THE

RViiGRO

6502 JOURNAL

_ g1l
SAMPLE MACHINE LANGUAGE PROGRAM WHELE
A5 INBUTTED FROM THE KEYBOARD
7 ORG 825 10112 1101 _ YELLOW
% LDAIM 102 =7 12 -
? LDXIN 0 o111 “ ' Sa=- <V SE
7 STAX 32768 LIGHT BLUE 1119
7 INX LIGHT GREEN
7 BEQ 3
7 JMp 830
7 MO
7 HOp
7 STAX 330284
7 INX
7 BEQ 3
7 JHP 841
7 BHE
1 END
o010 -
A Simple 6502 DARK BLUE 000 0180
Assembler for the PET BLACE DARK GREEN
by Michael J. McCann
Complete Listings .
Brown and White and Colored All Over
by Richard F. Suitor
Understanding your Apple's Color
SAMPLE MACHINE LARGUAGE PHOGHAM LISTING
B26 0334 A9 §6 LOAIM 102
B3R p33C A2 To LOXIN D
830 D3I3E 9D 00 BO STAX. ¢ 32768
B33 D3K) EA N
83k B3z ¥n 03 BEQ 3
836 344 AC 3E 03 JMF B30 gt o
B39 0347 EA NOP 1hon DO
840 0348 EA HOP
BN 0349 op po A7 STAX 33024 GREEN REL- VIGLET
8kt n3uC- E3 INX \ i
B&5 D3WD Fo 03 BEG . 3 FOREST ' 0100 | 0010 /DEER
847 OIUE NC W9 0F JMP B4 GREEN /' BuE
850 0352 Q0 BHE i
MID BLUE
—

vos L\0E) = S3OF

YEDU3B saso




288 NORFOLK ST. CAMBRIDGE, WASS. 02199 - )
s H o P comer of Hampshire & Norfolk St. 617-661-2670 y
NOW WE HAVE 0S| ’ ’

/ C3-S1 Challenger Il System with

Dual Drive Floppy Compiete with 32K RAM Memory, Dual Drive
$3 590.00 Floppy, Serial Port, cabinets and power suppliss.
i Yo This Chalisngar i1l features'an aight slot heavy--
duty main frame. You add only a serial
ASCI Tarminal,

C2-5S2S 32K RAM Serial Challenger Il with

Dual Drive FGDDD! Comes complete with 32K RAM Memory, Dual
090 Drive Floppy Disk (500,000 characters storags),
33, 00 6502 processor and sarial port. You add only a
sarial ASCI Terminal to be up and running.

C2-S1S Serial Challenger Il with

Single Drive Floppy comes compiete with 16K RAM Memory, Single

s-l 990.00 Drive Floppy Disk (250,000 charatters storage),
6502 processor and serial port. You need to add
anly Seral ASCH Terminal.

C2-S1V Video Challenger Il with.

Slngle Drive HOFPY Comes complete with 16K RAM Memaory, Single
Drive Floppy Disk, 8502 processor, Challenger

$2’490 00 IIP type Video Interface and high quality key-
board. You add ohly a Video Monitor (or RF
penerator and tv set), ,

C2-8P Dfters all features of the Challenger IIP plus more
. room for expansion. The keyboard has a separate

Chaﬂenger e casa with conneclor cable. The roomy cabinet

with 8 Slot Cabinet and heavy duty power supply are designed to

sa 25.00 handle up to eight system boards (ellowing for 6

‘ slols of axpansion).

e

KIMS AND UPGRADES

YF8 4K Memory asse nBled & tested. ....... l?g gﬂ
Egillﬁnger P for low power RAM add.. b by 53

same in kit farm... ceanns A B
98.00 full set of sockets for Ki’i ....................... 10.00
VF8 Motherboord buffered for 4 Bmmh . 65.00
Connector Assembly for KIM to YFB.......... 20.00
8K 5100 Memory Board with instructions X (65.00
same but fully assembled ond tested... ....199.00
C5100 Cobinet cut out for KIM........... ....,.129 1))
3 Connector 5100 Motherboard Assembly..... 75.00
EGES 5100 TIM Kéi ............................... I'H 00
e GRS 5100 6502 CPU Kit.. ............J??.DIJ
B#C,WSA,HE HG. L L T L Ty e CGRS Eluﬂ‘ Fﬂll!f Fl!‘l'l K“‘ '129 ﬂu
‘ i:;gi 3!:-: ;tminn; Bmll;l 1&3643(' d :55 gﬂ
; ‘ ideo Terminal Board Assembla 85.00
G ATARE 1. oo et Al oo R o) T T R e 245 00
€$100 with CBRS Xitex, ISKRAM, TV, KB 1529.00
[TV R P, ", 3=, o e | E N Seme but Assemblad.........ooooovvmveeer . 196%.00
i ¥ TP S-S Pwr Supp. SYSA9Y 1A-12Y 1AGx6X 2, .. ..75.00
PS5 Assambled........ocoomimniiiiiieiininionns 20.00
ADDRESS,. i 0 i iuis snsmassansisessioncrenassissnisivesssses 0T 0F Otder.Clicle “‘l.l- wanfed.$...convvvnennns :
IS.;I“I E"II:;;‘D"I‘]"“ }'n L NSRS, TS ol
2 pping, 1 7t Y- SO e - M R e
CITY iccmaininicsmrannsmssssansasans SEAT Eavinpmren &P e ik Tatal Remittance or I:Iul'- .......... i SE ety 4
i, ST LN : Al el




' 0 AUGUST/SEPTEMBER 1978
u @@. : ISSUE NUMBER SIX

MICRO Stuff and MICROBES 4

Design of a PET/TTY Interface 5
by Charles R. Husbands

Shaping Up Your Apple 11
by Michael Faraday

Apple II Starwars Theme 13
by Andrew H. Eliason ‘

Apple Pi 15
by Robert J. Bishop

A Simple 6502 Assembler for the PET - 17
by Michael J. McCann

The MICRO Software Catalog: III 23
by Mike Rowe

A Debugging Aid for the KIM-1 25
by Albert Gaspar

6502 Interfacing for Beginners: Address Decoding II 29
by Marvin L. De Jong

Brown and White and Colored All Over 33
by Richard F. Suitor

6502 Bibliography: Part V 37
by William Dial

Programming a Micro-Computer: 6502, by Caxton C. Foster 39
Reviewed by James R. Witt, Jr.

PET Composite Video Output 41
by Cal E. Merritt

Power From the PET 42
by Karl E. quosig

Classified Index: MICRO 1 - 6 43

Apple Integer BASIC Subroutine Pack and Load 45
by Richard F. Suitor

A Partial List of PET Scratch Pad Memory Back Cover

by Gary A. Creighton

Advertisers Index

Computer Shop IFC  Computer Components 14
The Enclosures Group 2 Micro-Psych 21
The Computerist, Inc. 10 Connecticut microComputer 22
The Tax Store 12 United Microsystems Corp. 32
AB Computers 12 Darrell's Appleware House 36
Color-Tech TV 13  Personal Software 42
MICRO 13 PET-Shack Software House 42

MICRO is published bi-monthly by The COMPUTERIST, Inc., 56 Central
Square, Chelmsford, MA 01824. Robert M. Tripp, Editor/Publisher.
Controlled Circulation postage paid at Chelmsford, Massachusetts.
Single Copy: $1.50 Annual Subscription: $6.00 (6 issues) in USA
Copyright 1978 by The COMPUTERIST, Inc. All Rights Reserved.

MVIICIRIO]




KEYBOARD WIZARDRY

ENGINEERED SPECIFICALLY FOR ATTRACTIVE FUNCTIONAL
THE CHERRY-PRO KEYBOARD PACKAGE
¢ Space Provided for Power Supply ¢ Professional Appearance
and Additional Boards ¢ Four Color Combinations
e Easy Azcess to Connectors ¢ |mproves Man/Machine Interface
e Keyboard Positioned for Ease MADE OF HIGH IMPACT STRENGTH
of Operation THERMOFORMED PLASTIC
EASILY ASSEMBLED - e Kydex 100*
¢ Requires Absolutely No Altera-- e Durable
tion of the PRO Keyboard ¢ Molded-In Color
¢ All Fasteners Provided ¢ Non-Conductive
* Goes Together in Minutes AVAILABLE FROM STOCK
with a Small Screwdriver e Allow Two to Three Weeks for

Processing and Delivery
¢ No COD’s Please
¢ Dealer Inquiries Invited

TO ORDER: 1. Fillin this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

the

NAME
STREET enclosures
cITY group
STATE ZIp 55 stevenson, san francisco 84105
Please Ship Prepaid SKB 1-1(s) Color Desired blue [ beige O
@$%$33.75 Each black O red 0O
California Residents please pay
$35.94 (Includes Sales Tax) Patent Applied For

* TM Rohm & Haas



There were so many good articles submitted for
this issue of MICRO that we have had to modify
the format slightly to make more room. Most of
the MICRO material has been reduced to approxi-
mately two-thirds its old size, providing about
50% more space per page. While this does make
type smaller, it is still very readable. Some
material, in particular program listings, were
left full size. This new format will permit us
to print a lot more material without increasing
the cost of printing.

How do you get hardcopy from a PET? You could
wait until Commodore comes out with a printer.
Or you could buy one of the PET/RS232 adapters.
Or you can use the techniques and software that
are presented in "Design of a PET/TTY Interface"
to quickly and cheaply use a standard TTY as a
PET printer. The article by Charles R. Husbands
provides both the hardware and the software re-
quired.

If you have wondered about how the characters
formed on your Apple II, read "Shaping Up Your
Apple™ by Michael Faraday. In addition to ex-
plaining how the mechanism works, a couple of
tables make it easy to make your own adapta-
tions.

Now that STARWARS is back at your local drive-
in, it seemed appropriate to print a short pro-
gram by Andrew H. Eliason which presents the
"Apple II Starwars Theme™ - sounds of the main
battle scene played on your Apple. While this
program may give you some insight into the oper-
ation of your Apple, it is really included just
for fun.

On a more serious vein, in spite of its humorous
title, "Apple Pi™ shows how to use BASIC to cal-

culate mathematical functions. Robert J. Bishop
presents the history of calculating Pi, and then
provides a program which, given forty hours, can
calculate the value of Pi to 1000 decimal
places. In case you do not want to run the pro-
gram yourself, the results of his run are print-
ed. It might be a challenge to someone to write
the equivalent code in assembly language and see
how long it takes to run.

One of the most constant complaints of PET
owners is the lack of support for assembly level
programming on the PET, in spite of promises by
Commodore for a ROM or tape of a machine code
monitor. This will be partially alleviated by
"A Simple 6502 Assembler for the PET" by Michael
J. McCann, complete in this issue. The package
presented here consists of the assembler, a save
on tape routine, a load from tape routine, and a
disassembler to produce listings. Two errors in
the listing were discovered after that portion
of MICRO was printed, so please make the follow-
ing changes in the listings:

190 IF VAL(A$)<1 OR VAL(A$)>6 GOTO 180

15020 IF LEN(A$)=3 THEN MN$=A$:0P=0:RETURN
Since the "BASIC 6502 Disassembler™ written by
Michael for the last issue of MICRO was, with|
very minor modification, capable of running on
an Apple as well as a PET, the assembler portion
of this program -is probably also modifyable for
the Apple. The exercise is left for the reader,
as the math books are fond of saying.

Part IITI of the MICRO Software Catalog has eight
entries covering a wide variety of software and

_—WU@E}@

IN THIS ISSUE ...

systems.
readable leader of a paper tape to FOCAL - a DEC
high-level language similar to BASIC.

These range from a program to punch

There is a "Call for Information™ in regards to
a MICRO Hardware Catalog which we hope to start
carrying in the next issue. If you have hard-
ware of interest to the 6502 community, then
follow the instructions and submit your stuff.

A rather neat program which serves as "A Debug-
ging Aid for the KIM-1", written by Albert
Gaspar, provides some good support for the KIM-1
and resides totally in the "extra memory" from
1780 to 17E6. Four basic operations are given:

Insert BREAK points, MOVE blocks of data in
memory, calculate BRANCH offsets, and CONTINUE
execution of the program.

The program is very tightly coded and shows some
ways to really pack your code.

The series on "6502 Interfacing for Beginners"
continues with "Address Decoding II". This ser-
ies, which began last issue and is written by
Marvin L. De Jong, shows the novice how the
microcomputer works via simple hardware and
software projects.

One of the most obvious features of the Apple II
is its color capabilities. The article "Brown
and White and Colored All Over" by Richard F.
Suitor explains in some detail the theory behind
the color of the Apple. He also provides a few
simple BASIC programs to allow the user to do
some experimenting with color.

Part V of the ™6502 Bibliography" by William
Dial covers entries 335 through 360. Due to the
"explosion" of material being written about the
6502, some changes have had to be made in the
organization and content of the bibliography.
Straight advertisements will no longer be refer-
enced or will material contained in flyers.
Minor articles in relatively obscure magazines
may be omitted. And, where a single issue of a
magazine has a lot of articles of interest, the
individual references will be combined under one
general magazine reference.

"Programming a Micro-Computer: 6502"a book by
Caxton C. Foster, is reviewed by James R. Witt,
Jr.

Cal E. Merritt discusses the "PET Composite
Video Output™, showing how it works and how to
connect up to it. Karl E. Quosig whows how to
get "Power from the PET", a method of getting
+5V from your PET.

A "Classified Index: MICRO 1-6" 1lists all of
the major articles and advertisements from the
first volume/year of MICRO. Material is classi-
fied as General, KIM-1, Apple, PET, or Ads.

A very useful utility package is presented by
Richard F. Suitor in "Apple Integer BASIC Sub-
routine Pack and Load™. The assembly level pro-
gram, which is presented in its entirety,
permits the user to simply Pack and save his
machine code on tape and the Load and unpack it.

"A Partial List of PET Scratch Pad Memory" is
printed on the back cover as a reference guide
for PET owners. This material was prepared by
Gary A. Creighton, and should make using and un-
derstanding your PET much easier.




MICRO STUFF AND MICROBES

Apple Peelings

[Excerpts from a letter by Donald C. Scouten to
the Editor, EDN, regarding the Apple/PIA stuff.]

"The difficulty in using PIA's and VIA's on the
Apple II arises because of the way the Apple
decodes the I/0 select (pin 1) and device select
(pin 41). These are activated only during phase
2 of a cycle that addresses the particular con-
nector under consideration. Thus, if these se-
lects are used to activate the CS (or not
CS) on a PIA, the enable pin (pin 25) and the CS
go active almost simultaneously. However the
data sheets clearly require a 180 nsec setup
time for the CS before the enable becomes ac-
tive. This setup time is normally available on
6502 bus since the addresses are guaranteed to
be valid 300 nsec into phase 1 (and thus your
circuit worked on a KIM).., It is, however,
clearly impossible to use the internal Apple de-
coding and satisfy the PIA requirement of
180 nsec setup time.

The above problem should not be interpreted as a
defect in the Apple II since it is a self con-
sistant system and I/0 ports can easily be added
if desired.

My solution was to build a simple address de-
coder on my I/0 board that uses the address
lines instead of the selects. Thus the CS of
the VIA is activated with sufficient setup time
and the VIA works properly."

A note from Paul Farmer of Microproducts, 1024
17th St., Hermosa Beach, CA 90254, suggests
using three buffers in series on a CMOS 4050
IC chip. Either phase 0 or phase 2 can be used
as the input with enough delay for the setup of
a PIA or VIA.

PET Droppings

A new idea in magazines: CURSOR (tm) MAGAZINE is
a monthly cassette of programs for the PET. You
get five programs per month on cassette via 1st
class mail. At $24.00 per year (12 issues),the
cost per program is $.40 cents each. Of course,
the actual value of the programs depends on
their value to you. Write CURSOR, P.0. Box 550,
Goleta, CA, 93017 for info or call 805/967-0905.

Mark Zimmerman, 619 Woodland Drive, Sierra Madre
CA 91024 write about the LIFE game edges:

"If one copies the top and bottom edges of the
screen (& left & right edges) to opposite sides,
then simply applying the LIFE algorithm to the
central (omitting extreme edges) arena gives
correct wrap-around (toroidal) edge structure.
Example:

Kim Klippings

The San Fernando Valley KIM-1 Users Club is off
and running, according to a report from Jim
Zuber., Meetings will be held the second Wed.
of each month at 7:30 pm. Until another place
can be found, meetings will be held in Jim's
apartment: 20224 Cohassett #16, Canoga Park, CA
91306. Phone for inof: 213/341-1610.

Michael Chibnik of 10445 Canoga Ave. Chatsworth
CA 91311, had a few comments about Microsoft
BASIC for the KIM: "I didn't get enough inform-
ation on the peripherals that were used. A note
about Microsoft BASIC is that most of the people
who had bought it (in the above club) did not
like the fact that the code for the interpreter
is self modifying in many places and that it is
not PROMable." [Editor: Someone reported that
they had asked Johnson Computer about the PROM-
ability of the Microsoft BASIC and was told that
it is PROMable. Does anyone have any hard info
on this subject?]

Robert Ford Denison, RD § Teeter Road, Ithaca,
NY 14850 has developed a resident symbolic 6502
assembler which runs in 3K (4K recommended) and
uses a "Qwerty" keyboard for input and the KIM
display for output. To test it he is "offering
a free 'sneak preview' of the assembler to a
small group of 6502 users (since he) would
appreciate comments on any parts of the documen-
tation that are not perfectly clear. Write him
for further information.

General Garbage
You might want to write to Robert Elliott Purser
at P.0. Box 466, El Dorado, CA 95623 and request
a copy of his "World's Second Most Incomplete
Software List for PET, Radio Shack, Apple & Sol"

MICROBES

Applayer Music Interpreter, Suitor, 5:29:

5:30 0A20- 82 20 OB

5:31 0A00: 83 90 OF 83 90 OF FF
OF18: 1C 1A 18 1A 91 1C 38 18
OF50: 81 55 55 55 FF
OF58: 81 05 05 05 FF
OF90: 83 58 OF D4 B0 83 50 OF 83
0810: 48 02 28 02 08 02 E8 01

These problems are in the music and tone table,
and were caused by the 8's on his TTY looking
very much like 0's. Make the changes and the
music will probably sound better.

A BASIC 6502 Disassembler for Apple and PET,
McCann, 5:25:

5:26 3020: DC=IB:GOSUB 1000

5:27 6000: ASL should be ASLZ
6100: CLC should be CLI
6120: JMI should be JMPI
6250: CPX should be CPXZ

D/A and A/D Conversion Using the KIM-1, De Jong,
2:11: IC should be labeled "1408"™ and pin 14
should have 1.5K resistor to +5, while pin 13
goes directly to 45V (check spec sheets on 1408
to be absolutely sure of connections).

0308 4C 0403 sghould be 4C 05 03




Charles R.

With the recent acquisition of a PET Computer
one of the facilities that was immediately need-
ed was a method of obtaining hard copy listings
of programs under development. In addition to
the PET I had an ASR 33 Teletype Unit available
which had been interfaced to my KIM-1. This
article describes the hardware interface and as-
sociated software necessary to use the ASR 133
TTY as a printing facility for the PET. An im-
portant design goal for the interface was to de-
velop the software to remain resident in the
computer in such a manner that the program under
development could be loaded, run and listed
without disturbing the list4mg program.

The Interface Circuit

Figure 1 shows the 20 ma current loop circuit
required to interface the ASR 33 to the PET.
The circuit consists of an open collector NAND
gate to provide the proper buffering, a diode
and a pull up resistor. The completed circuit
was built on a small perforated board. The PET
supplies power and ground to the interface board
from the second Cassette Interface. The input
signal is delivered from PAO on the PET parallel
user port. The interface board is connected to
the teletype by means of the PRINTER and PRINTER
RETURN lines. These lines attach to terminals 6
and 7 respectively on the ASR 33.

———— r——--
| |
| |
R1 1 1
| |
: '{E'nyNERuNE | ,Z.
RNT | !
| 1
{ {
| ]
O- | [
INPUT TTy | PRINTER T 7
l u :PRWTER
CR1 1
| |
—_l Lo
GQND
Parts List
IC1 7438 Quad 2 Input NAND Open Collector
CR1] 1N4001 A 50V Diode
R1 [150 ohm 1/2 Watt Resistor
Figure 1.

A fairly simple circuit for buffering the con-
trol signal from the PET Computer and converting
that signal to a current level capable of driv-
ing the printer mechanism on an ASR 33 TTY Unit.

DESIGN OF A PET/TTY INTERFACE

—WU@@@

Husbands

24 Blackhorse Drive
Acton, MA 01720

Program Design

In order to allow the listing program to remain
resident in the machine to 1list other programs
under development, the program was written in
machine language to be stored in Tape Buffer 2.
Figure 2 shows a simple memory map of the PET
random access memory allocations. Without a
second tape cassette unit, a memory buffer of
198 bytes is available. When another program is
loaded from tape or the NEW instruction is exe-
cuted the operating system zeros out memory lo-
cations 1024 and above. However, it leaves the
memory locations below 1024 undisturbed. To ex-
ecute a machine language program the USR in-
struction must be called. The USR command uses
a pair of memory location pointers stored in
memory locations 1 and 2 to extablish the first
location in machine language code to be process-
ed. Locations 1 and 2 are not modified by the
loading of a program from tape or the execution
of the NEW instruction.

................................

................................

[ 2 $0274A
BASIC and Operating System Working Space
. $0002
.USR Control Pointers
O $0000

Figure 2.

A Map of the PET Random Access Memory Space.
The Listing Program resides in machine language
in Tape Buffer 2.

A flow diagr:m of the Listing Algorithm is shown
in Figure 3. The program after proper initia-
tion examines the first character of the third
line in the display for a value corresponding to
the letter "R". It is the letter R appearing in
the first display column which is used by the
Listing Program to exit the 1listing algorithm
and return control of the program to the calling
routine. The R in the first column would nor-
mally correspond to the READY displayed by the
computer at the end of a requested listing block
or at the completion of an executed RUN. If the
character in the first column is anything but an
R the program executes a carriage return and
then a line feed. The program examines the next
displayed character and translates it from dis-
play format to ASCII format. The subroutine
PRINT is then called.




S
FIRST CHAR
ANR?

NO
| PRINT CR/LF |

(LOOP 2)e

[ EXAMINE NEXT CHARJ

[ CONVERT TO ASCII AND rkmr]

INIT FOR A NEW LINE

Figure 3.

A general listing algorithm for use with the TTY
Listing Program. The software control of the
output port is done in the PRINT subroutine.

The subroutine PRINT* is a machine language pro-
gram which times out the proper serial bit pat-
tern to the TTY to execute the printing of the
designated letter. After each character is
printed a counter is incremented and tested to
determine if the 40 character line has been com-
pleted. If Y40 characters have not been printed
the next display character is examined. At the
end of each line the first character of the next
line is examined for an R before a carriage re-
turn and line feed is executed.

A listing of the program in BASIC format is
shown in Listing 1. The program was originally
hand assembled in 6502 machine language. The
machine language program was then converted from
hexadecimal to decimal and formatted as a series
of POKE instructions. The machine language mem-
ory address pointers were also POKED into loca-
tions 1 and 2 by the BASIC program. The print-
out appearing in Listing 1 was produced on the
authors TTY using the Listing Program.

# The PRINT subroutine is a modified version of
the "PRINT 1 CHAR" program developed by MOS
Technology for the KIM-1.

Using the Listing Program

The program as shown in Listing 1 is loaded into
the machine in the normal manner. A RUN command
is then executed and the program will be POKED
in machine format into Tape Buffer 2. The BASIC
program to be listed is then loaded into the
machine. The LIST-N instruction is then execut-
ed to allow the operator to preview the initial
lines of code. When the operator is satisfied
with the 15 to 18 lines of code to be printed,
as displayed on the screen, the command X=USR(R)
is entered and the RETURN key is depressed. The
USR instruction transfers control to the machine
language code located at the address specified
by memory locations 1 and 2.

The teletype printer will then print the display
on the PET CRT from the beginning of display
line 3 to the word READY. The operator then
uses the LIST M-X command to preview the next
series of lines to be printed. It should be
noted that the PET listing format leaves a blank
line between the last line number selected and
the READY response if the last line requested is
not the last line in the program. The preview
function allows the operator to block out the
lines to be printed regardless of the line num-
bering technique employed when the program was
composed. If the program being listed has an R
in column 1 due to a line length in excess of 40
characters, the operator must take some action
to remove this condition before executing the
listing of that portion of the program.

Conclusions and Recommendations

The hardware and software illustrated in this
article can be used to permit the listing of
programs and recording the results of program
runs on a conventional TTY unit. 1In using the
program to print the results of computer runs it
should be noted that the results should be for-
matted to begin on the third line of the dis-
play. An improved version of this program could
be designed to look ahead when an R was discov-
ered to extablish if an RE or REA string was
present. As only 3 bytes were not used in Tape
Buffer 2 in writing this program, that feature
could not be included. Additional space could
be freed if the program was redesigned to use
the parallel to serial conversion facility
available with the 6522 VIA output port. Using
this facility the 90 bytes required to do the
conversion from parallel to serial and timing
out this information could be greatly reduced.

Listing 1.

A listing of the PET Listing Program as printed
on the author’s TTY unit. The program was hand
assembled in 6502 language then converted to
decimal format and entered as a series of BASIC
"POKE" instructions. When executed the program
will reside in Tape Buffer 2 in machine code
format .

o~



REMxx*TELETYPE LISTING ROUTINMExk%x%xn»
REM CHARLES R. HUSBANLS
REM
REM THIS PKOGRAM LISTS THE DATA
REM APPEAKING ON THE SCREEN IN
KHEM SERIAL TELETYPE FORMAT. THE
REM PROGRAM IS STORED IN MACHINE
kM CODE IN TAPE BUFFER #2. THE
REM PRUGKAM 1S EXECUTEL USING ""USEK".
POKE(©B1), 58
POKEC(B2),03
HEMe e INITe 4o IMITALIZE VARIABLES
PUKE(EZ26),169
POKEC(B27), 00
POKE(828), 141
POKE(K29),25]
PUKE(H834), 83
POKE(831), 176

REMe s LOOP) o « TEST FIKST CHAR ON EACH
REM  LINE FUK AN "hk',
POKE(E32), IR
POKE(B33),58
POKE(K34), 128
POKE(B3S),201
PUKE(B36), 18
POKE(B37), 240
POKE(B838),63
HEM.LOOP3. e PRKINT CH/LF
POKE(B39), 169
POKE(B4¥), 13
PUKE(HK4Ll), 141
PUOKE(RB4Z) , 255
POKE(B43)», 13
POKE(B844), 32
POKE(K45), 166
POKE(B46), 03

POKE(B47), 169
FPOKE(B48), 1w
POKE(849), 141
PUKE (850,255
POKE(E51),03
PUOKE(BS2), 32
POKE(853), 166
POKE(854), 043
HEM..LOOP2..EXAMINE AND PRINT THE
KEM OTHER CHARACTERS ON THE LINE.
POKE(E55), 189
POKE(B56),80
POKE(857), 128
POKE(6858),141
POKE(859),252
PUKE(B60),93
POKE(861),56
POKE(H862),233
POKE(E63), 32
POKE(B64),48
POKE(8B65),12
PUKE(866),173
POKE(B67),252
POKE(86&8),03
POKE(869),141
POKE(870),255
POKE(871),03
POKE(872), 32
POKE(873),166

POKE(874),03
POKE(875),76
POKE(B876), 1822
POKE(B77)>,03
REM..ALPHA..PHRINT ALPHABETIC CHAR
POKE(878),173
POKE(878)>,173
POKE(879), 252
POKE(850),03
POKE(EH1),24
POKE(882), 1605
POKE(883), 64
POKE(884), 141
POKE(885),255
POKE(886),03
POKE(887),32
POKE(&88),166

POKE(889),03
REM. .CLNUP..COUNT CHAKACTERS AND
KEM  TEST FOK END OF LINE.
POKE(B590),238
POKE(E91),251
PUOKE(892),43
POKE(893),173
POKE(B94),251
POKE(895),0n3
PUKE(B96),211
POKE(897), 4p
POKE(H898), 240
POKE(B99),13
POKE(90W), 232
PUKE(901),138
PUKE(982),208
PUKE(983), 86
PUKE(Y04),238
POKE(915),89
POKE(QU6), 13
POKE(907),238
POKE(908),66
POKE(969),03
PUOKE(916), 76
POKE(911),87
POKE(912),03
KEMe e NEWL « s INITALIZES NEW LINE.
POKE(913), 169
POKE(914), ny
POKE(915),141
POKE(916),251
POKE(S17),083
POKE(918),232

POKE(919),76

PUKE(920),64

POKE(921),03

REM..FINDR. .PROGRAM -COMES HERE IF
KEM AN “R" IS FOUND IN )IST COLM.
POKE(922), 169

POKE(922),169

POKE(923), 128

POKE(924),14]

POKE(925),66

POKE(926),03

POKE(927), 14}

POKE(928),89

PUKE(929),03

PUOKE(930),96




KREM. .PRINT. .THIS SUBROUTINE PRINTS
REM THE CHARACTER IN TTY

POKE(934), 169
POKE(935),255
POKE(936), 141
POKE(937),67
POKE(938),232
POKE(939),173
POKE(940),255
POKE(941),83
POKE(942), 141
POKE(943),252
POKE(944),03
POKE(945), 142
PUOKE(946),253
POKE(947),03
PUKE(948), 32
POKE(949),230
POKE(950),03
POKE(951),169
POKE(952),79
POKE(953),232
POKE(954), 41
POKE(955),254
POKE(956), 141
POKE(957),79
POKE(958),232
POKE(959), 32
POKE(968),23¢
POKE(961),03
POKE(962),162
POKE(963), 08
REM. .0UTI
POKE(964),173

POKE{(965), 79
POKLE(966),232
PUOKE(967),41
POKE(968),254
POKE(969), 78
POKE(970),252
POKE(971),#43
POKE(972), 185
POKE(973), 006
POKE(974),141
POKE(975),79
. POKE(976),232
POKE(977), 32
POKE(978),230
POKE(979),63

POKE(980),202
POKE(981),208
POKE(982),237
POKE(983),173
POKE(984), 79
POKE(985),232
POKE(9B6) 09
POKE(987),01
POKE(988), 141
POKE(989),79
POKE(990),232
POKE(991),32
POKE(992),230
POKE(993),03
POKE(994)>,174

POKE(995),253
POKE(996),03
POKE(997),96
REM. . DELAY
POKE(998),169
POKE(999),02
POKE(1400), 141
POKEC1091),254
POKE(1002), 03
POKE(1083), 169
POKE(10®064),82
REM. .DE2
POKE(C1885),56
KEM..DE4
POKE(1006),233

POKEC1887), 0]
POKEC1808),176
POKEC1009), 63
POKE(1810),206
POKE(1011),254
POKE(16412),03
REM..DE3
POKE(16413),172
POKE(1014),254
POKE(1015),03
POKE(1016),16
POKE(1017),243
POKEC1©18),96
FEMe « COUNTC(1019)
KEMe « CHAR (1620)
REM. . TMPX (1021)
REM..TIMH (1022)
REM. . PCHAR(1023)
END

FIELD

#0
COUNT

32848, X
#18
FINDR
#0D
PCHAR
PRINT
#0A
PCHAR
PRINT
32848,X
CHAR

#20
ALPHA
CHAR
PCHAR
PRINT
CLNUP







- w
MEMORY PLUS™

\. J/

MEMORY PLUS is a KIM-1 shaped and sized board forﬁ\
extending the capabilities of the KIM-1., It con-
tains 8K RAM (low power 2102 static); provision
for up to 8K EPROM (Intel type 2716 2K bg 8-bit);
a Versatile Interface Adapter with two 8-bit I/0
ports, two timers, and a serial-to-parallel shift
register (MOS Technology 6522); and an on board
EPROM Programmer, RAM and ROM are each address-
able at any 8K (2K hex) boundary and may both be
used simultaneously (this is really a 16K board!).

Other features are: on board regulators for +5V
and +25V, EPROM Programming Program and Memory
Test Program on cassette tape, all IC chips are
socketted, the board is fully assembled and test-
ed. Comes with connectors, mounting hardware, 60
page manual, schematics, etc.

A set of cables is available at no extra charge,
if specified when ordering the MEMORY PLUS. One
cable goes between the KIM-1/VIM-1/AIM 65 and

the MEMORY PLUS expansion connector. The other “ ¥¢f
cable connects to the existing application con-

nector. The easy way to assemble your system.

21L02 Static RAM - Low Power - 450 nsec $1.25

Although MEMORY PLUS was designed for the KIM-1, 2114 Static RAM - Rey Power - 450 nsec $7.50

it will work equally well with the Synertek 2114L Static RAM - Low Power - 450 nsec $8.50
VIM-1 and the Rockwell AIM 65. So, when you KIM-1 + Enclosure $250.00
want to expand one of these systems beyond its VIM-1 + 1K Extra RAM - 2K RAM total $270.00

4K RAM capability, and/or want to program some MEMORY PLUS - with 8K Low Power RAM $245.00
EPROMs to. fill the available slots on these new POWER PLUS - for KIM-1 or VIM-1 $40.00
units, MEMORY PLUS is ready. ENCLOSURE PLUS - for KIM-1 + MEMORY PLUS $30.00
PLEASE -~ Games and Demos for KIM-1 15.00

. / EDITOR - for KIM-1 with TTY and cassettes $15.00

MAILING LIST - KIM-1, TTY, and cassettes $15.00
INFORMATION RETRIEVAL - KIM-1, TTY, etc. $15.00
MICROCHESS - Chess on minimal KIM-1 $15.00
MICRO-ADE . - Assembler/Disassembler/Editor $25.00
e ™~ MICRO-ADE - Complete Source Listings $25.00
RELAY KIT - Control two cassettes $10.00

™
@@WE@ E’)ng J All items Stock to two week delivery.

. NEW Items to be available soon:

VIDEO PLUS - CRT Controller with 2K Display RAM,
POWER PLUS is an assembled and tested power UPPER/lower case ASCII, optional 128 character
supply that will power a KIM-1 or VIM-1 and a user programmable character set, keyboard inter-
MEMORY PLUS board with power to spare. face, light pen interface, programmable display
format up to B0 characters by 24 lines. For the
KIM-1 or VIM-1 or AIM 65.

PROTD PLUS - Prototyping board for the KIM-1 or
VIM-1 or AIM 65. Has fingers for both the ex-
pansion and application connectors.

MOTHER PLUS - Compact Mother board which will
work with the KIM-l.or VIM-1 or AIM 65.

POWER PLUS 5 - With +5V at 5A and +12/-12 at 1A.
Ideal for KIM-1 or VIM-1 with additional memory.

POWER PLUS 24 - With +5V at 5A, +12/-12 at 1A,
+24V at 3A. Specifically for the AIM 65 system.

Call or write for details, prices, and delivery.

Speciiscations

Shipping in USA - up to $15.00 add $1.00

Output Voltages: up to $50.00 add %2.00
75 volts regulated g 1.4 amps maximum. agove $50.00 edd $3.00
+12 volts regulated 1.0 amps maximum. i i0p _ o/
+8 volts unregulated € 4.3 amps maximum. Foreign shipping agg %Oﬁ ug to %igg'gg
+16 volts unregulated € 1.0 amps maximum. a «© above :
Packaging: Totally enclosed in a bakelite type
box with aluminum bottom plate. Space between
the case and bottom plate provides air circula-
tion for cooler operation. The COMPUTERIST, Inc
, .

Size and Weight: 6 7/8"™ x 5 1/4" x 3". 3 lbs. JJ P.0. Box 3, 5. Chelmsford, MA 01824
.0. , S. ,
617/256-3649

Input Voltage: 110 to 125 volts 60 Hz AC.

Mass Residents - add 5% sales tax.

.




SHAPING UP YOUR APPLE

Michael Faraday
246 Bronxville Road
Bronxville, NY 10708

Even though, as a programming novice, it took me
a while to take on Apple II's Hi-Resolution
Graphics I have to admit that the seeming com-
plexity of constructing a Shape Table held a
certain fascination for me from the first time I
opened the Reference Manual. With Gary Dawkin's
delightful program appearing in Creative Comput-
ing

delightful program appearing in Creative Com-
puting recently there is no longer any real
need to apply the original technique, but a good
understanding of something never hurt anyone, if
only to verify other working arrangements.

If you have a TI Programmer, or any convenient
way of converting from one base to another,
here's a simplified method of untangling that
urisightly jumble of arrows and binary digits on
page 53 of the "Big Red Book". The key is in
recognizing that the conversion chart is nothing
more than an 0OCTal representation of our 8-bit

A/B C OCT

.000 00 To the Code list we
will add the OCTal
number that each

arrow represents.

001 01
010 10

011 17

110

111

byte. OCTal is binary broken into groups of
three just as HEX is binary broken into groups
of four. The fog 1lifts a little and we can now
see why the "C" digit is limited to two bits: we
only have a total of eight to start with. Look-
ing a little further along the same page we come
to the Conversion Codes and it's here we can
begin to make things really easy.

To the Code list we will add the OCTal number
each arrow represents,

Going back to the original example in the manual
we can replace the entire chart of binary digits
with an OCTal number put directly above our "un-
wrapped" arrows, like so:

oCT 227704441555 2¢6%¢66¢

37
Shape ‘ *...‘.’ ’ * f..»»»' ; ‘ '4-«

We are going to construct either two- or three-
digit numbers from this list and now come the

only rules required to deal with in the whole
procedure:

1. While always trying to make a three-digit
number, the "last™ digit of a three-digit group
can ONLY be a 1, 2 or 3 (remember that the "C"
digit is only 2 binary digits, which can repre-
sent the 0CTal number three at most).

2. As usual, these numbers appear Least Signif-
icant Digit first and therefore the "last" digit
is, in reality, the first digit of the new 0OCTal
number.

" So we can now divide the long string of numbers

into two- and three-digit, reverse-order O0CTal
numbers with slashes:

0CTal 2 2/7 7/0 4/4 4 1/5 5/5 2/6 6/6 3/1

"unwrap" this list, reversing digits as we go:

"unwrap" this list, reversing digits as we go,
and converting to HEX:

oCT

22
77
1o

1y

Even this can be a bit tedious and since I find
the arrow Code conversion very easy to remember
- No Plot, Up Clockwise to Left = 0 to 3; Plot,
Up Clockwise to Left = 4 to 7 - I draw my dia-

grams on graph paper using these 0OCTal numbers
only.

Thus, becomes
>eberor ¥ 5

5
¢ ¥

t ¢+ 3 2
t ¢ 3 2
t et 07773

Some caveats. It's still a good idea to draft
an original diagram with plain dots just to get
the shape and scale to your liking. This also
becomes a handy guide for the debugging you're
almost certain to have to do. And too, it makes
great fun for your non-computer friends who
might like to play Connect-the-Dots after a cou-
ple of beers.

S




A big problem keeps cropping up using the scale
feature. It seems that when blowing up the

original drawing the Apple II uses the direction o

of motion associated with the plotted points as
a base reference for the additional points.
This often leads to strangely assymetrical pic-
tures in larger scale with "lines" of dots going
in unexpected directions. As always, a little
playing around can really make you feel good.

Hexidecimal - Octal Conversion Table

0 0 1 2 3 y 5 6 7 10
1 20 21 22 23 24 25 26 27 30
2 4 u 42 43 4y 45 46 47 50
3 60 61 62 63 64 65 66 67 70
y 100 101 102 103 104 105 106 107 110
5 120 121 122 123 124 125 126 127 130
6 140 141 142 143 144 145 146 147 150
7 160 161 162 163 164 165 166 167 170
8 200 201 202 203 204 205 206 207 210
9 220 221 222 223 224 225 226 227 230
A 240 241 242 243 244 245 246 247 250
B 260 261 262 263 264 265 266 267 270
C 300 301 302 303 304 305 306 307 310
D 320 321 322 323 324 325 326 327 330
E 340 341 342 343 344 345 346 347 350
F 360 361 362 363 364 365 366 367 370

Have fun. .

Let "Apple" take a bite out of —
your taxes . . . nowt KlM-] $2]9
T
ke 7, w MEMORY PLUS 8K RAM for KIM $245
. L. ~— with 2716 EPROM sockets and programmer
aw‘ 0“‘- has individual and — 6522 VIA (includes 2-8 bit ports and 2 timers)
small business .
software programs, developed by tax professionals SPEC'AL';{',f',‘,‘ﬁ::f‘,’ffggm‘t’{;n’?g1°6’b'°
in line with current tax laws. Helps you develop value)
your own individualized tax plans. PROBLEM SOLVER SYSTEMS KM8B $159
Basic Prograrfl Introductions (4K) includes: Tax - z’zg’rv gfs::,rb?:;i:ng?::t'egompletew socketed
and booklfeepmg software and %ices, audit sur- — completely compatible with KIM-4 motherboard
vival quiz, and the Tax Store concept. KIM-4 MOTHERBOARD an
Price $4.00. Check or money order. Power Supply for KIM (KL512) s34
+5V, +12V regulated, +8V, +16V unregulated
plenty of power for KIM-1 and 8K memory
P i Mi : 6502
Money Back quarantee, or write for Free brochure. Frogr:m";mga :rocompum 6 ::
irst Book of Kl
tm .
The Tax Store " Inc. 4 part harmony KIM musicboard 535
7429 Burnet Road, No. 102 {D to A converter and amplifier)
i T
M?ﬂy)gﬁ%g¥” Write for list of KIM & PET memory & accessories.
All items postpaid in U.S.
Tax deductible progrems ... Write Today
(Franchises available) A B Comp te
S urers
P.0. Box 104, Perkasie, PA 18944 (215) 257-8195




APPLE II STARVWARS THENE

Andrew H. Eliason
28 Charles Lane
Falmouth, MA 02540

Just for the fun of it, here are some routines
to create something which sounds like the main
battle scene from STARWARS. Enjoy!

Apple II Startrek Sounds Routine
Dis-assembler Listing

*3FAIL

3FAl- a0 OEF LDvY
3FA3- A2 00 LL¥
3FAS- 2A TXA
3FA6- 18 cLC
3FA7- E9 01 SBC
3FA9- D0 FC BNE
3FAB- &L 30 STA
3FAE- ES INX
3FAF~ E0 &C cPx
3FBIl - L0 F2 BNE
3FB3- LEY
3FB4- L1 EL BNE
3FBE- : RTS
3FB7- BRK
3FBR- BEK
3FB89- BFEX
3FBA- BFX
3FBR- BEK
3FRC- j BRX
AFBL- ErK
*

Add ZIP to your cassette tape I/0 with
ZIPTAPE

a fast ~ up to 4800 baud - audio tape recordin
and recovery system for KIM-1 and other 650
based systems. It will function at the higher
rates on most good quality cassette recorders,
and even economy type units should be able to
function at 2400 or 3600 baud.

The assembled and tested interface uses a single
IC to translate audio input to logic level,
buffers and attenuates signals for recording via |
either an "AUX" or "MIC" input. A 10 ohm load
is included for recorder load on playback. Only:
+5V at less than 10 ma is required for power..

The software uses about 3/4 page each for the:
Dump and Load programs which may be run as sub—\
routines. Though written for KIM-1, changes are:
suggested for use on TIM systems, and only minor |
modifications should be required to run on any
system which has a 6530 or 2522 1/0 chip.

One port of the PIA is used for data, one for
control of the interface, and a third acts as a
buffer to simplify software instructions.

Hardware/Software package is $22.50 + $1.00 S&H.
Add $3.00 for KIM cassette containing software.
NJ residents add 5% tax. SASE for free info.

LEWIS EDWARDS, Ir.

Color-Teceh TV

1451 Hamilton Avenue
Trenton, NJ 0B629

Load via momitor starting at 3FA1:

3FAl.3FB6 .
3FAl- A0 0E A2 00 - dA 18 E9
3FAB- 0] DO FC 8D 30 CO0 E8 EO

3FB0- 8C L0 F2 88 D0 ED 60
»

Enter BASIC and set HIMEM: 16288.
Enter this program and RUN:

LIST

>LIST P
10 PRINT “STAR BATTLE SOUNED EFFECTS™
20 I= RND (15)+]¢, REM SHOTS
- 30 J= RND (11)>%*10+120: REM LURATION
40 POXE 16290,1: POKE 16304,J
50 CALL 16289 .
60 N= RND (1000): FOR K=1 TO N: NEXT K
70 GOTO 20
999 END

-

Try I = RND(30)+1 and J = RND(255).

The above material is based on the "“Phaser"
sound effect from #Apple II Startrek.

MICIRIO)

Back Issue of MICRO are Available.

Single copies of 1issues 1 - 6 are $1.50 each,
including postage in the USA and Canada. Add
$1.25 per copy ftor overseas Air Mail postage or
$.50 per copy for overseas Surface postage.

Get "All of MICRO - Volume 1"

While the supply lasts, all six issues of MICRO
Volume 1 are available as a "press-board" bound
set. Now you can get a second set to keep bound
while you separate your individual copies -into
a notebook by categories. Or, get a set for e
friend who has just bought, or is thinking about
buying, a 6502 based system. Or, how about a
set for your computer club, local librarz or the
library where you work. The price for the com-
Elete set is $7.50 including postage in the USA.
ostage to all other countries is $1.00 surface
or $4.00 Air Mail. If you are interested, act
now, since we will probably not be reprinting
these issues again.

Neme: ...... Cecesesesettesssasrsssscseceenccennn

Street:

5 8

State:

T 2 1

Issue Number: 1- 2 3 4 5 6
"All of MICRO - Volume 1":

Send Check or Money Order to:
MICRD, P.0. Box 3, S. Chelmsford, MA 01824




Southern California 6502 Center

Computer Components of Orange County

6791 Westminster Ave., Westminster, CA 92683 714-898-8330
Hours: Tues-Fri 11:00 AM to 8:00 PM - Sat 10:00 AM to 6:00 PM (Closed Sun, Mon)

Why Should You Buy From Us?

Because we can help you solve your problems and answer your
questions. We don't claim to know everything but we have
enough references and contacts in the 6502 field that we can
help you answer your questions.

Sign up for 6302 Information Exchange and Workshops

System Meetings Next Meeting

Kim, Vim, Super Kim 2nd Saturday of Month Sept. @ Super Kim
Commodore PET 3rd Saturday of Month | Sept. 16 Pet Documentation

Apple i 4th Saturday of Month Sept. 23 New programs
and peripherals

APPLE Il we are the Apple Experts

New Software B APPLE POWER CONTROL INTERFACE

; ; —This interface plugs into any peripheral slat an the Apple I
* Mlcroproducts Co-resident Assembler 520'00 board and provides 16 channels of control. Power Control

* Universal Data Management $50.00 modules plug into the interface via a ribbon cable. Each
¢ Super Othello $10.00 Power Control module provides 4 seperate 110V A.C.

; Circuits ot 12 omps. Up to 4 Power Control Modules
]
Groph Plotter W/OXlS 510'00 may be used with each interface.

Bob Bishops: —Control Room Lights. Stereo Equipment. Security Systems,
* App'e Talker 510‘00 SecgilcobAppli:)&C)gsw tts per Chonnel Directly Ffrom
—Hondle to atts per r

e Color Organ $10.00 Progrom ool
. Doncing Man $ 500 —Complete Isolotion of the Computer Fram the AC Line
* Space Maze 10.00 —PRICE—

P b * Apple Power Inteface Board and One Power Control
@ PROGRAMMADLE PRINTER INTERFACE ($80.00) Module ($95.00)

o) ’ . e Additionol Power Control Modutes (Controls Four AC

—Onboard EPROM Printer Driver Circuits) (535.00)

—Full Hondshoke Logi¢ e ' e Il

—High Speed Porallel Qutput Port Copability Memory for Apple

—Provision for 256 Byte 1/O Drive in EPROM e Setof 8 16K RAM CHIPS $200.00

—Printer. Driver Programs Avoiloble for Centronic.

SWTPC-40. and Other Printers e Setof 8 4K RAMCHIPS§ 20.00

We are Orange County’s only
Authorized Commodore Pet Dealer

o Commodore PET (8K) $795- ® PET Printer (delivery Sept.) $595
o Synertek's VIM-I $269 ¢ Commodore KIM-I $245

® Microproducts New Super Kim 395 (Demonstration at Kim Worlsshop Sept. 9)

Send for a complete list of software and new product information.

Mastercharge, Visa. B of A accepted. No C.0.D. Allow two weeks for personal check to clear. Add $1.50 for handling and postage. For
computer svstem, please add $10.00 for siupping. handling. and insurance. California residents add 6% sales tax.

y




APPLE PI

Robert J. Bishop
1143 W. Badillo, Apt E
Covina, CA 91722

Everyone knows that the value of Pi is about
3.1416. In fact, its value was known this accu-
rately as far back as 150 A.D. But it wasn't
until the sixteenth century that Francisco Vieta
succeeded in calculating Pi to ten decimal
places.

Around the end of the sixteenth century the
German mathematician, Ludolph von Ceulen, worked
on calculating the value of Pi until he died at
the age of 70. His efforts produced Pi to 35
decimal places.

During the next several centuries a great deal
of effort was spent in computing the value of PI
to evern greater precision. In 1699 Abraham
Sharp calculated Pi to 71 decimal places. By
the mid 1800's its value was known to several
hundred decimal places. Finally, in 1873, an
English mathematician, Shanks, determined Pi to
707 decimal places, an accuracy which remained
unchallenged for many years.

I was recently rereading my old copy of Kasner &
Newman"s Mathematics and the Imagination

I was recently rereading my old copy of Kasner &
Newman's Mathematics and Imagination (Simon &
Schuster, 1940), where I found the series expan-
sion:

[

4 (_l) K"'l
(2k-1) 239
K=}

e et
B - (2k-1) 5 **

The book indicated that this series converged
rather quickly but "... it would require ten
years of calculation to determine Pi to 1000
decimal places." Clearly this statement was
made before modern digital computers were avail-
able. Since then, Pi has been computed to many
thousands of decimal places. But Kasner &
Newman's conjecture of a ten-year calculation
for Pi aroused my curiousity to see just how
long it would take my little Apple-II computer
to perform the task.

Program Description

My program to compute the value of Pi is shown
in Figure 1. It was written using the Apple II
computer's Integer BASIC and requires a 16K
system (2K for the program inself; 12K for data
storage). The program is fairly straightforward
but a brief discussion may be helpful.

The main calculation loop consists of lines 100
through 300; the results are printed in 1lines
400 through 600. The second half of the listing
contains the multiple precision arithmetic sub-
routines. The division, addition, and subtrac-
tion routines start at lines 1000, 2000, and
3000, respectively.

In order to use memory more efficiently, PEEK
and POKE statements were used for arrays instead
of DIM statements. Three such arrays are used
by the program: POWER, TERM, and RESULT. Each
are up to 4K bytes long and start at the memory
locations specified in line 50 of the program.

The three arrays mentioned above each store par-
tial and intermediate results of the calcula-
tions. Each byte of an array contains either
one or two digits, depending on the value of the
variable, TEN. If the number of requested
digits for Pi is less than about 200, it is
possible to store two digits per byte; other-
wise, each byte must contain no more than one
digit. (The reason for this distinction occurs
in line 1070 where an arithmetic overflow can
occur when trying to evaluate higher order terms
of the series if too many digits are packed into
each byte.)

The program evaluates the series expansion for
Pi until the next term of the series results in
a value less than the requested precision. Line
1055 computes the variable, ZERO, which can be
tested to see if an underflow in precision has
occurred. This value is then passed back to the
main program where, in line 270, it determines
whether or not the next term of the series is
needed.

Results

Figure 2 shows the calculated value of Pi to
1000 decimal places. Running the program to get
these results took longer than it did to write
the progranm! (The program ran for almost 40
hours before it spit out the answer.) However
it took less than two minutes to produce Pi to
35 decimal places, the same accuracy to which
Ludolph von Ceulen spent his whole life striving
for!

Since the program is written entirely in BASIC
it is understandably slow. By rewriting all or
part of it in machine language its performance
could be vastly improved. However, I will leave
this implementation as an exercise for anyone
who is interested in pursuing it.

Figure 1.

Program Listing

LIST
8 REM bk PP E-P] ek
"~ WRITTEN BY: BOB BISHDF
S CALL -936: VIRE 18: TRE 5@ PRINT
"HOW MANY DIGITS DO YOU WRANT®

INPUT SIZE
CALL -936
TEN-18: IF SIZE>200 THEN 58

TEN=1808: SIZE=(S1ZE+1)/2
POMER=4096: TERM=8122: RESULT=

12288

DIV=1008: RDD=2880: SUE=3088:
INIT=40888: COPY=5880

DIN CONSTANT (2): CONSTANT (1)
=25: CONSTANT (2)=239




SEpYgY 8L 2%

EESEUR DIBE E‘Eﬁﬁﬁ

REM MAIN LOOP

FOR FRSS=1 TO 2

COSUE TNIT

BOSUE COFY

PU"I‘NT =TERM: DIVIOE=ExF" I3OSUB
D1

IF S1GM>8 THEN GOSUE Pw

IF SIGN<{D THEN GOSUE S
EXP=EXP+2: SIGN=-SIGN

POINT = POMER: DIVIGE=COMSTRNTY
PRSS . GOSUE DIV

IF PASS=" THEM GOSUE DIV

IF ZERIFD8 THEN 283

NEXT PRSS

REM FRINT THE RESULT

PRINT : PRINT

PRINT “THE VALUE OF PI 70 "
5 CTEMA 10841 2¥S] 25 ¢
ES:": PRINT

PRINT FEEK CRESULT); ™ %
F?%EPLHCE:RESULTH TO RESULT+
IF TEMN:=18 THEN 573

I;’ PEEK (PLRCEX{13 THEN FRINT
PRINT PEEK C(PLHCE);

NEXT FLACE

PRINT

END

REM DIVISIUON SUBRDUTINE
LIGIT=8: 2ER()=0

FOR PLACESFOINT 10 POINTHS12E

H DIGIT=RIGIT+ PEEE (PLRACE)
B WUBTIENT=RIGIT/DIVIDE
B RESIDUE=DIGIT MOD DIVIDE

SERD=ZERD (R CRUDTIENT+RESICUE ¥

H FOKE FLACE, QUOTIENT

1876
1069
19%;
2016
2een

2858

2B
284
2668
2678
280
200
2180
2000
46
380

(1G] T=TENCRESIDUE

HERY PLACE

RETURN

REM  ADDITYON SUBROUTINE
[HRRY' =13

FOR PLACE=STZE TO 8 STEF -1

SUM= PEEK (RESULTHPLRACE)+ PEEK
(TERM+PLACE »+CARRY

CHRRY:=13

IF SUMCTEM THEN 2050
SUM=SUM-TEN

CARRY'=1

POKE RESULT+PLACE, SUM

NEXT PLACE

RETURN

REW SUBTRRCTION SUBROUTINE
LOMmN=8

FOR PLACE=S12E TO @ STEF -1

DECIMAL PLAC

DIFFERENCE= PEEK (RESULT+PLACE?

= PEEK (TERM+PLACE)-LOAN

LOAN=8

IF DIFFERENCED=8 THEN 3689

CIFFERENCE=DIFFERENCE+TEN

LOMR=1

FPOKE RESUL T+PLACE, DIFFERENCE

NEXT PLACE

RETURN

REM  INITIALIZE REGISTERS

FOR PLLACE=8 TO SIZE

FOKE POIKER+PLACE, B

FOKE TERMPLACE, 1

IF PRSS=1 THEN FOKE RESULT+

PLACE,

NEXT PLRCE

POKE POWER, 16/PRSS 1 2

IF PASS=1 THEN DIVIDE=S

IF PRSS=2 THEN DIVIDE=239

POINT=PORER: GOSUB DIV

EXP=1: SIGN=:3~2#PRSS

RETURN

REW COPY "PONER" INTO "TERM"
B FOR PILACE=8 TO S12€

PORE TERMHFLACE. PEEK (FOMER+

PLACE

NEXT FPLACE

RETURM

THE YALUE OF PI TO 1088 DECIMAL PLACES:

3. 14159265358979323646264338327950268419
716339937518582097°4 94459230781 6496 256208
QOBETEHI462534211706798214800651 32823066
47093644689550562 2317253594661 2848111745
V264102 781938452119555%644622942954930281
S6M20E189756659334461284756482337867631

652712019891 45648566923468240618454 32664
B821330:26872602401 4127372456 7086686315588
174881 5200266025489 715364 3678925903
6013285305408 20466521 3841 4695194151168
S4B 72 7A3657SIHL 25309210611 7351932611
931831 165348074462 237996274956 72548857527
298N 227938183011 9491 2963367 336244065664
SB86021 394946395224 7371987021 79868943762
75391 PATE293176 7523846 7481046 76634851
SCOMTEE1 2714506 306HE27 TBST 71342757 76960
216374787 21.466440901.2249534 38146542568
3718007 22ETYEBI0EN2 I542B199561121 2919
EDBAB 441815381 36297747 71 2099685187072
1349000 00B 37 297804 49510597 21732016896 318
DIR44594 55346006 30264.25223802523446650
352619311881 7191800713783675280658753328
838142 861?17766‘*14?38359’:.53499428755468
220956286 388E302TE7593751957 784857 PERS
321?1226886613%1 QZ?B 661115090921642619

-]

Figure 2.
P1 to 1000 Decimal Places




A SIMPLE 6502 ASSEMBLER FOR THE PET

Michael J. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

Most computer hobbyists do all or most of their

programming in BAS1IC. This is unfortunate since
there is much to be gained from machine code
level programming. On the average, machine lan-
guage programs are 100 times faster than their
BASIC wequivalents. In addition, machine lang-
uage programs are very compact, making efficient
use of memory. I have written a simple 6502
assembler in Commodore BASIC (see listing) with
the following functions:

Input source code and assemble

Save object code on tape

Load object code from tape

Run machine language program with SYS
Run machine language program with USR
List machine language program

N WM =
« o o o s

INPUT SOURCE CODE AND ASSEMBLE
-Symbolic addresses and operands are not per-
mitted
-Al1l addresses and operands must be supplied
in base 10
-Each 1line of source code 1is assembled after
entry
-Source code 1is inputted in the following
format:
(mnemonic)(one or more spaces)(operand)
-Three pseudoinstructions are supported
ORG-Start with this address
NOTE:if the user does not specify the origin,
it will be set at 826 base 10
DC-Define constant, place the operand value
in the next location in memory
END-End of program source code

SAVE OBJECT CODE ON TAPE

~-Object code saved under file name supplied by
user

-Origin address saved with program

LOAD OBJECT CODE FROM TAPE

-Loads object program under file name supplied
by user

-Object code is stored in memory with the same
origin address used when the program was
assembled

RUN MACHINE LANGUAGE PROGRAM WITH SYS
-Transfers control of the 6502 to an address
supplied by the user

RUN MACHINE LANGUAGE PROGRAM WITH USR

-Transfers a user supplied value to the
6502 accumulator

-Transfers control of the 6502 to an address
supplied by the user

LIST MACHINE LANGUAGE PROGRAM

-Listing is produced by disassembling object
code

-Disassembly is in the following format:
(decimal address)(hexadecimal address)(byte#1)
(byte#2)(byte#3) (mnemonic) (operand)

The following areas of memory are available for
your machine language programs when this assem-
bler is in memory: locations 7884-8184 and, if
tape #2 is not used, locations 826-1024.

There are two ways of returning control to BASIC
from machine language. The RTS (Return from
Subroutine) instruction may be used at any time
except when in a user machine language subrou-
tine. RTS returns control to the calling BASIC
program. In contrast the BRK (Force Break) in-
struction does not return control to the calling
BASIC program; instead control 1is returned

to the user, i.e. system prints READY with the
cursor.

I have included a short machine language pro-
gram. When run this program will leave a pat-
tern of small white dots on the upper half of
PET's CRT.

SAMPLE MACHINE LANGUAGE PROGRAM LISTING

826 0334 A9 66 LDAIM 102
828 033C A2 00 LDXIM 0

830 033E 9D 00 80 STAX 32768
833 0341 E8 INX

834 0342 FO 03 BEQ 3

836 0344 U4C 3E 03 JMP 830
839 0347 EA NOP

840 0348 EA N

841 0349 9D 00 81 STAX 33024
844 034C E8 INX

845 034D FO 03 BEQ 3

847 O3UF U4C U9 03 JMP 841
850 0352 00 BRK

SAMPLE MACHINE LANGUAGE PROGRAM
AS INPUTTED FROM THE KEYBOARD

ORG 826
LDAIM 102
LDXIM O
STAX 32768
INX

BEQ 3

JMP 830
NOP

NOP

STAX 33024
INX

BEQ 3

JMP 841
BRK

END

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?




1 REM 6502 ASSEMBLER PROGRAM
2 REM BY MICHAEL J. MCCANN

3 REM FOR USE ON THE €OMMODORE PET
10 DIM MN$(256) ,BY%$(256),C0$(16)
20 FOR E=0 TO 255

30 READ MN$(E),BY$(E)

40 NEXT

60 FOR E=0 TO 15

70 READ CO$(E)

80 NEXT

90 PRINT CHR$(147) :PRINT

100 PRINT"1-INPUT SOURCE CODE AND ASSEMBLE" :PRINT

110 PRINT"2-SAVE OBJECT CODE ON TAPE" :PRINT

120 PRINT"3-LOAD OBJECT CODE FROM TAPE":PRINT

130 PRINT"4-RUN MACHINE LANGUAGE PROGRAM WITH SYS"

140 PRINT"S-RUN MACHINE LANGUAGE PROGRAM WITH USR"

150 PRINT"6-LIST MACHINE LANGUAGE PROGRAM"

180 GET A$:IF A$="" GOTO 180

190 IF VAL(A$)=0 OR VAL(A$)>6 GOTO 180

200 ON VAL(A$) GOSUB 14000,20000,9000, 10000, 11000,2900
210 GOTO 90

1000 SX=INT(DC/16)

1010 UN=DC-(SXx*16)

1020 SX$=C0$(SX)

1030 UN$=CO$(UN)

1040 HX$+SX$+UN$

1050 RETURN

2900 PRINT CHR$(147)

2910 INPUT"START ADDRESS";AD:I=0

3000 IF I=24 GOTO 5050

3001 I=I+1

3005 IB=PEEK(AD)

3015 IF MN$(IB)<>"NULL" GOTO 3050

3025 DC=IB:GOSUB 1000:GOSUB 13000

3030 PRINT AD;AD$ TAB(12) HX$ n#n

3040 AD=AD+1:GOTO 3000

3050 ON BY$(IB) GOTO 3060,3090,4050

3060 DC=IB:GOSUB 1000:GOSUB 13000

3070 PRINT AD;AD$ TAB(12);HX$;TAB(21);MN$(IB)

3075 AD=AD+1

3080 GOTO 5030

3090 DC=IB:GOSUB 1000

4000 B1$=HX$

4010 DC=PEEK(AD+1) :GOSUB 1000

4011 B2$=HX$

MOZM GOSUB 13000:P=DC )
4030 PRINT AD;AD$ TAB(12) ;B1$;" ";B2$;TAB(21) ;MN$(1B) ;TAB(27) ;P
4035 AD=AD+2

4040 GOTO 5030

4050 DC=IB:GOSUB 1000
4060 B1$=HX$

4070 DC=PEEK(AD+1) :GOSUB 1000
4080 B2$=HX$

4090 DC=PEEK(AD+2) :GOSUB 1000

6:18

VIIHCIRIO]




5010
5011
5020
5025
5030
5050
5051
5052
5070
5080
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
9000
9010
9020
9030
9040
9050
9060
9070
9080
9090
9100

B3$=HX$
OP=PEEK(AD+1)+(PEEK(AD+2)#256)

GOSUB 13000

PRINT AD;AD$ TAB(12);B1$;" ";B2¢;" ";B3¢$;TAB(21);MN$(IB) :TAB(27) OP

AD=AD+3

GOTO

3000

GET A$:IF A$="" GOTO 5050

IF A$=CHR$(19) THEN I=0:RETURN|
IF A$<>CHR$(13) GOTO 5050
I=0:PRINT CHR$(147)

GOTO
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

PRINT CHR$(147)
INPUT "ENTER FILE NAME";N$

OPEN

INPUT#1,ZZ
INPUT#1,EN
FOR AD=ZZ TO EN
INPUT#1,DA%

POKE
NEXT

CLOSE 1
RETURN

3000
BRK, 1,0RAIX,2,NULL,0,NULL,0,NULL,0,0RAZ,2,ASL,2,NULL,0,PHP, 1
ORAIM,2,ASLA,1,NULL,0,NULL,0,ORA,3,ASL,3,NULL,0.BPL.2,0RAIY.2
NULL,0,NULL,0,NULL,0,ORAZX,2,ASLZX,2,NULL,0,CLC, 1,0RAY, 3
NULL,0,NULL,0,NULL,0,ORAX, 3, ASLX, 3,NULL,0, JSR, 3, ANDIX, 2, NULL, 0
NULL,0,BITZ,2,ANDZ,2,ROLZ,2,NULL,0,PLP, 1,ANDIM,2,ROLA, 1,NULL, 0
BIT, 3, AND, 3,ROL, 3,NULL,0,BMI, 2, ANDIY, 2, NULL,0,NULL, 0, NULL, 0
ANDZX,2,ROLZX,2,NULL,0,SEC, 1,ANDY, 3,NULL,0,NULL, 0, ANDX, 3
ROLX,3,NULL,0,RTI,1,EORIX,2,NULL,0,NULL,0,NULL,0,EORZ,2,LSRZ, 2
NULL,O,PHA, 1,EORIM,2,LSRA, 1,NULL,0,JMP, 3,EOR, 3,LSR, 3,NULL,0
BVC,2,EORIY,2,NULL,0,NULL,0,NULL,0,EORZX,2,LSRZX,2,NULL, 0

cLc, 1,EORY, 3,NULL,0,NULL,0,NULL,0,EORX, 3,LSRX, 3,NULL,0,RTS, 1
ADCIX,2,NULL,0,NULL,0,NULL,0,ADCZ,2,RORZ,2,NULL,0,PLA, 1,ADCIM, 2
RORA, 1,NULL,0,JMI, 3, ADC, 3,ROR, 3,NULL,0;,BVS,2,ADCIY, 2,NULL,0
NULL,0,NULL,0,ADCZX,2,RORZX,2,NULL,0,SEI, 1,ADCY, 3, NULL,0,NULL,0
NULL,0,ADCX, 3, RORX, 3,NULL,0,NULL,0, STAIX,2,NULL,0,NULL,0,STYZ, 2
STAZ,2,STXZ,2,NULL,0,DEY, 1,NULL,0, TXA, 1,NULL,0,STY, 3,STA, 3
STX,3,NULL,0,BCC, 2, STAIY,2,NULL,0,NULL,0, STYZX,2, STAZX, 2, STXZY, 2
NULL,O,TYA,1,STAY, 3, TXS, 1,NULL,0,NULL,0, STAX, 3,NULL,0,NULL,0
LDYIM,2,LDAIX,2,LDXIM,2,NULL,0,LDYZ,2,LDAZ,2,LDXZ,2,NULL,0
TAY,1,LDAIM,2,TAX, 1,NULL,0,LDY, 3,LDA, 3,LDX, 3,NULL,0,BCS, 2
LDAIY,2,NULL,0,NULL,0,LDYZX,2,LDAZX,2,LDXZY,2,NULL,0,CLV, 1

LDAY, 3, TSX, 1,NULL,0,LDYX,3,LDAX, 3,LDXY, 3,NULL,0, CPYIM, 2, CMPIX, 2
NULL,0,NULL,0,CPYZ,2,CMPZ,2,DECZ,2,NULL,0, INY, 1,CMPIM, 2, DEX, 1
NULL,O0,CPY, 3,CMP, 3,DEC, 3,NULL,0,BNE, 2, CMPIY, 2, NULL,0,NULL, 0
NULL,0,CMPZX, 2, DECZX, 2, NULL,0,CLD, 1,CMPY, 3,NULL, 0,NULL, 0, NULL, 0
CMPX, 3,DECX, 3,NULL,0,CPXIM, 2, SBCIX, 2,NULL,0,NULL,0,CPX, 2,SBCZ, 2
INCZ,2,NULL,0,INX,1,SBCIM,2,NOP, 1,NULL,0,CPX,3,SBC,3,INC,3
NULL,0,BEQ, 2, SBCIY,2,NULL,0,NULL,0,NULL,0,SBCZX, 2, INCZX, 2,NULL, 0, SED, 1
SBCY, 3,NULL,0,NULL,0,NULL,0,SBCX, 3, INCX, 3,NULL, 0
0,1,2,3,“,5,6,7,8,9,A,B,C,D,E,F

1’1’0’N$

AD,DA%




10000 PRINT CHR$(147)
10010 INPUT "ENTER ADDRESS IN BASE 10";AD

10015 IF AD>65535 GOTO 10000

10020 SYS(AD)

10030 RETURN

11000 PRINT CHR$(147)

11010 INPUT"ENTER ACCUMULATOR VALUE";AC

11015 IF AC<O OR AC>255 GOTO 11010

11020 INPUT"ENTER ADDRESS IN BASE 10";AD

11030 POKE 2,INT(AD/256)

11040 POKE 1,AD-(INT(AD/256)%256)

11050 X=USR(AC)

11060 RETURN

13000 A=AD:S3=INT(AD/4096)

13002 A=A-S3%*4096

13010 S2=INT(A/256)

13012 A=A-S2%256

13020 S=INT(A/16)

13060 U=AD-(S3%4096+S2#256+5%16)

13070 S3$=C0$(S3)

13080 S2$=C0$(S2)

13090 S$=CO0$(S)

13100 U$=CO$(U)

13110 AD$=S3$+S2$+S$+U$

13120 RETURN

14000 PRINT CHR$(147):AD=826:22=826

14010 PRINT "(MNEMONIC) (SPACE) (OPERAND)"

14020 GOSUB 15000

14030 F=0

14040 FOR E=0 TO 255

14050 IF MN$=MN$(E) THEN BY=BY%(E):F=1:CD=E:E=256
14060 NEXT

14070 IF F=0 GOTO 14260

14080 ON BY GOSUB 14100,14130,14180

14090 GOTO 14020

14100 POKE AD,CD

14110  AD=AD+1

14120 RETURN

14130 IF OP>255 OR OP<O THEN PRINT "ERROR":RETURN
14140 ‘'POKE AD,CD

14150 POKE AD+1,0P

14160 AD=AD+2

14170 RETURN

14180 IF OP>65535 OR OP<O0 THEN PRINT "ERROR":RETURN
14190 POKE AD,CD

14200 B2=INT(OP/256)

14210 B1=0P-(B2%256)

14220 POKE AD+1,B1

14230 POKE AD+2,B2

14240 AD=AD+3

14250 RETURN

14260 IF MN$="ORG" OR MN$="END" OR MN$="DC" GOTO 14280
14270 PRINT "ERROR":GOTO 14020

14280 IF MN$="ORG" GOTO 14300

14290 GOTO 14340

14300 IF FO=1 THEN PRINT "ERROR":GOTO 14020
14310 FO0=1

14320 AD=QP:ZZ=0P

14330 GOTO 14020 6:20
.;-—_-m@m@




14350
14360
14370
14480
14510
14520
15000
15010
15020
15030
15040
15050
15060
15070
15080
15090
20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180

IF MN$="END" GOTO 14360
GOTO 14380

EN=AD-1

RETURN

POKE AD,OP

AD=AD+1

GOTO 14020

INPUT A$

IF LEN(A$)<3 THEN PRINT "ERROR":GOTO 15000
IF LEN(A$)=3 THEN MN$ A$:0P=0:RETURN
Sz0:FOR M=1 TO LEN(A$)

IF MID$(A$,M,1)=" " THEN S=M:M=LEN(A$)
NEXT
IF S=0 THEN MN$=A$:RETURN

MN$=LEFT$(A$,S-1)
OP=VAL(RIGHT$(A$,LEN(A$)-S))
RETURN

PRINT CHR$(147):82=0

INPUT "ENTER PROGRAM NAME";N$
OPEN 1,1,1,N$
PRINT#1,ZZ:DA%=2Z:GOSUB 20110
PRINT#1,EN:DA%=EN:GOSUB 20110
FOR AD=ZZ TO EN

DA%=PEEK(AD)
PRINT#1,DA%:GOSUB 20110

NEXT

CLOSE 1

RETURN

SZ=LEN(STR$(DA%))+SZ+1

IF SZ<192 THEN RETURN

POKE 59411,53

T=TI

IF (TI-T)<6 GOTO 20150

POKE 59411,61

S2=52-191

RETURN

6:21

_WU@@@

MICRO ~-PSYCH

A bimonthly newsletter for rhose interested
in sharing ideas and experiences about the
use of micros and minis in psychiatry and
psychology. Communications network, info
about hardware, software, research, book
reviews, etc. $10/year to MICRO-PSYCH,

26 Trumbull Street, New Haven, CT 06511.




COMMODORE PET HARD COPY OUTPUT USING PET ADA 1200 one 5Ex THE FUCTION PLOTTED 134

IIID '-l-ﬂl(l BeX)
READY.

&
-
-

TRENDACK Sales - Carburetors - 1977

S1000 KO0 PO XXX XXX XXX XXX XXX XXX XXX XXX XXX
TOO0 IXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
LAXX XXX XXx XXX XXX XXX XXX XXX XXX KXY XXX XXX
1028 IF 8<) AND S>-) OOTO 138 TIAN XXX KXY NAX AKX AXX KXA ANX KXY XXX XXX Nwx

Toas Ain T Awsio ! XX XAX XXX XAX XXX XAA XXX XXX
1049 REM THE ANCSINE 1S AS AAA XXX XXX AAX AAX

1958 ASSATN(S/((1-8328)".5))

1868 NEM THE RESULT IS IN KADIANS. CONVENT TN DEGREES. tJAH FED MAM
1878 AS=ASs) 00/

2wem REM THE COSINE OF THE ANGLE IS C

1on REM THE SINE OF THE ANGLE IS S -
1918 REM IF THE SIN 1S IN THE RANGE OF -1 TO ¥, THFH CORPUTE.

et P’ -
' oo .
91 oee .
W s o0 (nx) :
0 1 e0s D00 .
v OPEN 6,0:CHD 81L] Y pomees s0e ::' s ::: ::Ilm) :::: o.
' U
19 WEM :IIC\II AND nccl)s FUNCTIONS FOR COUMODNKE PET ‘5 'St ¥ TYPE A 200 200 #08 (DO OOO OO .
78 REM “Listed on & CE TermiNet )RS " ' see DOU DN XD OO (K0 R
8¢ HEM "using & CeC ADA 1209, o | 200 OO0 OND OND (DO OGO XXX .
0 RENM ) ¢es OO0 DOO DO DOD (0N XXX .
188 REM OPEN OUTPUT FILE NN DEVICE #8. s \ 000 DO D00 NOO N0 XXX XXX .
118 OPEN 3.0 o et s00 DOO OO0 0OO O XXX XXX XXX .
128 REN F ' s0s DOO OOO OON XXX XXX XXX XXX XXX * .
Sen REM csr A SINE VALVE 1 400 000 MO0 XXX YXX XXX XXX XXX XXX .
518 INPUT $ v ' s0¢ s8¢ 00U NOD XXX XXX XXX XXX XXX XXX XxX -
920 C»S N Tees (X0 OO OO XXX XXX XXX XXX XXX XXX XXX XXX .
336 NEN 1 .
T
s

APR NAY JUN JUL AUG SEP NCT WMV DEC

duaLiviLsLIbaLAINORLBBALLL-baLobaLbT e

e eEEl NNNMNAMAOAN e =

-

2018 REM IF THE COSINE IS IN THE KANGE OF =) T0 1, H -2 L] 1 -5.2% FLXY ) L
2011 REM AND NOT « T0 @, THEN COMPUTE . . R . . . . .

7030 15-53’-&%"3‘.3:" 0 2500 125008 217386.221 030083135 1.07108781 . . ¢

2048 IF Cal AND Cr-1 THEN 2078 18 1Hann 1 SR 1910407.50  3.162277875018 18 X .

2058 AC<G1GNTD In0e 154 22580 3375mm 6BOINTT.20  2.6573)ST2Ee11 1 . .

2068 REM THE ARCCOS 1S AC 00 e snencos 169394353 1203302096012 1 3.450s0ds N
M0 ‘C""l((!-c.c)‘.i/c‘) %0 62500 156259000 3414608%5.2 3.883157078%12 :\‘:.:.nom . R
2080 REN THE RESULT 15 IN KADIANS. CONVENT T DEGHEES. Je#  omuen "m gs;r:;;: ; .?&33552:3 o] .

W08 ACeACH | 09/ 358 122900 42075 : . Baeerasd .
:m PRINTSS.* SIN.COS ARCSIN ARCCUS Y ] 6400APRN 149a0RI4) 4.57946723E01) g s4esasd .
WIe PRINTSS.S1 s 202500 91125108 216427147 9.490056208+1) flidasesy .
3028 FO o) T 1 3-LEN ST (523 PINTAS. ® 7 T oe  Jemw  isedrsm procertid Ay Tirrengere oeverss .
3438 PRINTSS, ASt 0699999 .

3048 FOR Nei TO 13-LENCSTRECAS)) IPRINTES,® *1 INEXT oam e oemsemn T Fe) 2 "::ﬁ:;:::: svmowee 1 .

W38 PRINTES AC L] A9 P RIRL Lo 881219507 44994 YEe 14 ‘:m .

Jire cATU SA8 e SeasMe  21A7%RA0 LTI I TenEese 1 2e1BTI2ENs 70 591270 4lomemeny i

KEALY. 3.99999909 .

KHS=232 PRINTER ADAPTER FOk THE COMMODORE PET

The CONNECTICUT microCOMPUTEIt ADApter model 1203 is the first in a line of peripheral adapters for the
COMMODOKE PET. The CmC ADA 120@ drives an hS=232 printer from the PET IEEE-488 bus. The CmC ADA 1200 allows
the PET owner to ootain hard copy program listings, and to type letters, manuscripts, mailing labels, tables
of data, pictures, invoices, grephs, checks, needlepoint patterns, etc., using a standard RS-232 printer,

The CmC AlA model 2B comes essembled and tested, without power supplies, case, or RS-232 connector
for $98.5A. The CmC ADA 12@@C comes complete for $169.99., Specify baud rate when ordering. (309 baud is
supplied unless otherwise requested. Instructions for changing the baud rate are included.)

WORD PROCESSOR FOR THE COMMODORE PET

CONNECTICUT microCOMPUTER now has a word processor program for the COMMODORE PET. This program permits
composing and printing letters, flyers, advertisements, manuscripts, articles, etc., using the COMMODOKE PET
and an kS-232 printer.

Script directives include line length, left margin, centering, and skip. Edit commands allow the user to
insert lines, delete lines, move lines, change strings, save onto cassette, load from cassette, move up, move
down, print and type.

The CmC Word Processor Program addresses an RS-232 printer through a CmC printer adapter. T — TS

The CmC Word Processor Program is available for $29.50. :

i}

Teeavancseanss

kg
]

KS=232 TO CURRENT LOOP/TTL ADAPTER

L

The CmC ATApter model 40@ has two circuits. The first converts an RS-232 signal to a 20 ma current loop
signal, and the second converts a 20 ma current loop signal to an RS-232 signal. With this device a
computer’s teletype port can be used to drive an RS-232 terminal, or vice versa, without modification of the
port. The CmC ADA 49 can also be parelelled to drive a teletype or kS=232 printer while still using the
computer’s reqular terminal. The CmC ADA 422 can easily be modified to become an RS-232 to TTL and TIL to
RS=232 ATApter. The CmC ADA 497 does not alter the baud rate and uses standard power supplies. The current
loop is jsolated from the RS5-232 signal by optoisoletors.

The CmC ADA 4™ {s the perfect partner for KIM if vou want to use an RS$=232 terminal instead of a
current loop teletype,

The CmC ADA 494S comes with drilled, plated through solder pads and sells for $24.54. The CmC nC_ADA 4008
comes with barrier strips and screw terminals and sells for $29.50.

This announcement wes composed on a COMMODORE PET and printed on a GE

TermiNet using o CmC ADA 122¢C printer adapter and the CmC Word Prnocessor
Proqgram.

PEOLPIEPARCD 04¢D S04 FRAPIRAD S 04> FRCI SRCD PREI SR TR AR S0 AP AP PRI 04D REOI MO M DA TR SRR I IR P IR (> FA D FRED TR D AP FRAPFBLI S0P 0D $OX D LD R 0L D R84 D i wagpose)aeare
BEPEPEI MRS AP AOEPSAPERAI 2RCPI AP CP 42D 04D 0P P (D 0 CP HECDEECIPICIE0CI 030D 8043 IR UISID EEUP ISP O P IO HD S DD IR D RO IO MO DI IO 28I RECI S84 P 004

onty | Description ! baud rete | price t total | Mall wilh remittance or chergs informstion to!
1 CaC ADA 12008 (Dasic) [} i 08,50 | [} | ~ CONNECT'CUT microCOMPUTER
| CaC ADA 1208C (complste! 1 1 01690,08 | I | :ﬂ rl:a 150 Pocono Rocd, Rooma
| CaC Word Processor Progrea (cassetts) 1 329.%8 1 t [LSS) Brookfinld. Conn. 06804
| CaC ADK 4803 (solder peds) o os2e.50 1 t MANE
1 CaC AD: 4988 (berrier stripe} 1 129,98 | t COmPANY
Subtot el t | ADORE $$
Connscticut rasidents sdd 7X selss tax i [}
Mard}ing and shipping - add per ordar t 13.08 1§ CiTY
Forelgn sir mall - add 15,88 par order 1 ) SIATE 2’
Totel inciuded with order | 1
CHARGE TUIV]SA VMASTER CHAMGE W/C INTERBAMK WUNBER tExpiretion date

Credit céra nusber

SIGNATURE




THE MICRO SOF TWARE CATALDG: III

Mike Rowe
P.0. Box 3
S. Chelmsford, MA 01824

LABELER
TIM based or any 6502 based system

Name:
System:
Memory: 1K
Language:
Hardware:
Description:
acters on a paper tape and is useful for the

Assembly
Paper Tape Punch on TTY
This program punches legible char-

labeling of punched paper tapes. A 64 character
sub-set of ASCII is used. There is limited
editing capability on the data. There are a
number of options for character size, starting
address and TIM or I/0 independent code.

Copies: Not Specified
Price: $4.00
Includes: Commented source listing, operating

and modifying instructions, and a hex tape.
Ordering Info: Specify the following:

Char Size 5x5 or 5x8

Starting address 0200 or 1000

System TIM or I/0 Independent
Author: Gil House
Available from:

Gil House

P.0. Box 158

Clarksburg, MD 20734

Name: HUEY
System: Any 6502 based system.
Memory: 2.5K

Language:
Hardware:

Assembly
ASC11 I/0 device.
Description: HUEY-65 is a scientific calculator
program for the 6502 microprocessors. It oper-
ates from your ASCI1 keyboard like a calculator;
will output through your routines to a TV screen
or Teletype; is preprogrammed to do trig func-
tions, natural and common logs, exponential
functions and other goodies; and is programmable
for many other functions (financial, accounting,
mathematics, engineering, etc.) you would 1like
to call at the press of a single key.
Copies: Not Specified.
Price: Hex Dump at any even page - $5.00
Manual and Listings - $20.00

Ordering Info: Specify starting address.
Author: Don Rindsberg
Available from:

The BIT Stop

P.0. Box 973

Mobile, AL 36601

Name: Word Processor Program
System: PET

Memory: Not Specified.
Language: Not Specified.
Hardware: RS-232 printer addressed via a (mC

printer adapter.

Description: This program permits composing and
printing letters, flyers, advertisements, manu-
scripts, articles, etc., using the Commodore PET
and an RS-232 printer. Seript directives in-
clude line 1length, left margin, centering, and
skip. Edit commands allow the user to insert
lines, delete lines, move lines, change strings,
save onto cassette, load from cassette, move up,
move down, print and type.

Copies: Not Specified.

Price: $29.50
Ordering Info:
Author(s):

None.
Not Specified.

Available from:
Connecticut microComputer
150 Pocono Road
Brookfield, CT 06804

Name: ZIP TAPE

System: KIM-1, may be easily modified for any
other 6502 system with programmable timer I1/0
Memory: 3/4 page each for read and write progs.
Hardware: Simple single IC audio to logic level
converter and output buffer/attenuator on 2" sq.
board. Directional control, 4 connections to
computer.

Description: A fast audio cassette data record-
ing and recovery system. Programmable to 4800
baud. Loads 8K in less than 15 seconds. Fol-
lows KIM-1 prctocol of open ended record length
with start address, end address, and record ID
specified at usual KIM locations. Load by ID,
ignore ID, and relocate modes. Data recorded in
binary form with 2 byte checksum error detec-
tion. Easily relocated, can either stand alone
or be used as subroutines. Requires programm-
able timer I1/0.
Copies: About 12, just introduced.
Price: $22.50 +1.00 ship & hand.
for KIM cassette.
Includes: Assembled and tested interface, com-
mented listings, suggested changes to run on TIM
and other systems. Cassette has software recor-
ded at HYPERTAPE and standard KIM speeds plus 8K
test recording using ZIP TAPE.
Ordering Info: With or Without tape.
Author: Lewis Edwards, Jr.
Available from:

Lewis Edwards

1451 Hamilton Avenue

Trenton, NJ 08629

$3.00 extra

Name:
System:
Memory:

FOCAL® (%DEC Trademark)
Apple II
Not Specified.
Language: Assembler
Hardware: Apple II
Description: This is an extended version of the
high-level language called FOCAL. FOCAL was
created for the DEC PDP-8. It is similar to
BASIC. FCL65E, as this version is called, is
now available for the Apple II.
Copies: Not Specified.
Price: Apple II format cassette - $25,00
Mini-Manual - $6.00
FCL65E User's Manual - $12.00
Complete Source Listing - $35.00
Ordering Info: Specify parts desired.
Author(s): Not Specified.
Available from:
The 6502 Program Exchange
2920 Moana
Reno, NV 89509

WARLORDS

Apple II (PET version under devel.)

Not Specified
Language: Not Specified
Hardware: Apple II
Description: It is the Dark Ages, in the king-
dom of Nerd, and all is chaos. King Melvin has
died without an heir and a dire power struggle
is taking place to see who will emerge as the
new King. You and the other players are the
WARLORDS, and you will have to decide what com-
bination of military might and skillful diplom-
acy will lead you to victory.

Name:
System:
Memory:

Copies: Not Specified

Price: $12.00

Ordering Info: Specify Apple II Version
Author: Not Specified

Available from:
Dealers who carry software from
Speakeasy Software LTD.




Names:
System:
Memory:

E/65 and A/65

Any 6502 based system

Not Specified

Language: Assembly

Hardware: Terminal. Cassette optional.
Description: E/65 is primarily designed to edit
assembler source code. Line oriented commands
specify input/out or text and find specific
lines to be edited. String oriented commands
allow the user to search for and optionally
change a text string. Also character oriented
commands and loading and dumping to bulk device.
A/65 is a full two-pass assembler which conforms
to MOS Technology syntax. A full range of run-
time options are provided to control 1listing
formats, printing of generated code for ASCII
strings and generation of object code.

Copies: Not Specified

Price: $100 each

Includes: Object form on paper tape or KIM type
cassette. Listings of source code are available
for $25.00 each. Full documentation on the in-
stallation and use of each package is provided.
Author: Not Specified

Available from:

COMPAS - Computer Applications Corporation
P.0. Box 687

Ames, IA 50010

THE MICRO SOF TWARE CATALOG

Name: Read/Write PET Memory

System: PET

Memory: 8K RAM

Language: BASIC

Hardware: Standard PET

Description: Permits user to key into memory
hex codes by typing hex starting address and
then typing the hex digits in sequence desired.
Display memory as both hex codes and assembly
language mnemonics (translates relative address
into actual hex address). Stores memory on tape
and loads memory from tape into any desired mem-
ory location. Executes machine-language pro-

grams.
Copies: Just released - 32 sold first day.
Price: $7.95 - postpaid

Includes: Cassette tape; complete instructions
(including use of ROM subroutines to input and
output memory from keyboard and to screen).
Ordering Info: From author
Author:

Don Ketchum

313 Van Ness Avenue

Upland, CA 91786

(Dealer Inquities Invited)

The MICRO Software Catalog is a continuing fea-
ture of MICRO. If you have any 6502 based soft-
ware for sale (or exchange or free), please send
a complete description which includes ALL of the
information listed.

The MICRO Staff will not write up entries for
the MICRO Software Catalog from other materials
that you may provide. First, we do not have the
time to do this. Second, since we are not as
familiar with your software as you are, we can
not hope to provide as meaningful a write-up as
you can. Cover all pertinent information, but
keep the write-up to a reasonable length. MICRO
reserves the right to reject or edit any
material submitted for this column.

Name of program:

6502 systems:

Memory locations required:

Language (BASIC, Assembler,...):

Hardware required:

Description of program:

Number of copies sold to date:

Price:

What is included in package (cassette, listings,
paper tape, ...):

Ordering information:

Author(s):

Company Name and Address:

Send to:

MICRO, P.0. Box 3, S. Chelmsford, MA 01824

Starting with the next issue of MICRO, we plan
to run a Hardware Catalog similar to the current
Software Catalog. Information for this catalog
will come from suppliers of the hardware: the
manufacturer, distributor or dealer. This will
NOT be a "Product Review" nor will ineclusion
of information indicate endorsement of the pro-
duct by MICRO. We will not knowingly include
products which do not meet the following guide-
lines:

1. The product must be directly related to 6502
interests. For example, a general purpose
coding form would not qualify.

2. The product must be currently available:
A. Some units must have already been
delivered.
B. Delivery on new orders should be no more
than stock to four weeks.

3. The price must be included, along with any
other pertinent information about discounts,
shipping charges, etc.

THE MICRO HARDWARE CATALOG

A Call for Information

Suggestions for Hardware Catalog information:

1. Cover all of the important features of your
product, but be concise. MICRO reserves the
right to edit submissions which are too long.

2. A "“picture is worth a thousand words™ and
doesn't cost you a thing. Since it 1is a 1lot
more work to include pictures in the catalog, we
are not sure that we will be able to use them,
but if it is possible, we will.

3. Submit separate products as separate items
for the catalog. First, we will not print con-
glomerate listings. Second, you get multiple
exposure with separate listings.

4. Don't waste your time or ours submitting
material which does not directly relate to the
6502 family.

MICRO reserves the right to reject any item
submitted for inclusion in this catalog.




A DEBUCCING AID FOR THE KIN-1

Albert Gaspar
305 Wall Street
Hebron, CT 06248

DEBUG is a program designed to assist the user

in debugging and manipulating programs. It re-
sides in memory locations 1780 - 17E6 and pro-
vides a means for inserting breakpoints in a
user -program, moving blocks of bytes throughout
memory, filling memory with repetitious data,
and calculating branch values. It uses selected
KIM monitor subroutines.

Operating Modes
DEBUG has three operating modes:

1. Keyboard Mode: DEBUG remainsin a wait loop
anticipating keyboard entry which will be recog-
nized as either data or command characters.
This mode is initiated either by using the KIM
monitor to start at location 178E, or by the
execution of a previously inserted breakpoint in
a user program.

2. Execute Mode: DEBUG executes logic to ser-
vice a user command. This mode is completed in
microseconds and will not be noticeable by the
user.

3. Non-Control Mode: DEBUG relinquishes con-
trol when the user keys in "RS", or "ST" during
Keyboard Mode, or uses the CONTINUE Command.

To start, the user must first load "B5" into
17FE and "17" into 17FF using the KIM. Then the
user begins DEBUG by starting at location 178E.
This puts DEBUG into Keyboard Mode. The user
then keys in combinations of the 16 data char-
acters available on the keyboard. Input data is
displayed in a manner similar to that of the KIM
- from right to left - except that only the
left-most five display positions are utilized
(exceptions are noted below).

The user must continue to key in characters un-
til he is satisified that the required data is
input. Then one of the several Command code
characters available (B, C, D, E, or F) is keyed
in. At this point, or at any time previous to
this, if the input is not correct and the user
wishes to change the display, he merely contin-
ues to enter data until the display string is
correct. When the display concatenation is sat-
isfactory (either 2 or 4 data characters and 1
Command character) he keys in "AD". Now DEBUG
will go into Execute Mode (without echoing the
entry of "AD") and immediately examines the
last previous character input. If this char-
acter is not a legitimate Command character (B,
C, D, E, or F), DEBUG becomes confused and will
transfer to unpredictable memory locations.
Thus the user is held wholly responsible for the
validity of his input. He should always check
that either his keyed-in data is correct before
hitting "AD", or that his Command was indeed ex-
ecuted. Note: if a key other than "AD", the 16
data characters, "RS", or "ST" is depressed, its
high order 4 bits are stripped and the remaining
low order 4 bits are displayed and evaluated as
whatever the combination happens to represent.

Assuming that the character input immediately
prior to "AD" is a legitimate Command character,
DEBUG -~ still in Execute Mode - will process
the data which was input prior to the Command
code (either 2 or 4 characters). Note that the
Command values (B, C, D, B, of F) if found in

6:25

is eminent,

MICR®

the data field are processed as standard hex
values.

BREAK This command allows the user to insert
a breakpoint anywhere desired in his pro-
gram. When this point is subsequently reached
during execution of his program, control will be
passed to Keyboard Mode of DEBUG and further
execution of the user program will effectively
be temporarily discontinued. Also at this time
the user area will be restored to the original
configuration existing at the time of the break-
point insertion.

Input Sequence:

Press Keys See on Display

4 Data Characters B "aD" 4 char B1
The 4 Data Characters define the Breakpoint
location desired. The BREAK Command saves the
user byte at the Breakpoint and deposits a BRK
instruction in place of it. Thus, that user
area should not be altered by the user while
DEBUG is in Non-Control Mode and a Breakpoint
or the Breakpoint return will not
work. More than one Breakpoint can be eminent
at one time; however since DEBUG will store only
one byte at a time, multiple simultaneous
Breakpoints should be apfflied only at user loca-
tions containing the same instruction. This way
it is immaterial which BRK triggers a return to
DEBUG - the user area will be properly replaced.

This Command includes 1 of 2 instances where the
sixth display position is used. If the sixth
position contains a 1, the Command has been cor-
rectly processed. If the position contains any
other value, it indicates that depression of the
"AD" key has caused multiple bounces and the
byte stored by DEBUG within itself is now "00" -
not the original user byte. Thus DEBUG will
still function correctly but will not correct-
ly restore the user position when a Breakpoint
return is initiated. The user must restore the
location manually (using KIM) after the return
has been performed - otherwise "00" will be left
in the location.

CONTINUE This Command causes DEBUG to pass
execution to a user specified loca-
tion. It is similar to the passing of control

through KIM and either method may be used to ex-
ecute user code.

Input Sequence:

Press Keys See on Display

4 Data Characters C "AD" 4 char co
The 4 Data Characters define the address to
which control is to be passed. The above dis-
play is only momentary since control is immedi-
ately passed to a user area (Non-Control Mode)
The purpose of the Continue Command will usually
be to execute to a previously inserted Break-
point. When this occurs, as previously stated,
control returns to Keyboard Mode, of DEBUG.
At this point, the leftmost U4 display digits
will contain the address at which the Breakpoint
was located. See Overall Notes #1 for a con-
tinvation warning.




MOVE This Command will move a block of up to

256 bytes to another memory area. It is
non-destructive (unless, of course, a shift is
performed).

Input Sequence:

Press Keys See on Display
4 Data Characters F "AD" 4 char FO
(F for From)

4 Data Characters D ™AD" 4 char DO

(D for Destination)
2 Data Characters E ™AD" XX 2 char EO
(E for Execute)

The 4 Data Characters above represent the loca-
tions one less than the locations, respective-
ly, from which and to which the data is to
moved . The 2 Data Characters above represent
the hex value of the number Jf-bytes to be
moved. If the user desires to move 256 (dec.)
bytes, he must input "00" in the "E" Command.
"EF® and "D" execution may be input in either
order - "F" then "D" or "D" then "F".

MOVE will correctly move blocks of bytes
from one area of memory to another. However it
will correctly shift bytes only in an upward
direction. Attempting downward shifts will re-
sult in the repeating of as many of the last
bytes in the original block as there is a dif-
ference in the block positions. For example -
shifting a block of say (n) bytes starting at
0200 to a new area starting at 0202 will cor-
rectly shift the (n) bytes upward 2 locations.
Attempting to shift a block of (n) bytes start-
ing in 0202 to a new area starting in 0200 will
result in the last 2 bytes of the original
block to be repeated downward from their orig-
inal locations continuing to 0200. This may not
be completely undesireable since - 1) normally
the user will be interested in expanding an
area, not in compressing it (for example, to add
instructions); and, 2) this serves as a useful
tool to provide filler bytes in memory when
desired.

BRANCH This Command assists in calculating

‘Branch values.
Input Sequence:

1. Enter the necessary 12 bytes of Branch Over-
lay, either through KIM or by tape overlay.
(These will, of course, have to be restored to
the original configuration when through with
BRANCH) .

1. Put DEBUG into Keyboard Mode.

Press Keys See on Display

2 char/2 Char. E ™AD" 2 char/2 char/D-VALUE

The first 2 characters are the 2 least signifi-
cant values of the Branch Address. The next 2
characters are the 2 least significant values of
the Branch to Address. The "E" stands for
Evaluate, The correct Displacement VALUE will
appear in the 5th and 6th display positions.
The displacement is calculated assuming that the
two addresses are in the same page. For page
overlap, entry will have to be done twice. We
believe that different users will have different
preferential methods for doing this, so our own
method, which is somewhat involved, 1is not
described. If both entries are on the same page
but are separated by a distance greater than the
standard branch range, the value calculated will
be incorrect. It 1is the user's responsibility
to check for out—of-range |values.

N — ()

6:26

CIRI[O

Overall Notes

1. When a Breakpoint has been executed, DEBUG
does not store and then restore accumulator,
register, and status values. Thus, the user
must take care in continuing from a Breakpoint
if any of these parameters have a subsequent
bearing in further user program execution.
(Though this and other omissions are glaring de-
fects, no apology is made - there was just in-
sufficient memory available for inclusion of any
refinements.)

2. When returning from a "BRK" instruction,
DEBUG pulls the status register information from
the stack and ignores it. If this DEBUG version
is used in conjunction with an interrupt system,
locations 17FE - 17FF must contain the address
of the user interrupt handler. The beginning of
the handler must be similar to that shown on
page 144 of the KIM Programming Manual. The
logic listed in example 9.7 must be utilized as
shown. "BNE BRKP" will point to the DEBUG loca-
tion defined below. If the user handler deter-
mines that the interrupt was caused by "BRK”,
then the handler must Jjump to location 17B5.
DEBUG will then obtain the "BRK" address and
perform subsequent logic to return the user byte
to its original configuration and continue on
into Keyboard Mode.

3. This version of DEBUG uses page zero loca-
tions 0000, 0001, 0002, 0003, and 0004, but only
as scratch areas during Keyboard and Execute
Modes. The user can use these areas as tempo-
rary scratch areas when DEBUG is not being ex-
ecuted.

4., Due to limited instruction space, DEBUG is
particularily susceptible to key bounce. The
user should remain watchful of such occurrences,
especially during BREAK execution as previously
described.

5. My goal here was to fit as much DEBUG power
into locations 1780 - 17E6 as possible -~ not to
write a great breakpoint/move/branch calculate
routine. (That has already been done by others)
Thus DEBUG had to be written in relatively con-
cise and tight code, using data as instructions,
instructions as data, overlapping instructions,
using the same code to do different things,
instruction modification, position instructions
in prescribed relative locations, use of "write-
only-memory", etc. I do not approve of this
type of programming - in fact I strongly recom-
mend against 1it. However, in this case I hope
the goal I had justifies the mess that DEBUG has
turned out to be. In any event I would like to
point out that as tight as the code is, it is
still possible to add other functions here and
there. For example the version I usually use
displays the value of the accumulator in display
locations 5 and 6 when returning back from a
Breakpoint. At times I also use another version
which doesn't require the "BRK" instruction at
all. This is convenient when debugging inter-
rupt programs since no additional interrupt is
needed for DEBUG. However, both versions penal-
ize me in other areas, which makes 1t all a
trade-off decision,

[Editor's Note: Gaspar seems to be suggesting
a collection of specialized DEBUG programs,
each customized to provide a particular set of
capabilities while residing in minimal memory.
Using his code as a starting point, a "program-
wise®™ reader should be able to construct his own
set of DEBUG aids.]




ZERO
ONE
TWO
THREE
FOUR

INH
POINTL
POINTH

RETURN
TBLOFF
JUMPER

INITI
SCANDS
GETKEY

02
00

$0000
$0001
$0002
$0003
$0004

$00F9
$00FA
$00FB

$17B5
$17D4
$17DD

$1E8C
$1F1F
$1F6A

LDAIY
STAIY
DEY
BNE
TYA
STAZX
LDAZ
STAZX
JSR
JSR
BNE
JSR
BEQ
JSR
LDXZ
CMPIM
BEQ
STAZ
LDXIM
ASLA
ROL
ROL
ROL
DEX
BNE
STA
BEQ
SEC
PLA
PLA
SBCIM
STAZ
PLA
SBCIM
STAZ
LDXIM
INC
LDYIM
LDAIY
STAX
LDAX
STAIY
LDXIM
PROCES LDYZ
LDAX
STA
BNE
NOP

§II wou onn

LOCATION 0000

KIM DISPLAY POINTERS

INTERNAL ADDRESS
TABLE OFFSET
INTERNAL ADDRESS

KIM INITIALIZE ROUTINE
KIM SCAN DISPLAY ROUTINE

KIM GET

TWO
ZERO

EXEC

$00F3
POINTH
$00FY
INITI
SCANDS
START
SCANDS
KEY
GETKEY
FOUR
$10
PROCES
FOUR
$04

INH
POINTL
POINTH

SHIFT
INH
START

$02
POINTL

$00
POINTH
$0C
INH
$00
POINTL
$17DC
$17DB
POINTL
$0D
POINTL
TBLOFF
$17DD
JUMPER

$E6
$06
$49
$A2
$A9
POINTL

KEYBOARD CHARACTER

GET CHAR TO BE MOVED
MOVE IT

CONTINUE UNTIL DONE
GET TO OR FROM ADDRESS
STORE IT IS SCRATCH

SET FLAGS AND INIT.
DISPLAY BUFFER

NEW CHARACTER INPUT?

NO, CONTINUE TO DISPLAY

YES, GET THE CHARACTER

PICK UP LAST CHAR. INPUT

IS THE NEW CHAR. "AD"?

YES. PROCESS CURRENT COMMAND
NO. STORE IT

AND SHIFT IT INTO THE DISPLAY

SHIFT THE DISPLAY LEFT

DONE SHIFTING
YES. ADD NEW CHAR TO DISPLAY
UNCONDITION RETURN

IGNORE STATUS

GET "FROM" ADDRESS
SUBTRACT 2

DISPLAY LOW ORDER

SUBTRACT CARRY, IF ANY
DISPLAY HI ORDER

CHEAT ON RX

COUNT KEY BOUNCES

GET USER BYTE
STORE IT

GET "BRK"

STORE IN USER AREA
CHEAT ON RX

PREPARE TO GO TO COMMAND LOGIC
ALTER INSTRUCTION

JMP TO COMMAND LOGIC

FUTURE EXPANSION

BRANCH TO "B"

BRANCH TO "C"

BRANCH TO "D"

BRANCH TO "E"

BRANCH TO "F"

00 OR ADDRESS USED AS "BRK"




ORG

INH .
POINTL *®
POINTH *®

Examples

1. Load DEBUG.
into 17FF.

Load "B5" into 17FE and ™17"

2. Start execution at location 178E.

3. Depressing any of the 16 keyboard characters
will cause the 5 leftmost display digits to
shift left and the new character to be inserted
into the fifth position.

4. Assume that there is a program in 0200-0250.
Now, to execute from 0200-0240:

0240BAD Display is 0240 B1
0200CAD 0200 CO
0240 XX

When the user program executes to location 0240,
it will return to DEBUG which then will replace
the original byte at 0240 and will return to
Keyboard Mode.

5. User wishes to add a 3 byte instruction in
0241-0243. Thus he must shift his program from
0241-0250 to 0244-0253.

02408BAD Display is 0240 B1

0240FAD 0240 FO

(Remember that MOVE requires addresses 1
than the actual values.)

less

XX 10EAD Display is XX10 EO

(10 = 0250 - o241 + 1)

BRANCH CALCULATION OVERLAY

—Lﬁlﬂ@[ﬁ@

$1780

$00F9
$00FA
$00FB

1780 38 EXEC  SEC INITIALIZE SUBTRACT
1781 A5 FA LDAZ POINTL

1783 69 FD ADCIM $FD CORRECTION CONSTANT
1785 E5 FB SBCZ POINTH

1787 85 F9 STAZ INH STORE RESULT IN DISPLAY
1789 4C 8E 17 JMP  $178E JUMP TO START

This shifts bytes in 0241-0250 to 02u44-0253.
User can now insert his 3 new instructions into
locations 0241, 0242, and 0243.

6. User wishes to load NOP into locations 0300-

03FF. Load "EA" into O3FF using KIM. Return to
DEBUG.
0300FAD Display is 0300 FO
02FFDAD 02FF DO

0 0 E AD XX00 EQO
(Move 256 decimal bytes.)

7. User wishes to calculate the value required

for a HERE BCC START ®where HERE = 0204 and
START = 0250.
First, load overlay (12 bytes) and return to
DEBUG.

0 450EAD Display is 0450 4A

Thus the branch value is 4A and the branch in-
struction will be BCC 4A.

Remember that if further DEBUG usage is planned,
the original 12 bytes starting at 1780 have to
be replaced.

Program Notes
1. The instruction listings at 17B4 and 17E4

are NOT errors and must be placed in memory
exactly as shown.

2. Locations 17E7 and 17E8 are used by the KIM
monitor for tape checksum. However, their usage
in DEBUG will not interfere with KIM since the
two programs do not, of course, use them at the
same time.




6502 INTERFACING FOR BEGINNERS:
ADDRESS DECODING II

Point Lookout,

I hope you did not turn any expensive integrated
circuits into cinders with last month's experi-
ments. We will begin this month by considering
the questions raised in the last column. You
will need to refer to the circuits, tables, and
the program described there. The following

CYCLE  ADDRESS BUS A15 A14 A13  DATA BUS

In the program loop address lines A14 and A13 go
high only during cycle 5. Thus, for six cycles
output 0 (pin 1) of the LS145 is low. The LS145
is an open collector device and acts like a
switch to ground when the pin is in the L state,
allowing current to flow through the LED. Dur-
ing cycle 5, when the address of the storage
location is on the address bus, pin U4 is in the
low state and will cause the LED to glow. Earth
people do not perceive one microsecond flashes
spaced six microseconds apart, so the LED ap-
pears to glow rather than flash. Since the ma-
Jority of the loop time is spent with pin 1 at
logiec 0, a bright glow is observed on this pin.
Changing the instruction from STA to LDA has no
effect since the address bus goes through the
same sequence for a LDA as it does for a STA.
Changing the storage location from 60XX to some-
thing else will cause another pin of the LS145
to glow. The results of the LED test should
agree with the truth table given for the LS1i5.

The pulse from the decoder which occurs when it
responds to a particular address at its input
pins is called a device select pulse or an
address select pulse. The LS145 produces a
logic 0 or active-low device select pulse, some-
times symbolized by “L_I" or DS. This pulse is
used to select or activate or enable another de-
vice in the computer system such as a memory
chip, an I/0 port, a PIA chip, or another deco-
der. As mentioned in the last column, the de-
vice select pulse from the LS145 could be used
to enable a 74LS138 which would then decode ad-
dress lines A10-12, dividing an 8K block into 1K
blocks. Such a scheme is very similar to the
expansion circuit suggested in the KIM-1 USER
MANUAL, page T4. Similar circuits are alsc

6:29

—wﬂ@@@

Marvin L. De Jong
Dept . of Math-
The School of the Ozarks

Physics
MO 65726

table describes the activity which takes place
on the address bus and the data bus while the
program is running. It is organized by clock
cycles, each one microsecond long, starting with
the op code fetch of the CLC instruction.

COMMENTS

0 0200 0 0 0 CLC op code Pin 1 of LS145 is low because address
lines A13-15 are low.
1 0201 0 0 0 STA op code LED will glow when connected to pin 1,
but not to other pins.
>~ 2 0201 0 0 0 STA op code All other pins on LS145 are high.
3 0202 0 0 0 XX Low order address of storage location
on data lines.
) 0203 0 0 0 60 High order address of storage location
on data lines.
5 60XX 0 1 1 accumulator LED will light for 1 microsecond if
contents connected to pin 4 on LS145.
6 0204 0 0 0 BCC op code Pin 4 high, pin 1 low. LED will glow
on pin 1 only.
7 0205 0 0 0 FB offset 6502 is now determing if and where to
branch. Branch is to 0201 because
— 8 0206 0 0 0 garbage carry was clear.

used on memory expansion boards. In the present
circumstance I have decided to make a trade-off
between wasting address space and minimizing the
number of chips on the breadboard. Our purpose
here is to configure some I/0 ports as simply as
possible.

The decoding circuit is shown in Figure 1. A
total of eight device select pulses are availa-
able for eight I/0 ports. Note that one of the
BK selects (B8KY4) from the LS145 enables the
LS138 which decodes the three low-order address
lines.. All of the BKY4 space is used to get
eight I/0 ports. Using a 74LS154 instead of the
LS138 and decoding on more address line would
give 16 I/0 ports in the event we need more. Or
we could take another 8K select to enable anoth-
er LS138 or LS145, giving us 8 or 32 ports, re-
spectively. There is no doubt that address
space is being wasted, but few users use all
64K, or even 32K, so the waste may be justified.
In Figure 1, address lines A0-2 are extended
downward to indicate that they could be decoded
by other devices such as an LS138 or LS154.

The addresses which enable the device select
pulses DSO-7 are given in Figure 1. Note that
since not all sixteen lines have been decoded to
produce the pulses, the addresses shown are not
the only ones which will work. For example, de-
vice select pulse 0 will be produced whenever
the computer reads or writes to 8XX0 or 9XX0 (XX
means any hex numbers). This should cause no
difficulty unless we try to put other devices
into the 8K4 block, in which case we could sim-
ply decode some other lines. If your system
does not buffer the address lines, you should
buffer them with the circuit shown in Figure 2.




L] 15 &xxz
A13 00— Z, 10K +—Ac YY? ' 1 §
| o
A14D—"'—‘i‘ 8 5 L L B Y2 13 2 o
AlSo—2IC 4 A y3p-2 8003 2
3 sLsi38 VAP 3882 v
7 2 3 Y5 1 ‘_,‘C_
4LS145 1 2 ]“CGZA YGD A | 8006 g
D oft 96op  Y7pr BT o
-

ll%

00U =

Decodinf Circuit to Select 1/0 Ports.
See text for details.

» Figure 1.

Construct the circuits of Figures 1, 2, and 3. the device select on the address bus which
I managed to get them on one A P circuit board produces the pulse which flips the flop. One
with no difficulty, with room for several more more experiment: connect the R/W line from the
chips. I also found that the A P breadboard 6502 to the G1 input on the LS138 after remov-
jumper wire kit is very handy for making neat ing the connection from G1 (pin 6) to pin 16.
layouts. Connect one of the device select lines Now try the programs above, using first a LDA
from the LS138 to the flip-flop preset input instruction, then a STA instruction. You should

(Test Circuit, Figure 3) and another device se- find that the program with the LDA instruction
lect line to the clear input. A pulse to the .

preset input will cause the Q output to go high,
lighting the Q LED, whereas a pulse to the clear
input will cause the Q output to go high, light-
ing the Q LED.

+5v

To test your decoding circuit write a one state- 1\
ment program, for example:

0200 AD 00 80 LDA DSO 2

AQO—m] H——>A0
If the line labeled 8000 is connected to the 4 I LN
o
preset of the test circuit, the Q output will go Al é L5367 Al
high, lighting the LED, when the program is run. A2c— 8 H——oa2
Running the program: A3 o 9 oA 13

0200 AD 04 80 LDA DS4

will cause a switch of the flip-flop if the line A'SD—'—“ -E——DA15
8004 is connected to the clear input. You
should test all 8 device select lines from the
LS138 with these programs by changing the con- Gt G2
nections and the addresses. Note that no data 1 '_l‘s
is being transferred since we have made no con- [—4
nections to the data bus. It should also be ap-

parent that this scheme could be used to switch

a motor, light, cassette recorder or other de-

vice off and on in a computer program. Eureka! _L_.
We have made a simple I/0 circuit. 3

To continue a little further, repeat the above Figure 2.

experiments with a STA instruction replacing the
LDA instruction. The results should be identi-
cal because in both cases it is the address of

Buffering the Address Lines.
The arrows pointing into the chip are the
lines from the 6502, while those pointing

away go to the circuit in Figure 1.
—Eﬂ]ﬂ@@@




s
Q 15
A J
)
>>CP( {;;'
o——4 PR
D5n , =
o——4 CLR
tﬂSrn 14
ol K 0]
7476
5 5
=
Figure 3. Test Circuit.
works, that is, the lights can be switched from

off to on and vice versa,
tion does not work. Why?

but the STA instruc-

Keep your circuit, as the material in the next
column will refer to and make use of the circuit
you have just completed.

A Note About Figure 1: The #* lines in Figure 1
suggest that something should be done with them.
For the experiments described above, nothing
need be connected to these lines, however when

An Additional Experiment

The address decoding circuit of Figure 1 pro-
duces a one microsecond negative going one-shot
pulse when a LDA instruction addresses one of
the locations shown in Figure 1. This one-shot
can be used for a variety of purposes, one of
which is triggering the flip-flop shown in Fig-
ure 3. The program listed below makes use of an
interval timer (KIM-1 system addresses) to pro-
duce a square wave. By varying the time loaded
into the timer, the frequency can be changed,

0200 AD 07 80 START LDA DSEVEN
0203 AQ FF LDAIM $FF
0205 8D 07 17 STA TIMER
0208 AD 07 17 BACK LDA CLKRDI
020B 10 FB BPL  BACK
020D AD 01 80 LDA DSONE
0210 A9 FF LDAIM $FF
0212 8D 07 17 N} TIMER
0215 AD 07 17 AGN LDA CLKRDI
0218 10 FB BPL AGN
0214 4C 00 02 JMP START

6:31

we try to put data on the data bus these lines
will become important. What you do depends on
the system you are using. Since the KIM-1 is
probably the most popular system among the read-
ers, and since my own system is a KIM (expanded
with a Riverside KEM and MVM-1024) the following
details will be of most interest to KIM owners.
Owners of other systems will have to dig into
their manuals to make sure they are not de-se-
lecting their on-board devices, or much worse,
selecting two devices to put information on the
data bus simultaneously. The KIM-1 has a 74145
decoder on-board which decodes 1lines A10-12;
lines A13-15 are not decoded. Consequently, the
lowest 8KO block is already decoded, and the de-
vice select pulse from the LS145 in Figure 1
should enable the decoder on the KIM for all ad-
dresses in the 8K0 block. To do this simply
connect the device select pulse from pin 1 on
the T4LS145 in Figure 1 to pin K on the appli-
cation connector on the KIM, making sure that
the ground connection is first removed. A 10K
pull-up resistor between pin 1 and +5V will also
be necessary. The device select pulse from 8K7
should enable the device containing the restart
and interrupt vectors. In the case of the KIM,
pin 9 of the LS145 in Figure should enable the
£530-002 ROM by connecting it to pin J of the
application connector. No pull-up is necessary.

Next issue we will examine the other pins on the
6502 which will be useful in configuring I/0
ports, namely the bi-directional data bus, and
the control signals. Hopefully we shall finish
the circuitry needed to make an output port (8
bits), connect some LEDs to it, see if it works
or smokes, and maybe think of a use for it.

A couple of parting shots: First, there is a
very good educational series of articles in
KILOBAUD magazine called KILOBAUD KLASSROOM.
It assumes less experience than I have assumed
so far. Second, I hope you have obtained a "TTL
Databook" from either Texas Instruments or
National so that you can study the truth tables
and other specifications of the chips we are

~\\\¥?sing.

—Qﬂﬂ@@@

and the duty cycle can be changed. Thus, we
have produced a simple function generator with
programmable period and duty cycle. The LEDs
will show the results at low frequencies. Try
this program and watch the LEDs. Amplify the Q
output and connect it to a speaker; notice the
effect of changing the time, the duty cycle, the
wave shape (by filtering) or whatever else you
can think of. Noc.ice that I used device selects
8007 and 8001.

DSEVEN #* $8007 DEVICE SEL- .

DSONE * $8001 DEVICE SF. .T 1 Y
TIMER * $1707 KIM TIM®

CLKRDI * $1707 KIM CL( a DONE TEST

INIT DS7 DEVICE SELECT PULSE

INIT TIMER

START DIVIDE-BY-1024 TIMER FOR 256
CYCLES, NOW CHECK TO SEE IF IT

IS FINISHED.
OTHERWISE TRIGGER DS1.

IF NOT, CHECK AGAIN,

START TIMER FOR SECOND HALF OF
CYCLE.
NO, CHECK AGAIN, OTHERWISE JUMP
TO START OVER.

IS TIMER READY?




. o et e () L0835 Ny O

9089-899 (£1€) ‘paisal
vo mmwuvs UeBIMAIN .u3u<~MM< 1:”>w_.mu..zu E!... s ..H_ 1umemo=wa=c
S 3ayas yin
21018 .—3:&:.%0 _ncw_unoh”m&&:.wi aatue [im V1349 WIN 4L
uoywiodio) aEN«uauo.-u_z payun -fjddns samod pue ped >uawnu
Yum pieoqday [ng ‘LHD .ZT ywm
(31qojjvap pup [puoj 1fos }ip) piwogiayiopy ssapuauodwo)) pue

AlUo ‘WVH N8 ‘P4r0q 13jjng [onuo)

cc m @ m | Aiowapy Buipnpul yi13d WM
ay) Jo aoud wajsfs dseq Ay

ONIQVOTHIAO QIOAV OL SISSNE VIVA ANV

SSTHAAV WOH4 AIHILANEG ATILTTIWOD %1 WIN noh puy

1 Buyipows ynoyim [-WIY snoA Jo [0NU0D ([N 3avYy UL

noA os sfay voduny pue pedAay dpswnu Bupnipu; pivogfiay [N

13Yd)ms yueq Alowdw

HIAALVHM 1o 3depaiuf umo tnof Buippy

HOL4VAvV SNd 88y 3331

saqj00u0d Av|dsip MydesB-oapip

spawoq swapoj 1o ‘Boeuy o} [BBIQ ‘[eNBig 01 Bofeuy
sajnpows Apeuosiad yim 12wweibord WOHII

SHSIA AddOTd-ININ 19§ 12][053u0d YA

$3} 001-S e3¢ 3

:10} sjo[s uoisuedxa ajdynuw
1250 swaisAg V139 WIM

s1aynq uojsuedxa

wajsAs pue WOUdI

N8 ‘WVH N8 Yum ‘pivogq
12ng 105u0) A1owdly DWN

*

T-WIM prepums ay]

psvoqayio WM UZD

‘uojsupdxa appawl} 10f saI0WIWL I1IDIS OO]-S |DIIUWIOU0ID
28n nod pup “‘adpfia3u} 2312880 pap0q-uo [-WI¥ Y3 pia ‘adp]
21325803 10 WONJT Y} TVDOd 40 DISVd Jo 3310yd inod

ynm WOHJd3 M8 puv WvH Mg ynm bujuuibaq ‘39 o1 uos
-undxa 9jpipawwy} smojp yYaym yovoisddo swaisds anbun y

4

" - sapiiqeded uoisuedxa anbiun
SI2jj0 V139 WIN 24L

9089-899 (€1¢€)
bO18Y ueBIyoI ‘1oqry uuy
1224G a1e)1§ Yinog 1092
w1, 2101S 12)ndwo) Jeuoissajord ayj,,
uoneiodio)) swalsASOIdIW pajyu) woly ajqepeay
‘suopedijdde jayjo Auew pue * * "]oJjU0D
[euIsnpul * © ‘ydaeasal ‘ ° "uUoOlEINPa * ° 10} |qeNNG
‘swapow ‘1djunad ‘ysip Bupnpus ‘waysig
Iandwio) 3[edG-[Ing © Jo IHVIH W s1 V139 WIN 24l

j renuajod [0y sy 01 123ndwod-preoq ajbuis
xendod jsow ayj jJo uoisuedxa wajsAs e

" v1dd WIM 2y} buonpoxuj



Richard F.

This article consists of two parts. The first
is a brief discussion of the colors of the Apple
and theilr relationships to each other and to the
color numbers. Some of that information is used
in the second part to generate a random color
display according to certain principles sugges-
ted by Martin Gardner in his mathematical games
column in Scientific American.

The Color of Your Apple

The color of your Apple comes from your color
TV. The video signal has many components. Most
of the signal carries the brightness information
of the picture - a black and white set uses this
part of the signal to generate its picture.
Superimposed on this signal is the "color car-
rier:, a 3.58 MHz signal that carries the color
information. The larger this signal, the more
colorful that region of the picture. The hue
(blue, green, orange, etc.) is determined by the
phase of the color signal. Reference timing
signals at the beginning of each scan line syn-
chronize a "standard" color signal. The time
during a 3.58 MHz period that the picture color
signal goes high compared to when the standard
goes high determines the hue. A color signal
that goes high when the standard does gives or-
ange. One that goes low at that time gives
blue. Signals that are high while the standard
goes from high to low or from low to high give
va#let and green. (This, at least, was the in-

ention. Studio difficulties, transmission
paths and the viewers antenna and set affect
these relations, so the viewer 1s usually given
final say with a hue or tint control.)

The time relation of the color signal to the
standard signal is expressed as a "phase angle",
is measured in angular measures such as degrees
or radians and can run from 0 to 360 degrees.
This phase angle corresponds to position on a
color circle, with orange at the top and blue at
the bottom, as shown in Figure 1.

The perimeter of the circle represents different
colors or hues. The radial distance from the
center represents amount of color, or satura-
tion. The former is usually adjusted by the
tint control, the latter by the color control.
A color that can be reproduced by a color TV can
be related to a point in this circle. The angu-
lar position is coded in the phase of the 3.58
MHz color carrier signal; the radial distance
from the center is given by the amplitude of the
color carrier.

The numerical coding of the Apple colors can be
appreciated using this circle and binary repre-
sentation of the color numbers. The low order
bit corresponds to red (#1). The second bit
corresponds to dark blue (#2), the third to dark
green (#4) and the high order bit to brown (dark
yellow, #8). To find the color for any color
number, represent each 1 bit a quarter-ple
plece centered over its respective color, as in-
dicated in Figure 1. The brightness or light-
ness of the color corresponds to the number of
plie pieces and the color corresponds to the
point where the whole collection balances.
Black, #0, has no bits set, no pie and no
brightness. White, #15, has four bits set, the
whole ple, is of maximum brightness and balances
in the center of the circle at neutral. Orange,

6:33

BROWMN AND WHITE AND COLORED ALL OVER

MIICIRIO]

Suitor
166 |Tremont Street
Newton, MA 02158

#9 or 1001 in binary, has pie over the top hemi-
sphere and balances on a point between neutral
and orange. The #5, bipary 0101, has two sepa-
rate wedges, one over red and one over green.
Since it 1s symmetric, it balances at the cen-
ter. It represents a neutral gray of intermedi-
ate brightness. So does the #10. The #14 has
pie over every sector except the red one. 1It.is
bright and balances on a line toward forest
green. It gives a light, somewhat bluish green.

YELLOW

1000

NEU-
TRAL

0001

GREEN

FOREST 0100 DEEP

GREEN BLUE
MID BLUE
Figure 1.

Color circle shows relations of
color to color number bit position.

A diagram representing the relations of all the
colors is given in Figure 2. Each of the one,
two and three bit numbers form planes, each cor-
responding to a color circle, One can think of
these positions as points in space, with bright-
ness increasing with vertical position and hori-
zontal planes representing color cirecles of
differing brightness.

The colors of the Apple are thus coded by the
bit patterns of the numbers representing them.
You can think of them as additive combinations
of red, dark blue, dark green and brown, where
adding two colors is represented by ORing the
two numbers representing them. Subtractive com-
bination can be represented by ANDing the light
colors, pink, yellow, light green and 1ight
blue. The more bits set in a number, the
brighter; the fewer, the darker. The bit pat-
terns for 5 and 10 have no 3.58 MHz component
and so generate a neutral tone. At a boundary
between 5 and 10 however, this pattern is dis-
turbed and two bits or spaces adjoin. Try the
following program which has only grays disp-
played:

10 GR

20 FOR I =0 TO 9

30 COLOR = 5

40 HLIN 0,39 AT 2%I

50 VLIN 20,39 AT 281

60 VLIN 20,39 AT 2%I+21
70 COLOR = 10

80 HLIN 0,39 AT 201 4+ 1
90 VLIN 20,39 AT 281 + 1
100 VLIN 20,39 AT 2%I + 20
110 NEXT I

120 RETURN

The top half of the display has HLIN's, alter-
nating 5 and 10. The bottom half has VLIN's,
alternating 5 and 10. What do you see? The bit
pattern for a number is placed directly on the
video signal, with the four bits occupying one
color carrier period. When two bits adjoin at a




YELLOW
1101.

1011%'
0111 TTTT—V0 Py

LIGHT BLUE 1110
LIGHT GREEN

VIOLET

0001
RED

0010 ® ®
DARK BLUE 0100

0000
REEN
BLACK DARK GRE

Figure 2.

Color space locations of the Apple II colors.
Each horizontal plane forms a color circle
of different brightness.

5,10 boundary, a light band is formed. When two
spaces adjoin, a dark band is formed. The
slight tints are due to the boundaries having
some color component. Changing the 5,10 order
reverses this tint.

Now is perhaps a good time to consider just how
large a 3.58 MHz period is. The Apple text is
generated with a 5x7 dot matrix, a common method
of character generation. These same dots cor-
respond to individual bits in tke high resolu-
tion display memory. One dot is one-half of a
3.58 MHz period and corresponds to a violet (#3)
or green (#12) color signal. This is why the
test is slightly colored on a color TV and the
high resolution display has two colors (other
than black and white), green and violet. (But
you can make others, due to effects similar to
those seen in the BASIC program above.)

(The design of color TV has further implications
for the display. The video black and white sig-
nal is limited to about 4 MHz, and many sets
drop the display frequency response so that the
color signal will not be obtrusive. A set so
designed will not resolve the dots very well and
will produce blurry text. Some color sets have
ad justments that make the set ignore the color
signal. Since the color signal processing in-
volves subtracting and adding portions of the
signal, avoiding this can sometimes improve the
text resolution. Also reducing the contrast
especially and the brightness somewhat can help
with text material.)

The color TV design attempts to.remove the color
carrier from the picture (after duly providing
the proper color), but you may be able to see
the signal as 3 or 4 fine vertical lines per
color block. They should not be apparent at all
in the white or black or either gray (except
possibly on a high resolution monitor).

Tan is Between Brown and White

This section presents a brief application of the
concepts of the relationships in color space of
the Apple colors. Many of you, I suspect, are
regular readers of Martin Gardner's "Mathemati-
cal Games"™ column in Scientific American. I
strongly recommend it to those of you who have
not already been introduced. It publicized
"Life" (MICRO 5:5) and motivated "Applayer"
(MICRO 5:29), and was the motivation for this
program. There's a lot of gold in the mine yet.

In April, the column discussed the aesthetic
properties of random variations of different
kinds. To summarize briefly, three kinds are:

WHITE Each separate element is chosen randomly
and is independent of every other ele-
ment. Called "white" because a fre-
quency spectrum of the result shows all
frequencies occur equally, a qualitative
description of white light.

Each separate element is the previous
element plus a randomly chosen devia-
tion. Called "brown" because Brownian
montion is an example.

So called because of its frequency
spectrum, intermediate between "white"
and "brown".

The column presented arguments, attributed to
Richard Voss, that 1/f variations are prevalent
and aesthetically more satisfying than "white"
(not enough coherence) or "brown" (not enough
variation). An algorithm was given for generat-
ing elements with 1/f random variations. Brief-
ly, each element is the sum of N terms (three,
say). One term is chosen randomly for each ele-

ment. The next is chosen randomly for every ot-




her element. The next is chosen randomly for
every fourth element, and so forth.

With the Apple, one can experiment with these
concepts aurally (hence Applayer) and visually
with the graphic displays. Color is a dimen-
sion that was not discussed much in the column.
This section presents an attempt to apply these
concepts to the Apple display.

Most of us know what "white" noise is like on
the Apple display. An exercise that many try is
to choose a random point, a random color, plot
and repeat. For example:

10 GR

20 X = RND(40)

30 Y = RND(40)

40 COLOR = RND(16)
50 PLOT X,Y '
60 GOTO 20

Dispite the garish display that results, this is
a "white" type of random display. Except for
all being within certain limits, the color of
one square has no relationship to that of its
neighbors and the plotting of one square tells
nothing about which square is to be plotted
next .

To implement the concept of "1/f", I used the
following:

1. X and Y are each the sum of three numbers,
one chosen randomly from each plot, one every 20
plots and the third every 200.

=SRITACIZN=1STACI4Y =14 ACLS

1=121AC16r =4
10 =070 =000

100 PLOT ¥e¥: PLOT Z2-x
HaEB-%3 PLOT 28-X
Yaxi PLOT 32-%s38
3B-He PLOT 28-Ysk

110 RETURN

120 Z=1¢é

125 L= END <Sy-2

130 U= RNB (9x:iv= REMD (90

147 FOR B=1 TO 10

1530 R=U+ RND <33 :3=V+ REND <9

155 IF PEEK <-16286€>>127 THEN &R

160 K=K+L: IF K>1& THEN K=k-2
165 IF K<0 THEN K=kK+Z

2. A table of color numbers was made (DIM(16)
in the program) so that color numbers near each
other would correspond to colors that are near
each other. The choice given in the program
satisfies the following restrictions:

a. Adjacent numbers are from adjacent
planes in Figure 2.

b. No angular change (in the color planes)
is greater than 45 degrees between
adjacent numbers.

3. The color number is the same for 20 plots
and then is changed by an amount chosen randomly
from -2 to +2. This is a "brown" noise genera-
tion concept. However, most of the display
normally has color patches that have been gene-
rated long before and hence are less correlated
with those currently being plotted. I'1l claim
credit for good intentions and let someone else
calculate the power spectrum.

y, Each "plot" is actually eight symmetric
plots about the various major axes. I can't
even claim good intentions here; it has nothing
to do with 1/f and was put in for a kaleidoscope
effect. Those who are offended and/or curious
can alter statement 100. They may wish then to
make X and Y the sum of more than three terms,
with the fourth and fifth chosen at even larger
intervals.

The program follows. A paddle and push buttons
are used to control the tempo and reset the dis-
play. 1If your paddle is not connected, substi-
tute 0 for PDL(0).

170 COLOR=A k>

120 =0 POL iny-2» ~ 2

190 FOR I=-7 TO @2 IF PEEK —1&£257
22187 THEH 2oz HEST 1

o0 FOR I=1 TO 20

210 H=k+ FEHD cor:y=Z+ EHD o2 : GO0ZUE
100 HEAT 1

ol HEXT E

2%n 3070 120
1010 K=1:0L=5

1020 Z=1&

cnon 5070 120

2000 SR : CALL -9%6

010 PRINT "FADDLE 0 COMTROL: PATTERM
ZPEED"™

2020 PRINT "UZE BUTTOM O 7O =0 AT OHC
E TO HI =PEED"

030 PRINT "HOLD EUTTON 1 TO CLEAR =EC
REEN"

040 c0TO 10140

2000 END

»CALL 852




DARRELL'S APPLEWARE HOUSE

We are the APPLE experts when it comes to software. We are professionals
and not just hobbyists. Data Processing is our business. -

Most programs are done in Integer Basic to allow user modifications. The
following programs require 20K or more of memory. All programs use
parallel port printers.

- BUSINESS INVENTORY ($160.00 for package)
° PROGRAM 200 ($50) -~ Completely maintains inventory file.

° PROGRAM 205 ($20) - Fast machine language sort on Part No.

® PROGRAM 210 ($50) - Prints sales slips, updates inventory file.

° PROGRAM 220 ($50) -~ Generates reorder report by manufacturer code.
APPLEDITOR ($50) - A word processor that takes care of all your letter

and document needs. In two versions, 39 characters
and 79 characters.
APARTMENT RENTAL PROGRAM - Prints bill and labels., Maintains arrears
for each unit.
MACHINE LANGUAGE SORT FOR THE FOLLOWING PROGRAMS ($20)
UNIVERSAL DATABASE ($60) ~ You define your database once for each use
you have in mind.
DAILY CALENDAR ($50) -~ Search your future or past appointments.
HOME IMPROVEMENT FILE ($50) +~ Store all your improvements on file for future.
HOME INVENTORY FILE ($50) -~ Store all your home furnishings on tape for
insurance purposes.
EXPENSE ACCOUNT FILE ($50) -~ Maintain all your travel, meals and business
or personal expenses on tape.
VENDOR FILE ($50) =~ Store all your vendors on file.
FILING SYSTEM CROSS REFERENCE FILE ($50) - Now you can find everything -
in your files.
MACHINE LANGUAGE SORT FOR ANY RECORD UP TO 255 CHARACTERS ($20)
GAMES: CAR RACE PROGRAM IN HIGH RESOLUTION GRAPHICS ($7.50)
BINGO FOR 36 PLAYERS ($10) - Uses printer to print Bingo cards.

For further information about above programs, send $1.00 for postage and
handling to:

DARRELL'S APPLEWARE HOUSE
17638 157th Avenue, S.E.
Renton, Washington 98055

No C.0.D. Allow two weeks for personal check to clear. Washington
residents add 5.4% sales tax. For orders under $100.00 please add
$2.00 for shipping and handling. Dealer inquiries welcome.



335.

336.

337.

338.

339.

340.

341.

342.

343.

344,

345.

346.

347,

6502 BIBLIOGRAPHY
PART V¥V

William Dial
438 Roslyn Avenue
Akron, OH 44320

Smith, Stephen P. "6502 Disassembler Fix", DDJ 3, No. 23, Issue 3, Pg 3 (March 1978)
ROR and ROL instructions were omitted in the previously published disassembler -
DDJ 3, Issue 1. This offers a simple fix.

KIM-1 User Notes, Issue 9/10, (January - March 1978)
Butterfield, Jim "Dicey" page 17. A program to roll up to six dice.
Butterfield, Jim "Teaser" page 17. Jumbo version of Bob Albrecht's "Shooting Stars".
Lewart, Cass "Correction for Lancaster's TVI" page 20.
Oliver, John P. "Comments and Corrections for SUPERDUMP/LOAD" pg 21.

Quosig, Karl and Susan "Input/Output", Personal Computing 2, No. 4, pg 8 (April 1978).
Comments on PET problems.

Bishop, Robert J. "Rocket Pilot", Kilobaud No. 13, pg 90 (Jan. 1978)
And interactive game for the Apple II.

0SI-Small Systems Journal 2, No. 1 (January-February 1978)

Anon. "“What's a USR Function". Via the USR function, one can have a 6502 BASIC program
which works in conjunction with one or several machine code programs.

Anon. "Quickie". A 6502 BASIC program for converting decimal to binary numbers.

Glasser, Daniel "Chessboard". Program in 6502 BASIC for a computer chessboard which
moves pieces and displays the new board. Not a chess program.

Anon. "DOS CNTRL". A BASIC program to perform transfers to or from 0SI's new hard
disk drive.

Anon. "Track Zero Writer". A Machine language program to modify track zero.

Anon., "9 Digit BASIC". A concise method for modifying OSI 9 Digit BASIC for an
end-user 9 Digit BASIC.

Anon. "0S-65U Performs". A description of a new system said to be a new standard for
microcomputer operating systems.

Anon. "500/510 Breakpoint Utilities". A breakpoint program.

Anon. "510 Tracer". A tracer program which prints a disassemble of the next instruction
to be executed.

Bishop, Robert J. "Fiendish New QUBIC Program®", 73 Magazine, No. 209, pg 78 (Feb 1978).
An attempt at producing an improved version of the original Qubic program.

Rosner, Richard "Daddy, Is It The PET?", ROM 1, No. 9, pg 26 (Mar/April 1978)
Description of many features and operations of the PET, including many "how to"
instructions.

Bishop, Robert J. "“LOGAN - A Logic Circuit Analysis Program"™, Interface Age 2, No. 6,
pg 128 (May 1977). An Apple I BASIC program for analyzing networks of logic gates.

Bishop, Robert J. "Apple Star Trek"™, Interface Age 2, No. 6, pg 132 (May 1977).
Star Trek written in Apple I BASIC.

Chamberlin, Hal "Microcomputer Input/Output", Popular :iiectronics 13, No. 5, pg 86 (May 1978).
Comments on the KIM's memory-mapped I1/0 system.

Peoples Computers §, No. 6 (May/June 1978)

Johnson, Ralph "Letters". The University of California at San Diego plans a Pascal
system for the 6502.

Cole, Phyllis "Apple II". A review of this 6502 based micro.

Voros, Todd L. "Sketchcode". A technique to minimize errors and simplify the process
of debugging. Listed in 6502 assembly code.

Offen, Dave "Kaleidoscope". A continuously running graphics program for the PET.

Hofheintz, M. C. "Tiny GRAPHICS". A short graphics program for the PET.

Gordon, H. T. "Editha", DDJ 3, Tssue 5, No. 25, pg 34 (May 1978). A revision of the
Fylstra KIM-1 Editor program "SWEETS" published in BYTE.

Tullock, Michael "PET Files", Personal Computing 2, No. 5, pg 20 (May 1978). Things your
user's manual never told you about PET. How to use files.

6:37

MIICIRIO)




O'Reilly, Francis J. "Instruction Search", Byte 3, No. 5, pg 153 (May 1978). Discussion
of 6502 op code 27 and the search for other as yet undefined instructions.

Carpenter, Charles R. "Tiny BASIC Shortcuts", Kilobaud, Issue 18, pg 42 (June 1978)-.
Suggests methods to expand the capabilities of Tom Pittman's Tiny BASIC for the 6502.

O'Haver, T. C. "More Music for the 6502", Byte 3, No. 6, pg 140 (June 1978). A music
composition and generation program.

O'Raver, T. C. "Audio Processing with a Microcomputer", Byte 3, No. 6, pg 166 (June 1978).
Adding a virtual tape loop. Uses a 6502 processor.

Eaton, John "Low Cost Keyboard - II", 73 Magazine, No 213, pg 100 (June 1978). Part II
of an article on the low-cost keyboard. Software is designed around the 6502.

Swindle, David "A Sensible Expansion: Atwood Memory for your KIM", Kilobaud, Issue 19,
pg 60 (July 1978). Description of a low cost method to add memory to KIM.

MICRO, Issue 4 (April7May 1978)

Carpenter, C. R. "Variables Chart™. Chart to layout and keep track of string and
numerical variables for Apple II Applesoft BASIC.

Floto, Charles "The PET Vet Examines Some BASIC Idiosyncrasies™. Includes suggestions
and modifications for a Mailing List Program by Richard Rosner.

DeJong, Marvin L. "A Complete Morse Code Send/Receive Program for the KIM-1". Converts
ASCII from a keyboard to a Morse code digital signal and also converts a Morse code
digital signal to an ASCII code for display on a video system.

O'Brien "PET Software from Commodore”. New selected Application notes from Commodore.

Floto, Charles "Early PET-Compatible Products™., A review of several new accessories
for the PET.

Rowe, Mike "The MICRO Software Catalog". A continuing catalog of software available
for 6502 based systems.

Carpenter, C. R. "Apple II Printing Update". Updated information and modifications of
the system described previously in MICRO No. 3.

Chamberlin, Hal "Standard 6502 Assembly Syntax?". A plea for standardization.

Rowe, Mike ™A Worm in the Apple". Discussion of some problems encountered in inter-
facing the Apple to other devices such as the 6820 PIA.

Jenkins, Gerald C. "A KIM Beeper™. A short blast or two of audio for load errors,
end-of-line, etc.

Auricchio, Rick "An Apple II Programmer's Guide®. Some of the previously undisclosed
details of the Apple Monitor.

0'Connor, Clint ™"Book Review: Programming a Microcomputer: 6502", Kilobaud, Issue 20,
pg 8 (August 1978). A very favorable review of Caxton C. Foster's book.

Grossman, Rick "KIM Plus Chess Equals Microchess™, Kilobaud, Issue 20, pg 74 (August 1978).

A challenging game of Chess can be played in KIM's. 1K of memroy using MicroChess by
Peter Jennings.

Palenik, Les "FINANC - A Home/Small-Business Financial Package", Kilobaud, Issue 20, pg 84
(August 1978). Programs include Calculations on investments, Depreciation, Loans, etc.

Braun, Ludwig "Commodore PET", Creative Computing 4, No. 4, pg 24 (July/August 1978)

Creative Computing 4, No. 4§ (July/August 1978).

Braun, Ludwig "Commodore Pet". An equipment profile which stresses the value of the
PET as a teaching machine.

North, Steve "Apple II Computer". An equipment profile points out that the Apple is
not a machine for the classroom or for the S-100 hardware buff but is one of the
most versatile micros on the market.

Dawkins, Gary D. "High-Resolution Graphics for the Apple II". Allows user to draw a
shape in high-resolution graphics mode from the keyboard.

Ahl, David H. "Atari Video Computer System™. An equipment profile of a 6505 based
programmable game system.




MICRO, Issue 5 (June/July 1978)

360.
: Covitz, Frank H. "Life for your PET".

Rockwell International ""Rockwell's New R6500/1".

LIFE written in machine language for the PET.
The 6500/1 is a single chip NMOS

microcomputer, 1 or 2 MHz, fully compatible with the 6500 family.

De Jong, Marvin L.

Rowe, Mike
Apple to PIA's.
Sander-Cederlof, Bob

"6502 Interfacing for Beginners:
installment in a continuing series.
"Half a Worm in the Apple™.
See also EDN May 20, 1978.

"A Slow List for Apple BASIC".

Address Decoding I". The first
More on the controversy on interfacing the

Program slows down the list

process so it can be more easily reviewed.

Rowe, Mike
series.
Synertek Inc. "Synertek's VIM-1".
6502 based VIM-1.
Suitor, Richard F.

"The Micro Software Catalog: II".

The second part of this continuing

A good description of the many features of the
Similar to and compatible with KIM-1 with some new features.
"Applayer Music Interpreter®.

A music interpreter written in

6502 assembly language for the Apple, but can be used on other 6502 systems.

Dial, William

"6502 Bibliography - Part IV".

The fourth part of the continuing

bibliography of the 6502 literature (of which this is the fifth partl).

Williams, J. C.

"A Block Hex Dump and Character Map Utility Program for the KIM-1".

A fully relocatable utility program which will dump a specified block of memory
from a KIM to a terminal in several formats.

Rockwell International

"Rockwell's AIM is Pretty Good".
assembled versatile microcomputer system on one board plus keyboard.

Rockwell's AIM 65 is an
It has a

20-character display and a 20-character thermal printer, 4K ROM monitor, 1K RAM

expandable on board to 4K.
compatible.
16K.
Carpenter, Chuck

Application and Expansion connectors are fully KIM-1
TTY and Audio Cassette, DEBUG/MONITOR/ ROM or EPROM on board up to
8K BASIC will be available in ROM.

"Apple II Accessories and Software".

Items reviewed include a

renumber and append program, a serial interface board, a MODEM, Applesoft II,
and the "APPLE II BASIC Programming Manual.

McCann, Michael J.

"A BASIC 6502 Disassembler for Apple and PET".

Accepts machine

language -object code- and produces a symbolic representation that resembles an

assembly listing.
Applesoft BASIC as well.

Originally written in Commodore BASIC, it will work with

PROGRAMMING A MICRO-COMPUTER:
by Caxton C. Foster

6502

(Reviewed by James R. Witt, Jr.)

For those of you in the computing world who have
recently purchased or constructed a microcompu-
ter based on the 6502 microprocessor (the KIM-1
fits this description) and can't put it to rea-

sonably practical use, then perhaps your head-
aches are over! Programming a Micro-Computer:
6502 by Caxton C. Foster may be exactly what
you need to halt your frustrations. Foster pre-
sents the reader with a combination of reference
manual for programming and an introduction to
6502 systems, specifically using the KIM-1 as a
model.

The motivation behind Foster's work is practi-
cality. Right from the beginning of the first
chapter a hypothetical situation is introduced,
circumstances that one might face in the course
of an average day, and the microcomputer is sug-
gested as a solution. Initially, a simple prob-
lem is introduced, a problem one would not ex-
pect a computer to solve due to its simplicity.
Yet, this enables the reader to grasp the basic
operation of running an uncluttered program suc-
cessfully. Possible reasons as to why a certain
program fails are provided to lessen confusion.

With successful completion of one program, the
author wastes no time moving on to new situa-
tions. This may seem somewhat fast and confus-
ing to those who greet micros as a totally new
experience, Yet the situations do become more
interesting and more challenging to solve by
computer software. Such programs include:

_—@U

6:39

CIRIO)

"Keybounce", "A Combination Lock", and "Digital
Clock" amomg others. Several of these programs
are completely legitimate and fully operable.

As noted before, Foster moves at a swift pace.
At certain points, various instructions and
KIM-1 anatomy are condensed into a mere page or
two. Basic understanding of digital electronics
is asgssumed often and may be required before
fully digesting some of this material. These
two minor weaknesses may tend to boggle the mind
of the newcomer and hinder his comprehension of
the purpose - programming and its make-up.

Suggestic..s: For those who are newcomers to the
"sport" of computing and digital electronics,
you may want to consider some other preliminary
instructions BEFQRE undertaking this book. If
you have some sense of digital, but little know-
ledge of micros, you should tackle it, but
should make notes of important items the first
time through each chapter, and then reread the
chapter to pull the odds and ends together. If
you have written simple programs but have an
appetite for more complex proglem-solving, then
Programming A Micro-Computer: 6502 will be a
definite aid and resource in satisfying your
hunger.

Programeming A Micro-Computer:

6502, by Caxton
C. Foster, published by

Addison-Wesley, 1978.




VIICIRIO!

SUBSCRIPTION AND RENEWAL INFORMATION

If you are a subscriber to MICRO, then the code

following your name on the mailing label is the Name: . . . . - . ¢ v ¢ o o o o v 0.
number of the last issue your current subscrip-

tion covers. If your code is 06, then this is Addr:

your last issue. MICRO will NOT send out

renewal notices. So, if your number is coming City:

up, get your subscription renewal in soon. and, .

please check your label for correct address and State: . . . . . . . . . . Zip:

notify us of any corrections or changes.

Country:
MICRO is currently published bi-monthly. The
first issue was OCT/NOV 1977. The single copy Amount: $ . . . . . . . . Start MICRO #:
price is $1.50. Subscriptions are $6.00 for six
issues in the USA. Six issue subscriptions to Back Issues: .

other countries are listed below.
[Payment must be in US $.]

Surface: Canada/Mexico $7.00 Your name and address will be made available to
All other countries $8.00 legitimate dealers, suppliers, and other 6502
interests so that you may be kept informed of
Air Mail: Europe $14.00 new products, current developments, and so forth
South America $14.00 - unless you specify that you do not wish your
Central America $12.00 name released to these outside sources.
All other countries $16.00

Issues #1, 2, 3, 4, and 5 are available while Send payment to:

the supply lasts. The price is $1.50 per copy

- USA, Canada or -Mexico. Other countries add MICRO, P.0. Box 3, 'S. Chelmsford, MA 01824, USA
$.50 per copy surface or $1.25 per copy air

mail.

READER FEEDBACK

With this <ixth issue of MICRO, we come to the 4. wWhat kind of articles do you want to see in
end of MICRO’s first year. We are quite pleased MICRO:

with the growth of MICRO, with the support we

have received from authors and advertisers, and

with the generally positive feedbacx from our

readers. While it is always nice to read "love

letters™, we would like to get some specific

information about you and your interests in the

6502 world. Please take a few minutes to answer

the following questions. Your answers will very . Assuming the size stayed the same, would you
definitely effect the future course of MICRO. Iike to see MICRO published monthly?

1. Please describe your current 6502 based 6. The current printing format of MICRO - the
equipment in detail: type, amount of memory, and heavy stock and three hole punching - costs
so forth: more than a standard magazine format. It was

designed so that readers could take the journal
apart and save article of interest in notebooks.
We will continue this format if enough readers
feel strongly about it. Please circle one:

Keep Format Prefer Don't Prefer
2. Describe products you would like to purchase or Else! Current Really Normal
in the next year, whether or not they currently Format. Care. Magazine
exist, and what you would consider a reasonable Format.

ice:
price 7. Please rate your skill level in micros:

Hardware: Beginner Intermediate Expert
Software: Beginner Intermediate Expert

3. Describe the uses you have or foresee for 8. What was your favorite MICRO article?
your 6502 based equipment:

Thank you for taking the time. Send this sheet
to:
MICRO, P.O. Box 3, S. Chelmsford, MA 01824

6:40

—B‘ﬂﬁ@@@




I used one of the existing PET 5 volt sources.
The easiest way to steal the video and drives is
to carefully scrape clean the foils next to the
monitor plug and tack solder a twisted pair to
each signal and to the closest ground buss.
Other variations would work equally well.

To avoid metal shavings and such falling on the
main board, I removed the back cover from the

monitor (Power OFF) and mounted a BNC jack two
inches to the right of the brightness control

OUTPUT WAVEFORM

VIDEO

| ____0oTs

}—

PET COMPOSITE VIDEDO OUTPUT

Cal E. Merritt
R. 1, 4 Richfield Lane
Danville, IN 46122

-— ‘—”/_,,—v

\

The circuit is very simple and can be put to-
gether with a wire wrap tool in a few minutea.

Video monitors seem very tolerant and the two
units I have used work fine. The only problem
encountered was in attempting to do all white
screen or very dense graphics which caused sync
tear in one of the monitors. Normal or dense

listings worked well.

+.5v
Ovolts

ad
——
( HorizonTaL ) / VERTICAL
SYNC PULSES INTERVAL

I mounted the

and fed it with a twisted pair.
board under one of the bolts that hold the mon-
itor to the main chassis and attached the drive
twisted pairs to the existing ones for the mon-
itor.

e

This circuit provides composite video output
from the PET. I have used the output to drive
two different video monitors with good success.

All three monitors I tried worked with this vid-
eo output. The appearance of the video will be
a function of the quality of the monitor. Some
of the scrapped out commercial units available
with the 10MHz and more bandwidths look excel-
lent with the PET video. I have had a number of
people comment that my 12" commercial monitor
looks better than the built-in unit. The add-on
does not alter the existing PET display in any
way.

)

<ol 3
2
cb4oll
10K
= +5v
Q v+l SYR
#5v O |n o [T e )

cD 4066

PET VERTICAL
ORIVE

OyTPULT




Interface. This +5 VDC line will not source

1.5 Amperes worst case load¢. Conclusion: it
should be possible to get 1 Ampere out of the
PET without straining a thing.

POVER FROM THE PET

Karl E. Quosig
2038 Hartnell Street
Union City, CA 94587

It is by now well known that the PET has no 22-pin edgecard connectors. I can now experi-
source of power for use outside of itself. The ment with things such as noise makers, joy-
only source available is at the second Cassette sticks, etc. and have plenty of power for them.

very much current; in fact, it will not even run I believe this should be of great benefit for
a second cassette recorder. Also, all the +5 those of you who like to mess around with the
VDC regulators inside the PET are already run- hardware. Warning #1: If you are going to
ning quite warm. If you want to experiment with drill a hole in the PET as I did, disconnect all
the PET, say with the Parallel User Port (Mos connectors (very, very gently) to the PET's Main
Technology 6522 VIA), then where do you get the Board and remove it before going to work. Clean
power without a complicated power supply inter- inside thoroughly before re-installation.
face? The answer is simple. I found the fol- Warning #2: In your projects, do not connect
lowing inside the PET. One, the bridge recti- inductive loads directly to any output of the
fier is good for 3 Amperes. Two, the PET draws PET. Inductive loads must be fully buffered.

regulator and other circuitry, and terminated
this on a homebrew mother board comprised of

—Wﬂé&l@

commodore : Radio Shack

PET TRS-80

EITHER WAY... We've got software for you!

You can find out what our customers already know—Personal
Software consistently offers great software products. Check out the
programs below—they each represent many man-months of expert
programming effort. We're sure you'll be pleased with the results.

8502 ASSEMBLER IN BASIC by Dan Fyistra for 8K PETs: Accepts all
standard 6502 instruction mnemonics, pseudo-ops and addressing
modes. Evaluates binary, octal, hex, decimal, and character
constants, symbols and expressions. Assembles object programs
anywhere in memory. Includes one and two pass versions of the
assembler, text editor and disassembler, with a 30 page manual and
PET machine language programming hints ................ $24.95

MICROCHESS 1.5 by Peter Jennings for 4K Level | and || TRS-80s: In
Z-80 machine language, easily-loaded from cassette using the
CLOAD command (TBUG is not needed). Uses standard algebraic
chess notation to describe moves, and checks every move for legality.
Handles castling and en passant captures. You can- play white or
biack, set up and play from special board situations, or even watch the
computer play against itseif! With 3 levels of chess play.... $19.95
BRIDGE CHALLENGER by George Duisman for 8K PETs and 16K
Level Il TRS-80s: You and the dummy play four person Contract
Bridge against the computer. The computer wili deal hands at random
or according to your criterion for high card points. You can review
tricks, swap sides or replay hands when the cards are known. No
longer do you need four people toplay! ................... $14.95
ORDERS: Check, money order or VISA/Master Charge accepted;
programs and cassettes guaranteed. Our catalog describes many
other great software products, including an ASTROLOGY program, a
FOOTBALL game, a GRAPHICS utility package and many others. For
your free copy, send a letter giving your PET or TRS-80 serial number,
memory size, and your most wanted software product.

?-ﬁ,‘i Personal Software™ Q

NN P.O. Box 136-S9, Cambridge, MA 02138
VISA/MC telephone orders welcome at (617) 783-0694

AW
To do t(:his, all)we need to do is rurt{ig line from
the + (positive) side of the PET's ter capac- . .
itor and make it available at the rear of the i BUNRED o B\ LM-309K 2 IRES) o
PET (I put a test lead jack between the Parallel 1A MAX
and IEEE Ports). This is +8 VDC Unregulated and REAR
by attaching a 3-point Regulator (see diagram . oF 25w | .
below), say at our project board, we have plenty 2O00pF L ser|  3000pF= el =
of power for all sorts of home projects. As an (IN PET)
example, I brought all of the Parallel User Port
pinouts down a 24" .ribbon cable along with the o>_SOM o b COM_ o,
+8 VDC line to a chassis which has the +5 VDC

PET SCHEMATICS

Another First From “PET-SHACK’'.

For only $34.95 you get:

24" x 30" schematic of the CPU board, plus oversized
schematics of the Video Monitor and Tape Recorder,
plus complete Parts layout—all accurately and
painstakingly drawn to the minutest detail.

PET ROM ROUTINES

Another Breakthrough From

“PET-SHACK"
For only $19.95 you get:

Complete Assembly listings of all 7 ROMs, pius iden-
tified subroutine entry points; Video Monitor,
Keyboard routine, Tape Record and Playback routine,
Real Time Clock, etc.
To entice you we are also including our own Machine
Language Monitor program for your PET using the key-
board and video display.
You can have the Monitor program on cassette for only

$9.95 extra. Now M,C, & VISA

Send check or money order

TO: PET-SHACK Software House P37
Marketing and Research Co.
P. O. Box 966
Mishawaka, IN 46544




OLHOLLA

 °T8aJ aq 03 pawns3id ale saweu J3yjo Iy 34835
QYIIW 3y} Ioj wAuopnaed & ST ,3MOY ITH, 330N
2819 Y4 uo3ybtary ‘y Aley
Aloway pBg YI3BIIG |34 JO IST] [eTIIed ¥

w39 H brsony °3 a8y
134 943} woly Iamog

9 HY 131133y 3 18]
jnd3ing o0apTpA a3Tsodwo) |3d

L1329 av uue)ay [ T3BYITK
13d 9y3 J0oj Jayquassy z0g9 aTdwIg y

§39 WSHY spuegsny -y s3[Iey)
adejIajul A11/13d ® jo ublsag

(141 uuejol L [38YdTy
134 pue arddy Joy Jarquassestg Z0s9 JISVE V

§i¢ ] Z3TA0) ‘Y uely -IQ
13d Inop 104 3411

243 ] d 03074 safIey)
830npolg a1qr3Isdwod~|3d ATIe3

12 d uartag,p Aoy
2JOpowwo] wWolj 9IBM}JOS 13d

Sty vas 03074 safIey)
83TSBIOUASOTP] JISvVE 9WOS S8auTWEBX] 3I3A 13d ayl

63¢ as 03074 S3alI8y)
8a[T4 B38Q S3[A08] A $3d 3y
LT3 d adeTTeM dog
08-S¥l 343 °SA 134 3yL

622 d 03074 sarIey)y
13d 34} 399y

Tt d 03074 safIsy)
£981nJ Jo burssalg :eng ggy-333I S.13d 3l

13d

En:g

WY
pBO pue >dB4 3uT3INOIQNg

Y9 103Tng -4 PIeyory
a

JIsvg Jsbajur arddy

£€:9 891 J03TNg * 4 PIeydTy
Jaang [Ty PaJOT0] pue 3ajTuMm pue umolg

$Z:9 WSY Jedsey jJaqly
T-WI¥ 2y} I0j ply Butbbngag vy

mn"w um< SWETTTIM *J °C
weiboay A311TIN dey Iajoegeyj pue dung xay A301g

€23 N suruar *3j pPreday
Iadaag WIN V

Ly WSY buog ag *q utaley

we1bo1d aATaJay/puas apo) 3sloy 333[dwo] vy

J8:¢ Sly buor ag °7 utaaey
Ae1dstq T-WIX 243 bBuryybr]

62 ¢ VWSH spueqgsny °Yy 63TIBY)
T-KIX 243 butsp I9juno) Asuanbaly afdwrg y

€€ WSH buor ag 7 uTAJey

atnpoy butrbbo ejeg pue
Jawr] B8 sB Ja3ndwodolaT T-WIN ayy bButdordwj

IXAYA Sy 1e1q werTiIM
JOJTUOW PUB T-WIX 4O Sassatppy juejJodwy

§2:2 H ABoTouydal Spi
A3171QBT 13y pJBogAa)y DButaoidwi

sz WSHL buor ag *7 utAley
T-WIX 243 Bursp uotsraaua] g/y pue y/q

£:Z 91 snwej °7 puswly
T-WIX 3Y3 y3Itm ITsry Bumysy

LT13T v . AMOY AT
Jayojedstq ABg aaibag paseg-WiN

€T WS ddra) W uoaom
ade}siyjf] pue adejladAy

€31 dH Japatsz(eg uoJAg

T-WIX @43 Joy AJowsy deay)
T-HIA

9 - I OMIIN :X3IONI G3IJISSVID

¢1:9 lav doystg °‘r uumnow
Id 97ddy

£1:9 Wa9 uoseI[3 °"H MaIpuy
away] siesJejg I aTddy

11:9 4l Kepeae4 T3BYITH
arddy Inop dn Butdsys

s d Jajuadis] ony)

aJem} o5 pus sarlossaday ]I a1ddy

6216 W J031Ng *4 PIeyaTy
33303dIa3jul OTSMW YIAV1ddV
¢zt uuejay *C T3BYITK

S \J
134 pue mﬁam< J0j I3TquwassesIq Z0s9 JISvE V

12:¢ WY 4J0TJapaj-Japuses qog
JISva arddy Joj 3sT] MOTS ¥

8l:¢ d amoy TH
a1ddy ayj uT wiom B JTEH

shiy SHY 0TYIITINY HITY
ap1ng s, Jawweiboly J[-9Tddy uy

Ky d amoy ATH
{3T1ddy ayj uT wIoM Y

Lz:y WY Jajuadie] °y .w
ajepdn burjurig I arddy

vy Y Jajuadie] *y °J
3Jeyy sarqerJep II arddy

8z ¢ d 3104 Poy
pajrstAay Atddng Ismog 11 arddy ayy

€1:¢ WHY Jajuadie]y °y °J
II arddy ay3 yjTM BuTjuTad

8¢ W Jajuadae] °y °)

«II oT1ddy uoa btmpni, ur pasn abenbue] autyoBy

61:2 W9 23Jemydg dJep
II aTddy uoa Gmpmy
6:1 d T2ZnJ3Ja4 INYJIy

II a1ddy ay3 aptsu]
31ddV

\




eoRLIM

Z£29 uoTjeiodio]) swa}sAso0IdTy P3IJTUN hh:9
3 91035 XEB] 9 ,
2139 IS XBl 3yj 6519 uMu o) cwwnm.umﬂz..x sawep
: . so04 XB] AQ °Z0s9
Tes P31 2183405 Aseaxeads : 793ndwo)-0l10Ty &8 buTwweIbOId :SMATA3Y QUIIW
Big ZIiy BI:¢ 2232 OTUDIFOA[3 BPISIAALY | o). ¢ d pajelodioou] %a}1aukg
Zui¢ 83z 0z swa3sAs Bleq prwely T-HIA 8,249333U4g
. . - 61:¢ d [BUOTIBUIIUT TT3MAO0Y
AR N ¥ A3 98Nn0y 31eM340S HIVHS-13d poog A33314 ST WIV €, [TamAI0y
9 SIBMIJOS TBUOSISd | 4p:g d TBUOTJEUIAJU] [TaM)O0Y
1Z2:6 *07 SOTUOI309T3 puelbul May 1/0059Y4 MaN 8, TTaMxO0y
: butrpooag ssal
129 pajrurun ABorougoay ozoty | 8233 IT g Eooe oy
: - H1L Buor ag °q utazey
12:9 Y2A8d-0I0TH :slouutbag 10y mcﬂumuumucH 2049
0Z:T 8:1 sajeroossy 193ndwodoldTy
€€y BT3¢ 021 sar{ddng Jamod Ty
0z:Z sjonpol4 Iajndwo) aper
L2:¢ 831 s3jonpolq 3ubnoyzaioy
YAYA $93BTO0SSY 0 ¥ J
2:9 24136
i J4I:¢ J4I:C J4I¢T dno1g ainsofoul ayj
9¢ :9 asnoy alemarddy s, [T1alleq
2249 193ndwo)0I3TW INITII3UUD)
[BTJajey TETIOojNn] = |
0L:9 9z:p UOTJBWIOJU] 3IBMIJOG = G
J41:% J81:¢  Z:Z l°1 3stI93ndwo] ay) [BTIa)E 2Jualayay = .
uOTJewIojul 3JaNpold =
Jg:¢  Z:ih S»007 I0SpPUTH - 81035 Jajndwo] ayl weiboiy abenbueq ATquassy Io autydey = W
. UOTIBWIOJU] SIEMpIEH = |
24139 Z:i§  Ti¢ 9Zi7 8Ti1 doys I93ndwo) we1boly uorjeljsuowag 10 awey = g
M3TA-40-jUTO4 10 T[ETIO0}IP] = 3
%Z:2Z 10300q I93ndwol ay) wesboid JISyg = g§
A3T7TIN J0 uoT3edTTddy = y
3129 24136 Ajuno)y abueig
62 LT:€ 91:Z 40 sjuauodwo) Iajndwo) aTJ3T1Iy jo adA] 03 Aay
€149 Al yoaj-10T70)
12:% (2:¢ 8:Z 8:1 Y3330I2TW SY3J
21:9 0£:h ([2:¢ 0Z2:1 sIayndwo) gy

SINIW3IST1H3AQY

T O¥JIN *X3IANI Q3IIJISSVID

€0

193y5 13A0] 3dTIIENUBKW QYIIW/OHIIW 104 BUTTIN

S:l

00S9 343} 104 (WIL) I03TUOK 8IB4I3JU] [BUTWID|

III 3384
IT 3IBd
I 384 Sy AM0Y TR
boteje) aiem3jos gyarW ey
H Jaje| *7 Aiey
8ng Q0TS 34} 8333y Wit
WSY ddray -y ugmnou
waysAs z0g9 e uo burjjesa Al
WS J93e| 7 Aleg
Bl18Q 3BYL PTOH
d [34uay Taor
1abuatTeyy 150 ay3 jo sbuarteyy ay;
d ddri) ‘W 333qoy
WIX 34O A00g I8IT4 3Y] :SMATA3Y QYJIIW
3 ddra) °*w 339qo
sabueag pue mmaua< mmamﬂz
Sy AM0Y NTY .
Pae] 3dualayay s, Jawweiboiy zggg
A JIBd
Al }Ied
IIT 3Ied
II 3384
I 3ed 4 TBTQ WeTy[TM

20S9 34y} pue TBUOTIBUIIIU] [TaM}aoy

\AJ
y aMoy Ty

3 urTIaqueyy Tey
;xejukg ATquassy z0g9 PIepueis

Aydeabot1qtg zgg9

YH ddtra) -y 313qoy

sAeTay parr0J3juo) Jajindwoy

¥ SM0Y TY
satuedwoy pajeray zogy

d TZZN1Ja§ Inyjay

3 ddra| -y 339qoy
i9uQ JaqunN ax,ay

H 3104 JaATTg

TVH3NID




APPLE INTEGER BASIC SUBROUTINE PACK AND LOAD

Richard F. Suitor
166 Tremont Street
Newton, MA 02158

[Although this article is Copyrighted by The
COMPUTERIST, Inc., at the authors request
premission is hereby given to use the subroutine
and to distribute it as part of other programs.]

The first issue of CONTACT, the Apple Newslet-
ter, gave a suggestion for loading assembly
language routines with a BASIC program. Simply
summarized, one drops the pointer of the BASIC
beginning below the assembly language portion,
adds a BASIC instruction that will restore the
pointer and SAVEs. The procedure is simple and
effective but has two limitgtions. First, it is
inconvenient if BASIC and the routines are wide-
ly separated (and is very tricky if the routines
start at $800, just above the display portion of
memory). Second, a program so saved cannot be
used with another HIMEM, and is thus inconven-
ient to share or to submit to a software
exchange.

The subroutine presented here avoids these diff-
iculties at the expense of the effort to imple-
ment it. It is completely position independent;
it may be moved from place to place in core with
the monitor move .command and used at the new
location without modification. It makes exten-
sive use of SWEET16, the 16 bit interpreter sup-
plied as part of the Apple Monitor ROM.

To use the routine from Apple Integer BASIC,
CALL MKUP, where MKUP is 128 (decimal) plus the
first address of the routine. The prompt shown
is "8". Respond with the hex limits of the rou-
tine to be stored, as BBBB.EEEE (BBBB is the be-
ginning address, EEEE is the ending; the same
format that the monitor uses). Several groups
may be specified on one line separated by spaces
or several lines. Type S after the last group
to complete the pack and return to BASIC. The
program can now be saved.

To load, enter BASIC and LOAD. When complete,

RUN. The first RUN will move all routines back
to their original location and return control to
BASIC. It will not RUN the program; subsequent
RUNs will.

A LIST of the program after calling MKUP and be-
fore the first RUN will show one BASIC statement
(which initiates the restoration process) and
gibberish. If this is done, RESET followed by
CTRL C will return control to BASIC.

Editor's Note:

WARNING #1: The routine must be placed in core
where it will not overwrite itself during the
Pack. The start of the routine must be above
HIMEM (e.g. in the high resolution display re-
gion) or $17A + U%N 4+ W below the start of the
BASIC program, where N is the number of routines
stored and W is the total number of words in all
of these routines. Also, those routines that
are highest in memory should be packed first to
avoid overwriting during pack or restore. Oth-
erwise it is not necessary to worry about over-
writing during the restore process; only $1A
words just below the BASIC program are used.

WARNING #2: Do not attempt to edit the program
after calling MKUP. If editing 1is necessary,
RUN once to unpack, then edit and call MKUP
again.

The routine works as follows. It first packs
the restore routine just below the BASIC pro-
gram. It then packs other routines as request-
ed, with first address and number of bytes
(words). When S is given, it packs itself with
the information to restore LOMEM and the begin-
ning of the BASIC program. The first $46 words
of the routine form a BASIC statement which will
initiate the restoration process when RUN 'is
typed.

If a particular HIMEM is needed by the program
(e.g. for high resolution programs) it must be
entered before LOADing. The LOMEM will be reset
by the restoration process to the value it had
when MKUP was called.

I do not have a SWEET16 assembler, hence all of
those op codes are listed as tables of data. 1In
the listing, comments indicate where constants
and relative displacements are differences be-
tween labels in the routine.

Some convenient load and entry points are:

BASO (load) MKUP (entry)

hex hex decimal
800 880 2176
A90 B10 2832
104C 10CC 4300
2050 20D0 8400
3054 30D4 12500

While we encourage the use and

distribution of this subroutine, we do request

that proper credit be given.

Please place the

following notice on any copies that you make:

"This PACK & LOAD Subroutine was written by:

Richard F. Suitor and published in MICRO #6."




e4E101
OESEY
G000z

NOveELs

EcOn
n17ens
4DE101
nonl
246 D
47 RAZD1
D849 BSCAH
024B 9502
184D RS4C
n84F 9508
0851 CR

ngsSe 10F3
0854 2089Fé

onion
nagn
0oz0
0040
nnso
noen
NOF0
npgon
[ =T]
nron
0110

n1cn
0130
1140
D1s0
D160
170
n1sn
0130
TP 1R}
gzin
nean
nz2n

nz4n
n2sn
OZen

0400

0410

n4z0
n420
0440
0450
0460
470
0420
0490
as0o0
0510

tINT BRSIC SUBR PACK & LOARD
:CALL BR=N+128 (DEC)
ACCL .DL 0000

BSOL .DL oMl

TREL .DL 0004

TRCL .DL 0006

HIMS DL 000g

LMRT .DL DOOR

BPRG .DL 000C

FRML .DL 0O00E

NEYT .DL 0010

BPRZ .DL oole

PTLL .DL 0014

XTAB .DL 0016

SKPL DL no1g

MODE .DL 0031

YEAY DL 0034

PEMF .DL 0033

LMML .DL 0Q04R

HIML .DL 004C

LMWL DL o0cC

EB:L .DL a0Ch

JEREL DL 00OCE

EzCE .DL EOD3 BRZIC
BUFF .DL nz00

GTHM . DL FFRY

FELZ .DL F94R

CcOuT DL FDED

EELL .DL FFZ=hR

STLH .DL FD&?Y

ZW1E DL F&g29

SBRZIC INZT. TO RESTORE
ERZND .HZ 46000064E101

<H:Z 008SBV4C000264B2
SHE g 00neSZ3CE3IFB2CA
CHZ 007212B74600721F
< HE EEDDUID364B3QBUD
<HE 65382E3%BECBOD?E
-HZ 12382E2FB2CAOOT2
-HZ 12B746007215B200
SHEZ 11720324DB1010001

$INIT. RESTORE OP

FPTBK CLD
LD¥ 01

FPTO2 LDA eBBSLsX
STRA eBSOLsX
LDAR eHIMLsX
STA oHIMS» ¥
DEX
BFL PTOZ
JER SWi1é6

SYMBOL TABLE

RCCL
BSOL

TABL

TBCL
HIMS
LMRT
BEPRG
FRML
NBYT
BFPRZ
PTLL
*TRR
SKPL
MOLDE
YZRY
FPRMF
LMML
HIML
LMWL
BBZL
JERL
BZC2
BUFF
GTNM
FPRLZ
couT
EELL
GTLHN
zWlé
BRS0
FPTRK
FTO2
FTN4
MELIF
MkZ1
MKeZ
MK 01
MK 08
MERR
MK DS
MK 02
MVS1
MYS2
Mo
EMO3
Mk 039
Mk11
MK12
MK1 D
*M04
PTLF
FLPO
FLP1
FLP2
ET16

nooo
nooz
nong
nooné
noong
uonAR
nooc
DODE
nn1o
noig
noni14
onlé
nnia
nnz1
noz4
0n33
004R
an4c
aoncc
NacA
B0CE
END3
azao
FFR?
F94R
FLDED
FF3R
FDe7
Fezs
nenon
no4e
nz49
ngyon
0230
naae
0gB3
1284
02CH
nap1
J2DE
NSE1
08EB
naFs
N9
0H90R
099cC
091R
J31B
n93z
0346
0952
N955
095R/
n966
NS6R




105201
185701
R13767
356736
24B636
1R1100
BA3A
6733
00
AR201

BS0R
954f
95CC
BS0C
95CR
ChR
10F3
6C1400

R201
BS4R
950R
B5SCR
9512
950C
BSCE
9504
BS4C
508
ChR

10EB

2089F6
24B939
118000
22B131
105201
R13218
1800
R333E3
1C5000
0c42
00
R3CO

8533
A300
8531
2067FD
8616
RO00
B90002
C9D3
Fnes
20A7FF
CoR?
Fo1o0
98

RA
204RF9
R95E
20EDFD
203RFF
18
90D3
E631
20RA7FF

0520
0530
0540

0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
nzzo0
0730
0740
0750
0760
0770
0780
0790
0300
0810
0820
0830
0840
0850
0860
0870
n8gn
0890

0900
0910
0920
0930
0941
DI=0
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

-HS 105201 PLTP-BASO
-HS 185701 PLTP+5-BAS0
«HS R137673356736

-HS 24B636
.HS 1A1100  ST16+1-PLPI1
.HS BA3R
.HS 6733
.HS 00
LDX 01
LOMEM & BASIC PROG6 START
LDA oLMRTsX
STR eLMMLsX
STR eLMWLsX
LDA *BPRG: X
STA eBBSL»X
DEX
BPL PT04
JMP ¢(PTLL>  TO RESTORE LP
:SUBR TO SET UP PACK
MKUP LDX 01
MK21 LDA eLMMLsX
STR eLMRT,X
LDR BBSLs X
STR BPR2sX
STA &BPRGsX
LDA eJSRL»X
STR oTABLsX
LDA eHIMLsX
STA eHIMSs¥
DEX
BPL MK21
:INIT & PRACK RESTORE LP
JER SW16
.HS 24B939
.HI 118000  MKUP-BASD
.HS 22B131
.HZ 105201  PLTP-BRSO
.HZ A132181800 ST16-PTLP

-HE RB33E3

-HS 1C5000

<HS 1iIC42 MYS52-Mk22
-HS 00

LDA 0Co

LIMITS & PACK PROGS
STR ePRMP

LDR 0

TR <MODE

JER GTLM

5TX oXTRB

LDY 00

LDR BUFFsY

CMP 0D3

BER MK10

JSR G6TNM

CMP 0R?7

BER -MKO0Z2

TYR

TRX

JER PBL2 ERROR INDICATOR
LbR 7~

JSR cout

JER BELL

CcLC

BCC MKO1

INC »MODE




tA1 & A3 NOW HAYE 18T =»RA2 2D
tSET UP MOVE TO JUST BELOM (BBSL>
:AND LOWER BBSL
0BE6 2089F6 JSR SW16
0D3ES 011E .HS O11E SMO2-MYS1
0SEB 183C00 MYS1 .HS 183C0068326833
N8EE 683268
08F1 33
08F2 B23BE3 .HS B238E3
08FS 839623 .HS 839623D207FA
03Fg D207FA
N3FB 283318 .HS 2833180800
USFE 0800
0300 889688 -HS 88968896889683896
nan3 968896
030e 8896
0308 0B .HS OB
=09 0CEO .HS 0CEO MYS1-SM03
020B 00 .HS 00
090C C9EC CMP 0OEC FC'S%
090E Fo022 BEG MK10
0210 C9Cé CMP 0OCeé F (R
0912 FORD BEQ MKO1
0914 €999 CMP 99 BLANK
0316 FO003 BEQ MK12
0%*18 DOB? BNE MERR
09tA Cs8 INY
031B  R9ON02 LDA BUFFsY
03tE C416 CPY oXTAB
ns2n  BO92 BCS MKO01
ngg2  CSAD CMP 0RO
0324 FOF4 BEQ MK11
0926 C938D CMP 8D
ne28 FOgA BEG MKO1
U%2A  CoD3 CMP 0D3
nsec  Foon4 BEQ MK10
032E C£621 DEC eMODE
F098 BEQ MK 06 ALWAYS
tPACK 1ST PART & CLEAN UP
2089F6 MK10 JSR SW1é
2132 .HS 2132
185201 -HS 185201 PTLP-BASO
AB32725 -HS A837a5772977
77esv?
2177 -HS 2177
ar33 <HS 2733
OCHF .HS OCHRF MyYS2-SMo4
bB66 -HS 6666
o0 .HS 00
AS0C LDAR eBPRG
85CH STR eBBSL
AS0D LDA eBPRG6+01
85CB STA eBBSL+01
60 RTS
tRESTORE LOOP
2089F6 PTLP JSR SW1é
613361 PLPO .HS 6133613800 6ET POINT
3800
2089F6 PLP1 JSR SW16
4153F8 -HS 4153F804FP
04FB
-HS 21D60S
.HS EF PLPO-PLP2
-HS 00
JMP BSC2
«HS 00
-EN




A PARTIAL LIST DF PET SCRATCH PAD MEMORY

Gary A. Creighton
625 Orange Street, No. 43
New Haven, CT 0&510
A function and a symbol defined:
DEF FN IND(LOC) = PEEK(LOC+!)%*256+PEEK(LOC)
‘ Which specifies an indirect address in the form:LOC+1=(Page)

M(LOC)

M(0)
FH IND(1)
M(3)
M(5)
FN IND(S8)

M(10-89)
M(90-98)

M(g1)

M{98)

FN IND(113)
FN IND(115)
FN IND(122)
FN IND(124)
FN IND({126)
FN IND(128)
FN IND(130)
FN IND(132)
FN IND(134)
FN IND(136)
FN IND(13B)
FN IND(T140)
FN IND(142)
FN IND(1414)
FN IND(14R)
M{148)
M(149)

FN HD(150)
FN IND(152)
M{156)

FN IND(15T)
M(157-161)
M{163-165)
FN IND(164)
M(166-1T70)
ME1T1=1T5)
M(176=181)
M(181)
M{184-189)
M(192)

M(194-217)

FN IND(201)
M(218-222)
FN IND(224)
M(226)

LoC =(Item)
specifies contents of a memory location.

JMP instruction
USR jump loecation
Present I/0 Device Number (suppress printout)

POS function store

Arguments of commands with range 0 to 65535
(PEEK,POKE,WAIT,SYS,C0TO,G0SUB,Line Number,RAM check)
Input Buffer

Flags lfor MISMATCH,
subroutines, ete.
lgnore Code Value and do direct (between quotes, ete.)
(0 INPUT, 64 GET/GET#, 152 READ) Flag

Transfer Number pointer

Number pointer

Begin Basic Code pointer

Begin Variables pointer

Variable List pointer

End Variables pointer

Lowest Btring Variables pointer

Highest String Variables pointer

Firat Free After Strings pointer

Present Line Number (if M({(137)=255, no line number)

Line Number at BREAK

Continue Run pointer (if M(141)=0, can't continue)

Line Number of Present DATA line

Next DATA pointer (for READ)

Next Data/Input After Last Comma pointer

Coded 1st Character of Last Variable

Coded 2nd Character of Last Variable

Variable pointer {2ll variables)

Variable pointer

Compariszon Symbol Accumulator (<=>)

Pointer to FN pointer

Number Store/Work area (S3QR)

JMP (FN IND(164))

Function Jump address

Number Store/Work area (Transcendentals (not EXP) & SOQR)
Number 3Store/Work area (Transcendentals & SQR)

Main Number Store/Work area

Number Sign

Secondary Number Store/Work area

Length of thinga in Input Buffer M(10-B9) or

Length of things in Qutput Number M(256- )...other
Subroutine: Point through code one at a time, RTS with
code value in asccumulator and Carry Flag Clear if

0 if end of line, Ignore Spaces. AsC(0-9)
Code Pointer

Number Store/Work area (RND)

Screen Memory Row location
Sereen Column position

Distingulishing between similar

=====VIlICIRIO]




FN IND(227)
M(234)
M(238)
M(239)
M(240)
M(241)
M(242)

FN IND(243)
M(245)

FN IND(247)
M(251)
M(256)
M(256~ )

M(3117-511)
M(512-514)
M(515)
M(516)
M(517-518)
M(521) or
M(59410)

M(523)
M(824)
M(525)
M(526)
M(527-536)
FN IND(537)
FN IND(539)
M(54T)

M(548)
M(549)
M(550)
M(551)
M(553-57T7)
M(578-58T)
M({588-597)
M(598-607
M(608)
M(610)
M(611)
M(612)
M(616)
M(634-825)
M(B826=-1023)

Move Memory (from or to) pointer

Quote flag (0 end quote)(1 begin quote)
Length of File name after SAVE VERIFY ete.
File #

I/0 Option (0 read, 1 write, 2 write/EOT)
Device # (0 keyboard, 1 taped#i, 2 tpae#2, 3 screen)
Wraparound flag (39 single line, 79 2nd of double line)
Tape #1 or #2 Buffer pointer

Sereen Row (0 - 24)

Load into/ Verify from? Save into pointer
Insert Counter ( INST)

Minus sign or Space for Output Number
Qutput Number ASC Digits til a Null (0) or
Tape Read Working Storage

Stack area

TI clock

Only One Value per EKeypush flag

SHIFT flag (0 no shift, 1 shift)

TI Update Interrupt Counter

Bit Cancel EKeys

Turnas bits off under the following rules:

BIT KET DECIMAL #

0 RVS 254

1 253

2 space 251 More than one Kkey

3 247

i atop 239 may be pushed at once.
5 (none)

b 191 Decimal # is Binary

T 127

equlivalent.

VERIFY/LOAD flag (0 LOAD, 1 VERIFY)

ST Status

Key Pushed Counter (MOD 10)

RVS flag (0 RVS off, 1 RVS on) ior any key pushed)
Input Run Buffer (keys stored during a RUN

Interrupt Vector (normally at: Store EKeypush

BRK instruction Vector (User loaded) in Input Run Buffer)
KEeyboard Input Code

(Stays equal to Input code til finger off key,
Matches up one to one with M(59228-59307) which i=
Keyboard Input Code to ASC Code Table)

Blink Curseor flag (if 0 (no key pushed))

Cursor Blink Duration counter (20 interrupts)

Screen Value of Input Char. when Cursor moves on
Insure no Cursor Breadcrumbs leaft behind

Screen Page Array / single or double Line flags

File # of one of 10 files
Device # of one of 10 files
I/0 optien one of 10 files

Input from screen/Input from keyboard flag

Number of Open Files

Device Number of Input Device (0 keyboard normally)
Device Numbepr of Output Device (3 screen normally)
Tape Buffer Item Counter
Tape #1 Buffer area

Tape #2 Buffer area




