
Volume 1, Issue 6

May 1983

Waterloo Software, Version 1.2
Version 1.2 of the Waterloo
software for the IBM Personal
Computer is now available. The
following improvements have been
m a d e :

General
- significantly faster screen I/O

and disk I/O operations enhance
Editor performance and program
execution

- the BACKTAB and ERASE-TO-END-
OF-SCREEN keys are supported

- several problems of a minor
nature have been corrected in
APL, COBOL and FORTRAN

- appending to text files has been
fixed

- the Waterloo Serial Adapter
Board is no longer necessary to
use the Waterloo software

EDITOR
- two new function keys allow the

user to (i) reset the monitor to
default characteristics, (ii)
display the function key layout
on the screen

- talk (terminal) mode handles
data rates up to 9600 baud and
supports new key combinations to
switch between APL and ASCII

- the "stand-alone" EDITOR has
improved support for APL
overstrikes

BASIC
- quotes around filenames are

optional for RUN, DIRECTORY,

LOAD, MERGE, OLD, SAVE, STORE
and TYPE commands

- the CHAIN statement with the
"NAMES" option now passes
matrices correctly

- matrices can be passed as
parameters to a function or
procedure

Version 1.2 of the IBM PC software
is available from

WATSOFT Products Inc.
158 University Avenue West
Waterloo, Ontario
(519) 886-3700

Version 1.2 software has been made
available as an update, free of
charge, to purchasers of the
corresponding earlier IBM PC
v e rsions.

Interrupt Handling on the SuperPET
Frequently we receive re

quests for additional information
on interrupt handling in the
SuperPET. This article will
describe how to incorporate a
user-written interrupt handler
into the system.

The MC6809 microprocessor
chip processes interrupts from
programs or devices by selecting
an address from the read-only
memory (ROM) locations at the high
end of memory ($FFF0-$FFFF).
Different types of interrupts
cause different addresses to be
selected. The memory locations
and the type of interrupt which
selects the memory location are
listed below.

$FFFO RESV Reserved For Future Use
$FFF2 SWI3 Software Interrupt 3
$FFF4 SWI2 Software Interrupt 2
$FFF6 FIRQ Fast Interrupt Request
$FFF8 IRQ Interrupt Request
$FFFA SWI Software Interrupt
$FFFC NMI Non-Maskable Interrupt
$FFFE RSET Reset

Thus if an IRQ type of interrupt
occurs, the 6809 processor looks
at locations $FFF8 and $FFF9 for
the address of the routine that
handles this particular kind of
interrupt.

Let's look briefly at each
type of interrupt. Some of them
are caused by hardware (electrical
s i gnals). Others can be caused by
software. RESV is reserved by the
designer of the 6809 processing
unit for future use. All of SWI,
SWI2, and SWI3 are caused when a
"software interrupt" instruction
of the appropriate type is exe
cuted by the processor. The names
of the instructions are SWI, SWI2
and SWI3. A FIRQ interrupt is
caused by a signal on the FIRQ pin
of the 6809 processor chip. Sim
ilarly, IRQ and NMI are caused by
a signal on the IRQ and NMI pins
of the 6809 processor chip. The
last one in the list above is
RESET. This interrupt occurs when
the SuperPET is switched on and
the 6809 CPU is selected or when a
switch is made from the 6502
microprocessor to the 6809. The
RESET interrupt causes software in
the ROM to initialize the oper
ating system. More information on
interrupts can be found in most
6809 microprocessor handbooks.

In ROM is a very simple ver
sion of an interrupt handler,
called the "First Level Interrupt
Handler" or FLIH. The FLIH han
dles all interrupts except for
RESET by dispatching them through
special locations in random access
memory (RAM). A second vector of
addresses, which corresponds to
those in ROM, is used to determine
the address of the routine that
actually handles the interrupt.
This vector of 7 addresses is
found at location $0100. It is

initialized by the RESET interrupt
handler. Each location is
assigned as follows:

$0100 RESV Reserved For Future Use
$0102 SWI3 Software Interrupt 3
$0104 SWI2 Software Interrupt 2
$0106 FIRQ Fast Interrupt Request
$0108 IRQ Interrupt Request
$010A SWI Software Interrupt
$010C NMI Non-Maskable Interrupt

Thus if the FLIH determines that
an IRQ type of interrupt has
occured it calls the subroutine
whose address is stored in loca
tions $0108 and $0109. A very
important thing to note here is
that the actual interrupt handler
is called as a subroutine. The
interrupt handler, whether it is
the one supplied in ROM or one
written by you, the programmer,
must execute a "return from sub
routine" or RTS instruction. It
is the FLIH that eventually exe
cutes a "return from interrupt" or
RTI instruction.

All known possible sources of
interrupts are handled by various
routines in the ROM library. If a
new device is added to the system
and if this device can cause an
interrupt then the user must add
an interrupt handler for this de
vice to the system. As well, the
user may wish to supersede an
existing interrupt handler because
of some deficiency in its support
of a particular device.

Let's take a case in point.
The existing IRQ handler looks af
ter several devices that can cause
an IRQ type of interrupt. The IRQ
handler determines which device
caused the interrupt by examining
the "status register" of every
device in the system. For
example, one of the devices,
called a Programmable Interface
Adapter (PIA), causes an IRQ
interrupt many times per second.
The IRQ handler calls a clock
interrupt handling routine when
the PIA is recognized as the
source of the interrupt. A scan
of the keyboard is also performed
at this time to determine if a key

has been pressed.

The 6551 Asynchronous Commun
ications Interface Adapter (ACIA)
can also cause an interrupt.
Apart from acknowledging that the
ACIA caused the interrupt, nothing
else is done about it. A user who
is not satisfied with this treat
ment of ACIA interrupts may wish
to supply a better routine. The
new routine must take over the
handling of IRQ interrupts. Since
it is the intention of the pro
grammer to only handle interrupts
from the ACIA, the routine should
check for an interrupt from this
device, process the interrupt if
there is one and otherwise let the
normal IRQ handler take care of
all other interrupts (such as
those from the P I A) . In this way
the user routine gets "first
crack" at an IRQ interrupt. The
process of checking for an inter
rupt from a particular device has
the side effect of clearing the
interrupt condition of that
d e v i c e .

Let's look at the following
segment of assembler code as might
be found in a representative
user-written interrupt handler.

User-written Interrupt Handler
- test status reg for interrupt
- if ACIA interrupted then

call ACIA handler
- else

The details of the user-written
ACIA handler are beyond the scope
of this article. We should now
consider the mechanism for instal
ling the user interrupt handler as
the one to be called by the oper
ating system. We wish to remember
the address of the SuperPET's IRQ
handling routine since we must let
it handle any IRQ interrupts that
we are not interested in handling
ourselves. If this is not done
then the system will most likely
crash. The following are examples
of user-written "connect to inter
rupt" and "disconnect from inter
rupt" routines.

IntVctr equ $0100
IRQ equ 8

Connect to IRQ Interrupts
- save current handler address
- call system routine to connect

to IRQ type interrupts
xref MylRQHndlr
xref ConBInt
xdef Connect

Connect equ *
LDD IntVctr + IRQ
STD IRQHndlr
LDD # IRQ
PSHS D
LDD #MyIRQHndlr
JSR ConBInt
LEAS 2, S
RTS

Disconnect from IRQ Interrupts
- restore address of previous

IRQ handler
xdef Disconnect

; - do other IRQ processing Disconnect equ *
r provided by ROM routines LDD IRQHndlr

xref IRQHndlr STD IntVctr + IRQ
ACIA equ $EFF0 RTS
IOR equ 0 ; Place to save previous
STATR equ 1 ; IRQ handler address
CMDR equ 2 xdef IRQHndlr
CNTLR equ 3 IRQHndlr fdb 0
INTERRUPT equ $80 end

xdef MylRQHndlr
MylRQHndlr equ * The ROM library routine "ConBInt_"

LDB ACIA + STATR is used to establish an interrupt
ANDB #INTERRUPT handling routine by specifying the
if ne address of the interrupt handling

JSR MyACIAHandler code and the type of interrupt it
else will handle (e.g., SWI, NMI, IRQ,

JMP [IRQHndlr] etc.). The Waterloo 6809
endif Assembler manual describes the
RTS routine "ConBInt ". Use of this
end system routine allows us to place

the interrupt handler in
bank-switched memory should we
wish to do so.

The interrupt handler de
scribed above consists of three
routines. The "connect" routine
causes the interrupt handler to be
incorporated into the system. The
"disconnect" routine causes the
interrupt handler to be removed
from the system. The "handler"
routine is invoked whenever an IRQ
type of interrupt occurs. The
procedure for handling other types
of interrupts is similar.

The interrupt handler may be
loaded into the high address range
of RAM by linking it with a suit
able origin (ref., Linker ORG
s tatement). To ensure that it
remains there without being
"walked over" by a language inter
preter the handler's initializa
tion code should alter the high
memory address limit. The low and
high memory address limits are
used by the language interpreters
as the bounds within which a user
program (e.g., a BASIC program)
may reside. For those users of
APL it should be noted that a
workspace that has been previously
saved will not be "compatible"
with a smaller work area. In this
case the workspace must be
"copied" into a "clear" workspace
in memory. The following is an
example of a typical initial
ization routine.

; Initialization
; - alter highest address that
; languages may use but
; don't bother protecting
; initialization routine
; - set menu "EXIT" code
; - return to system menu
MemBeg equ $20
MemEnd equ $22
Service equ $32

xref Connect
xdef Init

Init equ *
LDD ♦Connect
STD MemEnd
CLR
RTS
end

Service

Using the linker, the various
components of the interrupt hand
ler must be combined such that the
"init" routine is first in memory,
the "connect" routine and "dis
connect" routines come next, and
the "handler" would come last.
The following is an example of a
typical linker "command" file.

"handler"
org $7F00
" init.b09"
"con d i s .b09"
"handler.b09"

The handler is loaded into
memory from the menu by typing in
the filename of the executable
module. In the above example,
this would be "disk.handler.mod".
A picture of the memory layout of
the SuperPET after loading the
handler from the menu follows.

$0000 .
$0020 (0A00) MemBeg
$0022 (7F07) MemEnd

$ 0A00 .

$7F00 . Init
$7F08 . Connect

. Disconnect

. Int. Handler
$7FFF . End of Handler
$8000 . Start of Screen Memory

The language interpreters all
support a "sys" or "usr" function
which allows you to call machine
language subroutines. You are now
ready to "sys" to the "connect"
and "disconnect" routines whenever
you wish to start or stop handling
of interrupts by your own inter
rupt handler. Communication of
information between the handler
and a program written in one of
the languages could be done using
the "peek" and "poke" facilities
of the language.

