
TOU 6502
v

L I F E fOR YETUR PET gen 23 :
Wi t h Co mp l e t e l i s t i n g s .

ft *
ft •
ft » • ft

gen 1 :
ft * » * « « * k » »

ft ft ft s « ft
ft ft « •

gen 18 : ft • ■ ft
ft ft » ft ft ft

ft ft » « ft ft ft ft * *

• *
> * • « ft ft ft ft

* » » » ft ft
n n * » ft »

* *

gen 2H :

gen 22 :

M n

mmm i < I
ft ft s ft

• * | i
• * • *
« t * * ft » ft

> • i * < »

» » * ft ft ft
ft ft ft ft

it * * ft
• * I • ft ft » ft * s
• • * * ft ft • *

» * ■ 1 1 1
II f t

■s
r

NO 5 J i l J ^/ * 1 3 0

WE’RE THE APPLE EXPERTS
Check our low prices and large selection of computers, software and peripherals.

APPLE II PERIPHERAL INTERFACE CAROS:
■ FLOPPY DISC SYSTEM (S 2,000)

—Programs Saved and Looded by Nom?
— P o w e r f u l F ifT T n v o iiL ' D O S : Ie H o n d 'm g C a p a b i l i t y

— 252K Qyies Sic-'Oge Copooty. f l Inch Co. Disc
—Copoble of U; lir/ng Up ro 4 Drives (One Mill inn Qytes)
— File Honcfl.ng os Easy as Inpyi'ng oj Purging
—Access Methods Streonn P u n c tu a l^ R^lanve Direa
—DuO l Disc (K &C0)

■ PROGRAMMABLE PRINTER INTERFACE < (60 .00)
—O rb iM id EPROM Pnnter Drr/er
— full H c ^ d s h o k e Logic
— H iq h S p e e d P o r c j l !- . l O u t p u t P ^mc C o p o b i i . t y

— Provi sion I o < ?5C- O yie i O D r.ve n t r IXQV,
—Punter CWer Programs Avo'lobli" for Ce-mron-':.

SVTPC'40 and Orho' P ullers

■ PROTOTYPING BOARD, 2 V * " x 7 " (>24 .95)

APPLE POWER CONTROL INTERFACE
—Thu mierioce plugs "i(o ony penpheial slot on rhe Apple II

bcord ond piovides 16 channel) Of conrro1 Power Conrro.1
module). pluoi into lhe imeioce v.o a ubbon <:oble Erich
Powfi Control module provides d sep f'O te 110V A C.
UiCuiiS at 1 2 orrip\ Up to d Power Conn cl Modules
mov bp used with eoch mterioce

—Conirol l̂ oorm Lig.his. Steieo Equ ^rnenl 5ecunry System)
floc inco l Applionces

— Honfllt' Up :o 1000 'Vain per Chc-'inel Directly From
PiOQ'Gm Ccmrol

^Complete I s O lQ n o n oi the Ccmpuier Frcwi ihe AC me
-PRICI-

■ Apple Power interface Gooid ond One Power Consol
Module (J95 DO)
• Addmonol Power Control Modules (Conlrol) Fou: AC
GrqJtaVtiM 005

ADD ON MEMORY FOR APPLE II
■ S e io l Eight 4 K IV A M CHIPS
■ Sei of tight 16K©pCHI«

BOOKS
S> 2d 00 ■ 6502 Frogiomrrnng Mcnuô for Apple'I C'FIT S 7.95
52^0 00 ■ b502 hordwore Atonual for Apple II Or PEf 5 7,95

Program Code
Program Home:

I— For Integer Do ilc
A — For App lesoft
M— For M och lfl* Longuog*

/ Memory / Hr. /
S— For Sound
S — For G roph lo
SG— For Doth

Prlct

Gomes: Grophics & Sound;
Super Othello HOOO Di-qw ing 1/flR/G % 7.50
Trur> I os Vegoi [HacSjocK l/16KA?5 ito 00 Ooofd l/flrt/G i 7.50
Oubic <3 0 TIC TAC TOE- I/ BK/G S 5 00 Keyboard Qfgan (/flK/S i 7.30
Soccer Invasion M/16IS/GS S1000 Exomple Sc-unds l/OK/S i 5 03
Sior Vors M/16K/5S S10 oc Kalledescope DispJoy M/3K/G S 5 00
ftctker Pilot M/ IfcK/GS 510. CO Color Eciier Dupi'ay

Life
M/SK/G
M/It) K/G

I 5 00
i 5 00

Education Programs: D. Bishop ! Dooming Man M/tSK/OS H5.00
5<jpermorh (+, - . ’ . />
Mennory Aide

l/flK/G
t f tk

S 7 50
i r.5o Business;

Study Aide J 7 SO Word Process*' (Lower Cose) I/20K iao co
Don'r Fa:l i/aK i 7 50 Word Process® (Upper Cose> I/20K 530 CO
Truc/Polse Cjui; 1 / BK i 7 50 V/cid Proceisor (Upper ond
MaicJinQ Oult j/ftK S 7 50 Lowf?i Case)

dtismess Invemofy
A/16
J/20K

isa oo
5̂0 00

Applications; Maitar l: le Mo.ntenonce J/20K *50.00
Co-resident Assembler M/16K i2 0 CO Pomt oi ioi&i 1/20K *50.CO
Memory Test M i 1 5 00 Reorder ftepoit I/70K S50C0
Apple Mumc Oaav-ss) h ; i 2k/ s S15D0 File 5ort M/20K 520.00
Fioonng Pmnr Dotosnve M/16K i1 5.00

Computer Components
of Orange County
6791 Westminster Ave.
Westminster, Calif. 92706
(714) 696-6000

Orange County's only
AUTHORIZED COMMODORE

PET DEALER
Send for software ond
hardware information.

\tetu*'rchaf£<'. J i'M* B nf A Qctvplt'd. A a (\0,D. *1 How two mc eks for f'\t wwif clurk t*> l har Add S f̂ -U for handling avd pto'SHagr. /'or
cft\npuh:r \y tu -m . \hJ\J i I (/ Q\} p jr iUtyim tx. handling . w J v i ; turam ’t'. Cahfartiaz. n x u ln n ti u'<Jd f r ' 1 ^ i r i r j v

JUNE/JULY 1978

ISSUE NUMBER FIVE

A Brief Introduction to the Game of LIFE
by Mike Rowe

6502 Interfacing for Beginners: Address Decoding I
by Marvin L. De Jong

Half a Worm in the APPLE; EDN Blasts the 6502
by Mike Rowe

A Slow List for APPLE BASIC
by Bob Sander-Cederlof

The MICRO Software Catalog
by Mike Rowe

BEEPER BLOOPERS and other MICROBES

A BASIC 6502 Disassembler for APPLE and PET
by Michael 3. McCann

Applayer Music Interpreter
by Richard F. Suitor

6502 Bibliography - Part IV
by William Dial

A Block Hex Dump and Character Map Utility Program for the KIM-1
by 3. C. Williams

APPLE II Accessories and Software
by Chuck Carpenter

Computer Components
Computer Shop
Riverside Electronics
The COMPUTERIST, Inc.

Advertisers Index

IFC New England Electronics Co.
2 Speakeasy Software
8 The Computer Store
20 The Enclosures Group

15

18

21

23

24

25

29

37

39

44

27
31
IBC
BC

MICRO is published bi-monthly by The COMPUTERIST, Inc., 56 Central
Square, Chelmsford, MA 01824. Robert M. Tripp, Editor/Publisher.
Controlled Circulation postage paid at Chelmsford, Massachusetts.

Single Copy: $1.50 Annual Subscription: $6.00 (6 issues) in USA.

Copyright 1978 by The COMPUTERIST, Inc. All Rights Reserved.

COMPUTER
SHOP 288 N O R F O L K ST. C A M B R I D G E , MASS. 02139

corner of Hampshi re & Nor folk St. 617-661-2670

N O W V V E H A V E 0 S I A N D Y O U C A N G E T O N T O T H E B U S ''

O H I O S C I E N T I F I C
We carry the e n t i re 0 . S. I . l in e of equ ipment , a t the t ime of
wr i t in g th is ad, the i tems marked w i th * were in stock :
500 Comp uter on a board with 8K ROM B a s i c - S e r i a l -$2 9 8 .0 0
500-1 as above but w ith P o w e r S u p p - C a b i n e t -$4 9 8 .0 0
C 2 - 4 P As above w i t h keyboard and 3 2 x 6 4 V i d . & C a s s . . . $ 5 9 8 . 0 0 *
C 2 - 8 P Same as 4P but 8 s lo t MB and Big P o w e r S u p p l y . . . $ 8 2 5 . 0 0 *
C2S1S S ingle D i s k System 16 K Mem. S e r i a l $ 1 9 9 0 . 0 0 *
C3-S1 Du a l D i s k T r i p l e P r o c e s s o r 32 K M em or y$ 3 5 9 0 . 0 0 *

T h e CS100 V I D E O T E R M I N A L B O A R D IS A 16 L I N E
BY 64 C H A R A C T E R D I S P L A Y G E N E R A T O R WITH
CUR SOR C O N T R O L AND E D I T I N G Connect a 5V.
ASCII Keyboard to it, a Regula ted 5 Vol t , Unregulat-
8 Vol ts, or 8 V o l ts AC, and your KIM Teletype-p ort
to i t along with a video monitor and away you go with

all the convenience of a V ideo Termina l on your KIM.

B A C , V I S A , M C NO,

S I G N A T U R E .

N A M E

ADDRESS. .

C I T Y S T A T E , Z I P . . , .

K I M S AN D U P G R A D E S
CM- 1 4K 1 M H z . M e m o r y ..12 5 .00
C M - 2 4K 2 M H z . M e m o r y .. . 149 .00
C M - 3 16 K 1.5 M H z . U l t r a L o w P w r . M e m . . . 5 9 6 . 0 0
C A - 7 I / O B o a r d ..3 9 9 . 0 0
480 Backp f a n e . . M o t h e r b o a r d 3 9 .0 0
al l above are OSI p roducts a v a i l a b l e from us.
V F 8 4K Memory as se m b le d & t e s t e d129.00
for low power R A M a d d ... 1 0 . 0 0
same in k i t fo rm ..7 4 . 5 0
fu l l set of sock e ts for K i t .. 10 .00
V F 8 Motherboard buf fe red for 4 B o a r d s 6 5 . 0 0
Co n ne ct o r A s s e m b ly for K IM to V F 820 .00
8K S100 Memory Board wi th ins t ruct ions.K 165.00
same but f u l l y as se mb led and tes te d . . . ___ 199 .00
C S1 00 C a b i n e t cut ou t for K I M 129 .00
3 Co n ne ct o r S100 Motherboard A s s e m b ly . ___7 5 . 0 0
C G R S S100 T I M K i t .. 129 .00
C G R S S100 6 5 0 2 C P U K i t .. 179 .00
C G R S S100 Fro nt P an e l K i t129.00
X I T E X V id e o T e rm in a l Board 1 6 X 6 4 K 155.00
X I T E X V i d e o T e r m i n a l Board A s s e m b l e d . . . 185 .00
K I M - 1 ... 2 4 5 . 0 0
CS1 00 w i th C G R S , X i t e x , 1 6 K R A M , T V , K B 1529 .00
Same but A s s e m b l e d ... 19 89 .00
PS -5 P w r Supp. 5 V 5 A 9 V l A - 1 2 V l A 6 x 6 X 2 7 5 .0 0
PS-5 A s s e m b l e d ... 90.00

. To t a l of O r d e r . . C i r c l e I t ems w a n t e d . $
M as s . R e s i d e n ts Sa les T a x 5%$
Sh ipping, 1 %($ 2 . 00 m i n .) $
T o t a l R e m i t t a n c e or C h a r g e $

INI THIS ISSUE
It's always nice to be able to have fun
while learning. "Life for your PET" by
Dr. Frank H. Covitz presents the amaz
ing game of Life, implemented on a PET.
This remarkable game, which was the
subject of a number of Martin Gardner
Scientific American columns, uses a few
simple rules to generate a very complex
universe. It is ideally suited to a
microcomputer with a display. The pro
gram presented here is written in 6502
assembly code, not BASIC, and this will
be illuminating in itself to many PET
owners. In addition, it demonstrates
how to use the PET display directly.

While the PET people can be playing
Life on their machines, the Apple folk
can be playing music on theirs, thanks
to the "Applayer Music Interpreter" of
Richard F. Suitor. A couple of songs
are included, but most users will want
to generate their own following the
techniques described. The complete
source listings also should help novice
programmers understand the 6502 better.
One thing that the above two articles
have in common is their use of 6502 as
sembly level code. Since many users do
not have assemblers, and will therefore
be keying the code into their machine
by hand, it would be nice to have a
disassembler which converted the code
in the computer back into a readable
form. "A BASIC 6502 Disassembler for
Apple and PET" by Michael J. McCann can
do the job. Written entirely in BASIC,
it will disassemble code on a PET or
Apple, using the MICRO 6502 Syntax. In
addition to its obvious utility value,
the program is particularly instructive
in its handling of alphabetic strings.

KIM-1 owners will find "A Block Hex
Dump and Character Map Utility Program
for the KIM-1" by J. C. Williams to
present a neat utility for dumping to
a terminal. While the KIM-1 Monitor
has a built-in Dump, it's format leaves
a lot to be desired. This utility has
a more useable format, plus it provides
the option of having data printed as
alphabetic characters as well as hex.
When listing to a hardcopy device, the
faster the printing the better. Not so
when going to a display. For a display
you would like to have some way to slow
down the display, stop it when you get
to a particular portion, and then con
tinue or abort the listing. Well, if

you are an Apple owner, you are in luck
because Bob Sander-Cederlof has provi
ded "A Slow List for Apple BASIC". The
program is written in 6502 assembly
language and presents some insights in
to the workings of the Apple Monitor.
We are fortunate to have, starting in
this issue, a series of tutorial arti
cles by Marvin L. De Jong on "6502 In
terfacing for Beginners". Marvin has
already contributed a number of excel
lent articles to MICRO, and this series
sounds like exactly what many readers
have specifically requested. This mon
ths installment covers "Address Decod
ing". In addition to "talking at you",
the article provides a number of exper
iments you can perform to really under
stand what is happening.

William Dial's "6502 Bibliography" con
tinues with part IV. Since so much is
being written about the 6502, finally,
we are having to restrict the coverage
somewhat. From now on, references to
obscure journals, new product notes and
ads, minor letters or notes or correc
tions, etc. will not be included. Al
so, references to the KIM-1 User Notes
will be combined and brief since it is
assumed that most MICRO readers already
get KUN (if not, they should).

A few new products are presented:
"Rockwell's New R6500/1" is a new chip
that looks very interesting for many of
those applications which need process
ing power but not a lot of memory or
fancy features. The R6500/1 combines a
6502 with 2K bytes of ROM, 64 bytes of
RAM, 32 programmable 1/0 lines, timer,
and a few other features, all in a
single 40-pin package.
"Synertek's VIM-1" is a new 6502-based
system which is an upgrade of the KIM,
designed as an easily expandable system
with many of the KIM-1 features, plus a
number of new wrinkles. The single
piece price is $270 and is scheduled
for delivery soon.

"Rockwell's AIM is Pretty Good" dis
cusses an exciting new single-board
microcomputer which features a full
ASCII keyboard, 20 character display
and a 20 character printer, for $375!

5:3

*

NOTES, ANNOUNCEMENTS, ETC.

The NOTES 6502 GROUPS

Henry Ball of Burbank CA notes that:
"The K7 connection on KIM provides a
convenient control for the motor on a
cassette tape player/recorder. Just
connect a relay circuit to it and,
without any further programming, it
will obediently start and stop the re
corder for the 1873 READ and any Super
tape routine. Tryit, you'll like it."
Robert A. Huelsdonk of Seattle, WA, re
ferring to the Apple Printer articles,
suggests the following:
"Printer CALL Commands:

Integer BASIC:
ON: CALL 896
OFF: PR#0

Applesoft BASIC:
ON: X=USR (896)
OFF: POKE 54,240:POKE 55,253

These commands can be entered from the
keyboard or in a program statement. If
a printer other than a 40 column is
used, then it is also necessary to POKE
33,40 to return the CRT to it's normal
window width."
Robert M. Tripp of Chelmsford, MA notes
that a number of people were mislead by
the "Typesetting" article into thinking
that he had a Diablo Hytype Printer
hooked directly to his KIM-1. Actually
the printer is part of a terminal which
talks to the KIM via standard 20MA cur
rent loop methods. A reader from New
Guinea has promised an article on how
to directly hook up a Diablo, and says
that it is easy.

The ANNOUNCEMENTS

Interested in starting a KIM-1 Users
Club in the San Fernando Valley Area

Jim Zuber
20224 Cohasset No. 16
Canoga Park, CA 91306

213/341-1610
THE APPLE CORE

Scot Kamins, Organizer
Box 4816 Main Post Office
San Francisco, CA 94101

THEATER COMPUTER USERS GROUP
A number of KIMs being used by members.

Dues $4.00 include newsletter.
Mike Firth

104 N. St. Mary
Dallas, TX 75214

A.P.P.L.E.

Val J. Golding, President
6708 39th Avenue SW
Seattle, WA 98136

206/937-6588
MICRO 6502

New group forming in New England to
pursue and support serious 6502 efforts

Robert M. Tripp, Organizer
P.O. Box 3

S. Chelmsford, MA 01824
617/256-3649 Days

* Send us your club information ***
Due to our publication schedule **

*** meeting announcements should ***
*** cover several months - Sept/Oct ***
*** for the Aug/Sept issue ***

**■*
**

The MICROCOMPUTER RESOURCE CENTER Inc.
offers a number of services including a
free publication devoted to the PET,
the "PET GAZETTE". A PET Cassette
Exchange is also being set up in which
you submit one program and get two-to-
four programs in return. For your free
subscription or other info, write:

Len Lindsay, Editor
PET GAZETTE

1929 Northport Drive No. 6
Madison, WI 53704

The ETC.

AUTHORS
MICRO is currently paying $10/page for
original articles. See "Writing for
MICRO" 4:33 and the "Manuscript Cover
Sheet" 4:34 for basic info. The dead
line for any issue is about the end of
the first week in the month prior to
publication, e.g. July 10th for the
August/September issue.

5:*

B a i l Q Q ©

s
LIFE FOR YOUR PET
Dr. Frank H. Covitz

Deer Hill Road
Lebanon, NJ 08833

Since this is the first time I have
attempted to set down a machine lang
uage program for the public eye, I will
attempt to be as complete as practical
without overdoing it.
The programs I will document here are
concerned with the game of "LIFE", and
are written in 6502 machine language
specifically for the PET 2001 (8K ver
sion) . The principles apply to any
6502 system with graphic display capa
bility, and can be debugged (as I did)
on non-graphic systems such as the
KIM-1.

The first I heard of LIFE was in Martin
Gardner's "Recreational Mathematics"
section in Scientific American, Oct-Nov
1970; Feb. 1971. As I understand it,
the game was invented by John H. Con
way, an English mathematician. In
brief, LIFE is a "cellular automation"
scheme, where the arena is a rectang
ular grid (ideally of infinite size).
Each square in the grid is either occu
pied or unoccupied with "seeds", the
fate of which are governed by relative
ly simple rules, i.e. the "facts of
LIFE". The rules are: 1. A seed sur
vives to the next generation if and on
ly if it has two or three neighbors
(right, left, up, down, and the four
diagonally adjacent cells) otherwise it
dies of loneliness or overcrowding,
as the case may be. 2. A seed is born
in a vacant cell on the next genera
tion if it has exactly 3 neighbors.
With these simple rules, a surprisingly
rich game results. The original Scien
tific American article, and several
subsequent articles reveal many curious
and surprising initial patterns and
results. I understand that there even
has been formed a LIFE group, complete
with newsletter, although I have not
personally seen it.

sentially no arithmetic operations in
volved, except for keeping track of ad
dresses and locating neighbors.

As you know, the PET-2001 has an excel
lent BASIC interpreter, but as yet very
little documentation on machine lang
uage operation. My first stab was to
write a BASIC program, using the entire
PET display as the arena (more about
boundaries later) , and the filled
circle graphic display character as the
seed. This worked just fine, except
for one thing - it took about 2-1/2
minutes for the interpreter to go
through one generation! I suppose I
shouldn't have been surprised since the
program has to check eight neighboring
cells to determine the fate of a par
ticular cell, and do this 1000 times to
complete the entire generation (H0x25
characters for the PET display).
The program following is a 6502 version
of LIFE written for the PET. It needs
to be POKE'd into the PET memory,
since I have yet to see or discover a
machine language monitor for the PET.
I did it with a simple BASIC program
and many DATA statements (taking up
much more of the program memory space
than the actual machine language pro
gram!). A routine for assembling, and
saving on tape machine language pro
grams on the PET is sorely needed.
The program is accessed by the SYS com
mand, and takes advantage of the dis
play monitor (cursor control) for in
serting seeds, and clearing the arena.
Without a serious attempt at maximizing
for speed, the program takes about 1/2
second to go through an entire genera
tion, about 300 times faster than the
BASIC equivalent! Enough said about
the efficiency of machine language pro
gramming versus BASIC interpreters?

The game can of course be played man
ually on a piece of graph paper, but it
is slow and prone to mistakes, which
have usually disasterous effects on the
final results. It would seem to be the
ideal thing to put to a microprocessor
with bare-bones graphics, since the
rules are so simple and there are es

BASIC is great for number crunching,
where you can quickly compose your pro
gram and have plenty of time to await
the results.
The program may be broken down into
manageable chunks by subroutining.
There follows a brief description of
the salient features of each section:

5:5

ISQQQQ®!

MAIN (hex 1900) NXTADR (hex 19BD)

In a fit of overcaution (since this was
the first time I attempted to write a
PET machine language program) you
will notice the series of pushes at the
beginning and pulls at the end. I de
cided to save all the internal regis
ters on the stack in page 1, and also
included the CLD (clear decimal mode)
just in case. Then follows a series of
subroutine calls to do the LIFE genera
tion and display transfers. The zero
page location, TIMES, is a counter to
permit several loops through LIFE be
fore returning. As set up, TIMES is
initialized to zero (hex location 1953)
so that it will loop 256 times before
jumping back. This of course can be
changed either initially or while in
BASIC via the POKE command. The return
via the JMP BASIC (4C 8B C3) may not be
strictly orthodox, but it seems to work
all right.

INIT (hex 1930) and DATA (hex 193B)
This shorty reads in the constants
needed, and stores them in page zero.
SCR refers to the PET screen, TEMP is
a temporary working area to hold the
new generation as it is evolved, and
RCS is essentially a copy of the PET
screen data, which I found to be neces
sary to avoid "snow” on the screen dur
ing read/write operations directly on
the screen locations. Up, down, etc.
are the offsets to be added or subtrac
ted from an address to get all the
neighbor addresses. The observant
reader will note the gap in the addres
ses between some of the routines.

TMPSCR (hex 1970)

This subroutine quickly transfers the
contents of Temp and dumps it to the
screen, using a dot (81 dec) symbol for
a live cell (a 1 in TEMP) and a space
(32 dec) for the absence of a live cell
(a 0 in TEMP).

SCRIMP (hex 198A)
This is the inverse of TMPSCR, quickly
transferring (and encoding) data
from the screen into TEMP.

RSTORE (hex 19A6)
This subroutine fetches the initial
addresses (high and low) for the SCR,
TEMP, and RCS memory spaces.

Since we are dealing with 1000 bytes of
data, we need a routine to increment to
the next location, check for page cros
sing (adding 1 to the high address when
it occurs), and checking for the end.
The end is signaled by returning a 01
in the accumulator, otherwise a 00 is
returned via the accumulator.

TMPRCS (hex 19E6)
The RCS address space is a copy of the
screen, used as mentioned before to
avoid constant "snow" on the screen if
the screen were being continually ac
cessed. This subroutine dumps data
from TEMP, where the new generation has
been computed, to RCS.

GENER (hex 1A00)

We finally arrive at a subroutine where
LIFE is actually generated. After
finding out the number of neighbors of
the current RCS data byte from NBRS,
GENER checks for births (CMPIM $03 at
hex addr. 1A0E) if the cell was prev
iously unoccupied. If a birth does not
occur, there is an immediate branch to
GENADR (the data byte remains 00). If
the cell was occupied (CMPIM 81 dec at
hex 1A08), 0CC checks for survival
(CMPIM $03 at hex 1A1A and CMPIM $02 at
hex 1A1E), branching to GENADR when
these two conditions are met, otherwise
the cell dies (LDAIM $00 at hex 1A22).
The results are stored in TEMP for the
1000 cells.

NBRS (hex 1A2F)
NBRS is the subroutine that really does
most of the work and where most of the
speed could be gained by more efficient
programming. Its job, to find the tot
al number of occupied neighbors of a
given RCS data location, is complicated
by page crossing and edge boundaries.
In the present version, page crossing
is taken care of, but edge boundaries
(left, right, top, and bottom of the
screen) are somewhat "strange". Above
the top line and below the bottom line
are considered as sort of forbidden re
gions where there should practically
always be no "life" (data in those re
gions are not defined by the program,
but I have found that there has never
been a case where 81's have been pres
ent (all other data is considered as
"unoccupied" characters). The right
and left edges are different, however,

5:6

iMixsiaoi

and lead to a special type of "geom
etry". A cell at either edge is not
considered as special by NBRS, and so
to the right of a right-edge location
is the next sequential address. On the
screen this is really the left edge
location, and one line lower. The in
verse is true, of course for left ad
dresses of left-edge locations. Topo
logically, this is equivalent to a
"helix". No special effects of this
are seen during a simple LIFE evolution
since it just gives the impression of
disappearing off one edge while appear
ing on the other edge. For an object
like the "spaceship" (see Scientific
American articles), then, the path
eventually would cover the whole LIFE
arena. The fun comes in when a config
uration spreads out so much that it
spills over both edges, and interacts
with itself. This, of course cannot
happen in an infinite universe, so that
some of the more complex patterns will
not have the same fate in the present
version of LIFE. Most of the "blink
ers", including the "glider gun" come
out OK.

language on the PET. One confession,
however - I used the KIM-1 to debug
most of the subroutines. Almost all of
them did not run on the first shot!
Without a good understanding of PET
memory allocation particularly in page
zero, I was bound to crash many times
over, with no recovery other than pul
ling the plug. The actual BASIC pro
gram consisted of a POKING loop with
many DATA statements (always save on
tape before running!).
Although the LIFE program was designed
for use on the PET (8K version), no
references are made to PET ROM loca
tions or subroutines, and except for
MAIN and SUBROUTINE address, are fully
relocatable. The PET screen addresses
(8000 - 83E8 hex) are treated as RAM.
For anyone (with a 6502-based system)
trying to convert the PET program, the
following points need to be watched:
1. The BLANK symbol = 20 hex
2. The DOT symbol = 51 hex
3. The OFFSETS in DATA must be set

for the user's display.

This H0x25 version of LIFE can undoubt
edly be made more efficient, and other
edge algorithms could be found, but I
chose to leave it in its original form
as a benchmark for my first successful
ly executed program in writing machine

[Editor's Note: This seems like an
ideal program to convert to an APPLE II
and MICRO would be happy to print a
list of the required modifications and
enhancements that someone develops.]

A Brief Introduction
to the Game of Life

by Mike Rowe

One of the interesting properties of
the game of LIFE is that such simple
rules can lead to such complex activ
ity. The simplicity comes from the
fact that the rules apply to each in
dividual cell. The complexity comes
from the interactions between the indi
vidual cells. Each individual cell is
affected by its eight adjacent neigh
bors, and nothing else.

The rules are:

2. A cell dies from overcrowding if it
has four or more neighbors. It dies
from isolation if it has one or zero
neighbors.

3- A cell is born when an empty space
has exactly three neighbors.
With these few rules, many different
types of activity can occur. Some pat
terns are STABLE, that is they do not
change at all. Some are REPEATERS,
patterns which undergo one or more
changes and return to the original
pattern. A REPEATER may repeat as fast
as every other generation, or may have
a longer period. A GLIDER is a pattern
which moves as it repeats.

1. A cell survives if it has two or
three neighbors.

REPEATERS

STABLE

«
ft •
ft *

•

« «
« ft

ft * *
* ft *

ft ft
ft ft

« ft
ft ft

5:7

IMOQiaQi

ft ft ft
ft ft ft

GLIDERS

« ft
ft » *

• * « * « * f t f t *

M
O

D
U

L
E

)
AN

D
M

V
M

-1
02

4
VI

DE
O

D

IS
PL

A
Y

D
R

IV
E

R
.

D
IS

P
L

A
Y

/M
O

N
IT

O
R

S

O
FT

W
A

R
E

A

V
A

LA
B

LE

IN
E

P
^

CPLUGS INTO K E M) OR BURN YOUR O W N W IT H OUR 2708/16 PR O G R A M M E R

UJ
J
* ill

1 1k....J w t i <st t̂ -J
i.. * O' i ::.
C J L. . o» *

w... fc... ♦ “ I* J
..1 :

j
ill ♦ 11 y~"

-Tf t. 1 »—*
UL. I - J ,.iiZ v.X ell IV « ».*i l X

l_0 oi w!~ *.11• i * J
,—1i A—1 k-J O' i i

t , 1 Cl)
dl

oi
"t3

iZ *
::3:i

ci..
UJ

* > (.■i '* l.'l o
1 . 1 T _̂ I-** t

cu i_* Ci_ oi UJ
*■— * — UJ c...

t j k~.
tZ7j
UJ

L~-
tf*

CO
1ST

t o 1—= O’) o O.I « i l "n •— cx:> •X
11 1—1 1_ i_ 3 CL ------ o OI

t i l —1 Cl O UJ Cl k_
* »lx.J I 1 -— » iZI Ci ■— i ' j *.1

U 1 t-li CJ UJ o C 7 . i.)
IxJ ,• ■% 1 -a o_ . OI Ul_» Lj-J

•* vT ^ r K_ HHH «.••> . CJ in
1-----1 ..— UD o o OI __i i—

d . t—> oi 1—. ULTj O.I
u «.—> I . t— ct: ZTi 1_ .— ------ C-Zi Ct
». » a_ •.— o U-l oi r j CTJCJ *•—>
ik *_0 __ o_ •.— “O c r iz; CO U—
i__i ». > 1 . J _Q a ~ ------ ••— o* o — *_LJ
i—i i a < o_ i -.— _vU 1—1 (.■>
yr- j o o <x

L̂ J 1------ oj O Oi y— Cl _.J
' J < x : — > OJ W— i 1 1
I'VJ UJ u_i _Q i— Cl cu d* «;__> L. l .l J
C ii 1=} U_ czi a> •3 cJ« *-♦— O oil *-• *
-—« »-----4 tv* <-*— CU £_-i •-+— o 1-----1
1 CO U_l (,•1 o i,-i i__ Cl

Ctl ~ n OI o f O OI C3 i._. i ^ z .1
u_l i— a.i •.— O* L.J.J

> ~C(o -»—■* o OJ 1------
1— * u_ c..» Q.. t— i

U_l lit: c~> O c_« o O -13 “C3 OI i_
c C_ a* CLI •TX ►....̂

1------ :3“« UJ CTi r 4 i- V—
2m 0.1 a.* >L~ ,.... r;7i +-- • i_i“l

1-0 c“ :< a i L.j u. u.. — i
»—1 LJ"l cv

CO r :« rv, WJ. i.*i
:a z
a _

I I I V... i: • j w. Ill n
► —A .. .1». 1 j U4 i; *■ ;i ixi

U i
’T "

♦ 4 - K

o

O lS N V d X 3 l-IAIIVI) I/VI3VI S ^ Q IS d S A Id H U M OQ NVO l-IAIIVI d flO A 1 V H M SI S IH 1

e
le

c
tr

o
n

ic

de
si

g
n

in
c

.
M

V
M

-1
02

4
J 2

35

;
KE

M
11

55
;

P
R

O
G

R
A

M
M

E
R

*7

5;
 E

PR
OM

S3

5
17

00

N
IA

G
A

R
A

ST

.
B

U
FF

A
LO

,
NY

14

20
7

D
IR

EC
T

FR
OM

R

IV
E

R
S

ID
E

OR

TH

R
O

U
G

H

YO
UR

D

E
A

L
E

R

1900 LIFE ORG $1900

1900 BASIC * $C38B
1900 OFFSET « $002A
1900 DOT « $0051
1900 BLANK * $0020

1900 SCRL * $0020
1900 SCRH • $0021
1900 CHL * $0022
1900 CHH * $0023
1900 SCRLO « $0024
1900 SCRHO « $0025
1900 TEMPL * $0026
1900 TEMPH • $0027
1900 TEMPLO « $0028
1900 TEMPHO « $0029
1900 UP « $002A
1900 DOWN * $002B
1900 RIGHT • $002C
1900 LEFT * $002D
1900 UR * $002E
1900 UL « $002F
1900 LR * $0030
1900 LL « $0031
1900 N * $0032
1900 SCRLL * $0033
1900 SCRLH • $0034
1900 RCSLO « $0035
1900 RCSHO « $0036
1900 TMP * $0037
1900 TIMES * $0038
1900 RCSL « $0039
1900 RCSH « $003A

1900 08 MAIN PHP
1901 48 PHA
1902 8A TXA
1903 48 PHA
1904 98 TYA
1905 48 PHA
1906 BA TSX
1907 8A TXA
1908 48 PHA
1909 D8 CLD
190A 20 30 19 JSR INIT
190D 20 8A 19 JSR SCRTMP
1910 20 E6 19 GEN JSR TMPRCS
1913 20 00 1A JSR GENER
1916 20 70 19 JSR TMPSCR
1919 E6 38 INCZ TIMES
191B DO F3 BNE GEN
191D 68 PLA
191E AA TAX
191F 9A TXS
1920 68 PLA

RETURN TO BASIC ADDRESS
PAGE ZERO DATA AREA POINTER
DOT SYMBOL = 81 DECIMAL
BLANK SYMBOL = 32 DECIMAL

PAGE ZERO LOCATIONS

SAVE EVERYTHING
ON STACK

CLEAR DECIMAL MODE

REPEAT 255 TIMES
BEFORE QUITTING
RESTORE EVERYTHING

5:9

i sans a®!

1921 A8
1922 68
1923 AA
1924 68
1925 28
1926 4C 8B C3

1930

TAY
PLA
TAX
PLA
PLP
JMP BASIC RETURN TO BASIC

ORG $1930

MOVE VALUES INTO PAGE ZERO

1930 A2 19 INIT LDXIM $19 MOVE 25. VALUES
1932 BD 3A 19 LOAD LDAX DATA -01
1935 95 1F STAZX $1F STORE IN PAGE ZERO
1937 CA DEX
1938 DO F8 BNE LOAD
19 3 A 60 RTS

193B 00 DATA - $00 SCRL
19 3 C 80 = $80 SCRH
193D 00 = $00 CHL
193E 15 = $15 CHH
193F 00 = $00 SCRLO
1940 80 r $80 SCRHO
1941 00 = $00 TEMPL
1942 1B = $1B TEMPH
1943 00 - $00 TEMPLO
1944 1B - $1B TEMPHO
1945 D7 = $D7 UP
1946 28 = $28 DOWN
1947 01 = $01 RIGHT
1948 FE r $FE LEFT
1949 D8 = $D8 UR
194A D6 = $D6 UL
194B 29 $29 LR
194C 27 = $27 LL
194D 00 = $00 N
194E E8 = $E8 SCRLL
194F 83 = $83 SCRLH
1950 00 r $00 RCSLO
1951 15 = $15 RCSHO
1952 00 $00 TMP
1953 00 = $00 TIMES

1970 ORG $1970

1970 20 A6 19 TMPSCR JSR RSTORE GET INIT ADDRESSES
1973 B1 26 TSLOAD LDAIY TEMPL FETCH BYTE FROM TEMP
1975 DO 06 BNE TSONE BRANCH IF NOT ZERO
1977 A9 20 LDAIM BLANK BLANK SYMBOL
1979 91 20 STAIY SCRL DUMP IT TO SCREEN
197B DO 04 BNE TSNEXT
197D A9 51 TSONE LDAIM DOT DOT SYMBOL
197F 91 20 STAIY SCRL DUMP IT TO SCREEN
1981 20 BD 19 TSNEXT JSR NXTADR FETCH NEXT ADDRESS
1984 FO ED BEQ TSLOAD

5:10

i5Slll@Q(£)i

1986 20 A6
1989 60

198A 20 A6
198D B1 20
198F C9 51
1991 FO 06
1993 A9 00
1995 91 26
1997 FO 04
1999 A9 01
199B 91 26
199D 20 BD
19AO FO EB
19A2 20 A6
19A5 60

19A6 A9 00
19A8 AA
19A9 A8
19AA 85 20
19AC 85 26
19AE 85 39
19BO A5 25
19B2 85 21
19B4 A5 29
19B6 85 27
19B8 A5 36
19BA 85 3A
19BC 60

19BD E6 26
19BF E6 20
19C1 E6 39
19C3 E8
19C4 E4 33
19C6 FO OC
19C8 EO 00
19CA DO OE
19CC E6 27
19CE E6 21
19DO E6 3A
19D2 DO 06
19D4 A5 34
19D6 C5 21
19D8 FO 03
19DA A9 00
19DC 60
19DD A9 01
19DF 60

19E6

19E6 20 A6
19E9 B1 26
19EB DO 06

19

STONE

RSTORE RESTORE INIT ADDRESSES

GET INIT ADDRESSES
READ DATA FROM SCREEN
TEST FOR DOT
BRANCH IF DOT
OTHERWISE ITS A BLANK
STORE IT
UNCOND. BRANCH
A DOT WAS FOUND
STORE IT
FETCH NEXT ADDRESS

RESTORE INIT ADDRESSES

JSR RSTORE
RTS

JSR RSTORE
LDAIY SCRL
CMPIM DOT
BEQ STONE
LDAIM $00
STAIY TEMPL
BEQ STNEXT
LDAIM $01
STAIY TEMPL
JSR NXTADR
BEQ STLOAD
JSR RSTORE
RTS

LDAIM $00
TAX
TAY
STAZ SCRL
STAZ TEMPL
STAZ RCSL
LDAZ SCRHO
STAZ SCRH
LDAZ TEMPHO
STAZ TEMPH
LDAZ RCSHO
STAZ RCSH
RTS

INCZ TEMPL
INCZ SCRL
INCZ RCSL
INX
CPXZ SCRLL
BEQ PAGECH
CPXIM $00
BNE NALOAD
INCZ TEMPH
INCZ SCRH
INCZ RCSH
BNE NALOAD
LDAZ SCRLH
CMPZ SCRH
BEQ NADONE
LDAIM $00
RTS
LDAIM $01
RTS

ORG $19E6

JSR RSTORE
LDAIY TEMPL
BNE TRONE

ZERO A, X, Y

INIT VALUES

GET NEXT LOW ORDER
BYTE ADDRESS

IS IT THE LAST?
IS IT THE LAST PAGE?
IS IT A PAGE BOUNDARY?
IF NOT, THEN NOT DONE
OTHERWISE ADVANCE TO
NEXT PAGE

UNCONDITIONAL BRANCH
CHECK FOR LAST PAGE

IF YES, THEN DONE
RETURN WITH A=0

RETURN WITH A=1

FETCH DATA FROM TEMP
IF NOT ZERO THEN ITS ALIVE

5:11
J
*

■ 19ED A9 20 LDAIM BLANK BLANK SYMBOL
I 19EF 91 39 STAIY RCSL STORE IT IN SCREEN COPY
1 19F1 DO 04 BNE NEWADR THEN ON TO A NEW ADDRESS
1 19F3 A9 51 TRONE LDAIM DOT THE DOT SYMBOL
1 19F5 91 39 STAIY RCSL STORE IT IN SCREEN COPY
I 19F7 20 BD 19 NEWADR JSR NXTADR FETCH NEXT ADDRESS
1 19FA FO ED BEQ TRLOAD IF A=0, THEN NOT DONE
1 19FC 20 A6 19 JSR RSTORE ELSE DONE. RESTORE
1 19FF 60 RTS

1 1A00 20 A6 19 GENER JSR RSTORE INIT ADDRESSES
1A03 20 2F 1A AGAIN JSR NBRS FETCH NUMBER OF NEIGHBORS
1A06 B1 39 LDAIY RCSL FETCH CURRENT DATA
1A08 C9 51 CMPIM DOT IS IT A DOT?
1AOA FO OC BEQ OCC IF YES, THEN BRANCH
1AOC A5 32 LDAZ N OTHERWISE ITS BLANK
1AOE C9 03 CMPIM $03 SO WE CHECK FOR
1A10 DO 14 BNE GENADR A BIRTH
1A12 A9 01 BIRTH LDAIM $01 IT GIVES BIRTH
1A14 91 26 STAIY TEMPL STORE IT IN TEMP
1A16 DO OE BNE GENADR INCONDITIONAL BRANCH
1A18 A5 32 OCC LDAZ N FETCH NUMBER OF NEIGHBORS
1A1A C9 03 CMPIM $03 IF IT HAS 3 OR 2
1A1C FO 08 BEQ GENADR NEIGHBORS IT SURVIVES
1A1E C9 02 CMPIM $02
1A20 FO 04 BEQ GENADR
1A22 A9 00 DEATH LDAIM $00 IT DIED!
1A24 91 26 STAIY TEMPL STORE IT IN TEMP
1A26 20 BD 19 GENADR JSR NXTADR FETCH NEXT ADDRESS
1A29 FO D8 BEQ AGAIN IF 0, THEN NOT DONE
1A2B 20 A6 19 JSR RSTORE RESTORE INIT ADDRESSES
1A2E 60 RTS

1A2F 98 NBRS TYA SAVE Y AND X ON STACK
1A30 48 PHA
1 A31 8A TXA
1A32 48 PHA
1A33 AO 00 LDYIM $00 SET Y AND N = 0
1A35 84 32 STYZ N
1A 37 A2 08 LDXIM $08 CHECK 8 NEIGHBORS
1A39 B5 29 OFFS LDAZX OFFSET -01
1A3B 10 15 BPL ADD ADD IF OFFSET IS POSITIVE
1A3D 49 FF EORIM $FF OTHERWISE GET SET TO
1A3F 85 37 STAZ TMP SUBTRACT
1A41 38 SEC SET CARRY BIT FOR SUBTRACT
1A42 A5 39 LDAZ RCSL
1A44 E5 37 SBCZ TMP SUBTRACT TO GET THE
1A46 85 22 STAZ CHL CORRECT NEIGHBOR ADDRESS
1A48 A5 3A LDAZ RCSH
1A4A 85 23 STAZ CHH
1A4C BO 11 BCS EXAM OK, FIND OUT WHAT'S THERE
1A4E C6 23 DECZ CHH PAGE CROSS
1A50 DO OD BNE EXAM UNCOND. BRANCH
1A52 18 ADD CLC GET SET TO ADD
1A53 65 39 ADCZ RCSL ADD
1A55 85 22 STAZ CHL STORE THE LOW PART

5:12

1A 57 A5 3A LDAZ RCSH FETCH THE HIGH PART
1A59 85 23 STAZ CHH
1A5B 90 02 BCC EXAM OK, WHAT'S THERE
1A5D E6 23 INCZ CHH PAGE CROSSING
1A5F B1 22 EXAM LDAIY CHL FETCH THE NEIGHBOR
1A61 C9 51 CMPIM DOT DATA BYTE AND SEE IF ITS
1A6 3 DO 02 BNE NEXT OCCUPIED
1A65 E6 32 INCZ N ACCUMULATE NUMBER OF NEIGHBORS
1A67 CA NEXT DEX
1A68 DO CF BNE OFFS NOT DONE
1A6A 68 PLA RESTORE X, Y FROM STACK
1A6B AA TAX
1A6C 68 PLA
1A6D A8 TAY
1A6E 60 RTS

SYMBOL TABLE 2000 2186
BLANK 0020 SCRL 0020 SCRH 0021 CHL 0022
CHH 0023 SCRLO 0024 SCRHO 0025 TEMPL 0026
TEMPH 0027 TEMPLO 0028 TEMPHO 0029 OFFSET 002A
UP 002A DOWN 002B RIGHT 002C LEFT 002D
UR 002E UL 002F LR 0030 LL 0031
N 0032 SCRLL 0033 SCRLH 0034 RCSLO 0035
RCSHO 0036 TMP 0037 TIMES 0038 RCSL 0039
RCSH 003A DOT 0051 LIFE 1900 MAIN 1900
GEN 1910 INIT 1930 LOAD 1932 DATA 193B
TMPSCR 1970 TSLOAD 1973 TSONE 197D TSNEXT 1981
SCRTMP 198A STLOAD 198D STONE 1999 STNEXT 199D
RSTORE 19A6 NXTADR 19BD PAGECH 19D4 NALOAD 19DA
NADONE 19DD TMPRCS 19E6 TRLOAD 19E9 TRONE 19F3
NEWADR 19F7 GENER 1AOO AGAIN 1A03 BIRTH 1A12
OCC 1A18 DEATH 1A22 GENADR 1A26 NBRS 1A2F
OFFS 1A39 ADD 1A52 EXAM 1A5F NEXT 1A67
BASIC C38B

SYMBOL TABLE 2000 2186
ADD 1A52 AGAIN 1A03 BASIC C38B BIRTH 1A12
BLANK 0020 CHH 0023 CHL 0022 DATA 193B
DEATH 1A22 DOT 0051 DOWN 002B EXAM 1A5F
GENADR 1A26 GENER 1 AOO GEN 1910 INIT 1930
LEFT 002D LIFE 1900 LL 0031 LOAD 1932
LR 0030 MAIN 1900 N 0032 NADONE 19DD
NALOAD 19DA NBRS 1A2F NEWADR 19F7 NEXT 1A67
NXTADR 19BD OCC 1A18 OFFS 1A39 OFFSET 002A
PAGECH 19D4 RCSH 003A RCSHO 0036 RCSL 0039
RCSLO 0035 RIGHT 002C RSTORE 19A6 SCRH 0021
SCRHO 0025 SCRL 0020 SCRLH 0034 SCRLL 0033
SCRLO 0024 SCRTMP 198A STLOAD 198D STNEXT 199D
STONE 1999 TEMPH 0027 TEMPHO 0029 TEMPL 0026
TEMPLO 0028 TIMES 0038 TMPRCS 19E6 TMPSCR 1970
TMP 0037 TRLOAD 19E9 TRONE 19F3 TSLOAD 1973
TSNEXT 1981 TSONE 197D UL 002F UP 002A
UR 002E

5:13

ROCKWELL'S NEN R6500/1
Rockwell International

Electronic Devices Division
3310 Miraloma Avenue

P.O. Box 3669
Anaheim, CA 92803

ANAHEIM, CA., May 11, 1978 — A single
chip NMOS microcomputer (R6500/1) oper
ating at 2 MHz with a 1 microsecond
minimum instruction execution time, has
been developed by Rockwell Int'l.
The 40-pin R6500/1 is fully software
compatible with the 6500 family. It
has the identical instruction set, in
cluding the 13 addressing modes, of the
6502 CPU. It operates from a single 5V
power supply, and features a separate
power pin which allows RAM memory to
function on 10% of the operating power.
On-chip features include 2K x 8 ROM, 64
x 8 RAM, 16-bit interval timer/event
counter, and 32 bidirectional 1/0
lines. Additionally, it has maskable
and non-maskable interrupts and an
event-in/timer-out line.
The 32 bidirectional 1/0 lines are di
vided into four eight-bit ports (A, B,
C and D). Each line can be selective
ly used as an input or an output. Two
inputs to Port A can be used as edge
sensing, software maskable, interrupt
inputs -- one senses a rising edge;
the other a falling edge.

Four different counter modes of oper
ation are programmable: (1) free run
ning with clock cycles counted for real
time reference; (2) free running with
output signal toggled by each counter
overflow; (3) external event counter;
and (4) pulse width measurement mode.
A 16-bit latch automatically reinitial
izes the counter to a preset value.
Interrupt on overflow is software mask
able .

A 64-pin Emulator part, of which 40
pins are electrically identical to the
standard R6500/1 part and which comes
in either 1 MHz or 2 MHz versions, is
available now. Rockwell expects to be
gin receiving codes from customers in
July for production deliveries in Sept.
Quantity prices for 6500/1 production
devices are under $10.00 for both the
1 MHz and 2 MHz models. Single-unit
prices for Emulator parts are $75.00
for the 1 MHz model and $95.00 for the
2 MHz version.
Contact: Leo Scanlon - 714/632-2321

Pattie Atteberry - 213/386-8600

CLOCK 64 BYTES 2018 BYTES
ROM

CPU

| C0NTR0 L & EDGE |

" de te c t " l o g ic "

32 PROGRAMMABLE
INPUT/OUTPUT LINES

ONE-CHIP SPEEDSTER ■■ Functional diagram o f one-chip NMOS microcomputer (R6500/1) developed bv Rockwell International
Fullv software compatible w ith the 6500 familv, the R6500/1 operates from a single 5V power supplv at 2 MHz with a 1 microsecond
minimum execution time.

J

6 5 0 2 I N T E R F A C I N G F O R B E G I N N E R S :
A D D R E S S D E C O D I N G I

Marvin L. De Jong
Dept, of Math-Physics

The School of the Ozarks
Point Lookout, MO 65726

This is the first installment of a col
umn which will appear on a regular
basis as long as reader interest, auth
or enthusiasm and the editor's approval
exist. Your response will be vital for
our deciding whether to continue the
column. Do not be afraid to be criti
cal or to make suggestions about what
subjects you would like to see. Hope
fully, the column will be of interest
to anyone who owns a 6502 system. One
of the more challenging aspects of be
ing a computer hobbyist is understand
ing how your system works and being
able to configure and construct I/O
ports. Then one can begin to tie his
computer to the outside world. Perhaps
this column will give you the ability
to produce flashing lights, clicking
relays, whirring motors, and other re
markable phenomena to amaze your fri
ends and make your mother proud.
An educational column has to make some
assumptions about where the readers are
in terms of their understanding. A fa
miliarity with binary and hex numbers
will be assumed, as will a nodding ac
quaintance with the 7^00 series of in
tegrated circuits. Lacking such a
background I would recommend that you
get a book like "Bugbook V" by Rony,
Larsen, and Titus; "TTL Cookbook" by
Lancaster; or an equivalent book from
your local computer shop or mail order
house. Ads in "Micro", "Byte",
"Kilobaud", "Ham Radio", "73 Magazine",
etc. will list places where both books
and parts may be ordered. My own pre
ference for "hands-on" experience would
be "Bugbook V". Although this book has
some material on the 8080A chip, most
of the material is very general and the
chapters covering the basic 7400 series
integrated circuits are very good. An
other indispensable book is the "TTL
Data Book" published by Texas Instru
ments .
It would be a good idea to get a Proto
Board or equivalent breadboarding sys
tem for the experiments which will be
suggested. One can even find wire kits
to go with the breadboards. I would
not purchase all the Outboards from E &
L Instruments since the same circuits
can be constructed less expensively

from parts. Please regard these sug
gestions as opinions which may not be
shared by all experimenters.
Finally, let me introduce the column by
saying that the title is not "Interfac
ing Made Easy". If it were easy there
would be no challenge and no need for
this column. Like mountain climbing,
satisfaction comes from overcoming the
difficult rather than achieving the ob
vious. The material which you see in
this column will usually be something
which I am in the process of learning
myself. I am a hobbyist like yoursel
ves: I keep the wolf from the door by
teaching mathematics and physics, not
computer science or digital electron
ics. Expert opinions from readers and
guest contributions will always be wel
come .
We begin at the beginning. The 6502
pins may be divided into four groups:
power, address, data, and control pins.
Pins 1 and 21 are grounds, and pin 8 is
connected to the +5V supply, making the
power connections. Pins 9 through 20
and 22 through 25 are connected to the
address bus on the microcomputer, while
the data pins, 26 through 33, are con
nected to the data bus. All of the re
mainder of the pins may be lumped in
the general class of control pins. In
subsequent issues the data bus and the
control bus will be discussed. Our
concern in the first two issues is with
addressing.

The 6502 Address Bus

The 6502 receives data from a variety
of devices (memory, keyboard, tape
reader, floppy disc, etc.), processes
it, and sends it back to one or more
devices. The first process is called
READ and is accomplished by the LDA or
similar instruction. The last process
is called WRITE and is achieved by a
STA type instruction. The purpose of
the address pins is to put out a signal
on the address bus to select the
device or location which is going to
produce or accept the data. In the
computer system, each device has a
unique address, and when the 6502 puts
that address on the address bus, the

5:15
J
*

device must be activated. Each line
on the address bus may have one of two
possible values (high or low, H or L,
1 or 0, +5V or 0V are the names most
frequently given to these values). A
one-address-line system could select
two devices; one activated by a 0 on
the address line, the other by a 1.
Figure 1 shows how to decode such an
idiot microcomputer.

AO— O Device 2

evice 1

Figure 1. Decoding a One-Address Line
Microprocessor.

Any device which when connected to the
address bus puts out a unique signal
(1 or 0) for a unique address is called
a decoder. We have seen that a micro
computer with a single address line can
select two devices, which could be
memory locations or I/O ports. A some
what smarter microprocessor might have
two address lines. It could be decoded
by the device shown in Figure 2, pro
vided the truth table of the device
were the one given in Table 1. Such a
device could be implemented with NAND
OR NOR gates, or with a 74139-

- i > - Device 4
— £>— Device 3

evice 2

— O 0 evice 1
Figure 2. 74139 Decoder for a Two-
Address Line Microprocessor.

The point is that two address lines
allow the microprocessor to select four
devices; three address lines give eight
devices; four, 16; five, 32; six, 64;
and so on. The 6502, being very smart,
has 16 address lines. Anyone who can
calculate how many telephones can be
"addressed" by a 7-digit, base-ten
phone number can also calculate how
many locations can be addressed by a 16
digit, base-two address bus, The
answers are 107 = 1 0 million and
2 =65,536, respectively.

Earth people have not yet made a
single device to simultaneously decode
16 address lines to produce 65,536
device select signals. Such a monster
IC would need at least 65,554 pins.
Many integrated circuits are con
structed to decode the ten, low-order
address lines (A0-A9) internally. For
example, the 6530 PIA chips on the
KIM and the 21L02 memory chips on my
memory board decode the ten lowest
address lines internally, that is, they
select any one of the 2 ,a =1024 flip-
flops to be written to or read. Con
sequently, our problem is to decode the
high-order address lines, at least
initially. These lines are usually de
coded to form blocks of address space
(not unlike home addresses in city
blocks). Three address lines give
eight (2 =8) possible blocks, and the
three highest address lines (A15—A13)
divide the address S D a c e into eight
blocks, each having 2f',t>'3* =2/-3 loca
tions .

Now 1024 (1024=2/o) locations is usual
ly referred to as 1K, so 2 '3 locations
is 23 x 2'° locations, which is 8 x 2 to
locations, which is 8K locations. Thus
the top three address lines divide the
address space into eight, 8K blocks.
See Table 2 for more details. Each of
these 8K blocks may be further divided

Inputs Outputs

Table 1 . Truth Table for Two-Line
Decoder 74139.

A15 A14 A13 Name Hex Addresses

0 0 0 8K0 0000-1FFF
0 0 1 8K1 2000-3FFF
0 1 0 8K2 4000-5FFF
0 1 1 8K3 6000-7FFF
1 0 0 8k 4 8000-9FFF
1 0 1 8K5 A000-BFFF
1 1 0 8k 6 C000-DFFF
1 1 1 8K7 E000-FFFF

Table 2. "Blocking" the Memory Space.

into 1K blocks by decoding address
lines A12-A10. Table 3 shows how block
8K4 is divided into eight, 1K blocks.
Finally, as mentioned before, many de
vices decode the lowest 10 address
lines, and consequently we have decoded
all 16 address lines, at least on
paper.

A12 A11 A10 Name Hex Address

0 0 0 K32 8000-83FF
0 0 1 K33 8400-87FF
0 1 0 K34 8800-8BFF
0 1 1 K35 8C00-8FFF
1 0 0 K36 9000-93FF
1 0 1 K37 9400-97FF
1 1 0 K38 9800-9BFF
1 1 1 K39 9C00-9FFF

Table 3* Subdivision of 8K4 Block into
1K blocks.

To begin to see how this is done, con
struct the circuit shown in Figure 3.

1. Load the following program somewhere
between 0100 and 1FFF. The program
is relocatable.

0200 18
0201 8D XX 60
0204 90 FB

LOOP
CLC
STA 60XX
BCC LOOP

This routine stores Accum. in location
60XX. X means "don’t care.” Then loop
back.

2. Run the program and with the wire
probe shown in Figure 3, test each of
the output pins (pins 1-7 and 9).
Which ones cause the LED to glow?

3. Try to explain your results with the
help of the truth table, Table 4.

4. Change the STA instruction to a LDA
instruction (AD XX 60) and repeat steps
2 and 3 above.

+5V

Figure 3. Decoding the Highest Three
Address Lines.

(There are many decoding schemes and
circuits, the circuit of Figure 3 is
just one possible technique.) Here
is where your breadboard becomes
useful. Connect the address lines from
your 6502 system to the 74145. (KIM
owners can do this with no buffering
because lines A15— A13 are not used on
the KIM-1. Owners of other systems
should check to see if the address
lines are properly buffered.) Now per
form the following experiments:

5. In turn, change the location at
which you are getting the data to a
location in each of the 8K blocks in
Table 2, e.g. 00XX, 20XX, 40XX, etc.
and test the output pins on the 74145
to see if the LED glows. You should be
able to explain your results with the
truth table.

6. Stop the program and check the
pins again.

Inputs Outputs
C B A 0 1 2 3 4 5 6 7

L L L L H H H H H H H
L L H H L H H H H H H
L H L H H L H H H H H
L H H H H H L H H H H
H L L H H H H L H H H
H L H H H H H H L H H
H H L H H H H H H L H
H H H H H H H H H H L
Table 4. Truth Table for 74LS145 when
connected ?s shown in Figure 3*

5:17
J

In steps 2 and 4 the LED should glow
when the probe touches pin 1 and pin 4.
Why does it glow more brightly on pin
1? When the program is stopped, only
pin 1 should cause the LED to light.
The answers to these questions and the
answers to questions you never asked
will be given in the next issue.

What else is coming up in the next
column? We will see how to take any
of the 8 signals from the 74145 to
enable a 74LS138 which in turn will
decode address lines A12-A10, thus

dividing any 8K block of address space
which we may select into 1K blocks.
Into one of these 1K blocks we will put
some I/O ports.

(The more precocious of my attentive
readers may already see that the scheme
of Figure 3 could also be used to pre
set or clear a flip-flop to control an
external device, for example, a heater,
and all that without even using the
data lines. If you see all that, you
can take over this column.) See you
next issue.

HALF A MOBM IH THE APPLE
Mike Rowe
P.O. Box 3

S. Chelmsford, MA 01824

Last issue we reported a potential
problem that had been discovered in the
Apple II, relating to using PIA'a. The
problem had been uncovered by the staff
of EDN in the course of developing a
system based on an Apple II board. The
matter is not totally resolved, but the
following is what we have heard.

I called Steve Wozniak of Apple and
asked about the problem. He said that
he had sent a chip to EDN which had
cleared up the problem. He did not in
dicate that there was any more to it.
I then talked to John Conway of EDN.
He maintained that a problem still does
exist with Apple II interfacing to 6520
or 6522 PIAs. It can be done, but re
quires the addition of a chip to slow
down the phase 0 signal to make it the
equivalent of the phase 2 signal. The
PIA can not be directly interfaced, as
would normally be expected in a 6502-
based system. John stated that the
chip required costs about $7.00.
Another angle on the picture was also
reported to me by John. He had found a
company on the West Coast that is mak
ing interfaces for the Apple II. The
engineer there had discovered the same
problem.

There is a fairly complete discussion
of the problem and the solution in the
May 20, 1978 edition of EDN. If anyone
has additional information to shed on
the situation, MICRO will be happy to
publish it. The problem does not seem
to be all that serious, and we do not

EDH BLASTS THE 6502
Robert M. Tripp

P.O. Box 3
S. Chelmsford, MA 01824

The May 20, 1978 issue of EDN which had
the information on the Apple II/PIA,
ended with a "put down" of the 6502, by
Jack Hemenway. I feel that the attack,
and that is what I would call it, was a
very emotional one, based on the fact
that the author has worked with the
6800 extensively. His points were such
"fatal flaws" in the 6502 as:

the stack is limited to page 1
the index registers are 8-bit
the two different methods of

indirect indexing are confusing
there are too many addressing modes
there is only one accumulator
and so forth.

Of course we can all think of things
that we would like to have in a micro,
but there have to be trade-offs, and a
lot of people seem to be happy with the
6502's set of capabilities. I suggest
that some of us write to EDN and advise
them of the 6502's good points. For
example, I prefer the stack to be only
in page one. I have written a lot of
code and have never used up very much
of the stack. And, if a program goes
wild, only page one is destroyed - not
all of memory. So, let us set EDN
straight by writing a few letters. The
editor has said he would be happy to
hear from us.

want to dwell on it, but we hope that
this discussion has prevented some of
our readers from going nuts trying to
add a PIA to their Apple II.

5:18

M Q ia Q i

Rockwell International
Microelectronic Devices

P.O. Box 3669
Anaheim, CA 92803

714/632-3729
Rockwell's AIM 65 (Advanced Interface
Module) gives you an assembled, versa
tile microcomputer system with a full-
size keyboard, 20-character display and
a 20-character thermal printer!
AIM 65’s terminal-style ASCII keyboard
has 54 keys providing 69 different
alphabetic, numeric and special func
tions.

AIM 65’s 20-character true Alphanumeric
Display uses 16-segment font monolithic
characters that are both unambiguous
and easily readable.

AIM 65’s 20-column Thermal Printer
prints on low-cost heat sensitive roll
paper at a fast 90 lines per minute.
It produces all the standard 64 ASCII
characters with a crisp-printing five-
by-seven dot matrix. AIM 65's on-board
printer is a unique feature for a low
cost computer.

The CPU is the R6502 operating a 1 MHz.
The basic system comes with 1K RAM, ex
pandable on-baord to 4K. It includes
a 4K ROM Monitor, and can be expanded
on-board to 16K using 2332 ROMs or can
also accept 2716 EPROMs. An R6532 RAM-
Input/Output-Timer is used to support
AIM 65 functions. There are also two
R6522 Versatile Interface Adaptors.
Each VIA has two 8-bit, bidirectional
TTL ports, two 2-bit peripheral hand
shake control ports and two fully pro
grammable interval timer/counters.

The built-in expansion capability in
cludes a 44-pin Application Connector
for peripheral add-ons and a 44-pin Ex
pansion Connector with the full system
bus. And, both connectors are totally
KIM-1 compatible!

TTY and Audio Cassette Interfaces are
part of the basic system. There is a
20 ma current loop TTY interface, just
like the KIM-1, and an Audio Cassette
Interface which has a KIM-1 compatible
format as well as its own special
binary blocked file assembler compat
ible format.

The DEBUG/MONITOR includes a mini-as-
sembler and a text editor. Editing may
use the keyboard, TTY, cassette, print
er and display. The Monitor includes a
typical set of memory display/modify
commands. It also has peripheral de
vice controllers, breakpoint capability
and single step/trace modes of debug
ging. An 8K BASIC Interpreter will be
available in ROM as an option.
AIM 65 will be available in August,
will cost $375.

It

vt.>
ppi 7 t n c 14 . k ' 4 I W I %

FR=300
7 M =

U=10W0

1UI OF FlSDF GH J

R2
E8

< 1 >
0312
0600
0602
0603
0605
8606 Eft
0.607 4C
,060ft

+ = 600
LDX #FE
INK

D0 BNE 0602
Eft NOP

NOP
JMP 0600

IS IT TIME TO KEIEV TOD8 SOBSCHIPTIOl?

If you are a subscriber to MICRO, then the two digit code following your name on
the mailing is the number of the last issue your current subscription covers. If
your two digit code is 05, then this is your last issue. And, you original sub
scribers with an 06 will be up for renewal soon. MICRO will NOT be sending out
reminders. So, if your number is coming up, get your subscription renewal in soon.

MICRO is published bi-monthly. The first issue was OCT/NOV 1977. Single
copy price is $1.50. Subscriptions are $6.00 per year, 6 issues, in the USA.
One year subscriptions to other countries are: [Payment must be in US $.]

Surface: Canada/Mexico
All Other Countries

Air Mail: Europe
South America

Central America

Amount:

$7-00 Name: .
$8.00

Addr: .
$14.00
$14.00 City: .
$12.00
$16.00 State:

Country:

Zip:

Issues #1, 2, and 3 have been reprinted, so that back issues are now avail
able for all issues. The price is $1.50 per copy - USA, Canada or Mexico.
Other countries add $.50 per copy surface or $1.25 per copy air mail.

Your name and address will be made available to legitimate dealers, suppliers,
and other 6502 interests so that you may be kept informed of new products,
current developments, and so forth, unless you specify that you do not wish
your name released to these outside sources.

Send payment to: MICRO, P.O. Box 3, S. Chelmsford, MA 01824, USA

INFORMATION FOR ADVERTISERS

If you are interested in reaching the 6502 market, consider advertising in MICRO.
Since MICRO is devoted to the 6502, its readers are actively interested in 6502
related products and will pay attention to your material. Your ad will not be
lost among ads for 8080's, Z-80's, etc. Since the content of MICRO is primarily
useful and factual reference material, each issue will be referred to many times,
giving your ad multiple exposure. The cost of advertising in MICRO is quite low.
Current rates are: Full Page $100.00, Half page $60.00, Quarter page $35.00. It
is easy to place your ad. Provide camera ready copy either one-to-one or two-to-
one in size. Photographs should be glossy and one-to-one or two-to-one in size.
Payment must accompany the ad unless credit terms have been previously established
Our current circulation is over 2000: 1400+ subscriptions and 700+ to dealers.
Dealers report that MICRO sells very well. One dealer who specializes in 6502
products reports that MICRO outsells Kilobaud! Bulk rates to dealers are $.90 per
copy with a minimum of ten copies.

DEADLINES: August/September Issue: Ad reservation - July 10. Ad copy - July 17.
October/November Issue: Ad reservation - Sept 11. Ad copy - Sept 18.

To reserve your ad, or for further information, call Judy at 617/256-3649.
Mailing address: MICRO Ads, P.O. Box 3, S Chelmsford, MA 01824.

J

A SLOW LIST FOI APPLE BASIC
Bob Sander-Cederlof

8413 Midpark Road #3072
Dallas, TX 75240

One of the nicest things about Apple
BASIC is its speed. It runs circles a-
round most other hobby systems! Yet
there are times when I honestly wish it
were a little slower.
Have you ever typed in a huge program,
and then wanted to review it for er
rors? You type "LIST", and the whole
thing flashes past your eyes in a few
seconds! That's no good, so you list
it piecemeal — painfully typing in a
long series like:

LIST 0,99
LIST 100,250

But there j. s a better way! I wrote a
small machine language program which
solves our problem. After this little
64-byte routine is loaded and activated
the LIST command has all the features
we wanted.
1. The listing proceeds at a more lei
surely pace, allowing you to see what
is going by.
2. The listing can be stopped tempor
arily, by merely pressing the space
bar. When you are ready, pressing the
space bar a second time will cause the
listing to resume.
3. The listing can be aborted before
it is finished, by typing a carriage
return.

LIST 21250,21399

As the reviewing and editing process
continues, you have to type these over
and over and over . . . Ouch!
At the March meeting of the Dallas area
"Apple Corps" several members expressed
the desire to be able to list long pro
grams slowly enough to read, without
the extra effort of typing separate
commands for each screen-full. One
member suggested appending the series
of LIST commands to the program itself,
with a subroutine to wait for a car
riage return before proceeding from one
screen-full to the next. For example:

9000 LIST 0,99:G0SUB 9500
9010 LIST 100,250: G0SUB 9500

9250 LIST 21250,21399:GOSUB 9500
9260 END
9500 INPUT A$:RETURN

While this method will indeed work, it
is time-consuming to figure out what
line ranges to use in each LIST com
mand. It is also necessary to keep
them up-to-date after adding new lines
or deleting old ones.

The routine as it is now coded resides
in page three of memory, from $0340 to
$037F. It is loaded from cassette tape
in the usual way: *340.37FR.
After the routine is loaded, you return
to BASIC. The slow-list features are
activated by typing "CALL 887". They
may be de-activated by typing "CALL
878" or by hitting the RESET key.

How does it work? The commented assem
bly listing should be self-explanatory,
with the exception of the tie-in to the
Apple firmware. All character output
in the Apple funnels through the same
subroutine: C0UT, at location $FDED.
The instruction at $FDED is JMP ($0036)
This means that the address which is
stored in locations $0036 and $0037 in
dicates where the character output sub
routine really is. Every time you hit
the RESET key, the firmware monitor
sets up those two locations to point to
$FDF0, which is where the rest of the
C0UT subroutine is located. If char
acters are supposed to go to some other
peripheral device, you would patch in
the address of your device handler at
these same two locations. In the case
of the slow-list program, the activa
tion routine merely patches locations
$0036 and $0037 to point to $0340. The
de-activation routine makes them point
to $FDF0 again.

5:21

Every time slow-list detects a carriage
return being output, it calls a delay
subroutine in the firmware at $FCA8.
This has the effect of slowing down the
listing. Slow-list also keeps looking
at the keyboard strobe, to see if you
have typed a space or a carriage re
turn. If you have typed a carriage re
turn, slow-list stops the listing and
jumps back into BASIC at the soft entry

point ($E003). If you have typed a
space, slow-list goes into a loop wait
ing for you to type another character
before resuming the listing.

That is all there is to it! Now go
turn on your Apple, type in the slow-
list program, and list to your heart's
content!

0340 ORG $0340

ROUTINE TO SLOW DOWN APPLE BASIC LISTINGS

ABORT
SLOW

SLOW
STOP

0340 C9 8D SLOW CMPIM $8D CHECK IF CHAR IS CARRIAGE RETURN
0342 DO 1A BNE CHROUT NO, SO GO BACK TO COUT
0344 48 PHA SAVE CHARACTER ON STACK
0345 2C 00 CO BIT $C000 TEST KEYBOARD STROBE
0348 10 0E BPL WAIT NOTHING TYPED YET
034A AD 00 CO LDA $CO0O GET CHARACTER FROM KEYBOARD
034D 2C 10 CO BIT $C010 CLEAR KEYEOARD STROBE
0350 C9 A0 CMPIM $A0 CHECK IF CHAR IS A SPACE
0352 F0 10 BEQ STOP YES - STOP LISTING
0354 C9 8D CMPIM $8D CHECK IF CHAR IS A CARRIAGE RETURN
0356 F0 09 BEQ ABORT YES - ABORT LISTING
0358 A9 00 WAIT LDAIM $00 MAKE A LONG DELAY
035A 20 A8 FC JSR $FCA8 CALL MONITOR DELAY SUBROUTINE
035D 68 PLA GET CHARACTER FROM STACK
035E 4C F0 FD CHROUT JMP $FDF0 REJOIN COUT SUBROUTINE
0361 4C 03 E0 ABORT JMP $E003 SOFT ENTRY INTO APPLE BASIC
0364 2C 00 CO STOP BIT $C000 WAIT UNTIL KEYBOARD STROBE
0367 10 FB BPL STOP APPEARS ON THE SCENE
0369 8D 10 CO STA $C010 CLEAR THE STROBE
036C 30 EA BMI WAIT UNCONDITIONAL BRANCH

SUBROUTINE TO DE-ACTIVATE SLOW LIST

036E A9 F0 OFF LDAIM $F0 RESTORE $FDF0 TO
0370 85 36 STAZ $36 LOCATIONS 36 AND 37
0372 A9 FD LDAIM $FD
0374 85 37 STAZ $37
0376 60 RTS

SUBROUTINE TO ACTIVATE SLOW LIST

0377 A9 40 ON LDAIM $40 SET $0340 INTO
0379 85 36 STAZ $36 LOCATIONS 36 AND 37
037B A9 03 LDAIM $03
037D 85 37 STAZ $37
037F 60 RTS

TABLE
0361 CHROUT 035E OFF 036E ON 0377
0340 STOP 0364 WAIT 0358

TABLE
0340 WAIT 0358 CHROUT 035E ABORT 0361
0364 OFF 036E ON 0377

5:22

TEE MICRO SOFTHARE CATALOG: II
Mike Rowe
P.O. Box 3

S. Chelmsford, MA 10824

Name: ZZYP-PAX for PET, #1,2, and 3
System: PET
Memory: 8K RAM
Language: BASIC
Hardware: Standard PET
description: Each of these three ZZYP-
for PET includes a cassette with two
games and a booklet designed to educate
the beginning or intermediate level PET
programmer. #1 has IRON PLANET (Rescue
the Princess) and HANGMAN (Guess the
secret word). Included is a 12 page
booklet which not only contains game
rules, but has 5 pages of useful pro
gramming techniques including: Direct
Screen Access Graphics, Flashing Mess
ages, and Programmed Delays. #2 con
tains BLACK BART (a mean-mouthed poker
player) and BLACK BRET (for blackjack -
one or two players). #3 contains BLOCK
and FOOTBALL both of which allow either
two-player or play-the-PET options.
Copies: Just released, 40 copies.
Price: $9-95 each
Includes: PET tape cassette, instruc
tions and educational manual with info
for program modifications.
Ordering Info: Specify ZZYP-PAX number
Author: Terry Dossey
Available from:

Many PET dealers, or,
ZZYP Data Processing
2313 Morningside Drive
Bryan, TX 77801

Name: BULLS AND BEARS (tm)
System: Apple II
Memory: 16K
Language: 16K BASIC
Hardware: Apple II
Description: A multi-player simulation
of corporate finance. Involves deci-
sion-making regarding production lev
els, financing, dividends, buying and
selling of stock, etc.
Copies: "Hundreds sold"
Price: $12.00
Includes: Game cassette and booklet.
Ordering Info: At computer stores only
Author: SPEAKEASY SOFTWARE LTD.

Box 1200
Kemptville, Ontario
Canada K0G 1J0

Name: A Variety of Programs
System: Apple II
Memory: Most 8K or less
Language: Mostly Integer BASIC
Hardware: Mostly standard Apple II
Description: A varied collection of
short programs. Some utilities, some
educational. Included are: ALPHA SORT
MUSIC ROUTINE, STOP WATCHBASIC DUMP,
MULTIPLY, 0NE-ARM-BANDIT, ...
Copies: Varies, up to about 20.
Price: $7.50 to $10.00 each.
Includes: Apple II cassette and pro
gram listing.
Ordering Info: Write for catalog.
Author(s): Not specified.
Available from:

Apple PugetSound Prog. Lib. Exch.
6708 39th Avenue SW
Seattle, WA 98136

Name: HELP Information Retrieval
System: KIM-1

Basic KIM-1
: Assembler and HELP

Memory:
Language:
Hardware: KIM-1, terminal, cassettes
Description: Permits the user to cre
ate a data base on cassette, and then
perform a variety of searches on the
data base. May make six simultaneous
tests on FLAGS associated with the data
plus one test on each of the six data
fields. Permits very complex retrieval
from the data base. Includes ULTRATAPE
which reads/writes at 100 char/sec, 12
times the normal KIM rate.
Copies: 100+
Price: $15.00
Includes: Cassette tape, 36 page User
Manual, a Source Listing book and a
Functions Manual which explains the
operation of the HELP language.
Ordering Info: Specify HELP Info Ret.
Author: Robert M. Tripp
Available from:

Many 6502 Dealers, or,
The COMPUTERIST, Inc.
P.O. Box 3
S. Chelmsford, MA 01824

[Dealer inquiries invited]

5 : 23

BEEPER BLOOPER AMD OTHER MICROBES

We apologize to the many readers who
have experienced problems trying to get
the simple "KIM Beeper" to work. There
was an error in the listing. The cause
of the error was trivial; the effect
was devastating! "A KIM BEEPER" by
Gerald C. Jenkins appeared in issue #4,
on page 43- The corrected listing is
given below, in full. You would have
to examine the alphabetic portion of
the two listings quite closely to see
error. The line at address 0118 read:

BIT TIME but should have read:
BIT TIMER

A minor error, only one letter missing,
but look at the difference in the list
ings from that point on. A two byte
instruction was generated instead of
the correct three bytes. This, in add
ition to being wrong, caused every sub
sequent location to be displaced by one
byte.

In this case, the error was our fault.
We try to check the listings presented
in MICRO, but we do not have the equip
ment or time to run every program. We
have caught some errors in programs
submitted to us, and we test what we
can.

There was a slight bug in "A Complete
Morse Code Send/Receive Program for the
KIM-1" by Marvin L. De Jong. The sec
ond line of the listing read:

0057 A9 FF LDAIM $FF
but should have been:

0057 A9 40 LDAIM $40
The only effect this will have will be
to set an incorrect initial code speed.

In "An Apple II Programmer's Guide" by
Rick Auricchio, the paragraph which
states that "control K, followed by 5"
sets the keyboard to device 5, is in

0100 ORG $0100 error. It is really "5,
control K".

0100 TIME • $00FF
0100 NOTE • $00C8
0100 PBD • $1702
0100 PBDD • $1703
0100 TIMER • $1707

0100 A9 FF BEEP LDAIM TIME START TIMER FOR 1/4 SECOND TONE
0102 8D 07 17 STA TIMER USING INTERVAL TIMER
0105 A9 01 LDAIM $01 SET OUTPUT TONE OFF
0107 8D 02 17 STA PBD
010A 8D 03 17 STA PBDD

010D 4D 02 17 TONE E0R PBD TOGGLE OUTPUT
0110 8D 02 17 STA PBD
0113 A0 C8 LDYIM NOTE SET TO COUNT FOR NOTE LENGTH
0115 88 T0NEX DEY $C8 = 500 HZ
0116 DO FD BNE TONEX CYCLE IN DOWN COUNTER
0118 2C 07 17 BIT TIMER TEST 1/4 SECOND UP
011B 10 F0 BPL TONE CONTINUE TONE IF NOT DONE
011D A9 01 LDAIM $01 TURN TONE OFF
011F 8D 02 17 STA PBD
0122 A9 FF LDAIM TIME START WAIT BETWEEN BEEPS
0124 8D 07 17 STA TIMER
0127 2C 07 17 N0T0NE BIT TIMER WAIT FOR TIME OUT
012A 10 FB BPL N0T0NE
012C CA DEX DECREMENT NUMBER OF BEEPS COUNTER
012D DO D1 BNE BEEP ANOTHER BEEP OR DONE
012F 60 RTS RETURN TO CALLING ROUTINE

5:24

I SAD(35*")I

A BASIC 6502 DISASSEMBLER
FOR APPLE AND PET
Michael J. McCann

28 Ravenswood Terrace
Cheektowaga, NY 14225

A disassembler is a program that ac
cepts machine language (object code) as
input and produces a symbolic represen
tation that resembles an assembler
listing. Although disassemblers have a
major disadvantage viz., that they can
not reproduce the labels used by the
original programmer, they can prove
very useful when one is attempting to
transplant machine code programs from
one 6502 system to another. This ar
ticle describes a disassembler program
written in Commodore BASIC.

The disassembler (see listing and sam
ple run) uses the mnemonics listed in
the Oct-Nov 1977 issue of MICRO. The
output is in this format: (address)
(byteiM) (byte#2) (byte#3) (mnemonic)
(bytes #2 and #3)

The address is outputted in decimal
(base 10). The contents of the byte(s)
making up each instruction are printed
in hexadecimal (base 16) between the
address and the mnemonic. In three
byte instructions the high order byte
is multiplied by 256 and added to the
contents of the low order byte, giving
the decimal equivalent of the absolute
address. This number is printed in the
(bytes #2 and #3) field. In two byte
instructions the decimal equivalent of
the second byte is printed in the
(bytes #2 and #3) field.

SAMPLE RUN

RUN

START ADDRESS

? 64004

64004 4C 7E E6 JMP 59006

64007 AD 0A 02 LDA 522

64010 F0 08 BEQ 8

64012 30 04 BM1 4

Programming Comments

Lines 10-40 initialize the BY$ and MN$
arrays (BY$ contains the number of
bytes in each instruction and MN$ con
tains the mnemonic of each instruction)

Lines 60-80 initialize the decimal to
hexadecimal conversion array (C0$)

Lines 100-130 input the starting ad
dress

Lines 1000-1050 decimal to hexadecimal
conversion subroutine

Lines 3000-5030 do the disassembly

Lines 3010-3030 take care of illegal
operation codes

Line 3050 transfers control to one of
three disassembly routines, the choice
is determined by the number of bytes in
the instruction

Lines 6000-6290 contain the data for
the arrays

Although this was originally written in
Commodore EASIC, it will work with the
APPLESOFT BASIC of the APPLE computer.

5:25

n a a s a ©

1 REM A 6502 DISASSEMBLER
2 REM EY MICHAEL J. MCCANN
? REM WILL RUN ON AN 8K PET OR AN APPLE WITH APPLESOFT BASIC
10 DIM MN$(256)BY$(256),C0$(16)
20 FCR E=0 TO 255
30 READ MN$(E) ,BY?.(E)
40 NEXT E
60 FOR E=0 TO 15
70 READ C0$(E)
80 NEXT E
100 PRINT CHR$(147)
110 PRINT:PRINT "START ADDRESS"
120 INPUT AD
130 PRINT
140 1=0
150 GOTO 3000
1000 SX=1NT(DC/16) Note: The two PRINT statements with
1010 UN=DC-(SX*16) an * are required by APPLESOFT to
1020 SX$=CC$(SX) prevent the first output line from
1030 UN$=CG$(UN) being mis-aligned. They may not be
1040 HX$=SX$+UN$ required by the PET BASIC.
1050 RETURN
?000 IF 1=16 THEN 5050
3005 1=1+1
3010 IB=PEEK(AD)
3015 IF MN$(IB)<>"NULL" GOTO 3050
3020 IB=DC:GOSUB 1000
3030 PRINT AD;TAb(8);HX$;"*"
3035 AD=AD+1
3040 GOTO 5030
3050 ON BY/t(IB) GOTO 3060,3090,4050
3060 DC=1B:G0SUB 1000
3070 PRINT AD;TAB(8);HX$;TAB(17);MN$(IB)
3075 AD=AD+1
3080 GOTO 5030
3090 DC=IB:G0SUB 1000
4000 B1$=HX$
4010 DC=PEEK(AD+1):G0SUB 1000
4020 b2$=HX$
4030 PRIM AD;TAB(8);B1$;" ";B2$;TAB(17);MN4(IB);TAB(21);PEEK(AD+1)
4035 AD=AD+2
4040 GOTO 5030
4050 DC=IB:GOSUB 1000
4060 B1$=HX$
4070 DC=PEEK(AD+1):G0SUB 1000
4080 B2$=HX$
4090 DC=PEEK(AD+2):GOSUB 1000
5000 B3$=HX$
5010 OP=PEEK(AD+1)+(PEEK(AD+2)*256)
5020 PRINT AD;TAB(8);B1 $;" ";E2$;" ";B3$;TAB(17);MN$(IB);TAB(21);OP
5025 AD=AD+3
5030 GOTO 3000
5050 INPUT A
5060 PRINT
5070 1=0
5080 GOTO 3000

5:26

6000 DATA
6010 DATA
6020 DATA
6030 DATA
6040 DATA
6050 DATA
6060 DATA
6070 DATA
6080 DATA
6090 DATA
6100 DATA
6110 DATA
6120 DATA
6130 DATA
6140 DATA
6150 DATA
6160 DATA
6170 DATA
6180 DATA
6190 DATA
6200 DATA
6210 DATA
6220 DATA
62^0 DATA
6240 DATA
6250 DATA
6260 DATA
6270 DATA
6280 DATA
6290 DATA

BRK,1,ORAIX,2,NULL,0,NULL,0,NULL, 0,ORAZ,2,ASL,2,NULL,0,PHP,1
0RAIM,2,ASLA, 1 ,NULL,0,NULL,0,ORA,3,ASL,3,NULL,0,BPL,2,ORAIY,2
NULL,0,NULL,0,NULL,0,0RAZX,2, ASLZX,2,NULL,0,CLC,1,0RAY,3
NULL,0,NULL,0,NULL,0,ORAX,?,ASLX,?,NULL,0,JSR,3,AND1X,2,NULL,0
NULL,0,BITZ,2,ANDZ,2,ROLZ,2,NULL,0,PLP,1,AND1M,2,ROLA,1,NULL,0
BIT,3,AND,?,ROL,?,NULL,0,BMI,2,ANDIY,2,NULL,0,NULL,0,NULL,0
ANDZX,2,R0LZX,2,NULL,0,SEC,1,ANDY,3,NULL,0,NULL,0,NULL,0,ANDX,3
ROLX,3,NULL,0,RT1,1,EORIX,2,NULL,0,NULL,0,NULL,0,EORZ,2,LSRZ,2
NULL,0,PHA,1,EORIM,2,LSRA,1,NULL,0,JMP,3,EOR,3,LSR,3 > NULL,0
BVC,2,EORIY,2,NULL,0,NULL,0,NULL,0,EORZX,2,LSRZX,2,NULL,0
CLC,1,E0RY,3,NULL,0,NULL,0,NULL,0,E0RX,3,LSRX,3,NULL,0,RTS,1
ADCIX, 2, NULL, 0, NULL, 0, NULL, 0, ADCZ , 2, RORZ, 2, NULL, 0, PLA, 1, ADCIM, 2
RORA,1,NULL, 0 , JMI, 3, ADC, 3, ROR, 3 ,NULL,0,BVS,2,ADCIY,2,NULL,0
NULL,0,NULL,0,ADCZX,2,RORZX,2,NULL,0,SEI,1,ADCY,3 >NULL,0,NULL,0
NULL,0,ADCX,3,RORX,3,NULL,0,NULL,0,STAIX,2,NULL,0,NULL,0,STYZ,2
STAZ,2,STXZ,2,NULL,0,DEY,1,NULL,0,TXA,1,NULL,0,STY,3,STA,3
STX,3,NULL,0,BCC,2,STAIY,2,NULL,0,NULL,0,STYZX,2,STAZX,2,STXZY,2
NULL,0,TYA,1,STAY,3,TXS,1,NULL,0,NULL,0,STAX,3,NULL,0,NULL,0
LDYIM,2,LDA1X,2,LDXIM,2,NULL,0,LDYZ,2,LDAZ,2,LDXZ,2,NULL,0
TAY,1,LDAIM,2,TAX,1,NULL,0,LDY,3,LDA,3,LDX,3,NULL,0,BCS,2
LDAIY,2,NULL,0,NULL,0,LDYZX,2,LDAZX,2,LDXZY,2,NULL,0,CLV,1
LDAY,3,TSX,1,NULL,0,LDYX,3,LDAX,3,LDXY,3,NULL,0,CPYIM,2,CMPIX,2
NULL,0,NULL,0,CPYZ,2,CMPZ,2,DECZ,2,NULL,0,INY,1,CMPIM,2,DEX,1
NULL,0,CPY,3,CMP,3,DEC,3,NULL,0,BNE,2,CMPIY,2,NULL,0,NULL,0
NULL,0,CMPZX,2,DECZX,2,NULL,0,CLD,1,CMPY,3,NULL,0,NULL,0,NULL,0
CMPX,3,DECX,3,NULL,0,CPXIM,2,SBCIX,2,NULL,0,NULL,0,CPX,2,SBCZ,2
INCZ ,2, NULL,0 , INX, 1 ,SBCIM, 2, NOP, 1 ‘,NULL,0, CPX, 3 ,SBC, 3, INC, 3
NULL,0,BEQ,2,SECIY,2,NULL,0,NULL,0,NULL,0,SBCZX,2,INCZX,2,NULL,0,SED,1
SBCY,3,NULL,0,NULL,0,NULL,0,SBCX,3,INCX,3,NULL,0
0,1,2,3,H,5,6,7,8,9,A,B,C,D,E,F

PET SCHEMATICS

Another First From "PET-SHACK1'.

For only $35 you get:

24"X30'' schematic of the CPU board,
plus oversized schematics of the
Video Monitor and Tape Recorder,
plus complete Parts layout — all
Accurately and Painstakingly drawn
to the Minutest detail.

Send check or nioney order
TO: PET-SKACK Software House

Div Marketing And Research Co.
P. 0. Uox 9G6
Mishawaka, IN 46544

Personal Computer

CO M PUTE FI
• MOS 6502 Microprocessor Contro l led
• integrated CRT, ASCI I Keyboard/Casset te
• Fu l l 8K Extended BASIC m RO M
• 8 K (Standard) to 32K R A M Expansion
• Peripherals (P r in te r /F lo p p y) Ava i lable Summer
• Can be in terfaced w i th S 100 BUS Devices
• Uti l izes IEEE 488 BUS tor in te l l igen t con t ro l

of Peripheral Devices
• 64 Bui l t m Graphics Char for Games/Charts
• Ful l Fi le Contro l und?r Operating System
• TOO M A N Y O TH E R F E A T U R E S TO L IS T!

8K R A M

FOR A D DIT IO NAL INFO CALL
A N D REQUEST OUR PET INFOR
MA TION PACKAGE!

NEECO HAS A L A R G E . E V E R E X P A N D IN G L I B R A R Y OF PRO
G R A M S FOR THE PET C A L L A N D RE Q U ES T O U R PET
L I B R A R Y L lS T IN G S e S O F T W A R E A U T H O R S e N E E C O O FFE R S
25% R O Y A L T I E S FOR A C C E P T A B LE PET P R O G R A M S '1 ' •

THE KIM-1

*245

"Com puter on a Board" — Instant Delivery
• 6502 Microprocessor Contro l led
• 13 Addressing Modes M u lt ip le In te r rupts
• 65K Bytes Address Range
• 2 MCS 6530 w i th 1024 Bytes R O M each. 64

Bytes R A M . 15 I/O Pins, t imer M on i to r and
Operat*ng Programs are in RO M .

• T T Y and Cassette Interface • 23 Key Pad and
6 Character LED display • 15 Bi D irec t ional
T T L lines M U C H M O R E ! "A ttach a power
supply and enter the world of M icrocomputers
and the future ^ c o m m o d o r e

M O S T M A J O R B R A N D S O f C A I C U L A J O R S T O O !

NBA/ ENGLAND EfCTRONICS CO.
248 Bridge Street Area Code (413)

S pring fie ld , Mass. 739-9626

A uth on /td PET Sale* & Sarvice

"G uaran teed De live ry ”
Schedules for al l of our
PET Customers Call
for our PET Package

SYNERTEK'S VIM-1
Synertek Incorporated

P.O. Box 552
Santa Clara, CA 95052

Synertek has announced a new 6502-based
microcomputer system with the following
features:
FULLY-ASSEMBLED AND COMPLETELY INTE
GRATED SYSTEM that's ready-to use as
soon as you open the box.
28 DOUBLE-FUNCTION KEYPAD INCLUDING UP
TO 24 "SPECIAL" FUNCTIONS.
EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY.

KIM-1 HARDWARE COMPATIBILITY.
The powerful 6502 8-bit MICROPROCESSOR
whose advanced architectural features
have made it one of the largest selling
"micros" on the market today.
THREE ON-BOARD PROGRAMMABLE INTERVAL
TIMERS available to the user for timing
loops, watchdog functions, and real-
ime communication protocols.

4K BYTE ROM RESIDENT MONITOR and Oper
ating Programs.

Single 5 Volt power capability is all
that is required.

IK BYTES OF 2114 STATIC RAM on-board
with sockets provided for immediate ex
pansion to 4K bytes on-board, with to
tal memory expansion to 65,536 bytes.
USER PR0M/R0M: The system is equipped
with 3 PR0M/R0M expansion sockets for
2316/2332 ROMs or 2716 EPROMs.

ENHANCED SOFTWARE with simplified user
interface.
STANDARD INTERFACES INCLUDE:
- Audio Cassette Recorder Interface
with Remote Control (Two modes: 135
Baud KIM-1 compatible, Hi-speed 2400
Baud).

- Full Duplex 20mA Teletype Interface
- System Expansion Bus Interface
- TV Controller Board Interface
- CRT Compatible Interface
APPLICATION PORT: 15 Bi-directional TTL
lines for user applications with expan
sion capability for added lines.

EXPANSION PORT FOR ADD-ON MODULES (50
1/0 Lines in the basic system).

-6-DIGIT HEX
DISPLAY

5:26

fER MUSIC I INTERPRETER
Richard F. Suitor
166 Tremont Street
Newton, MA 02158

There have been several routines for
making music with the APPLE II, includ
ing one in MICRO and one in the APPLE
documentation. The program described
here is more than a tone-making rou
tine, it is a music interpreter. It
enables one to generate a table of
bytes that specify precisely the half
tone and duration of a note with a sim
ple coding. Its virtue over the sim
pler routines is similar to that of any
interpreter (such as Sweet 16, or, more
tenuously, BASIC) over an assembler or
hand coding - it is easier to achieve
one's goal and easier to decipher the
coding six months later.
The immediate motivation for this in
terpreter was Martin Gardner's Mathe
matical Games Column in the April 1978
Scientific American. Several types of
algorithmically generated music are
discussed in that column; this program
provides a means of experimenting with
them as well as a convenient method of
generating familiar tunes.
The program is written in 6502 assembly
language. It would be usable on a sys
tem other than the APPLE if a speaker
were interfaced in a similar way. Ac
cessing a particular address (C030)
changes the current through the APPLE
speaker from on to off or from off to
on; it acts like a push button on/off
switch (or, of course, a flip-flop).
Thus this program makes sound by acces
sing this address periodically with an
LDA C030. Any interface that could
likewise be activated with a similar (4
clock cycles) instruction could be
easily used. A different interfacing
software procedure would change the
timing and require more extensive mod
ification .
The tone is generated with a timing
loop that counts for a certain number
of clock cycles, N (all of the cycles
in a period including the toggling of
the speaker are counted). Every N
cycles a 24 bit pattern is rotated and
the speaker is toggled if the high or
der bit is set. Four cycles are wasted
(to keep time) if the bit is not set.
There is a severe limit to the versa
tility of a waveshape made from on/off
transitions, but tones resembling a

variety of (cheap) woodwinds and pipes
are possible, with fundamentals ranging
from about 20 Hz to 8 KHz.
Applayer interprets bytes to produce
different effects. There are two types
of bytes:

Note bytes Bit
Control bytes Bit

7 Not Set
7 Set to 1

A note byte enables one to choose a
note from one of 16 half tones, and
from one to eight eighth notes in dur
ation. The low order nybble is the
half-tone; the high order nybble is the
duration (in eighth notes) minus one.

Bit 7 6 5 4 3 2 1 0
Note Byte 0 (Duration) (Half-Tone)

The control bytes enable one to change
the tempo, the tonal range which the 16
half-tones cover, rests, the waveshape
of the tone and to jump from one por
tion of the table to another.

Control Byte Table
HEX DECIMAL FUNCTION

81 129

82 130

83 131

9N 144+N

AN 160+N<32

CN 192+N<62

FF 255

5:29

The next three bytes are
the new waveshape pattern
JMP - New table address
follows. Low order byte
first , then page byte
JSR - new table address
follows. When finished,
continuing this table at
byte after address byte
N is the number of 16th
notes to be silent at the
tail of a note. Controls
rests and note definition
Selects the tonal range.
Half-tone #0 is set to
one of 32 half-tones giv
ing a basic range of four
octaves
Controls the tempo. Len
gth of a note is propor
tional to N. Largest
value gives a whole note
lasting about 3*5 sec.
RETURN. Stop interpret
ing this table. Acts as
return for 83 JSR in
struction or causes re
turn from Applayer.

To use Applayer with sheet music, one
must first decide on the range of the
half tones. This must sometimes be
changed in the middle of the song. For
example, the music for "Turkey in the
Straw", which appears later, was in the
key of C; for the first part of
the song I used the following table.

NOTE C D E F G A B C D
TONE #0 2 M 5 7 9 B C E

The tonal range was set with a control
byte, BO. In the chorus, the range of
the melody shifts up; there the tonal
range is set with a B7 and the table is

NOTE G A B C D E F G A
TONE# 0 2 4 5 7 9 A C E

(The actual key is determined by the
wave shape pattern as well as the tonal
range control byte. For the pattern
used, 05 05 05, the fundamental for the
note written as C would be about 346Hz,
which is closer to F.)
Rests can be accomplished with a 9N
control byte and a note byte. For ex
ample, 94 10 is a quarter rest, 98 30
is a half rest etc. This control is
normally set at 91 for notes distinct
ly separated, or to 90 for notes that
should run together.

Let's try to construct a table that
Applayer can use to play a tune. We
can start simply with "Twinkle, Twinkle
Little Star". That tune has four lines
the first and fourth are identical, as
are the second and third. So our table
will be constructed to:

The second line can follow at 0B10:

0B10- 17 17 15 15 IH 14 32 FF

Now we can start on step 1. I'll sug
gest the following to start; you'll
want to make changes:

0B20- B0 81 05 05 05 E0 91

The above determines the tonal range,
the tone wave shape, the tempo, and a
sixteenth note rest out of every note
to keep the notes distinct. To run
them together, use 90 instead of 91.
Steps 2 - 6 can follow immediately:

0B20- 83
0B28- 00 0B 83 10 0B 83 10 0B
0B30- 83 00 0B FF

That completes the table for "Twinkle,
Twinkle". We now have to tell Applayer
where it is and turn it on. From BASIC
we must set up some zero page locations
first and then JSR to Applayer:
(Don't forget to set L0MEM before run
ning; 2900 will do for this table.)

(low order byte of the
table address, 0B20)
(high order byte of the
table address, 0B20)
(high order byte of 1st
pg of Applayer program)
(16 & 17 contain the

tone table address)

(jump subroutine to
092A)

100 POKE 19,32

110 POKE 20,11

120 POKE 1,8

130 POKE 17,8

140
120

POKE
CALL

16,0
2346

1. Set up the tonal range, tone pat
tern and tempo that we want

2. JSR to a table for the first line
3. JSR to a table for the second line
4. Repeat #3
5. Repeat #2
6. Return
7. First line table and return
8. Second line table and return
Since unfortunately Applayer is not
symbolic, it will be easier to con
struct the tables in reverse, so that
we can know where to go in steps 2-6.
The note table for the first line can
go at 0B00 and looks like:

0B00- 10 10 17 17 19 19 37 15
0B08- 15 14 14 12 12 30 FF FF

We can also make a short program in as
sembly language to set up the zero page
locations. See routine ZERO, location
09C0 in the listing.

This initialization can be used most
easily by reserving the AOO page, or
much of it, as a "Table of Contents"
for the various note tables elsewhere
in memory. To do this with "Twinkle,
Twinkle" we add the following table:

0A20- 02 20 0B

Which jumps immediately to the table at
0B20. With this convention, we can
move from table to table by changing
only the byte at 9D0 (2512 decimal).

5:30

S D U i B i a Q J

We can use this initialization from
BASIC, too, by changing the last in
struction to RTS:
100 POKE 2512,32 LOW ORDER TABLE BYTE
110 POKE 2538,96 CHANGE INST. AT 09EA
120 CALL 2496 TO RTS.
From the monitor:
will do.

*9D0:20
*9C0G

Tone Table

If, as I, you quickly tire of "Twinkle,
Twinkle", you may wish to play with
"Turkey in the Straw". The table fol
lows; its structure will be left as an
exercise.
From the monitor:

will play it.

*9D0:0
*9C0G

0A00 03 90 OF 83 90 OF FF

0F00 90 1C 1A 92 38 90 18 1A
0F08 18 1? 10 11 91 U 13 33
0F10 33 90 18 1A 92 ?C 3C 90
0F18 1C 1A 18 1A 91 1C 38 10
0F20 38 90 1C 1A 92 38 90 18
0F28 1A 18 13 91 10 11 13 53
0F30 3̂ 90 18 1A 91 3C 3F 90
0F^8 IF 1C 18 1A 1C 18 92 3A
0F40 94 78 91 FF
0F50 01 55 55 55 FF
0F58 01 05 05 05 FF
0F60 15 18 18 15 78 FF
OF68 16 1A 1A 16 7A FF
0F70 1D 1D 1D 1D 18 18 18 18
0F78 35 15 15 33 90 11 13 91
0F80 15 18 18 18 90 18 15 11
0F88 13 91 15 15 13 13 71 FF
0F90 03 58 OF D4 BO 83 00 OF
0F98 B7 83 60 OF 83 50 OF 83
0FA0 60 OF 83 50 OF 83 68 OF
0FA8 83 50 OF 83 68 OF 83 50
0FB0 OF 83 70 OF FF

5:31

0800 AO 03 68 03 38 03 08 03
0808 EO 02 B8 02 90 02 68 02
0310 48 82 28 02 08 02 E8 01
0818 DO 01 B4 01 9C 01 84 01
0820 70 01 5C 01 48 01 34 01
0828 24 01 14 01 04 01 F4 00
08^0 E8 00 DA 00 CE 00 C2 00
0838 B8 00 AE 00 A4 00 9A 00
0840 92 00 8A 00 82 00 7A 00
0848 74 00 6D 00 67 00 61 00
0850 5C 00 57 00 52 00 4D 00
0858 49 00 45 00 41 00 3D 00

SPEHKEHSY
50FTIUHFE

for APPLE-II

now available at
fine computer stores

IF
DEALER INQUIRIES INVITED.
SPEAKEASY SOFTWARE LTD.

BOX 1220
KEMPTVILLE, ONTARIO K0G 1J0

APPLAYER MUSIC INTERPRETER

R. F. SUITOR APRIL 1978

TIMING LOOP
LOCATIONS 0 THROUGH 7 ARE SET BY CALLING ROUTINE
8 CYCLE LOOP TIMES Y REG PLUS 0-7 CYCLES
DETERMINED BY ENTRY POINT

0860 ORG $0860

0860 EA TIME NOP
0861 EA NOP
0862 EA NOP
0863 88 TIMEA DEY
0864 85 45 STA $0045 ANY INNOCUOUS 3 CYCLE INSTRUCTION
0866 DO FB BNE TIMEA BASIC 8 CYCLE LOOP
0868 FO 05 BEQ TIMEC
086A 88 TIMEB DEY
086B EA NOP
066C EA NOP
086D DO F4 BNE TIMEA
086F 24 04 TIMEC BIT $0004 START CHECK OF BIT PATTERN
0871 38 SEC IN 2, 3, AND 4
0872 30 02 BMI TIMED
0874 EA NOP
0875 18 CLC
0876 26 02 TIMED ROL $0002
0878 26 03 ROL $0003
087A 26 04 ROL $0004
087C 90 03 BCC TIMEE
087E AD 30 CO LDA $C030 TOGGLE SPEAKER
0881 C6 06 TIMEE DEC $0006 DURATION OF NOTE IN
0883 DO 05 BNE TIMEF NO. OF CYCLES IN LOCATIONS
0885 C6 07 DEC $0007 6 AND 7
0887 DO 05 BNE TIMEG
0889 60 RTS
088A EA TIMEF NOP TIMING EQUALIZATION
088B EA NOP
088C DO 00 BNE TIMEG
088E A4 05 TIMEG LDY $0005
0890 6C 00 00 JMI $0000

SCALING ROUTINE FOR CYCLE DURATION
CALCULATION LOC 6,7 = A REG * LOC 50,51

0893 85 45 SCALE STA $0045
0895 A9 00 LDAIM $00
0897 85 06 STA $0006
0899 85 07 STA $0007
089B A2 05 LDXIM $05
089D 18 CLC
089E 66 07 SCALEX ROR $0007
08A0 66 06 ROR $0006
08A2 46 45 LSR $0045
08A4 90 OC BCC SCALEA

5:32

lsa()@ia<3i

08A6 A5 06 LDA $0006
08A8 65 50 ADC $0050
08AA 85 06 STA $0006
08AC A5 07 LDA $0007
08AE 65 51 ADC $0051
08B0 85 07 STA $0007
08B2 CA SCALEA DEX
08B3 10 E9 BPL SCALEX
08B5 E6 07 INC $0007
08B7 60 RTS

08BE ORG $08BE

DUE TO SIMPLE LOGIC IN TIMING ROUTINE

NOTE PLAYING ROUTINE
Y REG HAS HALF-TONE INDEX

08BE A5 12 NOTE LDA $0012 NOTE LENGTH
08C0 85 52 STA $0052
08C2 A5 OF LDA $000F NOTE TABLE OFFSET
08C4 85 10 STA $0010
08C6 B1 10 LDAIY $0010 LOW ORDER BYTE OF MACHINE
08C8 38 SEC CYCLES PER PERIOD
08C9 85 54 STA $0054
08CB E9 35 SBCIM $35 CYCLES USED UP TIMING OVERHEAD
08CD 85 08 STA $0008
08CF C8 INY
08D0 B1 10 LDAIY $0010 HIGH ORDER BYTE OF MACHINE
08D2 85 55 STA $0055 CYCLES PER PERIOD
08D4 E9 00 SBCIM $00
08D6 85 09 STA $0009
08D8 A9 00 LDAIM $00
08 DA 85 50 STA $0050
08 DC 85 51 STA $0051
08DE 85 53 STA $0053
08E0 AO 10 LDYIM $10
08E2 20 86 FB JSR $FB86

THIS PART IS PARTICULAR TO APPLE. THE DIVIDE
ROUTINE AT FB86 IS USED. OR, PROVIDE A ROUTINE
WHICH DIVIDES LOCS 54,55 BY 52,53 AND LEAVES THE
RESULT IN 50,51 FOR THE SCALING ROUTINE.

08E5 A5 08
08E7 48
08E8 46 09
08EA 6A
08EB 46 09
08ED 6A
08EE 46 09
08FO 6A
08F1 85 05
0&F3 68
08F4 29 07
08F6 AA
08F7 BD F8 09
08FA 85 00

LDA $0008
PHA
LSR $0009
RORA
LSR $0009
RORA
LSR $0009
RORA
STA $0005
PLA
AND1M $07
TAX
LDAX TTABLE
STA $0000

LEFT OVER CYCLES DETERMINT
ENTRY POINT

5:33
j

*

08FC A5 OE LDA $000E NOTE DURATION, QUART]
08FE 38 SEC
08FF E5 OD SBC $000D REST PART OF NOTE
0901 FO OF BEQ NOTEB IF NOTHING TO DO
0903 20 93 08 JSR SCALE SCALING ROUTINE
0906 A2 02 LDXIM $02 START PATTERN LOAD
0908 B5 OA NOTEA LDAZX $0A
090A 95 02 STAZX $02
09 0C CA DEX
09 OD 10 F9 BPL NOTEA
09 OF 20 6F 08 JSR TIMEC TIMING ROUTINE
0912 A5 OD NOTEB LDA $000D REST PART OF NOTE
0914 FO OE BEQ MAIN IF NOTHING TO DO
0916 20 93 08 JSR SCALE SCALING ROUTINE
0919 A9 00 LDAIM $00
091B 85 02 STA $0002 ZERO OUT PATTERN FOR
091D 85 03 STA $0003 REST PART
091F 85 04 STA $0004
0921 20 6F 08 JSR TIMEC TIMING

0924 ORG $0924

MAIN PART OF INTERPRETER
ENTRY AT "ENTRY"

0924 E6 13 MAIN INC $0013 TABLE ADDRESS
0926 DO 02 BNE ENTRY
0928 E6 14 INC $0014

092A AO 00 ENTRY LDYIM $00
092C B1 13 LDAIY $0013 NEXT TABLE BYTE
092E 30 12 BMI MAINA TO CONTROL SECTION
0930 48 PHA
0931 29 OF ANDIM $0F TONE
0933 OA ASLA
0934 A8 TAY
0935 68 PLA
0936 29 70 ANDIM $70 DURATION
0938 4A LSRA
0939 4A LSRA
09 3 A 4A LSRA
09 3B 69 02 ADCIM $02 TOTAL DURATION IN 16THS
093D 85 OE STA $000E
093F 4C BE 08 JMP NOTE PAY NOTE

0942 C9 FD MAINA CMPIM $FD CO + 3D IS LONGEST NOTE
0944 90 01 BCC MAINB FOR SCALING REASONS
0946 60 RTS

0947

G
O.=r MAINB PHA

0948 OA ASLA
0949 10 07 BPL MAINC
094B 68 PLA
094C 29 3F ANDIM $3F NOTE LENGTH
094E 85 12 STA $0012
0950 BO D2 BCS MAIN UNCONDITIONAL BRANCH

5:34

0952 OA MAINC ASLA
0953 10 08 BPL MAIND
0955 68 PLA
0956 29 1F ANDIM $1F TONAL RANGE INDEX
0958 OA ASLA
0959 85 OF STA $000F
095B 90 C7 BCC MAIN UNCONDITIONAL BRANCH

095D OA MAIND ASLA
095E 10 07 BPL MAINE
0960 68 PLA
0961 29 OF ANDIM $0F /̂ EST FRACTION
0963 85 OD STA $000D
0965 90 BD BCC MAIN UNCONDITIONAL BRANCH

0967 OA MAINE ASLA
0968 10 03 BPL MAING
096A 68 MAINF PLA
096B 90 B7 BCC MAIN DUMMY, CONTROLS NOT INTERPRETED
096D OA MAING ASLA
096E 30 FA BMI MAINF
0970 OA ASLA
0971 10 2B BPL MAINI
0973 68 PLA
0974 AA TAX JSR AND JMP SECTION
0975 4A LSRA
0976 90 OA BCC MAINH
0978 A5 13 LDA $0013 JSR SECTION, PUSH RETURN TABLE
09 7 A 69 01 ADCIM •$01 ADDRESS ON TO STACK
097C 48 PHA
097D A5 14 LDA $0014
097F 69 00 ADCIM $00
0981 48 PHA
0982 C8 MAINH INY
0983 B1 13 LDAIY $0013 GET NEW ADDRESS
0985 48 PHA
0986 C8 INY
0987 B1 13 LDAIY $0013
0989 85 14 STA $0014
09 8B 68 PLA
098C 85 13 STA $0013
098E 8A TXA AND STORE IT FROM BEGINNING
098F 4A LSRA OF SELECTION
0990 90 98 BCC ENTRY JMP
0992 20 2A 09 JSR ENTRY JSR
0995 68 PLA
0996 85 14 STA $0014 PULL ADDRESS AND STORE IT
0998 68 PLA
0999 85 13 STA $0013
099B 18 CLC
099C 90 86 BCC MAIN UNCONDITIONAL BRANCH

099E 68 MAINI PLA
099F AO 03 LDYIM $03 GET NEW PATTERN AND
09A1 B1 13 MAINJ LDAIY $0013 STORE IT

5:35

GSM® a®
J

d

09A3 99 09 00 STAY $0009
09A6 88 DEY
09A7 DO F8 BNE MAINJ
09A9 A5 13 LDA $0013
09AB 69 03 ADCIM $03 JUMP OVER PATTERN
09AD 85 13 STA $0013
09AF 90 02 BCC MAINK
09B1 E6 14 INC $0014
09B3 4C 24 09 MAINK JMP MAIN

09C0 ORG $09C0

INITIALIZATION FOR ZERO PAGE

09C0 D8 ZERO CLD JUST IN CASE
09C1 A9 00 LDAIM $00
09C3 85 10 STA $0010
09C5 A9 08 LDAIM $08
09C7 85 11 STA $0011
09C9 85 01 STA $0001
09CB A9 OA LDAIM $0A
09 CD 85 14 STA $0014 NOTE TABLE PAGE
09CF A9 20 LDAIM $20
09D1 85 13 STA $0013 NTOE TABLE BYTE
09D3 A9 01 LDAIM $01
09D5 85 OD STA $000D REST 16THS
09D7 A9 20 LDAIM $20
09D9 85 12 STA $0012 NOTE LENGTH, CONTROLS TEMPO
09DB A9 20 LDAIM $20
09 DD 85 OF STA $000F TONAL RANGE INDEX
09 DF A9 05 LDAIM $05
09E1 85 OA STA $000A WAVE SHAPE PATTERN
09E3 85 OB STA $000B
09E5 85 OC STA $000C
09E7 20 2A 09 JSR ENTRY TO APPLAYER
09EA 4C 69 FF JMP $FF69 TO MONITOR, AFTER THE BEEP

09F8 ORG $09F8

TABLE OF ENTRY POINTS FOR TIMING ROUTINE

09F8 63 TTABLE = $63
09F9 6A = $6A
09FA 62 = $62
09FB 6D = $6D
09FC 61 = $61
09FD 6C = $6C
09FE 60 ~ $60
09FF 6B = $6B
ENTRY 092A MAIN 0924 MAINA 0942 MAINB 0947
MAINC 0952 MAIND 095D MAINE 0967 MAINF 096A
MAING 096D MAINH 0982 MAINI 099E MAINJ 09A1
MAINK 09B3 NOTE 08BE NOTEA 0908 NOTEB 0912
SCALE 0893 SCALEA 08B2 TIME 0860 TIMEA 0863
TIMEB 086A TIMEC 086F TIMED 0876 TIMEE 0881
TIMEF 088A TIMEG 088E TTABLE 09F8 ZERO 09C0

5:36

6502 BIBLIOGRAPHY
PART IV

William Dial
438 Roslyn Avenue
Akron, UH 44320

301. Michels, Richard E. "How to Buy an Apartment Building", Interface Age 3,
No. 1, pp 94-99 (Jan 1978)
A 6502 FOCAL based system for handling the many factors involved via
a computer decision making program.

302. Woods, Larry "How Are You Feeling Today?" Kilobaud No.14 ,pp24-30(Feb 1978)
Biorhythms with your KIM are displayed on the KIM readout.

303- Craig, John "Editor's Remarks" Kilobaud No. 14 p 22 (Feb 1978)
In a discussion of Microsoft Level II BASIC it is pointed out that Micro
soft BASIC is being used on Altair 6800 and 8080, TRS-80, and 6502 based
systems 0SI, PET> KIM and Apple (floating-point version).

304. Bishop, Robert J. "Star Wars" Kilobaud No. 14 pp52-56 (Feb. 1978)
An Apple-II graphics game based on the 6502.

305. Blankenship, John "Expand Your KIM! Part 3" Kilobaud pp68-71 (Feb. 1978)
This installment covers bus control board and memory.

306. Burhans, R.W. "How Much Memory for a KIM?" Kilobaud p 118 (Feb. 1978)
Decoding the KIM for 28K.

307. Pearce, Craig A., p.6 suggestions for running graphics on the PET.
Julin, George, pp6-7, letter on PET graphics.
Stuck, H.L. p 7, more on the PET.
Above three are letters in Peoples Computers No. 4, (Jan-Feb. 1978)

308. Wells, Edna H. "Program Abstract" Peoples Computers p 7 (Jan-Feb. 1978)
Program for the Commodore PET with 8K BASIC, entitled Graphics-to ASCII
Utility— ASCIIGRAPH.

309. Cole, Phyllis "SPOT-The Society of PET Owners and Trainers", Peoples
Computers No. 4, pp 16—19 (Jan-Feb 1978)
Notes for the Users of the PET.

310. Inman, Don "The Data Handler User's Manual: Conclusion" Peoples Computers
No. 4 pp24-31 (Jan-Feb 1978)
The final installment of this series covers simple and inexpensive
output devices.

311. Inman, Don "The First Book of KIM, Peoples Computers No. 4 p34 (Jan-Feb1978)
A good review of this excellent book.

312. Braun, Ludwig "Magic for Educators— Microcomputers" Personal Computing, 2.
No. 1, pp 30-40 (Jan. 1978)
Discussion of micros includes the 6502 based Apple II and the PET.

313- Helmers, Carl "An Apple to Byte", BYTE 3., No. 3, P. 18-46 (Mar. 1978)
A user's reactions to the Apple II, with an example of a simple
"color sketchboard" application.

314. Fylstra, Dan "User's Report: The PET 2001", BYTE,pp114-127 (Mar. 1978)
A fairly comprehensive report on the PET.

315. Brader, David, "K0MPUUTAR Updates", BYTE ppl31-132 (Mar. 1978)
In a letter Brader responds to some inquiries on his K0MPUUTAR system
based on 6502 which was published in BYTE, Nov. 1977.

316. Jennings, Peter R., "Microchess 1 . 5 versus Dark Horse", BYTE No. 3
pp 166-167 (March 1978)
Microchess 1.5 is Jenning's new extended version of the original Micro
chess. It occupies 2.5K and runs on KIM-1 with expanded memory. It is
still being developed but in a test game with Dark Horse, a 24K program
written in Fortran IV, the new version did very well indeed.

5:37

317- Rindsberg, Don "Here's HUEY!...super calculator for the 6502", Kilobaud,
No. 12, pp 94-99 (December 1977)

The calculating power of FORTRAN with trig functions, natural and
common logs, exponential functions, all in 2.5K.

318. Finkel, LeRoy "Every Home (School) Should Have a PET"
Calculators/Computers, page 83 (October 1977)

319- Anon, "12-Test Benchmark Study Results Show How Microprocessors Stack Up
(8080, 6800, 6502)", EDN, page 19 (November 20, 1977)

320. Gordon, H.T. "Decoding Efficiency and Speed", DDJ 3, Issue 2, No. 22,
pp 5-7 (Feb., 1978)

Pros and cons of table look-up in 650X microprocessors.
321. Green, Wayne "Publishers Remarks", Kilobaud, No. 16, p 4 (April 1978)

In a column on microprocessors, Green indicates that MOS Technology has
a SuperKIM being readied and also that books on expanding the KIM system
are coming out.

322. Carpenter, Chuck "Letters: KIM-1, ACT-1; The Scene", Kilobaud p 18 (Apr 1978
A generally favorable report of one user's experience in interfacing and
using ACT-1 with the KIM-1.

323- Braun, Ludwig, "PET Problems", Personal Computing No. 3, PP 5-6 (March 1978)
Some observations by a PET owner.

324. Lasher, Dana "The Exterminator— for Buggy KIMs" 73 Magazine (April, 1978)
Hardware and Software for a debugging facility.

325- Eaton, John "Now Anyone Can Afford a Keyboard" 73 Magazine (April, 1978)
A melding of a surplus keyboard, KIM and software.

326. Foster, Caxton C. "Programming a Microcomputer: 6502" Addison-Wesley
Publishing Company, Reading, Mass. 1978
Caxton C. Foster of the University of Massachusetts, Amherst, has put
together a very helpful book on programming the 6502 using KIM-1 as a
lab tool.

327. Barden, William, Jr. "Computer Corner - 6502" Radio-Electronics (May 1978)
An in-depth look at the widely used 6502 microprocessor.

328. Wozniak, Steve "Renumbering and Appending Basic Programs on the Apple-II
Computer" DDJ Issue 3 (March 1978)

Comments and techniques for joining two BASIC programs into a single
larger one.

329. Eaton, John "A KIM Binary Calculator" DDJ Issue 3 (March 1978)
An easier way to solve binary math programs.

330. Wells, Ralph "PET's First Report Card" Kilobaud pp 22-30 (May 1978)
An objective evaluation of PET serial No. 171.

331. Blankenship, John "Expand you KIM" Kilobaud, pp 60-63 (May 1978)
Part 5; A/D interfacing for joysticks. Four channels.

332. Holland, Hugh C. "KIM Notes" BYTE 3 No. 4, p 163 (April 1978)
Correction for Hal Chamberlin's Four Part Harmony Program published
in September 1977 BYTE.

333. Anon., "Byte's Bits", BYTE 3 , No. 4, p 166 (April 1978)
Notes on picking the right color television for an Apple.

334. KIM-1 User Notes, Issue 9/10, (January - March 1978)
Rehnke, Eric "Have you been on the Bus" page 1.
Kushnier, Ron "Space War Phaser Sound" page 2.
Butterfield, Jim "Skeet Shoot" page 2.
Edwards, Lew "KIM D-BUG" page 3.
Flacco, Roy "Graphics Interface" page 4.
Wood, James "RPN Calculator Interface to KIM" page 6.
Bennett, Timothy "KUN Index by Subject, Issues 1 to 6" page 12.
Niessen, Ron "On Verifying Programs in RAM" page 12.
Pottinger, Hardy "Greeting Card Generator" page 13.

5:38

A BLOCK HEX DUHP AND CHARACTER HAP
UTILITY PROGRAM! FOR THE KIN-1

J. C. Williams
35 Greenbrook Drive
Cranbury, NJ 08512

Here's a useful, fully relocatable
utility program which will dump a spec
ified block of memory from a KIM to a
terminal. At the user's option, a hex
dump with an ASCII character map is
produced.
The hex dump will allow the programmer
to rapidly check memory contents
against a "master" listing when loading
or debugging programs. With a printing
terminal, the hex dump produces docu
mentation of machine code to complement
an assembly listing of a program.

A character map is useful if the block
being dumped is an ASCII file. An
example would be source code being pre
pared with an editor for later assem
bly. The map shows what the file is
and where it is in case a minor correc
tion is needed using the KIM monitor.
To use this utility program:
1. Load the code anywhere you want it,
in RAM or PROM memory.

2. Define the block to be dumped just
as for a KIM-1 tape dump:

BLOCK STARTING ADDRESS 17F5 (low)
17F6 (high)

BLOCK ENDING ADDRESS+1 17F7 (low)
17F8 (high)

3. Select the MAP/NOMAP option:

MAP mode 00 in 17F9
NOMAP mode FF in 17F9

H. Run the program starting at the
first instruction. At the end of the
dump, control will return to the KIM

SYMBOL TABLE
CRLF 1E2F DOMAP 026E
EAL 17F7 EXT 1C4F
LINE 020D LINEA 0217
MODE 17F9 NXLN 0285
POINTH 00FB POINTL 00FA
PTBT 0243 SAH 17F6
TMODE 00F9 TSTEND 0247

monitor. The examples following the
assembly listing will give you the
idea.

The program as listed dumps 16 decimal
bytes per line. Users with TVT's may
want to initialize the line byte count
er for 8 decimal bytes per line to al
low the hex with MAP format to fit the
display. To make this change, replace
the $0F at $021E with $07-
Another possible change is to have the
program exit to a location other than
the KIM-1 monitor. Exit to a text ed
itor or tape dump may be convenient.
Since the MAP/NOMAP option is deter
mined by the most significant (sign)
bit of what is stored at $17F9, a suit
able tape ID number can be placed there
for use of the KIM-1 tape dump or
Hypertape. Use ID's from $01-$7F for
files needing no character map and ID's
from $80-$FE for ASCII files. Start
the tape recorder in RECORD when the
dump to the terminal is a few seconds
from completion.

The flowchart will assist users wanting
to make major alterations. Of neces
sity, ASCII non-printable characters
are mapped as two hex digits. If' other
ASCII codes have special meaning for
the user's terminal, a patch will be
necessary to trap them. Single-step-
ping through this program can't be done
because it uses the monitor's "display"
locations. This is a small price to
pay in order to use the monitor's sub
routines. If use with a non-KIM 650X
system is desired, the subroutines used
must preserve the X register.

DONE 028A EAH 17F8
INCPT 1F63 INIT 0200
LINEB 0228 LNTST 0279
OUTCH 1EA0 OUTSP 1E9E
PRTBYT 1E3B PRTPNT 1E1E
SAL 17F5 SP0 0262

5:39
J

BLOCK HEX DUMP WITH CHARACTER MAP

f START)~ INITIALIZE POINTER
PRINT CRLF

(LINE W-
T TSETT "NOMAP" TEMPORARY MODE

PRINT CRLF
ILINE1

SAVE POINTER ON STACK
SET BYTE COUNTER FOR 16
PRINT 3 SPACES

(LINE2)* -
J lPRINT i SPACE

PRINT BYTE @ (POINTL) AS 2
HEX DIGITS OR 1 CHARACTER
AS REQUIRED BY TEMP. MODE
AND PRINTABILITY

T
(TSTEND)

--
| INCREMENT POINTER-

NO

DONE YES

PRINT CRLF
FIX STACK
EXIT TO MONITOR

»(LNTST)

DECREMENT BYTE COUNTER

j SPACE OVER TO MAP~1

(DOMAP)<-
jLSET "MAP" TMODE

RESET POINTER TO
LINE START

REMOVE SAVED POINTER
FROM STACK

5:40

BLOCK HEX DUMP AND CHARACTER MAP
UTILITY PROGRAM FOR KIM-1

0200

J. C. WILLIAMS - 1978

ORG $0200

MEMORY LOCATIONS

0200
0200
0200
0200
0200
0200
0200
0200
0200

0200
0200
0200
0200
0200
0200

0200 AD F5 17
0203 85 FA
0205 AD F6 17
0208 85 FB
020A 20 2F 1E

020D A9 00
020F 85 F9
0211 20 2F 1E
0214 20 1E 1E
0217 A5 FA
0219 48
021A A5 FB
021C 48
021D A2 OF
021F 20 9E 1E
0222 20 9E 1E
0225 20 9E 1E
0228 20 9E 1E
022B AO 00
022D B1 FA
022F 48
0230 24 F9
0232 10 OF
0234 29 7F
0236 C9 20
0238 30 09
023A 68

TMODE
POINTL
POINTH
SAL
SAH
EAL
EAH
MODE
EXT

OUTCH
CRLF
OUTSP

INCPT

INIT

LINE

LINEA

LINEB

* $00F9
* $OOFA
* $OOFB
* $17F5
* $17F6
* $17F7
* $17F8
* $17F9* $1C4F

’INES IN KIM

* $1EA0
* $1E2F
* $1E9E
* $1E3B
* $1E1E
* $1F63

LDA SAL
STA POINTL
LDA SAH
STA POINTH
JSR CRLF

LDAIM $00
STA TMODE
JSR CRLF
JSR PRTPNT
LDA POINTL
PHA
LDA POINTH
PHA
LDXIM $0F
JSR OUTSP
JSR OUTSP
JSR OUTSP
JSR OUTSP
LDYIM $00
LDAIY POINTL
PHA
BIT TMODE
BPL PTBT
ANDIM $7F
CMPIM $20
BMI PTBT
PLA

TEMPORARY MODE FLAG
POINTER

BLOCK STARTING ADDRESS

BLOCK ENDING ADDRESS + 1

00 FOR NO MAP, FF FOR HEX AND MAP
EXIT TO KIM MONITOR

PRINTS BYTE IN A AS ONE ASCII CHARACTER
CARRIAGE RETURN AND LINE FEED
PRINTS ONE SPACE
PRINTS BYTE IN A AS TWO HEX DIGITS
PRINTS POINTER
INCREMENTS POINTER

INITIALIZE POINTER

START A LINE
INTI TMODE

A LINE SEGMENT

INIT BYTE COUNTER
OUTPUT SOME SPACES

GET THE BYTE
POINTL AND SAME ON STACK

IN MAP MODE?
NO
YES. TEST FOR PRINTABLE
CHARACTER
PRINT AS TWO HEX DIGITS

5:41

isaj's'ii1*)!

023B 20 AO 1E JSR OUTCH PRINT AS ONE ASCII CHARACTER
023E 20 9E 1E JSR OUTSP AND A SPACE
0241 10 04 BPL TSTEND UNCONDITIONAL BRANCH
0243 68 PTBT PLA RECOVER BYTE AND
0244 20 3B 1E JSR PRTBYT PRINT AS TWO HEX DIGITS

0247 20 63 1F TSTEND JSR INCPT INCREMENT POINTER
024A A5 FA LDA POINTL AND TEST AGAINST ENDING
024C CD F7 17 CMP EAL ADDRESS + 1
024F A5 FB LDA POINTH
0251 ED F8 17 SBC EAH
0254 90 23 BCC LNTST NOT BLOCK END. TEST FOR LINE END
0256 2C F9 17 BIT MODE END OF BLOCK REACHED. IS MAP
0259 10 2F BPL DONE NEEDED. DONE IF NOT.
025B 24 F9 BIT TMODE HAS MAP BEEN DONE?
025D 30 2B BMI DONE YES, EXIT
025F CA DEX
0260 30 OC BMI DOMAP NO SPACES NEEDED
0262 20 9E 1E SPO JSR OUTSP SPACE OVER TO CHARACTER MAP
0265 20 9E 1E JSR OUTSP
0268 20 9E 1E JSR OUTSP
026B CA DEX
026C 10 F4 BPL SPO

026E C6 F9 DOMAP DEC TMODE DO THE MAP. FIRST SET THE
0270 68 PLA MAP FLAG AND RESET POINTER TO
0271 85 FB STA POINTH START OF LINE
0273 68 PLA
0274 85 FA STA POINTL
0276 38 SEC
0277 BO 9E BCS LINEA AND PRINT THE MAP SEGMENT

0279 CA LNTST DEX TEST FOR END OF LINE
027A 10 AC BPL LINEB NOT AT END. DO THE NEXT BYTE
027C 2C F9 17 BIT MODE END OF LINE SEGMENT REACHED. IS MAP
027F 10 04 BPL NXLN NO, DO THE NEXT LINE
0281 24 F9 BIT TMODE HAS THE MAP SEGMENT BEEN DONE?
0283 10 E9 BPL DOMAP NO, DO IT NOW

0285 68 NXLN PLA DO THE NEXT LINE
0286 68 PLA FIRST FIXT THE STACK
0287 38 SEC
0288 BO 83 BCS LINE DO THE NEXT LINE

028A 20 2F 1E DONE JSR CRLF DONE
028D 68 PLA REMOVE SAVED POINTER FORM STACK
028E 68 PLA
028F 4C 4F 1C JMP EXT EXIT TO KIM MONITOR

5:42

2880 52 17F5
17F5 00 00.
17F6 28 28.
17F7 80 80.
17F8 28 28.
17F9 00 FF.
17FA FF 021E
021E OF 07-
021F 20 0200

BLOCK STARTING ADDRESS = 2800

BLOCK ENDING ADDRESS + 1 = 2880

SELECT MAP OPTION

SELECT 8 LOCATIONS PER LINE

0200 AD G START PROGRAM AT 0200

2800 OD 00 10 20 20 20 42 4C OD 00 10 B
2808 4F 43 4B 20 48 45 58 20 0 C K H E X
2810 44 55 4D 50 20 41 4E 44 D U M P A N
2818 20 43 48 41 52 41 43 54 C H A R A C
2820 45 52 20 4D 41 50 OD 00 E R M A P OD
2828 20 20 20 20 55 54 49 4C U T I
2830 49 54 59 20 50 52 4F 47 I T Y P R 0
2838 52 41 4D 20 46 4F 52 20 R A M F 0 R
2840 4B 49 4D 2D 31 OD 00 30 K I M - 1 OD 00
2848 OD 00 40 20 20 20 4A 2E OD 00 § J
2850 20 43 2E 20 57 49 4C 4C C . W I L
2858 49 41 4D 53 20 2D 20 31 I A M S -

2860 39 37 38 OD 00 50 OD 00 9 7 8 OD 00 P OD
2868 60 20 4F 52 47 20 24 30 0 R G $
2870 32 30 30 OD 00 70 OD 00 2 0 0 OD 00 P OD
2878 80 20 20 20 4D 45 4D 4F 80 M E M

KIM
17F5
17F5 00 00.
17F6 28 28.
17F7 80 80.
17F8 28 28.
17F9 FF 00.
17FA FF 021E
021E 07 OF.
021F 20 0200
0200 AD G

BLOCK STARTING ADDRESS = 2800

BLOCK ENDING ADDRESS + 1 = 2880

SELECT NOMAP OPTION

SELECT 16 LOCATIONS PER LINE

START PROGRAM AT 0200

2800 OD 00 10 20 20 20 42 4C 4F 43 4B 20 48 45 58 20
2810 44 55 4D 50 20 41 4E 44 20 43 48 41 52 41 43 54
2820 45 52 20 4D 41 50 OD 00 20 20 20 20 55 54 49 4C
2830 49 54 59 20 50 52 4F 47 52 41 4D 20 46 4F 52 20
2840 4B 49 4D 2D 31 OD 00 30 OD 00 40 20 20 20 4A 2E
2850 20 43 2E 20 57 49 4C 4C 49 41 4D 53 20 2D 20 31
2860 39 37 38 OD 00 50 OD 00 60 20 4F 52 47 20 24 30
2870 32 30 30 OD 00 70 OD 00 80 20 20 20 4D 45 4D 4F

5:43

APPLE II ACCESSORIES AND SOFTMARE

Chuck Carpenter W5USJ
2228 Montclair Place
Carrollton, TX 75006

Apple II owners may find a couple of
new items as interesting as I did.
First, a renumber and append machine
language program. This was published
in Dr. Dobbs, Issue #23, April 1978.
Renumber lets you change line numbers
on your entire program or any part of
it. It renumbers branching statements
too. Append lets you link two programs
together. Any program you have in the
machine needs to have higher line num
bers than the one being loaded from
tape. Renumber lets you do this. POKE
commands load the various starting and
ending addresses. CALL commands exe
cute the renumber or append program.
Caution: Renumber and Append will work
only with integer BASIC.

Second, the serial interface board from
Electronic Systems, San Jose, CA. They
are definitely among the "Good Guys".
I ordered the parts on a Thursday (by
phone) and received them the following
Monday. That's what I call rapid re
sponse. I ordered the serial board as
sembled and the TTL to RS232 board and
the MODEM board as kits. I don't have
the latter two built yet, but I intend
to have communicating ability when I
get done. Workmanship and quality on
the assembled board and the kits was
satisfactory (and I'm fussy). The ser
ial board instructions are a bit vague.
Unless you are quite familiar with the
Apple's monitor, BASIC and various I/O
port commands and addresses, you are
likely to have some problems. Also, I
couldn't make the terminal program work
and there was no explanation of what it
was supposed to do.
However, the price is attractive ($62
assembled and tested, $42 kit) and the
service was great. I expect eventually
that I'll be able to have an inexpen
sive communicating terminal. The MODEM
board can be originate or answer so
I'll have to use two if I want to do
both. A note of caution here too. As

written, the machine language program
starts at page 3 ($0300). Applesoft
BASIC uses the first few bytes of this
page. You'll have to relocate the ter
minal part of the program to use both
integer and floating point BASIC. I
have the serial board connected to my
printer and everything works okay.
I'll pass along the results when I have
the system set up to communicate.
Finally, Apple has a new version of
Applesoft called Applesoft II. This
became available in April 1978. The
new version is 1.5K longer but has all
the standard integer BASIC commands and
a few more. It is not compatible with
previous versions of Applesoft. All
the known problems seem to have been
corrected. It's really nice to be able
to go from one BASIC to the other and
have to remember only the extended cap
abilities, especially for LORES graph
ics. There are commands to FLASH and
RESTORE screen characters, a SPEED com
mand to vary the screen writing rate,
and you can develop HIRES graphics di
rectly from program control. Maybe we
Apple owners should request a retrofit
kit. This way we can catch up on all
of the new goodies that are coming from
Apple. Especially the documentation.

Addendum - by Robert M. Tripp
Speaking of documentation, I was quite
pleased to receive the "Apple II BASIC
Programming Manual" by Jef Raskin, Pub
lished by Apple Computer Company, 1978.
This arrived in the mail, unsolicited.
I assume that all Apple II owners have
received one. If not, write Apple and
ask for it: product #A2L0005X. The
manual is well written and elegantly
printed. My only minor complaint is
that the light green ink used to show
the display contents make the book a
little difficult to read. I hope that
this manual is only the first of many
that we will be seeing from Apple. It
is a very good start.

5:44

QUICK CHANGE ARTISTRY

ENGINEERED SPECIFICALLY FOR
THE KIM-1 MICROCOMPUTER

• Protection of Chips and
Other Components

• View ing Angle of Readout
Enhanced

• Improved Keyboard Position
for Easier Operation

EASILY ASSEMBLED
• Absolutely No

Alteration of KIM-1 Required
• All Fasteners Provided
• Goes Together in M inutes

with a Small Screwdriver

ATTRACTIVE FUNCTIONAL PACKAGE
• Professional Appearance
• Four Color Combinations
• Improves Man/Machine Interface

MADE OF HIGH IMPACT STRENGTH
THERMOFORMED PLASTIC

• Kydex 100*
• Durable
• Molded-ln Color
• Non-Conductive

AVAILABLE FROM STOCK
• Allow Two to Three Weeks for

Processing and Delivery
• No CO D ’s Please
• Dealer Inquiries Invited

TO ORDER:

NAME ____

STREET____

CITY ______

1. F ill in this Coupon (Print orType Please)
2. Attach Check or Money Order and Mail to:

STATE ZIP
Please Ship Prepa id--------SKE V1(s)

@ $23.50 Each
California Residents please pay

$25.03 (Includes Sales Tax)

TM Rohm 4 Haas

the
enclosures
group

55 stevenson, san francisco 94105

Color Desired blue □ beige □
black □ white □

Patent A pp lied For

the Computer Store
63 SOUTH MAIN STREET. WINDSOR LOCKS, CONNECTICUT 06096

203-627-0188

The KIM 1
The Computer Store is pleased to
announce off-the-shelf availa-

bi'ity of Apple II, the
personal computer.

