 044 060 076 092 168 124 140 156 172 188 204 220 236 252

iQOBssooaBGBflaaBBfia
013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253

B ff lQ aaaasa iB B S sB aa
014 030 046 062 078 094 110 126 142 158 174 190 206 222 238 254

0@00Di5U58Si81SiJliifl
015 031 047 063 079 095 111 127 143 159 175 191 207 223 239 255

poke: values — graphics mode
VIC-20 Sc CBM —64

289

a

B

O

< f b ^ O « = ? A I 3 : O D E F ^

□ □□HH@D!SnHDQ0 iBDQeee 016 032 e4B e64 ese m 112 128 144 160 176 192 20B 224 24e

□g[ua®§c]a 0 @i]Haica
001 617 033 049 065 081 097 113 129 145 161 177 193 209 225 241

□ @ a@ eem m fi 0 0 SH 0
002 01B 034 050 066 082 098 114 130 146 162 178 194 210 226 242

□ n B a s g B s n s n a M n a]
003 019 035 051 067 083 099 115 131 147 163 179 195 211 227 243

□ S S H i i f f lS H D H U C iS l I lQ D
004 020 036 052 068 084 100 116 132 148 164 180 196 212 228 244

I HHT I□ SS lS iiBH BO E iE IH O E
005 021 037 053 069 085 101 117 133 149 165 181 197 213 229 245

□ □ g @ g] 0 i S | 6 | 0 @ H 3 E 1 0 1 O
006 022 038 054 070 086 102 118 134 150 166 182 198 214 230 246

□ □ □ H i s i a Q B B g a n j G i H a n007 023 039 055 071 087 103 119 135 151 167 183 199 215 231 247

0 D f f l S 0 0 E S 0 l l f l H H i 3 H n
008 024 040 056 072 088 104 120 136 152 168 184 200 216 232 248

@000S0E10[183y[J083y
009 025 041 057 073 089 105 121 137 153 169 185 201 217 233 249

□ □ l Q 0 @ a O M [] 0 Q O 0 [] 0
010 026 042 058 074 090 106 122 138 154 170 186 202 218 234 250

□ □ S Q E i B S Q H B l I B E f f i C B B
011 027 043 059 075 091 107 123 139 155 171 187 203 219 235 251

□ 0 □ S [I ® □ S 0 0 □ □ B B □ □
«12 02B 844 848 #74 892 188 124 148 156 172 188 284 228 236 252

I S B S S Q l B g l l l l S B I i t J Q B
013 029 045 061 077 093 109 125 141 157 173 189 205 221 237 253

00aS0aDE0H0lI]B80S
014 030 046 062 078 094 110 126 142 158 174 190 206 222 238 254

□0000000Q5DH0HUH
015 031 047 063 079 095 111 127 143 159 175 191 207 223 239 ' 255

CHR* VALUES — TEXT MODE
V I C— 2 0 CBM — £>-4 -

290
CLUB SOFTWARE NEWS

By Brian Grainger

In this article on club software I want to cover two
items. Some programs for numerical analysts and the latest
news on the PET REVAS.

Starting with the REVAS, a lot has happened since I
reviewed this software last September. To briefly remind
you of the purpose of REVAS, it is to create from a machine
code binary file, completely source code compatible with
the Commodore Assembler. It attaches labels as requested to
JSR/JMP instructions and/or Branch instructions and/or
3-byte instructions. The REVAS also came with label tables
so that, say, BASIC4 source could be created from a BASIC2
binary file. Well the latest news on this utility is that
the JAN'83 version now has label tables for C-64 included.
This means that machine code can be translated from any of
BASIC2, BASIC4, BASIC-64 to any other. The REVAS itself has
been enhanced with a new function (Do the whole lot!)
which will attach one set of labels to JMP/JSR references.
A different set of labels to branch references and a
further set of labels to references of 3-byte op-codes.
This greatly simplifies the conversion process combining
what used to be six tasks into 1. The instructions to REVAS
have also been enhanced. It is also worth mentioning that
the enhanced Editor for the Commodore Assembler system is
now at version 8 and exists for BASIC2, BASIC4, FAT40 or
8032. All these programs are available from our Assistant
Editor, Tom Cranstoun, 107, Dalmally Road, Addiscombe,
Croydon.

Those who have read my articles on COMAL will have
seen me refer on occasion to Nick Higham. Nick is a
mathematician who takes a keen interest in Numerical
Analysis. He has recently made available to the SQftware
library two programs which will be of particular interest
to those with similar interests.

The first called 'Quadrature' will perform numerical
integration by a variety of methods. The function is
defined as if input into a program line (e.g. f(X)=
2*X+3*Xt2)). The appropriate integration method is chosen.

integration Limits given and in no time at alL the result
is displayed. Integration methods covered by the program
are Gauss-Legendre, Repeated Simpsons Rule, Gauss-Laguerre
and Gauss-Hermite.

The second program from Nick to be added to the
software library is to manipulate N by N matrices. Such
matrices can be input and edited. The program then allows:-

(i) matrix multiplication to be performed
(ii) solution of Matrix equations of the form Ax=b

(iii) LU factorisation and matrix inversion
(iv) Eigenvector evaluation by the Power method or inverse

iteration method.

Both these programs are well written, useful and easy
to use. A must for Numerical Analysts or the Maths or
engineering faculties of Further Education establishments.

— oOo—

POUND SIGNS WITH 'SIMPLY WRITE' 8 CBM PRINTER
By Peter J. Pengilly.

I noticed a plea for a method of getting a pound sign
with the Simply Write word processor in the computer press
recently and send you my solution to the problem.

Insert the following lines of code at the start of the
Simply Write program

DATA 2,18,254,146,194,2
0PEN5,4,5
FOR 1=1 TO 6 :READ A:A$=A$+CHR$(A):NEXT I
CLOSE 5

When you want to use it in the text, use as in the
following example:-

THE PRICE IS
tCH=254

291

292
COMMODORE ASSEMBLER EXTENSIONS REVISITED

By Simon Humphrey.

I was interested to read the article on extending the
Commodore Assembler (November p325) and since then I have
obtained a copy of the program from the ICPUG library. The
program as supplied (and as mentioned in the article) is
intended for use with the Commodore assembler for BASIC4
(V121579). As I have the assembler for BASIC2 (V112779) I
have adjusted the program to work with this assembler. The
changes are as follows:
File ASM.REPINPUT

change ISALPH =
change BBASIC =
line 268 change

Change the following to
assembler:

$1049 to ISALPH = $0FC5
$1F8D to BBASIC = $1EF3
JMP $061A to JMP $0619

be compatible with the standard

line 411 CMP t to CMP
line 420 CMP to CMP
line 433 CMP \ to CMP ff'\

line 460 CMP ti" t to CMP #'t
li ne 463 CMP to CMP
line 466 CMP \ to CMP

Change patching the assembler
this file).

490
491
493
494

(instructions at the end of

li ne
line
Line
li ne

$FFCF
$1 FOE
$061 A
$05 E2

to
to
to
to

$F1E1
$1 E79
$0619
$05 E1

[not essential - EdU.change
change
change
change

File ASM.EXTNCNTRL
change NXTSTR LDA $0348,Y to NXTSTR LDA $032C,Y

line 51 change JMP $0F72 TO JMP $0EEE
in NAMES add 32 more spaces after .BYTE
only 16 spaces in the Library copy.)
in STR'CAD change $0F72 to $0EEE

File ASM.IFEXTN

'LEA' (there are

change
change
change
change
change
change

SYMBOV
READCH
UNDFSY
IGNRLN
RAN0FF
0UTMES

$143D
$0FA2
$QF72
$0F95
$0F72
$06 3 A

to
to
to
to
to
to

SYMBOV
READCH
UNDFSY
IGNRLN
RAN0FF
OUTMES

$13B9
$0 F1 E
$0EEE
$0F11
$0EEE
$0639

in comment on Line 328 change $02C0 to $02C2
293

In the instructions for patching the assembler, change
as follows:

Locati on
$042 D
$042 F
$043D
$05 E1
$0908
$1 E79

From
A0 20
A2
20
20
4C
20

D3
19 06
19 06
EE 0E

To
A0 28
A2 39
20 37
20 37
4C 2D

22
22
23

E1 F1 20 B3 22

The instructions on the disk omit to mention how to
create the new object file. Save each file (under the
original names) after the changes have been made, then with
the disk containing the files in drive 1 , assemble the
source file ASM.ASSEXTNS-(this calls the files in the
correct order) creating an object file on disk. This new
object file can be used in place of the file 0BJ.EXTNS to
create the extended assembler as described in the
instructions on the ICPUG library disk.

— oOo—

It was simply that
152 pages cost too much...

DISK FILE - SECTOR 6
294

By Mike Todd

Well, I’m afraid this DISK FILE, like the last, is going
to have to consist of bits and pieces owing to time and space
restrictions!

8250/8050 COMPATIBILITY

There are many differences between the 8050 and 8250.
The obvious one is that the 8250 is a double sided system,
whereas the 8050 uses only one side of the disk.

The relative file structure on the 8250 is also
different and care is required in using them. The main
feature is that the 8250 can, at least in theory, use the
entire disk to store relative files, whilst the 8050 is
limited to 182K.

While it is possible to use disks written on an 8050,
there are several precautions that need to be taken.
Remember, though, not all disks suitable for use on 8050
drives can be used on the 8250, only those that are high
quality, double sided, double density and 77 track.

The first attempt to access an 8050 disk on an 8250 will
result in a disk error but future accesses will work
correctly. It is not quite so simple when using relative
files, where the 8250 must be set up to handle unexpanded
relative files as follows:

OPEN 15,8,15
PRINT#15, "M-W";CHR$(164)CHR$(67)CHR$(1)CHR$(255)
CL0SE15

Copying relative files from 8050 to 8250 is really quite
simple. Enter and run the above code to disable expanded
relative files, then with the 8050 disk in drive 0 and a
formatted 8250 disk in drive 1, copy the relative file in the
normal way (using COPY DO,"source" TO D 1 ,"destination").

295

If you get a disk error on the first attempt (which you
will if the disk in drive 0 has not yet been accessed) then

simply repeat the command.

Once the copy is complete you will need to reset the
8250 (by switching off and on again) then put the Demo Disk
(supplied with the 8250) into drive 0 and LOAD and RUN the
program "EXPAND RELATIVE".

There have been reports of difficulties in loading
Visicalc and Silicon Office, as well as accessing the
directories from Wordcraft.

Commodore recommend that any software existing on 8050
disks should be copied to 8250 format. This works fine with
Visicalc and Wordcraft, but Silicon Office is copy protected
and users should contact Bristol Software Factory for
assistance.

Copying ordinary files from 8050 to 8250 is also
straightforward, as long as you remember to access the 8050
disk first to avoid disk errors.

With the original 8050 disk in drive 0 and an 8250 disk
in drive 1, format the 8250 disk in the usual way (using
HEADER command and, ideally, using the same ID and name as
the original disk).

Perform a CATALOG DO (twice if necessary to avoid the
disk error occuring) and simply copy the entire disk using
COPY DO TO D1.

One final difference between the two disk systems is the
error code returned in DS$ or through the error channel. On
the 8250 it consists of five items instead of the four on the
8050. The format is now:

Error number, message, track, sector, drive

296
ANTI-COPYING

Over the last year I have had many letters asking how to
protect disks against copying and so I thought I'd explain
some of the problems involved.

First of all, there are actually only four ways of
copying programs from one disk to another.

There’s the inbuilt BACKUP or DUPLICATE command which is
actually part of the disk operating system and which makes an
identicals block-for-block copy of the original.

If during this copy process there are any errors in the
original disk, the copy process will abort. Therefore to
prevent this type of copying, it is simply a matter of
corrupting a section of the disk.

In its most crude form, a magnet can be placed near the
outer edge of the disk, erasing sections of the first few
tracks. Alternatively, the disk can be formatted omitting the
first couple of tracks. This is easily done by starting the
formatting process on a second disk, and after the head has
stepped through, for instance, two or three tracks, the disk
to be formatted is put back in the drive and the formatting
will continue.

The second method of copying is to use the COPY command
in the DOS which reads the original file character by
character and writes it back to the duplicate disk.

The third method involves using the DOS U1 and U2
commands to read and then write every block on the disk. This
will also correct any checksum errors in the data and is a
useful method of recovering some forms of disk corruption.

The fourth method is to read the program‘into the
computer and then write it back again to a new disk. Of
course, any program which runs automatically on loading and
which disables the STOP key or takes other precautions to

297

stop you getting at the loaded program will prevent this type
of copying.

Copy protection involves a variety of complex techniques
to corrupt the disk, to write the program in unusual formats,
to encode the program or to place uncopyable "identifiers" on
the disk, which the program must constantly check.

Of course, all combinations of these are often used, but
the disadvantage of any copy-protection system is that you
need to be able to get the program into the computer in a
machine readable form. This is most often done by employing a
loader program, which itself must be loadable as a normal
program and therefore can be "got at" by anyone with only a
little experience of disk systems.

The programs themselves will often be "hidden" on the
disk so that they don't appear in the disk directory and they
will be encoded in some unique way such that they can only be
read back using the loader program.

This loader may also keep a check on the disk to make
sure any "identifiers" placed on the disk are still there.

Of course, it is possible to modify the loader to remove
these checks and to determine the encoding system used and to
determine where on the disk the programs are saved and, with
this done, the program can be copied with no problem.

Some programs use the "dongle" security device which
assumes that a program can be copied, but can only run with
this special hardware version of a password. Even so, it is
possible to "de-dongle" a program by hunting through the
program looking for the "dongle-checks" and removing them. Of
course, the smart programmer will also incorporate checks
(often in hideously obtuse code) to make sure that the
"dongle-checks" are still intact.

I've said it before, it is impossible to fully protect
any program from copying. As long as it is necessary to read

the program into the computer in executable form then it can
be disassembled and examined and the method of protection
determined.

Of course, the more sophisticated the protection, the
deeper the knowledge and the more time it will take to break.
It is this which will deter most copiers.

I might add that I've yet to get hold of a disk that I
have not been able to break within a couple of hours - and
some of these have used some of the most sophisticated
techniques currently available!

FILENAMES et al

When you OPEN, LOAD or SAVE a disk file, the first thing
that is sent to the disk drive is the filename and in all
three cases it is sent in exactly the same way. The only
exception is using OPEN without a filename, when nothing is
sent to the disk drive at all.

LOAD and SAVE start off like OPEN, except a specfic
secondary address is used - 0 for LOAD and 1 for SAVE.

The first thing that happens with OPEN is that ATN is
set to indicate that a command is being sent and a LISTEN
command goes out onto the bus. This is in the form 001x xxxx
where x is the device number which can theoretically be
between 0 and 31 but 0-3 are reserved on Commodore systems
and 31 is used as the universal UNLISTEN command -

With the disk drive now listening, the secondary address
is sent (still with ATN set) and this is in the form 1111
xxxx where x is the secondary address. The 1111 indicates to
the disk drive that this is an OPEN command and that a
filename follows.

The ATN line is then cleared and the filename sent, the
last character is sent with EOI set. Finally, the universal
UNLISTEN command 0011 1111 is sent with ATN set.

298

299

Once this has been done, the disk drive performs the
necessary housekeeping according to the type of file.

It waits to receive or send data when requested. For
instance, a PRINT# command starts by sending the device
listen command as before, and sends the secondary address in
the form 0110 xxxx where x is the secondary address. This
activates the appropriate channel within the disk drive which
then procedes to take characters off the bus until the EOI is
set (with the last character). The universal UNLISTEN is then
sent by the computer.

SAVE works in exactly the same way, except that all the
data is sent in one go and the secondary address is 1 which
forces the disk drive to default to a PRG,WRITE file.

CLOSE is a matter of sending LISTEN again followed by
the secondary address, but this time in the form 1110 xxxx.

INPUT and LOAD work in similar ways but, after the file
name is sent and the disk is ready to send data, the sequence

starts with the TALK command 01 Ox xxxx, where x is the
secondary address. 0101 1111 is the universal UNTALK command.

The exact action following the OPEN (or indeed the SAVE
or LOAD) depends upon what is contained in the filename and
the secondary address used.

The filename is parsed to identify the drive number, the
filename, the file type and the file mode. If the file mode
is omitted, it will default to READ, and if both file mode
and file type are omitted, the default is the correct file
type for the file being accessed.

If the secondary address is 0 (LOAD) they default to
PRG,READ and if 1 (SAVE) to PRG,WRITE.

This means that:

SAVE "0:FILENAME,SEQ,WRITE"

300

is a valid instruction and the program file will not be
written to disk as a PRG file, but as a SEQ file. This means
that it must be loaded back again using:

LOAD "0:FILENAME,SEQ,READ"

In fact, the file type can be SEQ or USR which leads to
interesting possibilities in confusing those who read the
directory ! But it doesn't work for DEL or REL files.

READING THE DIRECTORY

It is often important for a program to be able to read
the disk directory and there are two ways in which this can
be done.

First, a file can be OPENed as a PRG file (using the
command OPEN 2,8,0,"$0") and then characters fetched from the
directory using GET. This will return the directory in its
program format, with link addresses and so on and with the
file types spelt out.

This can be used to determine the number of blocks free
by simply using OPEN 2,8,0,"$0:%M" since this will return
the disk name and JED (again in program format) and then it
will list all files called " %&%" , of which there should be
none. The next line received will be the BLOCKS FREE message,
from which the capacity of the disk can be read.

However, it is also possible to OPEN the directory as a
SEQ file in the normal way (OPEN 2,8,2,"$0") in which case
GET will return single bytes straight from the directory. In
fact the first block of bytes will be the BAM, followed by
the disk name and then the file entries, complete with their
starting pointers.

This has many uses and I will go into these, and offer
some useful programs in the next DISK FILE - that's a
promise!

301
THE DISK REVEALED

Just as I was finishing material for the newsletter, I
received a copy of DISK REVEALED for review. There's not time
for a complete review in this issue - but next time....

So, what is DISK REVEALED? Well, many of you will be
relieved to hear that it is not a book written by N***
H * * * * * * * * ! in fact, it's not a book at all. It's a program to
allow you to examine any disk, make modifications to sectors
and, to some degree at least, reconstruct a corrupted disk.
It is written in machine code by Nigel Richman (an ICPUG
member) and is available from SUPERSOFT (01-861-1166) - I'm
sorry, but I don't know the price.

The program will work with 2031, 2040, 3040, 4040 and
8050 disk drives, and with BASIC 2 or 4 PETs (40 or 80
column) although there are problems at the moment when using
the 2031 (owing to a "quirk" of the 2031), but this is being
corrected and all should be well in later versions.

The program allows you to get a hex and ASCII dump onto
the screen of the contents of any block on the disk, to
modify and re-write the block, "chain" through files, search
files for character sequences and to generally "roam" about
the data on a disk. There's no doubt that you need a good
understanding of the disk's structure to make full use of the
program but with such a knowledge the program could be
extremely useful.

The program works out which disks and which machine it
is being run on and a version which will be able to run on a
64 with 1541 disk drive is being devloped.

It seems to be a very fast and useful tool for those who
need to get at the disk and it appears to work without any
problems. By the next issue I'll have had a chance to put it
through its paces, and I'll give more impressions then.

— oOo—

302

The Electronic Cash Book
Micro-Simplex makes
Retailers Accounts
and Stock Control
sim ple...

Unique features:
• Based on Britain’s No. 1 cash

book system
• Uses Britain’s No. 1 business

micro computer
• The only one recommended by

Vyners, publishers of Simplex
books

• The only one offering all retailers
special V.A.T. schemes

Other features include . . .
• Stock control linked to cash

registers
• Simple and familiar layouts
• Easy to use
• Automatically produces:

(a) Statements to customers
(b) Lists of unpaid bills
(c) Simple profit and loss

accounts

f t commodore
COMPUTER

Contact any Commodore Dealer

or

Micro-Simplex Limited,

8, Charlotte Street West,

Macclesfield, Chesire.

Tel: 0625 615000

303

FORTH COLUMN

Subsequent to my review of 'Forth for PET/CBM' (p185)
I have discovered a bug in the DUMP utility. Each iteration
of the address loop leaves the address on the stack. If one
attempts to DUMP too many addresses the resulting stack
overflow causes a system crash.

The fix is to delete one of the two consecutive DUP
instructions, however, apart from 16 addresses to a line,
the facility as it stands has little value. One could
simply enter the monitor with MON and achieve virtually the
same effect. If now we insert OVER OVER prior to the second
DO loop and

3 SPACES DO I Ca CHR$ LOOP
after it and define CHR$ prior to DUMP as follows:
: CHR$ (b ---)

DUP 96 AND IF EMIT ELSE 46 EMIT DROP THEN ;
then we not only have a hex dump, but the ASCII equivalents
where applicable. An 80-column screen gives better results.

U< bug.

Some implementations of Forth have a bug in the U<
function which has its roots in the original Fig-Forth 6502
definition. Frank Chambers sends this fix from fullF0RTH+.

CODE U< 2 X LDA, SEC, 0 X SBC, 3 X LDA, 1 X SBC,
3 X STY, CS NOT IF, INY, ENDIF, 2 X STY, POP JMP, C;

Forth on a Eurocard.

There may be some interest in the a Il-CMOS circuit
board with built-in Forth on a 6301 microprocessor. This
£ 185 Eurocard incorporates 10K of RAM, 16K of EPROM, 10
lines of i/o, a timer and serial interface. It has a full
screen editor. The unit, known as the TDS900, comes from
Triangle Digital Services Ltd., 23, Campus Road, London,
E17 8PG. Tel: 01-520 0442.

By Ron Geere.

304
Forth & Chips.

I was particularly intrigued to hear of a single-chip
microprocessor from Rockwell that contains a Forth
operating system in its internal ROM. Holding 128 run-time
Forth functions suitable for a dedicated system. This
includes kernel level operations such as stack
manipulation, run-time portions of control structures, i/o
and formatting. An external ROM completes the remainder of
the operating system, such as dictionary building
operations. This can later be replaced by the application
program which is initially developed in RAM. The chips are
part of the 6500-series.

Astute Forth devotees will have realised that the CALC
RESULT package in the Kobra catalogue mailed with the March
Newsletter, was written in Forth by Swedish company
Datatronic AB. Next issue I shall be reviewing this version
of Forth, along with Huang's book 'And so Forth'.

— oOo—

BASIC 4 LOWER CASE LISTER
By Jim MacBrayne.

As the owner of an 8032 with a 3022 printer I've
constantly been irritated by the fact that I couldn't list
programs in lower case. I was thus delighted when I found
that the ICPUG software library contained a 'lower case
lister1. When I got my copy, I decided to transfer it from
$033A to $027A, thus removing it from an area where it
could be corrupted by the BASIC 4 disk commands. When I
tried to run it, however, I found that it would not list
any of the new commands associated with BASIC 4. A quick
glance showed why this was so - The keyword table at $B0B2
in BASIC 4 occupies more than one page, and thus can't be
accessed by a single register. A reference to the LIST
routine in ROM allowed me to make the required changes
which make the routine operate correctly with BASIC 4.

CEd's note: Some printer ROM sets will accept
secondary address 7. 0PEN2,4,7:PRINT#2:CL0SE2 then
0PEN4,4:CMD4:LIST then PRINT#4:CL0SE4.3

100 print"<CLR>This program corrects a bug
110 print"in the Commodore 3022 printer
120 print"which prevents it listing in
130 print"lower case. To use it type:-
140 pri nt"<DN>0PEN 4,4 : CMD 4
150 print"<DN>SYS 634 (the program lists)
160 pri nt"<DN>PRINT#4 : CL0SE4
170 print"<DN>The program lives in the 1st
180 print"cassette buffer, and remains
190 print"there until overwritten, or
200 print"the machine is switched off.
21 0 readl,h:fori = Itoh:readdt:pokei,dt:next
220 data 634,799
230 data 169,0,133,17,133,18,32,163,181,104,104,160,1,132

,9,177
240 data 92,240,70,32,225,255,32,223,186,200,177,92,170,

200,177,92
250 data 201,255,208,4,224,255,240,49,132,70,32,131,207,

169,17,32
260 data 70,187,169,32,164,70,41 ,255,32,13,3,201 ,34,208,

6,165
270 data 9,73,255,133,9,200,240,17,177,92,208,16,168,177,

92,170
280 data 200,177,92,134,92,133,93,208,178,76,255,179,16,

218,201 ,255
290 data 240,214,36,9,48,210,170,132,70,160,178,132,31,

160,176,132
300 data 32,160,0,10,240,16,202,16,12,230,31,208,2,230,

32,177
310 data 31,16,246,48,241,200,177,31,48,5,32,70,187,208,

246.73
320 data 128,208,161,72,9,192,201,219,144,8,201,224,16,4,

104.73
330 data 128,72,104,76,70,187

305

— oOo—

FOX ELECTRONICS
(0

u
z

I

3
j
U 1

X □
ILFOX ELECTRONICS
FOX ELECTRONICS 141, Abbey Road, Basingstoke. Hants. RG21 9ED

TEL: BASINGSTOKE 20671 (AFTER 6 P.M. - TIM OR JOAN)

A LL PRO D U C T S A R E IN C L U S IV E O F VAT. O V E R S E A S C U S T O M E R S P L E A S E
ADD £2.50 PO ST A N D PACKING .

FULLY G U A R A N T E ED FOR O N E YEAR.

Deliveries 10 days from receipt of order.

307

FOX ELECTRONICS
Products for the VIC 20

The V IXEN RAM CARTRIDGE,
for the Vic 20
Switchable between 16K or 8K & 3K.
Gives you the option of full 16K
RAM or 8K and 3K RAM in one
package. When added to the
standard Vic gives 16384 bytes of
extra memory in blocks 1 and 2 or
3092 bytes of extra memory into the
3K memory block AND 8192 bytes
switchable between memory blocks
1 and 3. Simply plugs into the rear
expansion port and fully compatible
with all motherboards and modules
available. No re-addressing of
existing BASIC
programs
needed.

£39.95

TANDEM
Expandable Expansion System,
gives 4 expansion slots for Vic 20
cartridges Custom
designed case.
Plugs directly into
computer. Further
expanded by using
Tandem System
RO M socket. No
extra power supply
needed.

VIC LIGHT PEN
A high quality light
pen which plugs
straight into your
Vic with no special
interface needed.

£19.50

or for PET 12” Screen £22.50

CHATTERBOX. Speech synthesizer
with an infinate vocabulary of
spoken words out of a number of
sound units. Fully programmable
and simply plugs into Vic or
motherboard. Includes a series of
software routines in E PRO M to,
facilitate the
programming.

£57.00

Please send me

£33.00

ITEM QUANTITY PR ICE TOTAL

Name ...
Address

CLUB DISCOUNT - £1.00per item. No P & P

FO
X

E
L

E
C

T
R

O
N

IC
S

308
STRICTLY FOR BEGINNERS - 7

By Ray Davies.

Note: As far as I am concerned, DISK means disk drive;
DISKETTE means the actual floppy thing; CASSETTE means the
Cassette recorder itself; TAPE means the cassette tape. I
have been asked by one of my (two) readers to try to
explain File Handling. He had tried to adapt one of the
programs I published previously in this column to his
business, and had the problem of not being able to read the
data he had recorded in a file back into the computer. He
actually came from Sheffield to Derby one day to
demonstrate the problem to me. The answer was simply a
space in the write file title, and no space in the read
file title.

I propose to start right from the very beginning. I
will illustrate the differences between tape and diskette
as I go on. If you have read my column before, you will
know that this gave me the utmost difficulty and
frustration when I first bought my computer two and a half
years ago. So here goes.

File handling consists of first setting up a file,
which means creating the data for the file, and recording
this data onto tape or diskette. The process of setting up
the file data usually involves the.use of INPUT statements
in your program. Here is a very small program to
demonstrate this:
10 INPUT"MAXIMUM NUMBER OF NAMES IN FILE";N
20 PRINT"ENTER ' 1 1 V FOR SURNAME TO END"
30 DIM SN$(N),FN$(N),B$(N),T$(N)
40 FOR 1=1 TON:INPUT"SURNAME";SN$(I):

IFSN$="ZZZ"THENI=N:G0T070
50 INPUT"F0RENAME(S)";FN$(I)
60 INPUT"BIRTHDAY";B$(I):INPUT"TELEPH0NE N0.";T$(I)
70 NEXT:NN=1-1

N.B. NN is the actual number of items in the data file, N
is the Maximum Number. This program has now created four
arrays entitled respectively SN$, FN$, B$, T$ in the
computer's memory. The reason for these names is, I hope,

obvious. If not, think of SurName, Fore Name, Birthday,
Telephone. If you switch off now, the information is all
lost. So we want to record the information. Let us do it on
tape first. This entails OPENing a file on the tape, using
the cassette, which must be plugged in to the appropriate
socket at the back of the PET first (i.e. before switching
the PET on). The tape is inserted into the cassette, and
rewound. PET does not start recording for something like 10
to 14 seconds, so you needn't worry about Leader Tapes.
Just ignore them. CEd's note of caution: Cassette leaders
vary from 2 or 3 seconds to as much as 19 seconds. The
Vic-20 runs some 10% faster and thus waits 10% less. The
preamble is used on Play to determine the average tape
speed and should not be missed completely].

We now need more program to do this. Here it is:
100 OPEN 1,1,1,"RD" (NOTES The space
110 PRINT#1,NN (after OPEN is
120 FOR 1=1 TO NN (not necessary,
130 PRINT#1,SN$(I) (but all the
140 PRINT#1,FN$(I) (other punctuat-
150 PRINT#1,B$(I) (ion IS.
160 PRINT#1,T$(I)
170 NEXT
180 CL0SE1

For disk users,-the program would read (BASIC 4.0):
100 CR$=CHR$(13):0PEN1 ,8,2,"RD,S,W”
110 PRINT#1,N
120 F0RI=1TON
130 PRINT#1,SN$(I);CR$;FN$(I);CR$;B$(I);CR$;T$(I)
140 NEXT
150 CL0SE1

Line 100 asks the computer to tell the cassette or disk to
get ready to receive data from the computer, and to put it
in a file called RD. For disk users, each item of data must
be separated from the next item, so I use a carriage
return. This is understood by the PET and disk as CHR$(13).
To save typing CHR$(13) over and over again, I set another
(smaller) variable (CR$) to equal CHR$(13). Any variable
would do, so long as you remember that it is alphanumeric,
and therefore must have the $ sign after it. And the disk

309

310

file will be a sequential file (S) and we are going to
wri te to the file (W).

Line 110 writes NN to the file. Don't forget to type
PRINT in full. The question mark (?) abbreviation for PRINT
will NOT be enough in this case.

Line 120 starts a FOR/NEXT loop to write the data to
the file, one item at a time, until they are all entered.

After this it is ESSENTIAL to CLOSE the file.
Otherwise the disk or cassette will remain 'listening' for
more data. This could lead to your data being corrupted.
All that is needed is CLOSE followed by the file number.
Incidentally, this file number is nothing special. Any
number will do from 1 to 255. The second number in the file
opening sequence is the number assigned by Commodore to the
various PET peripherals. 1 is a cassette; 3 is the PET
screen; 4 is the printer; 8 is the disk. The third number
is known as the Secondary Address. This usually tells the
peripheral unit what to do with, or how to treat, the
information it receives. For instance, our statement in
line 100 - OPEN 1,1,1,"RD". This signals PET to open a line
numbered 1. This line must be to the cassette (1). And the
final 1 means that the data is to be written to tape, in a
file named RD. If the final number, the secondary address,
had been 0, then the cassette would have known that it was
to READ data from tape back into PET. We can have up to 10
files open at once. Hence we could openl,1,1 to write data
to file 1, open 2,1,1 to write data to file 2, and open
5,1,0 to read data from file 5. Of course only one file can
be used at a time, but they can all remain open
(listening). They only come into action when their own file
number is used. In this example, by the way, the files
would be closed as follows: CLOSE1,2,5. And of coursfe, as
stated previously, this is absolutely vital to ensure the
safety of your data.

Now to retrieve the data from wherever it is stored.
For the cassette user, the only changes to the program
above starting at line 100 are: 0PEN1,1,0,"RD" and INPUT on
each line in place of PRINT. Here is an example:

200 OPEN 1,1,0,"RD"
210 INPUT#1,NN
220 F0RI=1TONN
230 INPUT#1,SN$(I)
240 INPUT#1,FN$(I)
250 INPUT#1,B$(I)
260 INPUT#1,T$(I)
270 NEXT
280 CL0SE1

For disk users:
200 0PEN1,8,2,"RD,S,R"
210 INPUT#1,NN
220 FOR 1=1TONN
230 INPUT#1,SN$(I),FN$(I),B$(I),T$(I):NEXT:CL0SE1

Then one needs a bit more programming to see what you have
retrieved from the diskette or tape, such as:
300 F0RI=lT0NN:?"<clr>"
310 ?SN$(I):?FN$(I):?B$(I),T$(I)
320 ?"<dn>PRESS A KEY"
330 GETQ$:IFQ$=""THEN330
340 NEXT

This will print each surname, forenames, birthday and
telephone number on screen, one at a time, having the Press
A Key message between each screenful.

If you wish to see them scroll up the screen one at a
time, but not be erased immediately, then leave out the
'CLEAR SCREEN' in line 300, or replace it with a 'CURSOR
DOWN'.

The other important things to remember are that the
PRINT# and INPUT# statements must match precisely, i.e. If
you have lines 130 to 160 as above in the cassette program,
you cannot have, for example, in lines 230 to 260;
230 INPUT#1,SN$(I)
240 INPUT#1,FN(I) etc., because this leads the PET to

expect a numerical amount, whereas the data actually stored
is alphanumeric. This will give a TYPE MISMATCH ERROR.
Similarly, the file title must be precisely identical in
both writing and reading operations. E.g. we have OPEN 1,1,
1,"RD" above to write to the tape. If we OPEN 1,1,0,"R D"
to read it, we will not read it. The computer (not just

311

312

the PET, but any computer) insists on absolute accuracy o
descriptions. That extra space in "R D" is read by the PET
and forms part of the title. The reason for this is that
the PET does not read the title as letters and space, but
as their equivalent ASCII characters.

Dual disk users must also remember that a file name
without a disk drive number will only attempt to use the
last drive used. [If you still use D0S1 .0 (2040), then
expect trouble - D0S1 puts the filename to one drive and
the data to the other, so in this case the drive number
cannot be omitted. - Ed3. If you want the data to go to, or
from, drive 1, you must specify this in the file title,
e.g. 0PEN1 ,8,2,"1:RD,S,R" will read from drive 1 only. When
writing to files, it is possible to overwrite the previous
data, i.e. erase it and replace it with new data, by using
the 'a ' symbol in the file title. e.g. OPEN
5,8,5,"30:RD,S,W" I do not wish to take up the whole
Newsletter with this, so I will end there. This has only
covered Sequential files, which are those which place the
data piece by piece on the tape or diskette in order. Hence
they can only be read in the same way, which takes a long
time on tape, but not too long on diskette unless it is a
very large file. Which reminds me, tape users must always
rewind the tape between writing and reading, otherwise they
may be attempting to read blank tape! I can see no reason
why any of the foregoing should not be used on the Vic-20.
If this is not so, I am sure someone will correct me. I am
still open to answer queries on this or other PET problems.
My address is 105, Normanton Road, Derby DE1 2GG. Next time
I will write about Relative Files, or files which altow the
user random access.

— oOo—

LITTLE KNOWN FACTS #1327

Commodore International are probably the largest
single manufacturer of tape cassette decks in the world.
Sales of CBM computers, worldwide, already exceed 2 million
units and the cassette deck has been an integral part of
Commodore systems since the launch of the PET in 1977.

— oOo—

REVIEW - DELPH CONVERTER BOARD
By Brian Grainger

Delph Electronics Ltd.,
4, Deeping Rd., Baston, Peterborough

Tel. 07786 535

I must at the outset of this review declare an interest,
have been slightly involved in the testing of the product
and wrote the instructions so I will limit this review to
an indication of what the product will do.

For some time now there have been companies willing to
convert FAT40 CBM machines to 8032 machines. Now Delph
Electronics have provided the means to convert a 'thin' 40
(9" screen) into an 8032. The hardware consists of a neat
PCB which fits above the ROMs on the existing 4032 (or 3032
upgraded to BASIC4) motherboard. The board plugs into the
existing 1E1 ROM socket and other connections go to the
memory expansion connectors and the character generator.
All connectors are provided and are simple to make. The
character generator from the CBM is placed in the board.
The software is a new 1E' ROM which is provided with the
board.

Having connected the board your 'thin' 40 will behave
exactly like an 8032 with all its functions and mor"e.
Because of differences between the CBM and business
keyboards the latters new keys, such as 'Repeat' and
'Escape' are accessed in a different way. However the
software has been written to ensure that all the graphic
characters of the CBM are still accessible from the
keyboard, something that the 8032 cannot do.

All the functions of the 8032 are made available. The
80 column display is very crisp. LISTings can be paused and
restarted. Sreen windows can be set. Tabs can be set on the
screen. Automatic indication of line end will be given via
the bell (if user port sound is provided). All the
additional screen editing commands are available, i.e.
INST/DEL Line, ERASE Begin/End, SCROLL Up/Down, SET

313

Top/Bottom, Text/Graphic mode, Set/Reset Tab. A repeat key
toggle is provided so that 'repeat' operates either on
cursor control and space keys only, or on all keys.

One nice touch is that by use of the technique of
multiple key press detection (See Vol.5 No.1 p.81) all the
additional screen editing commands are available from the
keyboard. Something that is not completely possible on the
8032.

The basic board is fitted with the capability of
replacing the character generator with a 4K version. A
software switch between either of the 2K character sets is
provided. The 'E' ROM of the basic board is fully decoded
allowing a 4K. 'E' ROM to be used provided locations
reserved for I/O ports are not used.

A number of versions of the board exist. Apart from
the basic board described above a version exists which
includes a 4K 'E' ROM, 4K character generator and RAM for
an additional screen display (located at $8800-$8FFF). The
extra 2K of character generator is used to store a
mid-resolution character set which allows a plotting
density of 160 x 200. Simple POKEs are used to switch
between either the normal character generator or the
mid-resolution characters. The additional screen memory can
be used to store a second screen display or a
mid-resolution plot. Part of the extra 2K in the 1E' ROM
has been used to provide a 'flash' routine which very
quickly alternates between the two screen displays with or
without change of character set as well. This allows for
example the possibility of a graph plot and annotated text
to be mixed on screen.

The cost of the basic board is £ 149 plus VAT, the
enhanced version £ 160 plus VAT. Contact John Bickerstaff,
Discounts Officer, for special ICPUG prices.

314

— oOo—

HOME PROGRAMMERS WANTED
315

Commodore need a small number of home programmers,
with experience of programming in both 6502 assembler and
BASIC, to write programs for use on the Commodore 64 in
primary and secondary schools.

This is for a new scheme under which Commodore is
promoting the creation of educational software. Teams of
teachers analyse where and how within the curriculum of a
subject it is appropriate to use a microcomputer as a
teaching aid. They then write a specification for each
point at which they have decided a microcomputer can help
in the classroom. In consultation with the teachers,
Commodore turns this document into a formal specification
that can be worked from by a programmer. The final stage is
for the program to be checked by the teachers.

It is expected that all programs produced under the
scheme will need to be partly written in assembler to
exploit fully the graphics capability of the 6569 VIC chip.

The programmers will, of course, be paid.

Anyone interested in becoming a Commodore home
programmer should write to John Collins, Technical Services
Department, Commodore Business Machines (UK) Ltd., 675,
Ajax Avenue, Trading Estate, Slough, Berks SL1 4BG
enclosing some evidence of their programming competence.

— oOo—

LATE NEWS

The 500 (alias P128) seems now unlikely to be
produced, Commodore concentrating its efforts on the 64 &
700-series. Possibly a new machine will appear, known as
the TED, a cheap 40-col, 16K job without 6569 VIC and 6581
SID chips of the 64, ultimately to replace the Vic-20. The
Corby factory is to start Vies & 64s in July. The 8250 to
have Matsushita half-height drives restyled to match 700.

316

The SX100 is now to be known as the SX64 (that's the
new portable C-64). So far only the single-disk drive
prototype version exists. The 'Teacher's PET' is to be
replaced by a 64, repackaged in a 4032 case (with colour)
to sell in Sept. under £ 400. This is a UK-origin product.

— oOo—

■M l

Printed and distributed by COMPUPRINT COMPUTERS LTD.
4 Sands Road, Swalwell, Tyne and Wear. Tel 0632 888936

