
T H E 6 5 0 2

SAMPLE MACHINE LAWODICE PROGRAM
AS INPUTTED FROM THE KEYBOARD

ORQ 826
LDAIM 102
LDXIM 0
STAX 32768
M X
8EQ 3
JMP B30
HOP
HOP
STAX 3302*1
IHX
BEQ 3
JMP M V
BFK
EHD

ion

A Simple 6502
Assembler for the PET
by Michael 3. McCann
Complete Listings

SAMPLE MACHINE LAKOUAGE PROGRAM LISTING

DARK BLUE 0000
BLACK

0100

DARK GREEN

Brown and White and Colored All Over
by Richard F. Suitor
Understanding your Apple's Color

826 033A A9 66 LDAIM 102
028 033C A2 00 LDXIM 0
830 033E 9D 00 80 STAX • 32768
833 03*’ E8 IHX
83* 0342 FO 03 BEQ 3
836 03«« 4C 3E 03 JMP 830
839 031*? EA HOP
840 0348 EA NOP
8*1 0349 9D 00 81 STAX 33024
840 03«C- E3 IHX
8*5 034D FO 03 9EQ 384? 034F 4C 49 03 JMP .B41
850 0352 00 3RR

YELLOW

GREEN

FOREST
GREEN

VIOLET

BLUE

MID BLUE

COMPUTER
SHOP 288 NORFOLK ST. CAMBRIDGE, HASS. 02139

comer of H amp shir* & Norfolk St. 6 I7 -f& 1-2670

N O W W E HAVE 0 S f

C3-S1 Challenger fll System with
D u a l D r iv e F lo p p y C o m p ile w ith 32K RAM Memory, Dual Drive
S3,590.00 Floppy, Serial Port, cabinets and power supplies.

Tnig Challenger Hi fealures'an flight slot heavy--
duty main frame. You acid only a gsrief
ASCti Terminal. ■■

C2-S2S 32K RAM Serial Challenger II with
Dual Drive Ffoppy Comas complete wim 32K RAM Memory, Dual
$3,090.00 Drive Floppy Di&k (500,000 characters storage),

650? processor and aerial port You add only a
aerial ASCtl Terrnina! to be up and running.

C2-S1S Serial Challenger If with
S in g le D r iv e F lo p p y Come5 complete with 16K RAM Memory, Single
$1,990.00 Drive Floppy Disk f550,000 characters storage),

6502 processor and serlaf port, You need to add
only Serial ASClf Terminal

C2-S1V Video Challenger II with.
Single Drive Floppy Come5 complete with t6K RAM Memory, Single
$2,490.00 Drive Floppy Disk, 6502 processor. Challenger

IIP Type Video Interlace and high quality key
board. You add ohly a Video Monitor (or RF
generator and w sot). ,

C 2 - 8 P CHtera a« features of the Challenger IIP plim more
P h 11 p n r IIP r<MM̂ expansion. The keyboard has & separata

y _ case with connector cable The roomy csbinel
W ith 8 S lo t C a b in e t ancf heavy du typo war supply a t* designed to

handle up lo eJght system boards (elfowing for 6
slots ot expansion)$825 .00

C2-4P
Challenger IIP
$598 .00

BAC,V lS ArMC NO,

SIG N A T U R E...........

NAME........

ADDRESS.

C IT Y ■ STATE............Z IP ,
. V .

K I M S AND U P G R A D E S
V F S 4K Memory a i i t m S l o d & t n t * < j 129.00
for l a w p o w t r R A M a d d , ,] 0 .00
te r n * In k | t fo rm ...7 4 . 5 0
fu l l * • » of i » c U t i for K i Y I Q . 00
V F S M o t h t 1 t o n r d b'uf (*r«d for 4 B a d r d l 6 5 . 0 0
C « n n r c t o r A n t m b l f . U r K IM to V F S2 0 .0 0
BK S 100 M*<nofy Board * i t b ins t ruct ion i 165.00
m m * hut f u l l y ond t o t tad . . . ___ 199 .00
C 5 1 0 0 Ca hf p a t cu t nut f * f K I M 129 -00
3 Co«inoct«r 5 1 00 t i lotharboord A « l a m b l y 75 00
C G R S 5 1 00 T I M K r t . . , , . .. 129.00
C G RS S100 6 50 2 C P U K i t .. 179 .00
C G RS S1Q0 F ro n t P o n * l K i + , , , , , . 3 2 9 . 0 0
X l T E X V i d t o T a / m i n a l B e ar d 14 X64 JC. 155.00
XI . E X Y t d a o T « m i t t v l Board A * * * m b l * d . . . 18 5 .0 0
K l M - 1 ...2 4 5 , 0 0
C $ 1 0 0 w i th C G R S , Xi ton, 1 6 K R A M , T V , K B 152? .00
Soma i?ut A l t o n b le d T9B9 0 0
PS - 5 P w r Supp. 5 V S A 9 V 1 A - 1 2 V 1 * 6 * 6 3 (2 7 5 . 0 0
PS-5 A t t t m b U d9 0 - 0 0

. .T o ta l of O f d * r , . C l r c U | t * n t w o n t a J . t
M a n , R«m[d#nt * S a f a * T * * 5 %
S h i p p ! * ! , I % (* 2 . 0 0 « l n .)$

' T e t i l f i m l t t t f i c * * r C f c i t j * . , , , , , , . . , , , ! . , , , , , ,

sajcaQ'i) AUGUST/SEPTEMBER 1978

ISSUE NUMBER SIX

MICRO Stuff and MICROBES 4

Design of a PET/TTY Interface
by Charles R. Husbands

5

Shaping Up Your Apple
by Michael Faraday

11

Apple II Starwars Theme
by Andrew H. Eliason

13

Apple Pi
by Robert J. Bishop

15

A Simple 6502 Assembler for the PET
by Michael 3. McCann

17

The MICRO Software Catalog: III
by Mike Rowe

23

A Debugging Aid for the KIM-1
by Albert Gaspar

25

6502 Interfacing for Beginners: Address Decoding II
by Marvin L. De Jong

29

Brown and White and Colored All Over
by Richard F. Suitor

33

6502 Bibliography: Part V
by William Dial

37

Programming a Micro-Computer: 6502, by Caxton C. Foster
Reviewed by James R. Witt, Jr.

39

PET Composite Video Output
by Cal E. Merritt

41

Power From the PET
by Karl E. quosig

42

Classified Index: MICRO 1 - 6 43

Apple Integer BASIC Subroutine Pack and Load
by Richard F. Suitor

45

A Partial List of PET Scratch Pad Memory
by Gary A. Creighton

Back Cover

Advertisers Index

IFC Computer Components 14
2 Micro-Psych 21
10 Connecticut microcomputer 22
12 United Microsystems Corp. 32
12 Darrell's Appleware House 36
13 Personal Software 42
13 PET-Shack Software House 42

Computer Shop
The Enclosures Group
The Computerist, Inc.
The Tax Store
AB Computers
Color-Tech TV
MICRO

MICRO is published bi-monthly by The COMPUTERIST, Inc., 56 Central
Square, Chelmsford, MA 01824. Robert M. Tripp, Editor/Publisher.
Controlled Circulation postage paid at Chelmsford, Massachusetts.

Single Copy: $1.50 Annual Subscription: $6.00 (6 issues) in USA
Copyright 1978 by The COMPUTERIST, Inc. All Rights Reserved.

i G QDQIj)®'

KEYBOARD WIZARDRY

ENGINEERED SPECIFICALLY FOR
THE CHERRY-PRO KEYBOARD

• Space Provided for Power Supply
and Additional Boards

• Easy Access to Connectors
• Keyboard Positioned for Ease

of Operation
EASILY ASSEMBLED

• Requires Absolutely No Altera
tion of the PRO Keyboard

• All Fasteners Provided
• Goes Together in Minutes

with a Small Screwdriver

ATTRACTIVE FUNCTIONAL
PACKAGE

• Professional Appearance
• Four Color Combinations
• Improves Man/Machine Interface

MADE OF HIGH IMPACT STRENGTH
THERMOFORMED PLASTIC

• KydexlOO*
• Durable
• Molded-ln Color
• Non-Conductive

AVAILABLE FROM STOCK
• Allow Two to Three Weeks for

Processing and Delivery
• No COD’s Please
• Dealer Inquiries Invited

TO ORDER:

NAM E.

1. Fill in this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

STREET.

CITY _

.Z IPSTATE_________________________

Please Ship Prepaid_____SKB 1-1(s)
@$33.75 Each

California Residents please pay
$35.94 (Includes Sales Tax)

* TM Rohm & Haas

the
enclosures
group

55 stevenson, san francisco 94105

Color Desired blue □ beige □
black □ red □

Patent Applied For

IN THIS ISSUE .

There were so many good articles submitted for
this issue of MICRO that we have had to modify
the format slightly to make more room. Most of
the MICRO material has been reduced to approxi
mately two-thirds its old size, providing about
50% more space per page. While this does make
type smaller, it is still very readable. Some
material, in particular program listings, were
left full size. This new format will permit us
to print a lot more material without increasing
the cost of printing.

How do you get hardcopy from a PET? You could
wait until Commodore comes out with a printer.
Or you could buy one of the PET/RS232 adapters.
Or you can use the techniques and software that
are presented in "Design of a PET/TTY Interface"
to quickly and cheaply use a standard TTY as a
PET printer. The article by Charles R. Husbands
provides both the hardware and the software re
quired .
If you have wondered about how the characters
formed on your Apple II, read "Shaping Up Your
Apple" by Michael Faraday. In addition to ex
plaining how the mechanism works, a couple of
tables make it easy to make your own adapta
tions .
Now that STARWARS is back at your local drive-
in , it seemed appropriate to print a short pro
gram by Andrew H. Eliason which presents the
"Apple II Starwars Theme" - sounds of the main
battle scene played on your Apple. While this
program may give you some insight into the oper
ation of your Apple, it is really included just
for fun.
On a more serious vein, in spite of its humorous
title, "Apple Pi" shows how to use BASIC to cal
culate mathematical functions. Robert J. Bishop
presents the history of calculating Pi, and then
provides a program which, given forty hours, can
calculate the value of Pi to 1000 decimal
places. In case you do not want to run the pro
gram yourself, the results of his run are print
ed. It might be a challenge to someone to write
the equivalent code in assembly language and see
how long it takes to run.

One of the most constant complaints of PET
owners is the lack of support for assembly level
programming on the PET, in spite of promises by
Commodore for a ROM or tape of a machine code
monitor. This will be partially alleviated by
"A Simple 6502 Assembler for the PET" by Michael
J. McCann, complete in this issue. The package
presented here consists of the assembler, a save
on tape routine, a load from tape routine, and a
disassembler to produce listings. Two errors in
the listing were discovered after that portion
of MICRO was printed, so please make the follow
ing changes in the listings:
190 IF VAL(A$)<1 OR VAL(A$)>6 GOTO 180

15020 IF LEN(A$)=3 THEN MN$=A$:0P=0:RETURN
Since the "BASIC 6502 Disassembler" written by
Michael for the last issue of MICRO was, with!
very minor modification, capable of running on
an Apple as well as a PET, the assembler portion
of this program is probably also modifyable for
the Apple. The exercise is left for the reader,
as the math books are fond of saying.

Part III of the MICRO Software Catalog has eight
entries covering a wide variety of software and

systems. These range from a program to punch
readable leader of a paper tape to FOCAL - a DEC
high-level language similar to BASIC.
There is a "Call for Information" in regards to
a MICRO Hardware Catalog which we hope to start
carrying in the next issue. If you have hard
ware of interest to the 6502 community, then
follow the instructions and submit your stuff.
A rather neat program which serves as "A Debug
ging Aid for the KIM-1", written by Albert
Gaspar, provides some good support for the KIM-1
and resides totally in the "extra memory" from
1780 to 17E6. Four basic operations are given:
Insert BREAK points, MOVE blocks of data in
memory, calculate BRANCH offsets, and CONTINUE
execution of the program.
The program is very tightly coded and shows some
ways to really pack your code.

The series on "6502 Interfacing for Beginners"
continues with "Address Decoding II". This ser
ies, which began last issue and is written by
Marvin L. De Jong, shows the novice how the
microcomputer works via simple hardware and
software projects.

One of the most obvious features of the Apple II
is its color capabilities. The article "Brown
and White and Colored All Over" by Richard F.
Suitor explains in some detail the theory behind
the color of the Apple. He also provides a few
simple BASIC programs to allow the user to do
some experimenting with color.
Part V of the "6502 Bibliography" by William
Dial covers entries 335 through 360. Due to the
"explosion" of material being written about the
6502, some changes have had to be made in the
organization and content of the bibliography.
Straight advertisements will no longer be refer
enced or will material contained in flyers.
Minor articles in relatively obscure magazines
may be omitted. And, where a single issue of a
magazine has a lot of articles of interest, the
individual references will be combined under one
general magazine reference.

"Programming a Micro-Computer: 6502"a book by
Caxton C. Foster, is reviewed by James R. Witt,
Jr.
Cal E. Merritt discusses the "PET Composite
Video Output", showing how it works and how to
connect up to it. Karl E. Quosig whows how to
get "Power from the PET", a method of getting
+5V from your PET.

A "Classified Index: MICRO 1-6" lists all of
the major articles and advertisements from the
first volume/year of MICRO. Material is classi
fied as General, KIM-1, Apple, PET, or Ads.
A very useful utility package is presented by
Richard F. Suitor in "Apple Integer BASIC Sub
routine Pack and Load”. The assembly level pro
gram, which is presented in its entirety,
permits the user to simply Pack and save his
machine code on tape and the Load and unpack it.

"A Partial List of PET Scratch Pad Memory" is
printed on the b&ck cover as a reference guide
for PET owners. This material was prepared by
Gary A. Creighton, and should make using and un
derstanding your PET much easier.

6:3

MICRO STUFF AND MICROBES

Apple Peelings Kim Clippings

[Excerpts from a letter by Donald C. Scouten to
the Editor, EDN, regarding the Apple/PIA stuff.]
"The difficulty in using PIA's and VIA's on the
Apple II arises because of the way the Apple
decodes the I/O select (pin 1) and device select
(pin 41). These are activated only during phase
2 of a cycle that addresses the particular con
nector under consideration. Thus, if these se
lects are used ... to activate the CS (or not
CS) on a PIA, the enable pin (pin 25) and the CS
go active almost simultaneously. However the
data sheets clearly require a 180 nsec setup
time for the CS before the enable becomes ac
tive. This setup time is normally available on
6502 bus since the addresses are guaranteed to
be valid 300 nsec into phase 1 (and thus your
circuit worked on a KIM).»,It is, however,
clearly impossible to use the internal Apple de
coding and satisfy the PIA ... requirement of
180 nsec setup time.
The above problem should not be interpreted as a
defect in the Apple II since it is a self con-
sistant system and I/O ports can easily be added
if desired.

My solution was to build a simple address de
coder on my I/O board that uses the address
lines instead of the selects. Thus the CS of
the VIA is activated with sufficient setup time
and the VIA works properly."
A note from Paul Farmer of Microproducts, 1024
17th St., Hermosa Beach, CA 90254, suggests
using three buffers in series on a CMOS 4050
IC chip. Either phase 0 or phase 2 can be used
as the input with enough delay for the setup of
a PIA or VIA.

PET Droppings
A new idea in magazines: CURSOR (tm) MAGAZINE is
a monthly cassette of programs for the PET. You
get five programs per month on cassette via 1st
class mail. At $24.00 per year (12 issues),the
cost per program is $.40 cents each. Of course,
the actual value of the programs depends on
their value to you. Write CURSOR, P.O. Box 550,
Goleta, CA, 93017 for info or call 805/967-0905-
Mark Zimmerman, 619 Woodland Drive, Sierra Madre
CA 91024 write about the LIFE game edges:
"If one copies the top and bottom edges of the
screen (& left & right edges) to opposite sides,
then simply applying the LIFE algorithm to the
central (omitting extreme edges) arena gives
correct wrap-around (toroidal) edge structure.
Example:

L I J K L I
A B C D D A B C D A
E F G H H E F G H E
I J K L L I J K L I

The San Fernando Valley KIM-1 Users Club is off
and running, according to a report from Jim
Zuber. Meetings will be held the second Wed.
of each month at 7:30 pm. Until another place
can be found, meetings will be held in Jim's
apartment: 20224 Cohassett #16, Canoga Park, CA
91306. Phone for inof: 213/341-1610.
Michael Chibnik of 10445 Canoga Ave. Chatsworth
CA 91311, had a few comments about Microsoft
BASIC for the KIM: "I didn't get enough inform
ation on the peripherals that were used. A note
about Microsoft BASIC ia that most of the people
who had bought it (in the above club) did not
like the fact that the code for the interpreter
is self modifying in many places and that it is
not PROMable." [Editor: Someone reported that
they had asked Johnson Computer about the PROM-
ability of the Microsoft BASIC and was told that
it is PROMable. Does anyone have any hard info
on this subject?]

Robert Ford Denison, RD 5 Teeter Road, Ithaca,
NY 14850 has developed a resident symbolic 6502
assembler which runs in 3K (4K recommended) and
uses a "Qwerty" keyboard for input and the KIM
display for output. To test it he is "offering
a free 'sneak preview' of the assembler to a
small group of 6502 users ... (since he) would
appreciate comments on any parts of the documen
tation that are not perfectly clear. Write him
for further information.

General Garbage
You might want to write to Robert Elliott Purser
at P.O. Box 466, El Dorado, CA 95623 and request
a copy of his "World's Second Most Incomplete
Software List for PET, Radio Shack, Apple 4 Sol"

MICROBES
Applayer Music Interpreter, Suitor, 5:29:
5:30 0A20- 82 20 0B
5:31 0A00: 83 90 OF 83 90 OF FF

0F 1 8: 1C 1A 18 1A 91 1C 38 18
0F50: 81 55 55 55 FF
0F58: 81 05 05 05 FF
0F90: 83 58 OF D4 B0 83 50 OF 83
0810: 48 02 28 02 08 02 E8 01

These problems are in the music and tone table,
and were caused by the 8 's on his TTY looking
very much like 0's. Make the changes and the
music will probably sound better.

A BASIC 6502 Disassembler for Apple and PET,
McCann, 5:25:

5:26 3020: DC=IB:G0SUB 1000
5:27 6000: ASL should be ASLZ

6 100: CLC should be CLI
6120: JMI should be JMPI
6250: CPX should be CPXZ

D/A and A/D Conversion Using the KIM-1, De Jong,
2:11: IC should be labeled "1408" and pin 14
should have 1.5K resistor to +5, while pin 13
goes directly to +5V (check spec sheets on 1408
to be absolutely sure of connections).

0308 4C 0403 should be 4C 05 03

DESICN OF A PET/TTY INTERFACE

Charles R. Husbands
24 Blackhorse Drive
Acton, MA 01720

With the recent acquisition of a PET Computer
one of the facilities that was immediately need
ed was a method of obtaining hard copy listings
of programs under development. In addition to
the PET I had an ASR 33 Teletype Unit available
which had been interfaced to my KIM-1. This
article describes the hardware interface and as
sociated software necessary to use the ASR 33
TTY as a printing facility for the PET. An im
portant design goal for the interface was to de
velop the software to remain resident in the
computer in such a manner that the program under
development could be loaded, run and listed
without disturbing the listlsg program.

The Interface Circuit
Figure 1 shows the 20 ma current loop circuit
required to interface the ASR 33 to the PET.
The circuit consists of an open collector NAND
gate to provide the proper buffering, a diode
and a pull up resistor. The completed circuit
was built on a small perforated board. The PET
supplies power and ground to the interface board
from the second Cassette Interface. The input
signal is delivered from PAO on the PET parallel
user port. The interface board is connected to
the teletype by means of the PRINTER and PRINTER
RETURN lines. These lines attach to terminals 6
and 7 respectively on the ASR 33.

O ♦S’V

PRINTER

O &MD

Parts List
IC1 7438 Quad 2 Input NAND Open Collector
CR1 1N4001 1A 50V Diode
R1 150 ohm 1/2 Watt Resistor

Figure 1.
A fairly simple circuit for buffering the con
trol signal ft'om the PET Computer and converting
that signal to a current level capable of driv
ing the printer mechanism on an ASR 33 TTY Unit.

Program Design
In order to allow the listing program to remain
resident in the machine to list other programs
under development, the program was written in
machine language to be stored in Tape Buffer 2.
Figure 2 shows a simple memory map of the PET
random access memory allocations. Without a
second tape cassette unit, a memory buffer of
198 bytes is available. When another program is
loaded from tape or the NEW instruction is exe
cuted the operating system zeros out memory lo
cations 1024 and above. However, it leaves the
memory locations below 1024 undisturbed. To ex
ecute a machine language program the USR in
struction must be called. The USR command uses
a pair of memory location pointers stored in
memory locations 1 and 2 to extablish the first
location in machine language code to be process
ed. Locations 1 and 2 are not modified by the
loading of a program from tape or the execution
of the NEW instruction.

8192 .. $1200

Program Storage
1024 $0500

Tape Buffer 2
826 $033A

Tape Buffer 1
634 $027A
BASIC and Operating System Working Space

2 $0002

USR Control Pointers
0 $0000

Figure 2.
A Map of the PET Random Access Memory Space.
The Listing Program resides in machine language
in Tape Buffer 2.

A flow diagroE of the Listing Algorithm is shown
in Figure 3 . The program after proper initia
tion examines the first character of the third
line in the display for a value corresponding to
the letter "R". It is the letter R appearing in
the first display column which is used by the
Listing Program to exit the listing algorithm
and return control of the program to the calling
routine. The R in the first column would nor
mally correspond to the READY displayed by the
computer at the end of a requested listing block
or at the completion of an executed RUN. If the
character in the first column is anything but an
R the program executes a carriage return and
then a line feed. The program examines the next
displayed character and translates it from dis
play format to ASCII format. The subroutine
PRINT is then called.

C START)

IN IT

Figure 3 .
A general listing algorithm for use with the TTY
Listing Program. The software control of the
output port is done in the PRINT subroutine.

The subroutine PRINT* is a machine language pro
gram which times out the proper serial bit pat
tern to the TTY to execute the printing of the
designated letter. After each character is
printed a counter is incremented and tested to
determine if the 40 character line has been com
pleted. If 40 characters have not been printed
the next display character is examined. At the
end of each line the first character of the next
line is examined for an R before a carriage re
turn and line feed is executed.

A listing of the program in BASIC format is
shown in Listing 1. The program was originally
hand assembled in 6502 machine language. The
machine language program was then converted from
hexadecimal to decimal and formatted as a series
of POKE instructions. The machine language mem
ory address pointers were also POKED into loca
tions 1 and 2 by the BASIC program. The print
out appearing in Listing 1 was produced on the
authors TTY using the Listing Program.

• The PRINT subroutine is a modified version of
the "PRINT 1 CHAR" program developed by MOS
Technology for the KIM-1.

Using the Listing Program

The program as shown in Listing 1 is loaded into
the machine in the normal manner. A RUN command
is then executed and the program will be POKED
in machine format into Tape Buffer 2. The BASIC
program to be listed is then loaded into the
machine. The LIST-N instruction is then execut
ed to allow the operator to preview the initial
lines of code. When the operator is satisfied
with the 15 to 18 lines of code to be printed,
as displayed on the screen, the command X=USR(R)
is entered and the RETURN key is depressed. The
USR instruction transfers control to the machine
language code located at the address specified
by memory locations 1 and 2.

The teletype printer will then print the display
on the PET CRT from the beginning of display
line 3 to the word READY. The operator then
uses the LIST M-X command to preview the next
series of lines to be printed. It should be
noted that the PET listing format leaves a blank
line between the last line number selected and
the READY response if the last line requested is
not the last line in the program. The preview
function allows the operator to block out the
lines to be printed regardless of the line num
bering technique employed when the program was
composed. If the program being listed has an R
in column 1 due to a line length in excess of 40
characters, the operator must take some action
to remove this condition before executing the
listing of that portion of the program.

Conclusions and Recommendations
The hardware and software illustrated in this
article can be used to permit the listing of
programs and recording the results of program
runs on a conventional TTY unit. In using the
program to print the results of computer runs it
should be noted that the results should be for
matted to begin on the third line of the dis
play. An improved version of this program could
be designed to look ahead when an R was discov
ered to extablish if an RE or REA string was
present. As only 3 bytes were not used in Tape
Buffer 2 in writing this program, that feature
could not be included. Additional space could
be freed if the program was redesigned to use
the parallel to serial conversion facility
available with the 6522 VIA output port. Using
this facility the 90 bytes required to do the
conversion from parallel to serial and timing
out this information could be greatly reduced.

Listing 1.
A listing of the PET Listing Program as printed
on the author's TTY unit. The program was hand
assembled in 6502 language then converted to
decimal format and entered as a series of BASIC
"POKE" instructions. When executed the program
will reside in Tape Buffer 2 in machine code
format.

1 R E M * * * T E L E T Y P E L I S T I N G R O U T I N E ****$*
2 REM C H A R L E S R. H U S B A N D S
3 HEM
4 REM THIS P R O G R A M L I S T S THE D ATA
5 HEM A P P E A R I N G O N T H E S C R E E N IN
6 KEM S E R I A L T E L E T Y P E FORMAT. THE
7 R E M P R O G R A M IS S T O R E D IN M A C H I N E
8 HEM C O D E IN T A P E b U F F E R *2 . THE
9 REM P R O G R A M IS E X E C U T E D U S I N G "USR".
1 0 P O K E C 0 1) , 5 8
^ 0 POKEC 0 2) j 0 3

2 9 HEM. . I NIT. ..IN I TALI?. E V A R I A B L E S
3 0 POKEC 8 2 6) t 1 6 9
4 0 POKEC 8 2 7) , 0 0

5 0 POKEC b u t t).» 1 4 1
6 0 P 0 K E C 8 2 9) , 2 5 1
7 0 P O K E C 8 3 0) t 0 3
8 0 POKEC 8 3 1), 1 7 4)

8 8 REM. . L O O P 1 . .TEST H K S T C H A R ON EACH
■89 KEM L I N E FUR AN "h".
9 0 P 0 K E C 8 3 2), 1 8 9
1 HM P O K E C 8 3 3) , 8 0
1 1 0 POKEC 8 3 4) j 1 2 8

1 5 0 P O K E C 8 3 5) , 2 0 1
1 6 0 P 0 K E C 8 3 6) , 1 8

1 7 0 P O K E C 8 3 7) , 2 4 0
1 8 lo POKEC 8 3 8)., 8 3
1 8 9 REM. . L O O P 3 . .PRIImT CK/LF
1 9 0 POKEC 8 3 9) i l b 9

2 0 0 POKEC 8 4 0) t 1 3
2 1 0 POKEC 84 1) , 1 -4 1
220 P0KEC842),255
230 POKECb43}j 03
ii40 POKEC 844) i 32
*50 POKEC 845) i 1 66
k!60 POKEC 846)^03

2 7 0 POKEC 8 4 7) ̂1 6 9
2 8 0 POKEC 8 4 8) » 1 0
2 9 0 POKEC 8 4 9) > 1 4 1

3 0 0 P U K E C 8 5 0) , 2 5 5
3 1 0 POKEC 8 5 1)i 0 3
3 2 0 POKEC 8 5 2) t 3 2

3 3 0 POKEC 8 5 3)i 1 6 6
3 4 0 POKEC 8 5 4) .» 0 3
3 4 8 R E M . . L 0 0 P 2 . . E X A M I N E A N D P R I N T THE
3 4 9 REM O T H E R C H A R A C T E R S ON T H E LINE.
350 P0KEC855),189
360 PO KEC 8 56).»8 0
370 POKEC 8 57).»128
380 POKEC 858)i 141
390 POKEC 859).»252
400 POKEC 860)* 03
410 POKE C 861)t56
420 P0KEC862),233
430 POKEC 863)> 32
440 POKE< 864) * 48
450 P0KEC865)t 12
460 POKEC 866)t 173
470 POKEC 867).»252
480 POKEC 868).»03
490 POKEC 869).» 141
500 POKEC870).»255
510 POKEC 871).»03
520 POKEC872)t32
530 POKEC873), 1 66

540 POKEC 874) i 03
550 POKEC875),76
560 P0KEC876),122
570 POKEC 877)j03
579 REM..ALPHA..PRINT ALPHABETIC CHAR
580 POKEC 878)^ 173
580 POKEC 878)j 173
590 POKEC 879)^252
600 POKEC 880) ̂03
610 POKEC 88 1) i 24
620 POKEC 882)t 105
630 POKEC 883) , 64
640 POKEC 884) i 141
650 P0KEC885),255
660 POKEC 886)j03
670 POKEC 88 7) .» 32
680 POKEC 888)t 166

690 POKEC 889)t03
698 REM..CLNUP..COUNT CHARACTERS AND
699 REM TEST FOR END OF LINE.
700 POKEC 890)^238
710 POKE C 891)j251
720 POKEC 892)it)3
730 POKEC 893)i 173
740 P0KEC894),251
750 POKEC895),03
760 POKEC 896) , 201
770 POKEC 897)t40
780 P0KEC898), 240
790 POKEC 89 9)i 13
800 POKEC900), 232
810 PUKEC 901), 138
8ii0 POKEC 902) i 208
830 POKEC 903)t06
840 POKEC 904),238
850 POKEC905),89
860 POKfcC906),03
861 POKEC 907)^238
862 POKEC 908) .» 66
863 POKEC 909)t03
870 POKEC 9 1 0) .» 76
880 POKEC 91 1),87
890 POKEC 9 1 2).» 03
899 REM . . NEV'L . . I NI T AL I 7. fc S NEW LINE.
900 POKEC 9 I 3)i 1b9
910 POKEC 914)j 00
911 POKE C 915)i 141
912 P0KEC916),251
913 POKEC917),03
914 POKEC 918) ̂232

917 POKEC 919)^76
918 POKEC 920)> 64
919 POKEC 921) .» 03
920 REM..FINDR..PROGRAM COMES HERE IF
921 REM AN ,,R M IS FOUND IN 1ST COLM.
921 POKEC 922)> 169
922 POKEC 922)* 169
923 POKEC 923)t 128
924 POKEC 924)t 141
925 POKEC 925)* 66
926 POKEC 926)* 03
927 POKEC 92 7)* 141
928 POKEC928),89
929 POKEC 929)* 03
930 POKEC930)i96

949 H E M . . P R I N T . . T H I S S U B R O U T I N E P R I N T S
950 R E M T H E C H A R A C T E R IN T T Y F O R M A T .
960 P 0 K E < 9 3 4) , 169
961 P 0 K E (9 3 5) , 2 5 5
962 P 0 K E < 9 3 6) , 141
963 P 0 K E < 9 3 7) , 6 7
964 P O K E (9 3 8) , 2 3 2
9 6 5 P O K E (939), 173
966 P O K E (9 4 0) , 2 5 5
970 P O K E < 9 4 1) , 0 3
9 8 0 P O K E (942), 141
990 P O K E (9 4 3) , 2 5 2
1000 P O K E (9 4 4) , 0 3
1010 P O K E (9 4 5) ,142
1020 P O K E (946)* 2 53
1030 P O K E < 9 4 7) , 0 3
1040 POKEC 9 4 8) , 3 2
1050 P O K E (9 4 9) , 2 3 0
1060 P O K E < 9 5 0) , 0 3
1070 POKE(951), 169
1080 P O K E (9 52) ,79
1090 P O K M 953), 232
1100 P O K E (954) , 4 1
1110 P O K E (9 5 5) , 2 5 4
1 120 P O K E (956), 141
1130 P O K E < 9 5 7) , 7 9
1140 P O K E (9 58) ,232
1150 P O K E (9 5 9) , 3 2
1160 POKE<960-),230
1 170 PUKE< 961) , 03
1180 POKE(962), 162
1190 POKE< 963),08
1 199 KEM..OUT 1
1200 POKL(964), 173

1210
1 2ii0
1230
1240
1250
1260
1270
1280
1290
1 300
1310
1320
1330
1340
1 350

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

POKK<
P O K M
POKEt
POKE<
POKE(
PO K E (
POKEt
POKEt
POKEt
POKEt
POKE(
POKE(
POKt(
POKE(
POKEt

POKE(
POKE(
POKE(
POKE(
POKEt
POKEt
POKEt
POKE(
POKE(
POKEt
POKE(
POKE(
POKLt
POKE(
POKE(

965),79
966),232
967),41
968),254
969),78
970),252
971),03
972),105
973),00
974),141
975),79
976),£32
977),32
978),230
979),03

980),202
981) ,208
982),237
983),173
984),79
985),232
986),09
987),01
988),141
989),79
990),232
991),32
992),230
993),03
994),174

LABEL

INIT

LOOP1

LOOP3

L00P2

<1510
1520
11 530
1539

j 1 540
1550
1560
11570
! 1 580
11 590
1600
,1609
1610
1619
1620
I
1630
1640
1650
1660

j 1 670
1680
I 1689
1690
1700
1710
1720
1730
1 740
1 750
1760
1 770
1780
1790
1800

POKE<
POKE<
POKE<
REM. .
POKE<
PO K fc (
POKE(
POKE(
POKL<
POKE(
POKE(
HEM. .
POKE(
hEM. .
PO K E (

POKE(
POKE(
POKE(
POKE(
POKE(
POKE(
REM. .
POKE(
POKE(
POKE(
POKE(
POKEt
POKE(
R E M . .
H E M . .
R E M . .
R E M . .
R E M . .
END

9 9 5) , 2 5 3
9 9 6) , 0 3
997),96
Li EL AY
9 9 8) , 1 6 9
9 9 9) , 0 2
1000),141
1001),2 54
10 0 2) , 0 3
10 0 3) , 1 6 4
10 0 4) , 8 2
DE2
10 0 5) , 5 6
L)E4
1 0 0 6) , 2 3 3

1007),
1008),
1009),
1 0 1 0),
1011),
1012),
DE3
1013),
1014),
1015),
1016),
1017),
1018),
GOUNTt
C H A R (
TMPX (
T I M H (
PCHAR<

01
176
03
<206
2 54
03

172
254
03
16
243
96
1019)
1 0 2 0)

102 1)
1022)
1023)

OP FIELD LOC OP F1 F2

LDA #0 826 169 00
STA COUNT 828 141 251 03TAX 831 170
LDA 32848, X. 832 189 80 128
UMP #18 835 201 18
BEQ FINDR 837 240 83LDA #0D 839 169 13STA PCHAR 841 141 255 03JSR PRINT 844 32 166 03LDA #0A 847 169 10
STA PCHAR 849 141 255 03JSR PRINT 852 32 166 03LDA 32848,X 855 189 80 128
STA CHAR 858 141 252 03SEC 861 56
SBC #20 862 233 32
BMI ALPHA 864 48 12
LDA CHAR 866 173 252 03STA PCHAR 869 141 255 03JSR PRINT 872 32 166 03JMP CLNTJP 875 76 122 03

6:8

iQ Q Q O a O i

ALPHA

CLNUP

NEXTC
. NEWL

C FINDR

PRINT

0UT1

DELAY

DE2
DE4

DE3

LDA CHAR 878 173 252 03CLC 881 24ADC #40 882 105 64STA PCHAR 884 141 255 03JSR PRINT 887 32 166 03INC COUNT 890 238 251 03LDA COUNT 893 171 251 03UMP #28 896 201 40BEQ NEWL 898 240 13INX 900 232TAX 901 138BNE NEXTC 902 208 06INC 869 904 238 89 03INC 834 907 238 66 03JMP L00P2 910 76 87 03LDA #0 913 169 00STA COUNT 915 141 251 03INX 918 232JMP L00P1 919 76 64 03LDA #80 922 169 128STA 834 924 141 66 03STA 860 927 141 89 03RTS 930 96LDA #FF 934 169 255STA PADD 936 141 67 232LDA PCHAR 939 173 255 03STA CHAR 942 141 252 03
STX TMPX 945 142 253 03JSR DELAY 948 32 230 03LDA SAD 951 169 79 232AND #FE 954 41 254STA SAD 956 141 79 232JSR DELAY 959 32 230 03LDX #08 962 162 08LDA SAD 964 173 79 232AND #FE 967 41 254LSR CHAR 969 78 252 03ADC #00 972 105 00STA SAD 974 141 79 232JSK DELAY 977 32 230 03DEX 980 202BNE 0UT1 981 208 237LDA SAD 983 173 79 232ORA #01 986 09 01STA SAD 988 141 79 232JSR DELAY 991 32 230 03LDX TMPX 994 174 253 03RTS 997 96LDA #02 998 169 02STA TIMH 1000 141 254 03LDA #52 1003 169 82SEC 1005 56SBC #01 1006 233 01UCS DE3 1008 176 03DEC TIMH 1010 206 254 03LDY TIMH 1013 172 254 03iJPL DE2 1016 16 243KTS 1018

COUNT (1019CHAR (1020'TMPX (1021TIMH (1022.PCHAR (1023

6:9

--- -
POWER PLUS is an assembled and tested power
supply that will power a KIM-1 or VIM-1 and a
MEMORY PLUS board with power to spare.

Speculations
Input Voltage: 110 to 125 volts 60 Hz AC.
Output Voltages:
+5 volts regulated § 1.4 amps maximum.

+12 volts regulated § 1.0 amps maximum.
+8 volts unregulated ft 4.3 amps maximum.

+16 volts unregulated S 1.0 amps maximum.
Packaging: Totally enclosed in a bakelite type
box with aluminum bottom plate. Space between
the case and bottom plate provides air circula
tion' for cooler operation.

Size and Weight: 6 7/8" x 5 1/4" x 3". 3 lbs.
___ /

--------— s
MEMORY PLUS is a KIM-1 shaped and sized board for
extending the capabilities of the KIM-1. It con
tains 8K RAM (low power 2102 static); provision
for up to 8K EPROM (Intel type 2716 2K by 8-bit);
a Versatile Interface Adapter with two o-bit I/O
ports, two timers, and a serial-to-parallel shift
register (MOS Technology 6522); and an on board
EPROM Programmer. RAM and ROM are each address
able at any 8K (2K hex) boundary and may both be
used simultaneously (this is really a 16K board!).
Other features are: on board regulators for +5V
and +25V, EPROM Programming Program and Memory
Test Program on cassette tape, all IC chips are
socketted, the board is fully assembled and test
ed. Comes with connectors, mounting hardware, 60
page manual, schematics, etc.

A set of cables is available at no extra charge,
if specified when ordering the MEMORY PLUS. One
cable goes between the KIM-1/VIM-1/AIM 65 and
the MEMORY PLUS expansion connector. The other
cable connects to the existing application con
nector. The easy way to assemble your system.
Although MEMORY PLUS was designed for the KIM-1,
it will work equally well with the Synertek
VIM-1 and the Rockwell AIM 65- So, when you
want to expand one of these systems beyond its
4K RAM capability, and/or want to program some
EPROMs to fill the available slots on these new
units, MEMORY PLUS is ready.

21L02 Static RAM - Low Power - 450 nsec $1.25
2114 Static RAH - Reu Power - 450 nsec $7.50
2114L Static RAM - Low Power - 450 nsec $8.50
KIM-1 + Enclosure $250.00
VIM-1 + IK Extra RAM - 2K RAM total $270.00
MEMORY PLUS - with 8K Low Power RAM $245.00
POWER PLUS - for KIM-1 or VIM-1 $40.00
ENCLOSURE PLUS - for KIM-1 + MEMORY PLUS $30.00
PLEASE - Games and Demos for KIM-1 $15.00
EDITOR - for KIM-1 with TTY and cassettes $15.00
MAILING LIST - KIM-1, TTY, and cassettes $15.00
INFORMATION RETRIEVAL - KIM-1, TTY, etc. $15.00
MICROCHESS - Chess on minimal KIM-1 $15.00
MICR0-ADE - Assembler/Disassembler/Editor $25.00
MICR0-ADE - Complete Source Listings $25.00
RELAY KIT - Control two cassettes $10.00

All items Stock to two week delivery.

NEW Items to be available soon:
VIDEO PLUS - CRT Controller with 2K Display RAM,
UPPER/lower case ASCII, optional 128 character
user programmable character set, keyboard inter
face, light pen interface, programmable display
format up to 80 characters by 24 lines. For the
KIM-1 or VIM-1 or AIM 65.

PROTO PLUS - Prototyping board for the KIM-1 or
VIM-1 or AIM 65. Has fingers for both the ex
pansion and application connectors.
MOTHER PLUS - Compact Mother board which will
work with the KIM-l*or VIM-1 or AIM 65.
POWER PLUS 5 - With +5V at 5A and +12/-12 at 1A.
Ideal for KIM-1 or VIM-1 with additional memory.
POWER PLUS 24 - With +5V at 5A, +12/-12 at 1A,
+24V at 3A. Specifically for the AIM 65 system.

Call or write for details, prices, and delivery.

Shipping in USA - up to $15.00 add $1.00
up to $50.00 add $2.00
above $50.00 add $3.00

Foreign shipping - add 20?o up to $100.00
add 10?,; above $100.00

Mass Residents - add 5% sales tax.

The COMPUTERIST, Inc.
P.O. Box 3, S. Chelmsford, MA 01824

617/256-3649

SHAPING UP YOUR APPLE

Michael Faraday
246 Bronxville Road
Bronxville. NY 10708

Even though, as a programming novice, it took me
a while to take on Apple II'a Hi-Resolution
Graphics I have to admit that the seeming com
plexity of constructing a Shape Table held a
certain fascination for me from the first time I
opened the Reference Manual. With Gary Dawkin's
■delightful program appearing in Creative Comput
ing

delightful program appearing in Creative Com
puting recently there is no longer any real
need to apply the original technique, but a good
understanding of something never hurt anyone, if
only to verify other working arrangements.
If you have a TI Programmer, or any convenient
way of converting from one base to another,
here's a simplified method of untangling that
unsightly jumble of arrows and binary digits on
page 53 of the "Big Red Book". The key is in
recognizing that the conversion chart is nothing
more than an OCTal representation of our 8-bit

A/B C OCT

♦ .000 00 0 To the Code list we
will add the OCTal

-to. 001 01 1 number that each
1 arrow represents.

010 10 2

- 011 11' 3

1 100 4

101 5
\ 110 6

•+1 111 7

byte. OCTal is binary broken into groups of
three just as HEX is binary broken into groups
of four. The fog lifts a little and we can now
see why the "C" digit is limited to two bits: we
only have a total of eight to start with. Look
ing a little further along the same page we come
to the Conversion Codes and it’s here we can
begin to make things really easy.

C B A C B A
0 0 0 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

f *

0 0 1 0 0 0 0 0 t *
0 1 1 0 0 1 0 0 - t 1
0 0 1 0 1 1 0 1

To the Code list we will add the OCTal number
each arrow represents.

Going back to the original example in the manual
we can replace the entire chart of binary digits
with an OCTal number put directly above our "un
wrapped" arrows, like so:

OCT 2 2 7 7 0 M H 1 5 5 5 2 6 6 6 3 T
Shape | f |

We are going to construct either two- or three-
digit numbers from this list and now come the
only rules required to deal with in the whole
procedure:

1. While always trying to make a three-digit
number, the "last" digit of a three-digit group
can ONLY be a 1, 2 or 3 (remember that the "C"
digit is only 2 binary digits, which can repre
sent the OCTal number three at most).

2. As usual, these numbers appear Least Signif
icant Digit first and therefore the "last" digit
is, in reality, the first digit of the new OCTal
number.

r ' So we can now divide the long string of numbers
into two- and three-digit, reverse-order OCTal
numbers with slashes:

OCTal 2 2/7 7/0 4/4 4 1/5 5/5 2/6 6/6 3/7
"unwrap" this list, reversing digits as we go:
"unwrap" this list, reversing digits as we go,
and converting to HEX:

OCT HEX
22 12
77 3F
40 20
144 64

Even this can be a bit tedious and since I find
the arrow Code conversion very easy to remember
- No Plot, Up Clockwise to Left = 0 to 3; Plot,
Up Clockwise to Left = 4 to 7 - I draw my dia
grams on graph paper using these OCTal numbers
only.
Thus, becomes

1 5 5 5 2
♦ I 4 6
« i * 4 2 6
f * * 4 2 6
♦ 0 7 7 7 3

Some caveats. It's still a good idea to draft
an original diagram with plain dots Just to get
the shape and scale to your liking. This also
becomes a handy guide for the debugging you're
almost certain to have to do. And too, it makes
great fun for your non-computer friends who
might like to play Connect-the-Dots after a cou
ple of beers.

A big problem keeps cropping up using the scale
feature. It seems that when blowing up the
original drawing the Apple II uses the direction
of motion associated with the plotted points as
a base reference for the additional points.
This often leads to strangely assymetrlcal pic
tures in larger scale with "lines" of dots going
in unexpected directions. As always, a little
playing around can really make you feel good.
Have fun.

Hexidecimal - Octal Conversion Table

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
1 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37
2 40 41 42 43 44 45 46 47 50 51 52 53 54 55 .56 57
3 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77
4 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
5 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137
6 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157
7 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
8 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217
9 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236. 237A 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257B 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277C 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317D 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337E 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357F 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

6 :12

Let "Apple" take a bite out of
your taxes . . . nowl

THt

& < * * . has individual and
small business

software programs, developed by tax professionals
in line with current tax laws. Helps you develop
your own individualized tax plans.

Basic Program Introductions (4K) includes: Tax
and bookkeeping software and prices, audit sur
vival quiz, and the Tax Store concept.

Price $4.00. Check or money order.

Honey Back guarantee, or write for Free brochure.

The Tax Store^1" Inc.
7429 Burnet Road, No. 102

Austin, Texas 78757
(512) 454-0255

Tax deductible programs ... Write Today
(Franchises available)

KIM-1 $219
MEMORY PLUS 8K R AM for K IM $245

- with 2716 EPROM sockets and programmer
- 6522 V IA (includes 2-8 bit ports and 2 timers)

SPECIAL — includes edge connectors and cable
for direct KIM connection ($10
value)

PROBLEM SOLVER SYSTEMS KM8B
- 8K low power static RAM , completely socketed
- factory assembled and tested
- completely compatible wrth K IM -4 motherboard

KIM -4 MOTHERBOARD

Power Supply for K IM (KL512)
+5V, +12V regulated, +8V , + 16V unregulated
plenty of power for KIM-1 and 8K memory

Programming a Microcomputer: 6502

First Book of K IM

4 part harmony KIM musicboard
(D to A converter and amplifier)

Write for list of K IM & PET memory & accessories.
All items postpaid in U.S.

A B Computers
I P.O. Box 104, Perkatie, PA 18944 (215) 257-8195

$159

$119
$34

$9
$9

$35

APPLE II STARMAiS THEHE

28

Just for the fun of it, here are some routines
to create something which sounds like the main
battle scene from STARWARS. Enjoyl

Apple II Startrek Sounds Routine
Dis-assembler Listing

* 3FA 1 L

3FA1 - AQ 0E LDY #S0E
3FA3- A?. 00 LDX 0 $00
3FA5- SA TXA
3FA6- 1 8 CL C
3FA7- E9 0 1 SBC #S 0 1
3FA9- DO FC BNE S3FA7
3FAB- SE 30 CO STA SC030
3FAE- E S INX
3FAF- EO S C CPX #i8C
3FB1 - DO F 2 BNE 13FA5
3FB3- S8 LEY
3F34- DO ED BNE i 3FA3
3F86- 60 P.TS
3F37 - 00 BRK
3FEP- 00 BPK
3FS9- 00 BP.K
3FBA- 00 BPK
3FF.B- 00 BP.K
3FBC- .0 0 BPK
3FBL- 00 BPK

Add ZIP to your cassette tape I/O with
Z I P T A P E

a fast - up to 4800 baud - audio tape recording
and recovery system for KIM-1 and other 6502
based systems. It will function at the higher
rates on most good quality cassette recorders,
and even economy type units should be able to
fuhction at 2400 or 3600 baud.

The assembled and tested interface uses a single
IC to translate audio input to logic level,
buffers and attenuates signals for recording via
either an "AUX" or "MIC" input. A 10 ohm load
is included for recorder load on playback. Only
♦5V at less than 10 ma is required for power.
The software uses about 3/4 page each for the
Dump and Load programs which may be run as sub
routines. Though written for KIM-1, changes are
suggested for use on TIM systems, and only minor
modifications should be required to run on any
system which has a 6530 or 6522 1/0 chip.

One port of the PIA is used for data, one for
control of the interface, and a third acts as a
buffer to simplify software instructions.
Hardware/Software package is $22.50 + $1.00 S&H.
Add $3.00 for KIM cassette containing software.
NJ residents add 55o tax. SASE for free info.

I.EWIS EDWARDS, Jr.

Color-Tech TV
1451 Hamilton Avenue
Trenton, N3 08629

H. Eliason
rles Lane
i, MA 02540

Load via monitor starting at 3FA1:

3FA1.3FB6 ^

3FA1- AO OE A2 00' eiA 18 E9
3FA8- 01 DO FC 8 D 30 CO E8 EO
3FB0- 8C EO F2 88 DO E D 60
»
Enter BASIC and set HIMJM:16288.

Enter this program and RUN:
LIST

>L I ST
10 P R I N T “ STA* B A T T L E S O U N D E F F E C T S "
2 0 1= PND (1 5) ♦ 1 j . P.EI* SHOTS

^ 3 0 J= HMD (1 1)*1 0-f 1 20 : REM DURATION
40 POKE 16290,1: POKE 16304,J
50 CALL 16289
60 N= R N D (10 00): F O R K = 1 TO N : N E X T K
70 G O T O 20

999 E N D

Try I = RND(^0)-f1 and J = RND(255).

The above material is based on the "Phaser"
^ sound effect from Apple II Startrek.

s a o a a ®
Back Issue of MICRO are Available.

Single copies of issues 1 - 6 are $1.50 each,
including postage in the USA and Canada. Add
$1.25 per copy For overseas Air Mail postage or
$.50 per copy for overseas Surface postage.

Get "All of ^ICRO - Volume 1"
While the supply lasts, all six issues of MICRO
Volume 1 are available as a "press-board" bound
set. Now you can get a second set to keep bound
while you separate your individual copies into
a notebook by categories. Or, get a set for e
friend who has just bought, or is thinking about
buying, a 6502 based system. Or, how about'a
set for your computer club, local library or ttie
library where you work. The price for the com
plete set is $7.50 including postage in the USA.
Postage to all other countries is $1.00 surface
or $4.00 Air Mail. If you are interested, act
now, since we will probably not be reprinting
these issues again.

Name: ..

Street:
City: ..
State: ZIP
Issue Number: 1 - 2 3 4 5 6
"All of MICRO - Volume 1":

Send Check or Money Order to:

MICRO, P.O. Box 3, S. Chelmsford, MA 01824

Southern California 6502 Center j
Computer Components of Orange County

6791 Westminster Ave., Westminster, CA 92683 714-898-8330
Hours: Tues-Fri 11:00 AM to 8:00 PM - Sot 10:00 AM to 6:00 PM (Closed Sun, Mon)

Why Should You Buy From Us?
Because we con help you solve your problems and answer your

questions. We don't claim to know everything but we have
enough references and contacts in the 6502 field that we can

help you answer your questions.

Sign up for 6502 Information Exchange and Workshops
System Meetings Next Meeting

Kim, Vim, Super Kim
Commodore PET

Apple II

2nd Soturdoy of Month
3rd Soturdoy of Month
4th Saturday of Month

Sept. 9 Super Kim
Sept. 16 Pet Documentation

Sept. 23 New programs
and peripherals

APPLE II we ore the Apple Experts
New Software
• Microproducts Co-resident Assembler $20.00
• Universal Data Management $50.00
• Super Othello $10.00
• Graph Plotter w /ax is $10.00
Dob Bishops:
• Apple Talker $10.00
• Color Organ $10.00
• Dancing Man $ 5.00
• Space Maze $10.00

■ PROGRAMMADLE PRINTER INTERFACE ($60.00)
—O nboard EPROM Printer Driver
— Full Handshoke Logic
— High Speed Porallel O utput Port Capability
— Provision for 256 Dyte I /O Drive in EPROM
— Printer. Driver Programs Avoiloble for Centronic.

SWTPC-40. ond Other Printers

APPLE POWER CONTROL INTERFACE
—This interface plugs into ony peripheral slat an the Apple II

board and provides 16 channels of control. Power Control
modules plug into the interface via a ribbon cable. Each
Power Control m odule provides 4 seperate 110V A C.
Circuits at 12 amps Up to 4 Power Control Modules
may be used w ith each interface.

—Control Room Lights. Stereo Equipment. Security Systems.
Electrical Applionces

— Hondle Up to 1000 Watts per Chonnel Directly From
Progrom Control

—C om plete Isolotion of the Computer From the AC Line
-PRICE—

• Apple Power Interface Doard and One Power Control
M odule CS95.00)
• Additianol Power Control Modules (Controls Four AC
Circuits) CS35.00)

Memory for Apple II
• Set of 8 16K RAM CHIPS $200.00
• Set of 8 4K RAM CHIPS $ 20.00

• Commodore PET (8K) $795-
• Synertek's VIM-I $269
• Microproducts New Super Kim 395

We are Orange County s only
Authorized Commodore Pet Dealer

• PET Printer (delivery Sept.) $595
• Commodore KIM-I $245
(Demonstration ot Kim Workshop Sept. 9)

Send for a complete list of software and new product information.
Mastercharge. Visa. B o f A accepted. ,Vo C.O.D. Allow tw o weeks for personal check to clear A dd $1.51) fo r handling and postage, l or
com puter system, please add $10.00 for shipping, handling, and insurance. California residents add t>c' sales tax.

APPLE PI

Robert J. Bishop
1143 W. Badillo, Apt E

Covina, CA 91722

Everyone knows that the value of Pi i3 about
3.1416. In fact, it3 value was known this accu
rately as far back as 150 A.D. But it wasn't
until the sixteenth century that Francisco Vieta
succeeded in calculating Pi to ten decimal
places.

Around the end of the sixteenth century the
German mathematician, Ludolph von Ceulen, worked
on calculating the value of Pi until he died at
the age of 70. His efforts produced Pi to 35
decimal places.

During the next several centuries a great deal
of effort was spent in computing the value of PI
to evern greater precision. In 1699 Abraham
Sharp calculated Pi to 71 decimal places. By
the mid 1800's its value was known to several
hundred decimal places. Finally, in 1873, an
English mathematician, Shanks, determined Pi to
707 decimal places, an accuracy which remained
unchallenged for many years.

I was recently rereading my old copy of Kasner 4
Newman"s Mathematics and the Imagination
I was recently rereading my old copy of Kasner &
Newman's Mathematics and Imagination (Simon &
Schuster, 1940), where I found the series expan
sion :

^ Y l e M) ^ 1 _ y 4 H) k*‘
A Z j (2k-l)52K"‘ Z_. (Zk-I) 239^''

*=' k=»
The book indicated that this series converged
rather quickly but "... it would require ten
years of calculation to determine Pi to 1000
decimal places." Clearly this statement was
made before modern digital computers were avail
able. Since then, Pi has been computed to many
thousands of decimal places. But Kasner 4
Newman's conjecture of a ten-year calculation
for Pi aroused my curiousity to see Just how
long it would take my little Apple-II computer
to perform the task.

Program Description
My program to compute the value of Pi is shown
in Figure 1. It was written using the Apple II
computer's Integer BASIC and requires a 16K
system (2K for the program inself; 12K for data
storage). The program is fairly straightforward
but a brief discussion may be helpful.
The main calculation loop consists of lines 100
through 3 0 0; the results are printed in lines
400 through 600. The second half of the listing
contains the multiple precision arithmetic sub
routines. The division, addition, and subtrac
tion routines start at lines 1000, 2000, and
3000, respectively.
In order to use memory more efficiently, PEEK
and POKE statements were used for arrays instead
of DIM statements. Three such arrays are used
by the program: POWER, TERM, and RESULT. Each
are up to 4K bytes long and start at the memory
locations specified in line 50 of the program.

The three arrays mentioned above each store par
tial and intermediate results of the calcula
tions. Each byte of an array contains either
one or two digits, depending on the value of the
variable, TEN. If the number of requested
digits for Pi is less than about 200, it is
possible to store two digits per byte; other
wise , each byte must contain no more than one
digit. (The reason for this distinction occurs
in line 1070 where an arithmetic overflow can
occur when trying to evaluate higher order terms
of the series if too many digits are packed into
each byte.)
The program evaluates the series expansion for
Pi until the next term of the series results in
a value less than the requested precision. Line
1055 computes the variable, ZERO, which can be
tested to see if an underflow in precision has
occurred. This value is then passed back to the
main program where, in line 270, it determines
whether or not the next term of the series is
needed.

Results
Figure 2 shows the calculated value of Pi to
1000 decimal places. Running the program to get
these results took longer than it did to write
the program! (The program ran for almost 40
hours before it spit out the answer.) However
it took less than two minutes to produce Pi to
35 decimal places, the same accuracy to which
Ludolph von Ceulen spent his whole life striving
fori
Since the program is written entirely in BASIC
it is understandably slow. By rewriting all or
part of it in machine language its performance
could be vastly improved. However, I will leave
this implementation as an exercise for anyone
who is interested in pursuing it.

Figure 1.
Program Listing

>LIST
6 REM *+* flPPLE-Fi ***
WRITTEN BY; BOB BISHOP

5 CftLL -936: VTflB 10: TRB 5- PRINT
"HOI IHW DIGITS DO YOU WANT"

10 INPUT SIZE
is m i
20 TEN=10: IF SIZE>200 THEN 58
38 TEN=100: SIZE=<SIZE+l>/2
30 POHER=4096: TE»I=8192: REStJLT-

12288
6B DIV=1000:flDD=2000:SUF*3000.

INIT=4000: COPV=5800
70 DIM C0NSTflNT<2): CONSTflNIXI)

=25:C0NSTflNT<2>=239

6:15

100 REH MAIN LOOP
125 FOR PASS=1 TO 2
150 GOSUB I NIT
286 GOSUB COFV
210 POINT-TERM: DIV1DE=EXF': GOSUB

DIV
220 IF S1GN>0 THEN GOSUB ADO
238 IF SIGNC0 THEN GOSUB SUB
246 EXP=EXP+2:SIGN=-SIGN 250 POINT"POWER: DIV1DE=C0NSTANT(

PASS): GOSUB DIV
266 IF PASS=2 THEN GOSUE: DIV
270 IF ZEROOB THEN 280
380 NEXT PASS

REM PRINT THE RESULT
500 PRINT . PRINT
510 PRINT "0£ VALUE OF PI TO "

; <TEN/108fl)*SI2E;" DECIMAL. PLflC ES:“: PRINT
520 PRINT PEER (.RESULT);". ";
530 FOR PLACE-RESULT+1 TO RESULT+

SIZE
546 IF TEfMB THEN 576
560 IF PEEK (PLRCEX18 THEN PRINTH0B .
578 PRINT PEEK (PLACE);
SB# NEXT PLACE
598 PRINT
608 END
1008 REH DIVISION SUBROUTINE
1010 DIGIT=0:ZERO=0
1026 FOR RLflGE=POINT TO POINT+SIZE
1038 DIGIT--DIGIT+ PEEK (PLACE)
1046 QUOTI ENT~D IGIT/D1VIDE
1050 RESIDUE-DIGIT MOD DIVIDE
1055 ZERO-ZERO OR (QUOTIENT+RESIDUE)
1060 POKE PLACE, QUOTIENT
1076 DIGIT:-TEN*Rf;SIDUE
1080 NEXT PLACE
1096 RETURN
2006 REM HDDITION SUBROUTINE
2016 CARSV--S
2829 FOR PLflCE=SrZE TO 0 STEF' -1
2830 SUMr PEEK (RESUL T+PLflCE) + PEEK

(TERM+PLACE >+CARRV
2040 CARRY~0
2050 IF SUIKl'EN T*N 2080
2060 SUH=SUH-TEN
2070 CARRY-1
2060 POKE RESULT+FtACE, SUM
2090 NEXT PLACE
2100 RETURN
3800 REH SUBTRACTION SUBROUTINE
3010 LOAN--0
3829 FOR PLflCE=S IZE TO 0 STEP -1

3030 DIFFERENCE= PEEK (RESULT+FtACE)
- PEEK <TERM+PLACE)-LOAN

3846 LOflN=0
3050 IF D1FFERENCD=6 TFEN 3086
3866 DI FFERENCE=D IFFERENCE+TEN
3070 LOAN=l
3800 POKE RESULT+PLACE, DIFFERENCE
3890 NEXT PLACE-
3100 RETURN
4800 REH INITIALIZE REGISTERS
4810 FOR PLflCE=0 TO SIZE
4820 POKE POMER+PLfiCE/ 8
4830 POKE TERM+ PLACE, O
4846 IF PASS-1 THEN POKE RESULT*

PLACE, 0
4850 NEXT PLACE
4860 POKE PO(£R, 16/PASS t 2
4870 IF PASS=1 THEN DIVIDE=5
4800 IF PflSS=2 THEN DIVIDE=239
4890 POINT~Pi'M:R: GOSUB DIV
4100 EXP=1: SIGN==3-2*PflSS
4110 RETURN
5000 REH COPV "POWER" INTO "TERM"
5810 FOR PLflCE=0 TO SIZE
5820 POKE TERM+PLACE, PEEK (POMER+

PLACE)
5030 NEXT PLACE
5040 RETURN

THE VALUE OF PI TO 1000 DECIMAL PLACES:
3. 14159265358979323846264338327950288419
7169399375105820974944592307816486286208
9986280348253421170679821480865132823066
4709384460955058223172535940812848111743
0284102701938521105559644622948954930381
9644288109756659334461284756482337867831
65271281909145648566923460.34861045432664
8213393687260249141273724587006606315588
1748815209209628292540917153643678925903
6001133053054882646652138414695194151166
9433057278365759591953092186117381932611
79310511854807446237996.27495673518857527
2489122793818301194912983367336244065664
3086021394946395224737190702179860943782
7785392171762931767523846748184676694851
3200856812714526356082778577134275778966
9173637178721468440981224953438146549585
3710607922796892589235420199561121290219
6086403441815981362977477130996051870721
1349999998372978649951059731732816096316
5950244594553469683026425223082533446858
3526193118817101000313783875288658753328
8381420617177669147303598253498428755468
7311595628638823537875937519577818577885
32171226806613®!! 92787661119598921642619 96

Figure 2.

PI to 1000 Decimal Places

A SIMPLE 6502 ASSEMBLER FOR THE PET

Michael 3. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

Most computer hobbyists do all or most of their
programming in BASIC. This is unfortunate since
there is much to be gained from machine code
level programming. On the average, machine lan
guage programs are 100 times faster than their
BASIC -equivalents. In addition, machine lang
uage programs are very compact, making efficient
use of memory. I have written a simple 6502
assembler in Commodore BASIC (see listing) with
the following functions:
1. Input source code and assemble
2. Save object code on tape
3. Load object code from tape
it. Run machine language program wtfch SYS
5. Run machine language program with USR
6. List machine language program
INPUT SOURCE CODE AND ASSEMBLE
-Symbolic addresses and operands are not per
mitted

-All addresses and operands must be supplied
in base 10

-Each line of source code is assembled after
entry

-Source code is inputted in the following
format:
(mnemonic)(one or more spaces)(operand)

-Three pseudoinstructions are supported
ORG-Start with this address
NOTE:if the user does not specify the origin,
it will be set at 826 base 10

DC-Define constant, place the operand value
in the next location in memory

END-End of program source code

SAVE OBJECT CODE ON TAPE
-Object code saved under file name supplied by

user
-Origin address saved with program

LOAD OBJECT CODE FROM TAPE
-Loads object program under file name supplied
by user

-Object code is stored in memory with the same
origin address used when the program was
assembled

RUN MACHINE LANGUAGE PROGRAM WITH SYS
-Transfers control of the 6502 to an address

supplied by the user
RUN MACHINE LANGUAGE PROGRAM WITH USR
-Transfers a user supplied value to the

6502 accumulator
-Transfers control of the 6502 to an address

supplied by the user

LIST MACHINE LANGUAGE PROGRAM
-Listing is produced by disassembling object
code

-Disassembly is in the following format:
(decimal address)(hexadecimal address)(byte#1)
(byte#2)(byte#3)(mnemonic)(operand)

The following areas of memory are available for
your machine language programs when this assem
bler is in memory: locations 7884-8184 and, if
tape #2 is not used, locations 826-1024.

There are two ways of returning control to BASIC
from machine language. The RTS (Return from
Subroutine) instruction may be used at any time
except when in a user machine language subrou
tine. RTS returns control to the calling BASIC
program. In contrast the BRK (Force Break) in
struction does not return control to the calling
BASIC program; instead control is returned
to the user, i.e. system prints READY with the
cursor.

I have included a short machine language pro
gram. When run this program will leave a pat
tern of small white dots on the upper half of
PET'S CRT.

SAMPLE MACHINE LANGUAGE PROGRAM LISTING

826 033A A9 66 LDAIM 102
828 033C A2 00 LDXIM 0
830 033E 9D 00 80 STAX 32768
833 0341 E8 INX
834 0342 F0 03 BEQ 3
836 0344 4C 3E 03 JMP OmCO

839 0347 EA NOP
840 0348 EA N(#>
841 0349 9D 00 81 STAX 33024=X=xCO 034C E8 INX
845 034D F0 03 BEQ 3
847 034F 4C 49 03 JMP 841
850 0352 00 BRK

SAMPLE MACHINE LANGUAGE PROGRAM
AS INPUTTED FROM THE KEYBOARD

? ORG 826
? LDAIM 102
? LDXIM 0
? STAX 32768
? INX
? BEQ 3
? JMP 830
? NOP
? NOP
? STAX 3302*4
? INX
? BEQ 3
? JMP 841
? BRK
? END

6:17
J

1 REM 6502 ASSEMBLER PROGRAM
2 REM BY MICHAEL J. MCCANN
3 REM FOR USE ON THE COMMODORE PET
10 DIM MN$(256),BY*(256),C0$(16)
20 FOR E=0 TO 255
30 READ MN$(E),BYf(E)
40 NEXT
60 FOR E=0 TO 15
70 READ CO$(E)
80 NEXT
90 PRINT CHR$(147):PRINT
100 PRINT"1-INPUT SOURCE CODE AND ASSEMBLE":PRINT
110 PRINT"2-SAVE OBJECT CODE ON TAPE" : PRINT
120 PRINT"3-LOAD OBJECT CODE FROM TAPE":PRINT
130 PRINT"4-RUN MACHINE LANGUAGE PROGRAM WITH SYS"
140 PRINT"5-RUN MACHINE LANGUAGE PROGRAM WITH USR"
150 PRINT"6-LIST MACHINE LANGUAGE PROGRAM"
180 GET A$:IF A$="" GOTO 180
190 IF VAL(A$)=0 OR VAL(A$)>6 GOTO 180
200 ON VAL(A$) GOSUB 14000,20000,9000,10000,11000,2900
210 GOTO 90
1000 SX=INT(DC/16)
1010 UN=DC-(SX*16)
1020 SX$=CO$(SX)
1030 UN$=CO$(UN)
1040 HX$+SX$+UN$
1050 RETURN
2900 PRINT CHR$(147)
2910 INPUT"START ADDRESS";AD:1=0
3000 IF 1=24 GOTO 5050
3001 1=1+1
3005 IB=PEEK(AD)
3015 IF MN$(IB)<>"NULL" GOTO 3050
3025 DC=IB:GOSUB 1000:GOSUB 13000
3030 PRINT AD;AD$ TAB(1L) HX$
3040 AD=AD+1:GOTO 3000
3050 .ON BY*(IB) GOTO 3060,3090,4050
3060 DC=IB:GOSUB 1000:GOSUB 13000
3070 PRINT AD;AD| TAB(12);HX$;TAB(21);MN$(IB)
3075 AD=AD+1
3080 GOTO 5030
3090 DC=IB:GOSUB 1000
4000 B1$=HX$
4010 DC=PEEK(AD+1):GOSUB 1000
4011 B2$=HX$
4024 GOSUB 13000:P=DC
4030 PRINT AD;AD$ TAB(12);B1$;" ";B2|;TAB(21);MN|(1B);TAB(27);P
4035 AD=AD+2
4040 GOTO 5030
4050 DC=IB:GOSUB 1000
4060 B1$=HX$
4070 DC=PEEK(AD+1):GOSUB 1000
4080 B2$=HX$
4090 DC=PEEK(AD+2):GOSUB 1000

6:t8

5000 B3$=HX$
5010 OP=PEEK(AD+1)+(PEEK(AD+2)*256)
5011 GOSUB 13000
5020 PRINT AD;AD$ TAB(12);B1$;" ";B2$;" ";B3$;TAB(21);MN$(IB)^TAB(27) OP
5025 AD=AD+3
5030 GOTO 3000
5050 GET A$:IF A$="" GOTO 5050
5051 IF A$=CHR$(19) THEN I=0:RETURN\
5052 IF A$OCHR$(13) GOTO 5050
5070 1=0:PRINT CHR$(147)
5080 GOTO 3000
6000 DATA BRK,1,ORAIX,2,NULL,0,NULL,0,NULL,0,ORAZ,2,ASL,2,NULL,0,PHP,1
6010 DATA ORAIM,2,ASLA,1,NULL,0,NULL,0,ORA,3.ASL,3.NULL,0.BPL.2.ORAIY.2
6020 DATA NULL,0,NULL,0,NULL,0,ORAZX,2,ASLZX,2,NULL,0,CLC,1,ORAY,3
6030 DATA NULL,0,NULL,0,NULL,0,ORAX,3 ,ASLX,3 * NULL,0,JSR,3 *ANDIX,2,NULL,0
6040 DATA NULL,0,BITZ,2,ANDZ,2,ROLZ,2,NULL,0,PLP,1,ANDIM,2,ROLA,1,NULL,0
6050 DATA BIT,3,AND,3,ROL,3,NULL,0,BMI,2,ANDIY,2,NULL,0,NULL,0,NULL,0
6060 DATA ANDZX,2,ROLZX,2,NULL,0,SEC,1,ANDY,3,NULL,0,NULL,0,ANDX,3
6070 DATA ROLX,3,NULL,0,RTI,1,EORIX,2,NULL,0,NULL,0,NULL,0,EORZ,2,LSRZ,2
6080 DATA NULL,0,PHA,1,EORIM,2,LSRA,1,NULL,0,JMP,3,EOR,3,LSR,3,NULL,0
6090 DATA BVC,2,EORIY,2,NULL,0,NULL,0,NULL,0,EORZX,2,LSRZX,2,NULL,0
6100 DATA CLC,1,EORY,3,NULL,0,NULL,0,NULL,0,EORX,3,LSRX,3,NULL,0,RTS,1
6110 DATA ADCIX,2,NULL,0,NULL,0,NULL,0,ADCZ,2,RORZ,2,NULL,0,PLA,1,ADCIM,2
6120 DATA RORA,1,NULL,0,JMI,3 * ADC,3 *ROR,3 *NULL,0,BVS,2,ADCIY,2,NULL,0
6130 DATA NULL,0,NULL,0,ADCZX,2,RORZX,2,NULL,0,SEI,1,ADCY,3,NULL,0,NULL,0
6140 DATA NULL,0,ADCX,3 ,RORX,3 , NULL,0,NULL,0,STAIX,2,NULL,0,NULL,0,STYZ,2
6150 DATA STAZ,2,STXZ,2,NULL,0,DEY,1,NULL,0,TXA,1,NULL,0,STY,3 , STA,3
6160 DATA STX,3 * NULL,0,BCC,2,STAIY,2,NULL,0,NULL,0,STYZX,2,STAZX,2,STXZY,2
6170 DATA NULL,0,TYA,1,STAY,3 *TXS,1,NULL,0,NULL,0,STAX,3 * NULL,0,NULL,0
6180 DATA LDYIM,2,LDAIX,2,LDXIM,2,NULL,0,LDYZ,2,LDAZ,2,LDXZ,2,NULL,0
6190 DATA TAY,1,LDAIM,2,TAX,1,NULL,0,LDY,3,LDA,3,LDX,3,NULL,0,BCS,2
6200 DATA LDAIY,2,NULL,0,NULL,0,LDYZX,2,LDAZX,2,LDXZY,2,NULL,0,CLV,1
6210 DATA LDAY,3,TSX,1,NULL,0,LDYX,3»LDAX,3»LDXY,3»NULL,0,CPYIM,2,CMPIX,2
6220 DATA NULL,0,NULL,0,CPYZ,2,CMPZ,2,DECZ,2,NULL,0,INY,1;CMPIM,2,DEX,1
6230 DATA NULL,0,CPY,3,CMP,3,DEC,3,NULL,0,BNE,2,CMPIY,2,NULL,0,NULL,0
6240 DATA NULL,0,CMPZX,2,DECZX,2,NULL,0,CLD,1,CMPY,3,NULL,0,NULL,0,NULL,0
6250 DATA CMPX,3,DECX,3,NULL,0,CPXIM,2,SBCIX,2,NULL,0,NULL,0,CPX,2,SBCZ,2
6260 DATA INCZ,2,NULL,0,INX,1,SBCIM,2,NOP,1,NULL,0,CPX,3,SBC,3,INC,3
6270 DATA NULL,0,BEQ,2,SBCIY,2,NULL,0,NULL,0,NULL,0,SBCZX,2,INCZX,2,NULL,0,SED,1
6280 DATA SBCY,3,NULL,0,NULL,0,NULL,0,SBCX,3,INCX,3,NULL,0
6290 DATA 0,1,2,3,A,5,6,7,8,9,A,B,C,D,E,F
9000 PRINT CHR$(147)
9010 INPUT "ENTER FILE NAME";N$
9020 OPEN 1,1,0,N$
9030 INPUT#1,ZZ
9040 INPUT#1,EN
9050 FOR AD=ZZ TO EN
9060 INPUT#1,DA*
9070 POKE AD,DA*
9080 NEXT
9090 CLOSE 1
9100 RETURN

10000 PRINT CHR$(147)
10010 INPUT "ENTER ADDRESS IN BASE 10";AD
10015 IF AD>65535 GOTO 10000
10020 SYS(AD)
10030 RETURN
11000 PRINT CHR$(147)
11010 INPUT"ENTER ACCUMULATOR VALUE";AC
11015 IF AC<0 OR AC>255 GOTO 11010
11020 INPUT"ENTER ADDRESS IN BASE 10";AD
11030 POKE 2,INT(AD/256)
11040 POKE 1,AD-(INT(AD/256)*256)
11050 X=USR(AC)
11060 RETURN
13000 A=AD:S3=INT(AD/4096)
13002 A=A-S3*4096
13010 S2=INT(A/256)
13012 A=A-S2*256
13020 S=INT(A/16)
13060 U=AD-(S3*4096+S2*256+S*16)
13070 S3$=CO$(S3)
13080 S2$=C0$(S2)
13090 S$=CO$(S)
13100 U$=CO$(U)
13110 AD$=S3$+S2$+S$+U$
13120 RETURN
14000 PRINT CHR$(147):AD=826:ZZ=826
14010 PRINT "(MNEMONIC)(SPACE)(OPERAND)"
14020 GOSUB 15000
14030 F=0
14040 FOR E=0 TO 255
14050 IF MN$=MN$(E) THEN BY=BY$(E):F=1:CD=E:E=256
14060 NEXT
14070 IF F=0 GOTO 14260
14080 ON BY GOSUB 14100,14130,14180
14090 GOTO 14020
14100 POKE AD,CD
14110 AD=AD+1
14120 RETURN
14130 IF 0P>255 OR 0P<0 THEN PRINT "ERROR":RETURN
14140 'POKE AD,CD
14150 POKE AD+1,0P
14160 AD=AD+2
14170 RETURN
14180 IF OP>65535 OR 0P<0 THEN PRINT "ERROR":RETURN
14190 POKE AD,CD
14200 B2=INT(0P/256)
14210 B1=0P-(B2*256)
14220 POKE AD+1,B1
14230 POKE AD+2,B2
14240 AD=AD+3
14250 RETURN
14260 IF MN$="ORG" OR MN$="END" OR MN$="DC" GOTO 14280
14270 PRINT "ERROR":GOTO 14020
14280 IF MN$="ORG" GOTO 14300
14290 GOTO 14340
14300 IF F0= 1 THEN PRINT "ERROR" .'GOTO 14020
14310 F0=1
14320 AD=OP:ZZ=OP
14330 GOTO 14020 6:20

14340 IF MN$="END" GOTO 14360
14350 GOTO 14380
14360 EN=AD-1
14370 RETURN
14480 POKE AD,OP
14510 AD=AD+1
14520 GOTO 14020
15000 INPUT A$
15010 IF LEN(A$)<3 THEN PRINT "ERROR":GOTO 15000
15020 IF LEN(A$)=3 THEN MN$ A$:0p=0:RETURN
15030 S=0:FOR M=1 TO LEN(A$)
15040 IF MID$(A$,M,1)=" " THEN S=M:M=LEN(A$)
15050 NEXT
15060 IF S=0 THEN MN$=A$:RETURN
15070 MN$=LEFT$(A$,S-1)
15080 0P=VAL(RIGHT$(A$,LEN(A$)-S))
15090 RETURN
20000 PRINT CHR$(147):SZ=0
20010 INPUT "ENTER PROGRAM NAME";N$
20020 OPEN 1,1,1,N$
20030 PRINT#1,ZZ:DA*=ZZ:GOSUB 20110
20040 PRINT#1,EN:DA$=EN:GOSUB 20110
20050 FOR AD=ZZ TO EN
20060 DA$=PEEK(AD)
20070 PRINT#1,DA$:GOSUB 20110
20080 NEXT
20090 CLOSE 1
20100 RETURN
20110 SZ=LEN(STR$(DA$))+SZ+1
20120 IF SZC192 THEN RETURN
20130 POKE 59411,53
20140 T=TI
20150 IF (TI-TX6 GOTO 20150
20160 POKE 59411,61
20170 SZ=SZ-191
20180 RETURN

6:21

MICRO - PSYCH
A bimonthly newsletter for those Interested
in sharing ideas and experiences about the
use of micros and minis in psychiatry and
psychology. Communications network, info
about hardware, software, research, book
reviews, etc. $10/year to MICRO-PSYCH,
26 Trumbull Street, New Haven, CT 06511.

COMMODORE PET HARD COPY OUTPUT USING PET ADA 1200 I M i BE* THE FUNCTION P LU T T S IS *
1*1 W V*1*S1N<4.«*I>

HCADV.

TRENQftCK S a l t * - C a r b u r e to r * - 1977

| « HEM ABCS1N AND ARCCOS FUHCTIO N S FOB TOE CONNOmftE J I T .
7 0 0EN " L i s t e d on a C E T , r » lN a t J « S
0 0 HEN ' u s in g a C«C ADA > 200 .
0 0 REN
I M REH OPEN OUTPUT F I L E O0 D E V IC E « • .
110 OPEN 5 .0
1 7 * HEN
5 0 0 REN G ET A 9 IH E VALU E
5 1 0 IN PU T S
M l C -5
5 3 0 REN
1 M M REM THE ? 1 H | OF THE ANGLE I S S
1010 REN IF T H | * | H I S IN THE RANGE OF - I TO I , THFN COI2PUTE.
1020 I F S O AND S*-> OOTO M i50
1030 AS*90iO O TO 200O
I M i REN T IC AHCSINC I S Aft im As«ATN<s/m-s*sr.»>)
I M HEN THE R ES U LT I S IN h A O IA N S. CONVENT TO D ECM FE5 .
r « 7 » a s « a s * i m /
2tmm REN TOE CO SIN E OF TH E A IIG LE 15 C
M l * REN I F THE C O SIN E I S IN TOE RANGE OF - I TO 1 .
2 0 1 1 HEN AND NOT • H» 0 . THEN COMPUTE
N M I F C<»0 THEN 2 0 4 0
2 0 3 0 A C -90 'C O TO 3 0 0 0
2 M I IF C«» AK> C > - l THEN 2 0 7 0
JW 50 AC * 6 ' GOTO 3 0 * 0
2 0 6 0 RFN TH E AHCCOS 15 AC
2V70 A C * A T N m - C » C > * .» /C >
; H e * AEN T « RESU LT IV IN U A D lA N S . CONVENT TO DECmC C S .
2 0 9 0 A C *A C * I M /
3 0 0 0 P R IN T # 5 ." S IN .c o s ADC S IN ABCCUS"
3 * 1 0 P R |H T # 5 .M
3 0 J 0 FOH N - l TO l> L P M S T M U S)) ' P P I N T # i . * • i» M E IT
3 * 0 * P R IH T # 5 .A S t
3 0 4 * FOH N * l TO 13-LENJ 5T R II A S) > »PR1M T#5.■ ■ » 'N E IT
3 * 5 0 PRIH T#5.AC 310* GOTO

MEACY.

A 151 X TYPE A

1
§ 0 0 « •#

)# # # u k) ono
5 > o « i d m ono

! oo o i n i n IIIl III III
! I l l I I I I I I
• I I I I I I I I I

000
* * *
* * #

§ 0 0 o o o
000 oo o
o o o o r a

««# o o o o o o
o n o o o o ooo
o o o n o o i x i
00 0 X IX IX X
IX X I I I XXX
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I

000
000 000
§0 0 oo o
(N il 0<f>
oo o noo
ix m ooo 000 WO
o oo x x x
IXX X I I
I I I XXI
I I I XX I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I

000
000
000

900 0 00• •• 1)00
IRK) OOO
OOO OOO
oo o oo o
OIN) OOO 000 III
IKK) I I I
I I I I I I
I I I I I I
I I I I I I XII IIIxxx I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I

! JAM f t * NAN APR NAY JU H J U L AUC SSP OCT W>V DEC 2 .6 1
2 .7 1
2 .8 1

I I ‘ 2 I “ J 1 * P I 1 * 5 .2 5 I * . 5
2 .9 t

3 1
J . l 1

« • 0 0 0 0 3 .2 1

2500 125000 2 1 7 5 * 6 .2 2 1 • 3 0 9 0 J 7 J 5 7 .0 7 1 0 6 7 0 1 3 .4 I
IM 000 |0A 000O I9 I9 4 R 7 .5 C 3 .t 6 2 2 ? 7 6 7 § * l 0 10 i . 4 1

1 5 * 22500 3375000 6 0 6 I 0 7 7 .J * 2 .6 5 7 5 3 5 T 2 E * ! 1 > 2 .2 4 74407 i . 6 t
2 00 4000M • 1 *0 0 0 0 > 6 9 3 9 4 3 5 .3 I . 2 0 .U 9 2 9 9 E « I2 > 4 .1 4 2 1)5 6) .4 9 9 9 9 9 tf 1

6 250 0 1 5625000 3 4 1 4 6 6 5 5 .2) . M) l 5 7 R 7 S * 12 • 5 .0 1 1 3 0 6 3 j . 79990999 1

i m 90H 00 2 7 00 0000 6 C 5 4 C 6 5 4 .C i .0 1 1 3 1 5 3 2 E * > 3 1 7 .3 2 0 5 0 0 1 3.00999999 1

>22500 4 2 07 5000 9 0 2 7 1 0 2 2 .t 2 .2 7 1 7 3 2 7 3 € * l) • 0 .7 0 0 2 0 6 9 4*09999999 !
4M t • 6 A « 0 6 4 0 0 0 0 0 0 149400141 4 .5 7 9 4 6 7 2 3 E * t 3 20 4119999999 1
4 5 * 2025 00 9 1 1 2 5 0 0 0 2 > 64 27 f 47 (.4 9 0 9 5 0 2 9 S * 13 2 1 .2 1 J 2 0 3 « 4 .29999999 1
5 0 0 7500 00 1 25 0MHWH 3 0 1 3 4 5 2 4 0 t .4 7 7 7 2 1 2 7 1 * 1 4 2 2 . >606790 4 .30999099 1

55# 302500 166375000 40 6 5 4 0 0 0 0 2 .4 3 7 ^ 7 2 M E * I4 2) .4) 2 0 7 0 0 4 .49999999 1

6 00 I6H 000 2 1 6 0 0 0 0 *0 5343 42301 3 .0 4 0 5 ? 2 t 1 E * I4 2 4 .4 9 4 0 9 7 4 4 .50999099 t

6 50 4 225N0 2 7 46 25000 6 t 7 l 12634 5 .a 5 t 6 1 7 2 2 E * 14 2 5 .4 9 5 0 9 7 6 4!79999999 1
7M0 4 9 m 0 0 34 30**0000 0 6 7 2)9 5 9 7 0 .6 4 4 0 9 4 3 E * 14 2 6 .4 5 7 5 D I 4.09999999 I*
7 5 * 5625M0 4 21 0 7 5 0 0 0 1 .0 7 7 1 3)9 0 1 * 0 9 1 .2 4 I 0 5 7 I 2 E * I 5 7 7 .3 0 4 1 2 7 9 4.09999S99 t *

H S - m PRINTER ADAPTER FOH THE COMMODORE PET

The CONNECTICUT microCOMPUTER ADApter model 1200 is the first in a line of peripheral adapters for the
COMMODORE PET* The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. The CmC ADA 1200 allows
the PET owner to obtain hard copy program listings, and to type letters, manuscripts, mailing labels, tables
of date, pictures, invoices, graphs, checks, needlepoint patterns, etc., using a standard RS-232 printer*

The CnC ATA model I200B comes assembled and tested, without power supplies, case, or RS-232 connector
for $98*50* The CmC ADA I200C comes complete for $169*00* Specify baud rate when ordering. (300 baud is
supplied unless otherwise requested* Instructions for changing the baud rate are included.)

WORD PROCESSOR FOR THE COMMODORE PET

CONNECTICUT microCOMPUTER now has a word processor program for the COMMODORE PET. This program permits
composinq and printinq letters, flyers, advertisements, manuscripts, articles, etc., using the COMMODORE PET
and an RS-232 printer*

Script directives include line length, left margin, centering, and skip* Edit commands allow the user to
insert lines, delete lines, move lines, change strings, save onto cassette, load from cassette, move up, move
down, print and type.

The CmC Word Processor Proqram addresses an RS-232 printer through a CmC printer adapter* < ‘
The CmC Word Processor Program is available for $29.50* : ____:-S

RS-232 TO CURRENT LOOP/TTL ADAPTER : v

The CmC ATApter model 400 has two circuits. The first converts an RS-232 signal to a 20 ma current loop
signal, and the second converts a 20 ma current loop signal to an RS-232 signal. With this device a
computer's teletype port can be used to drive an RS-232 terminal, or vice versa, without modification of the
port. The CmC ADA 40tf can also be parelelled to drive a teletype or RS-232 printer while still using the
computer's reqular terminal. The CmC ADA 400 can easily be modified to become an RS-232 to TTL and TTL to
RS-232 ADApter* The CmC ADA 400 does not alter the baud rate and uses standard power supplies. The current
loop is isolated from the RS-232 signal by optoisolrtors*

The CmC ADA 4 W is the perfect partner for KIM if vou want to use an RS-232 terminal instead of a
current loop teletype*

The CmC ADA 4P10S comes with drilled, plated through solder pads and sells for $24.50. The CmC ADA 400B
comes with harrier strips and screw terminals and sells for $29.50* /,

This announcement wfs composed on a COMMODORE PET and printed on a GE
TermiNet using r CmC ADA I200C printer adapter and the CmC Word Processor
Proqram*

O n t r I D a s c r lp t lo n t ba ud r a t a I p r l c a I t o t a l I N o l l « l t h r a * l t t « n c « o r e h o rg o In fo r m a t io n t o i __

7 . -_J C o n n e c t i c u t m icroCOM PUTER1 1 9 0 .5 0 I I

______________ i __________________ U ~ : ! L ! ____________j j] p o 1 5 0 p 0 cono Road, R o o m f l

l c a c N o rd P r o c s s s o r P rog ram I (i i h u i) < 1 2 9 .»• 1 1 iLj Brookfield. Conn. 06804
I C < a£» « M S (s o ld a r p a d s) I * 2 4 .5 0 I > nanE

I C < ADA (b s r r l a r s t r i p s) « » 9 .» o I_____ I COBPUIV

S u b t o ta l \ I ADORE SS

C o n rM C ttc u t r a s ld a n t s add 7X s a is s t i l I I

H tA d l ln ? and s h lp ^ ln Q - add p a r o r d a r I * 3 . * * I C ITY

F o ra lg o a i r M i l - add « 5 .M p a r o r d a r I I STa T I

T o t a l In c L u d a d « l t h o r d a r I

CHfcKC TO iV IS A 1 MASTER CHAUGE M/C IN T IM A M K NUNIER l E i p l r a t la n d a ta

C r a d i i c o rd n u fe a r

SIGMATURE

THE MICRO SOFTWARE CATALOG: III

Mike Rowe
P.O. Box 3

S. Chelmsford, MA 01824
Name: LABELER
System: TIM based or any 6502 based system
Memory: IK
Language: Assembly
Hardware: Paper Tape Punch on TTY
Description: This program punches legible char
acters on a paper tape and is useful for the
labeling of punched paper tapes. A 64 character
sub-set of ASCII is used. There is limited
editing capability on the data. There are a
number of options for character size, starting
address and TIM or I/O independent code.
Copies: Not Specified
Price: $4.00
Includes: Commented source listing, operating
and modifying instructions, and a hex tape.
Ordering Info: Specify the following:

Char Size 5x5 or 5x8
Starting address 0200 or 1000
System TIM or I/O Independent

Author: Gil House
Available from:

Gil House
P.O. Box 158
Clarksburg, MD 20734

Name: HUEY
System: Any 6502 based system.
Memory: 2.5K
Language: Assembly
Hardware: ASCII I/O device.
Description: HUEY-65 is a scientific calculator
program for the 6502 microprocessors. It oper
ates from your ASCII keyboard like a calculator;
will output through your routines to a TV screen
or Teletype; is preprogrammed to do trig func
tions, natural and common logs, exponential
functions and other goodies; and is programmable
for many other functions (financial, accounting,
mathematics, engineering, etc.) you would like
to call at the press of a single key.
Copies: Not Specified.
Price: Hex Dump at any even page - $5.00

Manual and Listings - $20.00
Ordering Info: Specify starting address.
Author: Don Rindsberg
Available from:

The BIT Stop
P.O. Box 973
Mobile, AL 36601

Name: Word Processor Program
System: PET
Memory: Not Specified.
Language: Not Specified.
Hardware: RS-232 printer addressed via a QnC

printer adapter.
Description: This program permits composing and
printing letters, flyers, advertisements, manu
scripts, articles, etc., using the Commodore PET
and an RS-232 printer. Script directives in
clude line length, left margin, centering, and
skip. Edit commands allow the user to insert
lines, delete lines, move lines, change strings,
save onto cassette, load from cassette, move up,
move dovn, print and type.
Copies: Not Specified.
Price: $29.50
Ordering Info: None.
Author(s): Not Specified.
Available from:

Connecticut microcomputer
150 Pocono Road
Brookfield, CT 06804

Name: ZIP TAPE
System: KIM-1, may be easily modified for any
other 6502 system with programmable timer I/O
Memory: 3 /4 page each for read and write progs.
Hardware: Simple single IC audio to logic level
converter and output buffer/attenuator on 2" sq.
board. Directional control, 4 connections to
computer.
Description: A fast audio cassette data record
ing and recovery system. Programmable to 4800
baud. Loads 8K in less than 15 seconds. Fol
lows KIM-1 protocol of open ended record length
with start address, end address, and record ID
specified at usual KIM locations. Load by ID,
ignore ID, and relocate modes. Data recorded in
binary form with 2 byte checksum error detec
tion. Easily relocated, can either stand alone
or be used as subroutines. Requires programm
able timer I/O.
Copies: About 12, just introduced.
Price: $22.50 +1.00 ship & hand. $3.00 extra
for KIM cassette.
Includes: Assembled and tested interface, com
mented listings, suggested changes to run on TIM
and other systems. Cassette has software recor
ded at HYPERTAPE and standard KIM speeds plus 8K
test recording using ZIP TAPE.
Ordering Info: With or Without tape.
Author: Lewis Edwards, Jr.
Available from:

Lewis Edwards
1451 Hamilton Avenue
Trenton, NJ 08629

Name: FOCAL* (*DEC Trademark)
System: Apple II
Memory: Not Specified.
Language: Assembler
Hardware: Apple II
Description: This is an extended version of the
high-level language called FOCAL. FOCAL was
created for the DEC PDP-8. It is similar to
BASIC. FCL65E, as this version is called, is
now available for the Apple II.
Copies: Not Specified.
Price: Apple II format cassette - $25.00

Mini-Manual - $6.00
FCL65E User's Manual - $12.00
Complete Source Listing - $35.00

Ordering Info: Specify parts desired.
Author(s): Not Specified.
Available from:

The 6502 Program Exchange
2920 Moana
Reno, NV 89509

Name: WARLORDS
System: Apple II (PET version under devel.)
Memory: Not Specified
Language: Not Specified
Hardware: Apple II
Description: It is the Dark Ages, in the king
dom of Nerd, and all is chaos. King Melvin has
died without an heir and a dire power struggle
is taking place to see who will emerge as the
new King. You and the other players are the
WARLORDS, and you will have to decide what com
bination of military might and skillful diplom
acy will lead you to victory.
Copies: Not Specified
Price: $12.00
Ordering Info: Specify Apple II Version
Author: Not Specified
Available from:

Dealers who carry software from
Speakeasy Software LTD.

6 :23

THE MICRO SOFTWARE CATALOG

Names: E/65 and A/65
System: Any 6502 based system
Memory: Not Specified
Language: Assembly
Hardware: Terminal. Cassette optional.
Description: E/65 is primarily designed to edit
assembler source code. Line oriented commands
specify input/out or text and find specific
lines to be edited. String oriented commands
allow the user to search for and optionally
change a text string. Also character oriented
commands and loading and dumping to bulk device.
A/65 is a full two-pass assembler which conforms
to MOS Technology syntax. A full range of run
time options are provided to control listing
formats, printing of generated code for ASCII
strings and generation of object code.
Copies: Not Specified
Price: $100 each
Includes: Object form on paper tape or KIM type
cassette. Listings of source code are available
for $25-00 each. Full documentation on the in
stallation and use of each package is provided.
Author: Not Specified
Available from:

COMPAS - Computer Applications Corporation
P.O. Box 687
Ames, IA 50010

Name: Read/Write PET Memory
System: PET
Memory: 8K RAM
Language: BASIC
Hardware: Standard PET
Description: Permits user to key into memory
hex codes by typing hex starting address and
then typing the hex digits in sequence desired.
Display memory as both hex codes and assembly
language mnemonics (translates relative address
into actual hex address). Stores memory on tape
and loads memory from tape into any desired mem
ory location. Executes machine-language pro
grams.
Copies: Just released - 32 sold first day.
Price: $7.95 - postpaid
Includes: Cassette tape; complete instructions
(including use of ROM subroutines to input and
output memory from keyboard and to screen).
Ordering Info: From author
Author:

Don Ketchum
313 Van Ness Avenue
Upland, CA 91786
(Dealer Inquities Invited)

The MICRO Software Catalog is a continuing fea
ture of MICRO. If you have any 6502 based soft
ware for sale (or exchange or free), please send
a complete description which includes ALL of the
information listed.

The MICRO Staff will not write up entries for
the MICRO Software Catalog from other materials
that you may provide. First, we do not have the
time to do this. Second, since we are not as
familiar with your software as you are, we can
not hope to provide as meaningful a write-up as
you can. Cover all pertinent information, but
keep the write-up to a reasonable length. MICRO
reserves the right to reject or edit any
material submitted for this column.

Name of program:
6502 systems:
Memory locations required:
Language (BASIC, Assembler,...):
Hardware required:
Description of program:
Number of copies sold to date:
Price:
What is included in package (cassette, listings,

paper tape , ...):
Ordering information:
Author(s):
Company Name and Address:

Send to:
MICRO, P.O. Box 3, S. Chelmsford, MA 01824

THE MICRO HARDWARE CATALOG

A Call for Information

Starting with the next issue of MICRO, we plan
to run a Hardware Catalog similar to the current
Software Catalog. Information for this catalog
will come from suppliers of the hardware: the
manufacturer, distributor or dealer. This will
NOT be a "Product Review" nor will inclusion
of information indicate endorsement of the pro
duct by MICRO. We will not knowingly include
products which do not meet the following guide
lines :

1. The product must be directly related to 6502
interests. For example, a general purpose
coding form would not qualify.
2. The product must be currently available:

A. Some units must have already been
delivered.

B. Delivery on new orders should be no more
than stock to four weeks.

3. The price must be included, along with any
other pertinent information about discounts,
shipping charges, etc.

Suggestions for Hardware Catalog information:
1. Cover all of the important features of your
product, but be concise. MICRO reserves the
right to edit submissions which are too long.
2. A "picture is worth a thousand words" and
doesn't cost you a thing. Since it is a lot
more work to include pictures in the catalog, we
are not sure that we will be able to use them,
but if it is possible, we will.
3 . Submit separate products as separate items
for the catalog. First, we will not print con
glomerate listings. Second, you get multiple
exposure with separate listings.
4. Don't waste your time or ours submitting
material which does not directly relate to the
6502 family.
MICRO reserves the right to reject any item
submitted for inclusion in this catalog.

6:24

A DEBUGGING AID FOR THE KIN-1

Albert Gaspar
305 Wall Street
Hebron, CT 06248

DEBUG is a program designed to assist the user
in debugging and manipulating programs. It re
sides in memory locations 1780 - 17E6 and pro
vides a means for inserting breakpoints in a
user program, moving blocks of bytes throughout
memory, filling memory with repetitious data,
and calculating branch values. It uses selected
KIM monitor subroutines.

Operating Modes

DEBUG has three operating modes:
1. Keyboard Mode: DEBUG remains*, in a wait loop
anticipating keyboard entry which will be recog
nized as either data or command characters.
This mode is initiated either by using the KIM
monitor to start at location 178E, or by the
execution of a previously inserted breakpoint in
a user program.

2. Execute Mode: DEBUG executes logic to ser
vice a user command. This mode is completed in
microseconds and will not be noticeable by the
user.
3- Non-Control Mode: DEBUG relinquishes con
trol when the user keys in "RS", or "ST" during
Keyboard Mode, or uses the CONTINUE Command.
To start, the user must first load "B5" into
17FE and "17" into 17FF using the KIM. Then the
user begins DEBUG by starting at location 178E.
This puts DEBUG into Keyboard Mode. The user
then keys in combinations of the 16 data char
acters available on the keyboard. Input data is
displayed in a manner similar to that of the KIM
- from right to left - except that only the
left-most five display positions are utilized
(exceptions are noted below).

The user must continue to key in characters un
til he is satisified that the required data is
input. Then one of the several Command code
characters available (B, C, D, E, or F) is keyed
in. At this point, or at any time previous to
this, if the input is not correct and the user
wishes to change the display, he merely contin
ues to enter data until the display string is
correct. When the display concatenation is sat
isfactory (either 2 or 4 data characters and 1
Command character) he keys in "AD". Now DEBUG
will go into Execute Mode (without echoing the
entry of "AD") and immediately examines the
last previous character input. If this char
acter is not a legitimate Command character (B,
C, D, E, or F), DEBUG becomes confused and will
transfer to unpredictable memory locations.
Thus the user is held wholly responsible for the
validity of his input. He should always check
that either his keyed-in data is correct before
hitting "AD", or that his Command was indeed ex
ecuted. Note: if a key other than "AD", the 16
data characters, "RS", or "ST" is depressed, its
high order 4 bits are stripped and the remaining
low order 4 bits are displayed and evaluated as
whatever the combination happens to represent.
Assuming that the character input Immediately
prior to "AO" is a legitimate Command character,
DEBUG - still in Execute Mode - will process
the data which was input prior to the Command
code (either 2 or 4 characters). Note that the
Command values (B, C, D, E, of F) if found in

the data field are processed as standard hex
values.
BREAK This command allows the user to insert

a breakpoint anywhere desired in his pro
gram. When this point is subsequently reached
during execution of his program, control will be
passed to Keyboard Mode of DEBUG and further
execution of the user program will effectively
be temporarily discontinued. Also at this time
the user area will be restored to the original
configuration existing at the time of the break
point insertion.
Input Sequence:

Press Keys See on Display
4 Data Characters B "AD" 4 char B1

The 4 Data Characters define the Breakpoint
location desired. The BREAK Command saves the
user byte at the Breakpoint and deposits a BRK
instruction in place of it. Thus, that user
area should not be altered by the user while
DEBUG is in Non-Control Mode and a Breakpoint
is eminent, or the Breakpoint return will not
work. More than one Breakpoint can be eminent
at one time; however since DEBUG will store only
one byte at a time, multiple simultaneous
Breakpoints should be applied only at user loca
tions containing the same instruction. This way
it is immaterial which BRK triggers a return to
DEBUG - the user area will be properly replaced.

This Command includes 1 of 2 instances where the
sixth display position is used. If the sixth
position contains a 1, the Command has been cor
rectly processed. If the position contains any
other value, it indicates that depression of the
"AD" key has caused multiple bounces and the
byte stored by DEBUG within itself is now "00" -
not the original user byte. Thus DEBUG will
still function correctly but will not correct
ly restore the user position when a Breakpoint
return is initiated. The user must restore the
location manually (using KIM) after the return
has been performed - otherwise "00" will be left
in the location.
CONTINUE This Command causes DEBUG to pass

execution to a user specified loca
tion. It is similar to the passing of control
through KIM and either method may be used to ex
ecute user code.

Input Sequence:

Press Keys See on Display
4 Data Characters C "AD" 4 char CO

The 4 Data Characters define the address to
which control is to be passed. The above dis
play is only momentary since control is immedi
ately passed to a user area (Non-Control Mode)
The purpose of the Continue Command will usually
be to execute to a previously inserted Break
point. When this occurs, as previously stated,
control returns to Keyboard Mode, of DEBUG.
At this point, the leftmost 4 display digits
will contain the address at which the Breakpoint
was located. See Overall Notes #1 for a con
tinuation warning.

6:25

NOTE This Conmand will move a block of up to
256 bytes to another memory area. It is

non-destructive (unless, of course, a shift is
performed).

Input Sequence:
Press Keys See on Display

4 Data Characters F "AD" 4 char F0
(F for From)

4 Data Characters D "AD" 4 char DO
(D for Destination)

2 Data Characters E "AD" XX 2 char E0
(E for Execute)

4 Data Characters above represent the loca-
tions one less than the locations, respective
ly, from which and to which the data is to
moved. The 2 Data Characters above represent
the hex value of the number cff* bytes to be
moved. If the user desires to move 256 (dec.)
bytes, he must input "00" in the "E" Command.
"F" and "D" execution may be input in either
order - "F" then "D" or "D" then "F".
MOVE will correctly move blocks of bytes
from one area of memory to another. However it
will correctly shift bytes only in an upward
direction. Attempting downward shifts will re
sult in the repeating of as many of the last
bytes in the original block as there is a dif
ference in the block positions. For example -
shifting a block of say (n) bytes starting at
0200 to a new area starting at 0202 will cor
rectly shift the (n) bytes upward 2 locations.
Attempting to shift a block of (n) bytes start
ing in 0202 to a new area starting in 0200 will
result in the last 2 bytes of the original
block to be repeated downward from their orig
inal locations continuing to 0200. This may not
be completely undesireable since - 1) normally
the user will be interested in expanding an
area, not in compressing it (for example, to add
instructions); and, 2) this serves as a useful
tool to provide filler bytes in memory when
desired.
BRANCH This Command assists in calculating

Branch values.
Input Sequence:
1. Enter the necessary 12 bytes of Branch Over
lay, either through KIM or by tape overlay.
(These will, of course, have to be restored to
the original configuration when through with
BRANCH).
1. Put DEBUG into Keyboard Mode.

Press Keys See on Display

2 char/2 Char. E "AD" 2 char/2 char/D-VALUE
The first 2 characters are the 2 least signifi
cant values of the Branch Address. The next 2
characters are the 2 least significant values of
the Branch to Address. The "E" stands for
Evaluate. The correct Displacement VALUE will
appear in the 5th and 6th display positions.
The displacement is calculated assuming that the
two addresses are in the same page. For page
overlap, entry will have to be done twice. We
believe that different users will have different
preferential methods for doing this, so our own
method, which is somewhat involved, is not
described. If both entries are on the same page
but are separated by a distance greater than the
standard branch range, the value calculated will
b« incorrect. It is the user's responsibility
to check for ont-of-ruge lvalues.

Overall Notes
1. When a Breakpoint has been executed, DEBUG
does not store and then restore accumulator,
register, and status values. Thus, the user
must take care in continuing from a Breakpoint
if any of these parameters have a subsequent
bearing in further user program execution.
(Though this and other omissions are glaring de
fects, no apology is made - there was Just in
sufficient memory available for inclusion of any
refinements.)

2. When returning from a "BRK" instruction,
DEBUG pulls the status register information from
the stack and Ignores it. If this DEBUG version
is used in conjunction with an interrupt system,
locations 17FE - 17FF must contain the address
of the user interrupt handler. The beginning of
the handler must be similar to that shown on
page 144 of the KIM Programming Manual. The
logic listed in example 9.7 must be utilized as
shown. "BNE BRKP" will point to the DEBUG loca
tion defined below. If the user handler deter
mines that the interrupt was caused by "BRK”,
then the handler must Jump to location 17B5.
DEBUG will then obtain the "BRK" address and
perform subsequent logic to return the user byte
to its original configuration and continue on
into Keyboard Mode.

3. This version of DEBUG uses page zero loca
tions 0000, 0001, 0002, 0003, and 0004, but only
as scratch areas during Keyboard and Execute
Modes. The user can use these areas as tempo
rary scratch areas when DEBUG is not being ex
ecuted .

4. Due to limited instruction space, DEBUG is
particularily susceptible to key bounce. The
user should remain watchful of such occurrences,
especially during BREAK execution as previously
described.

5. My goal here was to fit as much DEBUG power
into locations 1780 - 17E6 as possible - not to
write a great breakpoint/move/branch calculate
routine. (That has already been done by others)
Thus DEBUG had to be written in relatively con
cise and tight code, using data as instructions,
instructions as data, overlapping instructions,
using the same code to do different things,
instruction modification, position instructions
in prescribed relative locations, use of "write-
only-memory", etc. I do not approve of this
type of programming - in fact I strongly recom
mend against it. However, in this case I hope
the goal I had Justifies the mess that DEBUG has
turned out to be. In any event I would like to
point out that as tight as the code is, it is
still possible to add other functions here and
there. For example the version I usually use
displays the value of the accumulator in display
locations 5 and 6 when returning back from a
Breakpoint. At times I also use another version
which doesn't require the "BRK" instruction at
all. This is convenient when debugging inter
rupt programs since no additional interrupt is
needed for DEBUG. However, both versions penal
ize me in other areas, which makes it all a
trade-off decision.
[Editor's Note: Gaspar seems to be suggesting
a collection of specialized DEBUG programs,
each customized to provide a particular set of
capabilities while residing in minimal memory.
Using his code as a starting point, a "program-
wise” reader should be able to construct his own
set of DEBUG aids.]

6:26

ZERO • $0000
ONE • $0001
TWO • $0002
THREE • $0003
FOUR • $0004

INH • $00F9
POINTL • $00FA
POINTH • $00FB

RETURN • $17B5
TBLOFF • $17D4
JUMPER • $17DD

INITI • $1E8C
SCANDS • $1F1F
GETKEY • $1F6A

LOCATION OOOO

1780 B1 02 EXEC LDAIY TWO
1782 91 00 STAIY ZERO
1784 88 DEY
1785 DO F9 BNE EXEC
1787 98 DANDF TYA
1788 95 F3 STAZX $00F3
178A A5 FB LDAZ POINTH
178C 95 F4 STAZX $00F4
178E 20 8C 1E START JSR INITI
1791 20 1F 1F JSR SCANDS
1794 DO F8 BNE START
1796 20 1F 1F KEY JSR SCANDS
1799 FO FB BEQ KEY
179B 20 6A 1F JSR GETKEY
179E A6 04 LDXZ FOUR
17A0 C9 10 CMPIM $10
17A2 FO 30 BEQ PROCES
17A4 85 04 STAZ FOUR
17A6 A2 04 LDXIM $04
17A8 OA SHIFT ASLA
17A9 26 F9 ROL INH
17AB 26 FA ROL POINTL
17 AD 26 FB ROL POINTH
17AF CA DEX
17B0 DO F6 BNE SHIFT
17B2 85 F9 STA INH
17B4 FO D8 BEQ START
17B6 38 SEC
17B7 68 PLA
17B8 68 PLA
17B9 E9 02 SBCIM $02
17BB 85 FA STAZ POINTL
17BD 68 PLA
17BE E9 00 SBCIM $00
17C0 85 FB STAZ POINTH
17C2 A2 OC LDXIM $0C
17C4 E6 F9 B INC INH
17C6 AO 00 LDYIM $00
17C8 B1 FA LDAIY POINTL
17CA 9D DC 17 STAX $17DC
17 CD BD DB 17 LDAX $17DB
17D0 91 FA STAIY POINTL
17D2 A2 OD LDXIM $0D
17D4 A4 FA PROCES LDYZ POINTL
17D6 BD D4 17 LDAX TBLOFF
17D9 8D DD 17 STA $17DD
17DC DO FF BNE JUMPER
17DE EA NOP
17DF E6 TABLE = $E6
17E0 06 = $06
17E1 A9 = $A9
17E2 A2 - $A2
17E3 A9 = $A9
17E4 6C FA 00 C JMI POINTL

KIM DISPLAY POINTERS

INTERNAL ADDRESS
TABLE OFFSET
INTERNAL ADDRESS

KIM INITIALIZE ROUTINE
KIM SCAN DISPLAY ROUTINE
KIM GET KEYBOARD CHARACTER

GET CHAR TO BE MOVED
MOVE IT

CONTINUE UNTIL DONE
GET TO OR FROM ADDRESS
STORE IT IS SCRATCH

SET FLAGS AND INIT.

NO, CONTINUE TO DISPLAY
GETKEY YES, GET THE CHARACTER

PICK UP LAST CHAR. INPUT
IS THE NEW CHAR. "AD"?
YES. PROCESS CURRENT COMMAND
NO. STORE IT
AND SHIFT IT INTO THE DISPLAY

SHIFT THE DISPLAY LEFT

DONE SHIFTING
YES. ADD NEW CHAR TO DISPLAY
UNCONDITION RETURN

IGNORE STATUS
GET "FROM" ADDRESS
SUBTRACT 2

SUBTRACT CARRY, IF ANY
DISPLAY HI ORDER
CHEAT ON RX
COUNT KEY BOUNCES

STORE IT
GET "BRK"
STORE IN USE
CHEAT ON RX

ALTER INSTRUCTION
JMP TO COMMAND LOGIC
FUTURE EXPANSION
BRANCH TO "B"
BRANCH TO "C"
BRANCH TO "D"
BRANCH TO "E"
BRANCH TO "F"

POINTL 00 OR ADDRESS USED AS "BRK"

6:27

i J E H j a a a i

BRANCH CALCULATION OVERLAY

ORG $1780

INH • $00F9
POINTL • $00FA
POINTH • $00 FB

1780 38 EXEC SEC INITIALIZE SUBTRACT
1781 A5 FA LDAZ POINTL
1783 69 FD ADCIM $FD CORRECTION CONSTANT
1785 E5 FB SBCZ POINTH
1787 85 F9 STAZ INH STORE RESULT IN DISPLAY
1789 4C 8E 17 JMP $178E JUMP TO START

Examples

1. Load DEBUG. Load "B5" into 17FE and "17"
into 17FF.

2. Start execution at location 178E.
3. Depressing any of the 16 keyboard characters
will cause the 5 leftmost display digits to
shift left and the new character to be inserted
into the fifth position.

This shifts bytes in 0241-0250 to 0244-0253.
User can now insert his 3 new instructions into
locations 0241, 0242, and 0243.
6. User wishes to load NOP into locations 0300-
03FF. Load "EA" into 03FF using KIM. Return to
DEBUG.

0 3 0 0 F AD Display is 0300 F0

0 2 F F D AD 02FF DO
4. Assume that there is a program in 0200-0250.
Now, to execute from 0200-0240:

0 2 4 0 B AD Display is 0240 B1
0 2 0 0 C AD 0200 CO

0240 XX
When the user program executes to location 0240,
it will return to DEBUG which then will replace
the original byte at 0240 and will return to
Keyboard Mode.

5. User wishes to add a 3 byte instruotion in
0241-0243- Thus he must shift his program from
0241-0250 to 0244-0253.

0 2 4 0 B AD Display is 0240 B1

0 2 4 0 F AD 0240 F0
(Remember that MOVE requires addresses 1 less
than the actual values.)

X X 1 0 E AD Display is XX10 E0

(10 = 0250 - 0241 + 1)

0 0 E AD XX00 E0
(Move 256 decimal bytes.)

7. User wishes to calculate the value required
for a HERE BCC START *where HERE = 0204 and
START = 0250.
First, load overlay (12 bytes) and return to
DEBUG.

0 4 5 0 E AD Display is 0450 4A
Thus the branch value is 4A and the branch in
struction will be BCC 4A.

Remember that if further DEBUG usage is planned,
the original 12 bytes starting at 1780 have to
be replaced.

Program Notes
1. The instruction listings at 17B4 and 17E4
are NOT errors and must be placed in memory
exactly as shown.
2. Locations 17E7 and 17E8 are used by the KIM
monitor for tape checksum. However, their usage
in DEBUG will not interfere with KIM since the
two programs do not, of course, use them at the
same time.

I hope you did not turn any expensive integrated
circuits into cinders with last month's experi
ments. We will begin this month by considering
the questions raised in the last column. You
will need to refer to the circuits, tables, and
the program described there. The following

table describes the activity which takes place
on the address bus and the data bus while the
program is running. It is organized by clock
cycles, each one microsecond long, starting with
the op code fetch of the CLC instruction.

CYCLE ADDRESS BUS A15 A14 A13 DATA BUS COMMENTS

0 0200 0 0 0 CLC op code Pin 1 of LS145 is low because address
lines A13-15 are low.

1 0201 0 0 0 STA op code LED will glow when connected to pin 1,
but not to other pins.

>■ 2 0201 0 0 0 STA op code All other pins on LS145 are high.

3 0202 0 0 0 XX Low order address of storage location
on data lines.

4 0203 0 0 0 60 High order address of storage location
on data lines.

5 60XX 0 1 1 accumulator
contents

LED will light for 1 microsecond if
connected to pin 4 on LS145.

6 0204 0 0 0 BCC op code Pin 4 high, pin 1 low. LED will glow
on pin 1 only.

7 0205 0 0 0 FB offset 6502 is now determing if and where to
branch. Branch is to 0201 because

- 8 0206 0 0 0 garbage carry was clear.

In the program loop address lines A14 and A13 go
high only during cycle 5 . Thus, for six cycles
output 0 (pin 1) of the LS145 is low. The LS145
is an open collector device and acts like a
switch to ground when the pin is in the L state,
allowing current to flow through the LED. Dur
ing cycle 5 , when the address of the storage
location is on the address bus, pin 4 is in the
low state and will cause the LED to glow. Earth
people do not perceive one microsecond flashes
spaced six microseconds apart, so the LED ap
pears to glow rather than flash. Since the ma
jority of the loop time is spent with pin 1 at
logic 0 , a bright glow is observed on this pin.
Changing the instruction from STA to LDA has no
effect since the address bus goes through the
same sequence for a LDA as it does for a STA.
Changing the storage location from 60XX to some
thing else will cause another pin of the LS145
to glow. The results of the LED test should
agree with the truth table given for the LS145.

The pulse from the decoder which occurs when it
responds to a particular address at its input
pins is called a device select pulse or an
address select pulse. The LS145 produces a
logic 0 or active-low device select pulse, some
times symbolized by ~1 i~ or DS. This pulse is
used to select or activate or enable another de
vice in the computer system such as a memory
chip, an I/O port, a PIA chip, or another deco
der. As mentioned in the last column, the de
vice select pulse from the LS145 could be used
to enable a 74LS138 which would then decode ad
dress lines A10-12, dividing an 8K block into 1K
blocks. Such a scheme is very similar to the
expansion circuit suggested in the KIM-1 USER
MANUAL, page 74. Similar circuits are alsc

used on memory expansion boards. In the present
circumstance I have decided to make a trade-off
between wasting address space and minimizing the
number of chips on the breadboard. Our purpose
here is to configure some I/O ports as simply as
possible.

The decoding circuit is shown in Figure 1. A
total of eight device select pulses are avail
able for eight I/O ports. Note that one of the
8K selects (8K4) from the LS145 enables the
LS138 which decodes the three low-order address
lines. All of the 8K4 space is used to get
eight I/O ports. Using a 74LS154 instead of the
LS138 and decoding on more address line would
give 16 I/O ports in the event we need more. Or
we could take another 8K select to enable anoth
er LS138 or LS145, giving us 8 or 32 ports, re
spectively. There is no doubt that address
space is being wasted, but few users use all
64K, or even 32K, so the waste may be justified.
In Figure 1, address lines AO-2 are extended
downward to indicate that they could be decoded
by other devices such as an LS138 or LS154.
The add_resses which enable the device select
pulses DS0-7 are given in Figure 1. Note that
since not all sixteen lines have been decoded to
produce the pulses, the addresses shown are not
the only ones which will work. For example, de
vice select pulse 0 will be produced whenever
the computer reads or writes to 8XX0 or 9XX0 (XX
means any hex numbers). This should cause no
difficulty unless we try to put other devices
into the 8K4 block, in which case we could sim
ply decode some other lines. If your system
does not buffer the address lines, you should
buffer them with the circuit shown in Figure 2.

6:29

Q Q Q Q gV !)
J

Decoding Circuit to Select I/O Ports.
• See text for details.

Construct the circuits of Figures 1, 2, and 3 .
I managed to get them on one A P circuit board
with no difficulty, with room for several more
chips. I also found that the A P breadboard
jumper wire kit is very handy for making neat
layouts. Connect one of the device select lines
from the LS138 to the flip-flop preset input
(Test Circuit, Figure 3) and another device se
lect line to the clear input. A pulse to the
preset input will cause the Q output to go high,
lighting the Q LED, whereas a pulse to the clear
input wiJU cause the "S'out put to go high, light
ing the Q LED.
To test your decoding circuit write a one state
ment program, for example:

0200 AD 00 80 LDA DS0
If the line labeled 8000 is connected to the
preset of the test circuit, the Q output will go
high, lighting the LED, when the program is run.
Running the program:

0200 AD 04 80 LDA DS4
will cause a switch of the flip-flop if the. line
8004 is connected to the clear input. You
should test all 8 device select lines from the
LS138 with these programs by changing the con
nections and the addresses. Note that no data
is being transferred since we have made no con
nections to the data bus. It should also be ap
parent that this scheme could be used to switch
a motor, light, cassette recorder or other de
vice off and on in a computer program. Eureka I
We have made a simple 1/0 circuit.

To continue a little further, repeat the above
experiments with a STA instruction replacing the
LDA instruction. The results should be identi
cal because in both cases it is the address of

the device select on the address bus which
produces the pulse which flips the flop. One
more experiment: connect the R/W line from the
6502 to the G1 input on the LS138 after remov
ing the connection from G1 (pin 6) to pin 16.
Now try the programs above, using first a LDA
instruction, then a STA instruction. You should
find that the program with the LDA instruction

o + 5v

A O o

A t t>
A 2 c *

A 13o
A 14o

A l5 o

O A O
OA1
o a 2
<=>A13

c>A14
o »a 15

Figure 2.

Buffering the Address Lines.
The arrows pointing into the chip are the
lines from the 6502, while those pointing

away go to the circuit in Figure 1.
6 :30

Figure 3 . Test Circuit.

works, that is, the lights can be switched from
off to on and vice versa, but the STA instruc
tion does not work. Why?
Keep your circuit, as the material in the next
column will refer to and make use of the circuit
you have just completed.
A Note About Figure 1: The * lines in Figure 1
suggest that something should be done with them.
For the experiments described above, nothing
need be connected to these lines, however when

An Additional Experiment

we try to put data on the data bus these lines
will become important. What you do depends on
the system you are using. Since the KIM-1 is
probably the most popular system among the read
ers, and since my own system is a KIM (expanded
with a Riverside KEM and MVM-1024) the following
details will be of most interest to KIM owners.
Owners of other systems will have to dig into
their manuals to make sure they are not de-se-
lecting their on-board devices, or much worse,
selecting two devices to put information on the
data bus simultaneously. The KIM-1 has a 74145
decoder on-board which decodes lines A10—12;
lines A13-15 are not decoded. Consequently, the
lowest 8K0 block is already decoded, and the de
vice select pulse from the LS145 in Figure 1
should enable the decoder on the KIM for all ad
dresses in the 8K0 block. To do this simply
connect the device select pulse from pin 1 on
the 74LS145 in Figure 1 to pin K on the appli
cation connector on the KIM, making sure that
the ground connection is first removed. A 10K
pull-up resistor between pin 1 and +5V will also
be necessary. The device select pulse from 8K7
should enable the device containing the restart
and interrupt vectors. In the case of the KIM,
pin 9 of the LS145 in Figure should enable the
6530-002 ROM by connecting it to pin J of the
application connector. No pull-up is necessary.

Next issue we will examine the other pins on the
6502 which will be useful in configuring I / O
ports, namely the bi-directional data bus, and
the control signals. Hopefully we shall finish
the circuitry needed to make an output port (8
bits), connect some LEDs to it, see if it works
or smokes, and maybe think of a use for it.
A couple of parting shots: First, there is a
very good educational series of articles in
KILOBAUD magazine called KILOBAUD KLASSROOM.
It assumes less experience than I have assumed
so far. Second, I hope you have obtained a "TTL
Databook" from either Texas Instruments or
National so that you can study the truth tables
and other specifications of the chips we are
using.

The address decoding circuit of Figure 1 pro
duces a one microsecond negative going one-shot
pulse when a LDA instruction addresses one of
the locations shown in Figure 1. This one-shot
can be used for a variety of purposes, one of
which is triggering the flip-flop shown in Fig
ure 3 . The program listed below makes use of an
interval timer (KIM-1 system addresses) to pro
duce a square wave. By varying the time loaded
into the timer, the frequency can be changed,

and the duty cycle can be changed. Thus, we
have produced a simple function generator with
programmable period and duty cycle. The LEDs
will show the results at low frequencies. Try
this program and watch the LEDs. Amplify the Q
output and connect it to a speaker; notice the
effect of changing the time, the duty cycle, the
wave shape (by filtering) or whatever else you
can think of. No Lee that I used device selects
8007 and 8001.

DSEVEN • $8007 DEVICE SEL'
DSONE • $8001 DEVICE SF. „T 1
TIMER » $1707 KIM TIMr
CLKRDI » $1707 KIM CLC a DONE TEST

0200 AD 07 80 START LDA DSEVEN INIT DS7 DEVICE SELECT PULSE
0203 A9 FF LDAIM $FF INIT TIMER
0205 8D 07 17 STA TIMER START DIVIDE-BY-1024 TIMER FOR 256
0208 AD 07 17 BACK LDA CLKRDI CYCLES, NOW CHECK TO SEE IF IT
020B 10 FB BPL BACK IS FINISHED. IF NOT, CHECK AGAIN,
020D AD 01 80 LDA DSONE OTHERWISE TRIGGER DS1.
0210 A9 FF LDAIM $FF
0212 8D 07 17 T -ft TIMER START TIMER FOR SECOND HALF OF
0215 AD 07 17 AGN LDA CLKRDI CYCLE. IS TIMER READY?
0218 10 FB BPL AGN NO, CHECK AGAIN, OTHERWISE JUMP
021A 4C 00 02 JMP START TO START OVER.

6 : 3 1

i d traiii)
J

2. - u C
§:§ 3 |& 9 w a c

| § | l |=5 5-8 O W
ISfeSI

m *q O v 5

» W j , i « <

§ 2 O § C O ^ •»

!s»Sss|
fi ■“> ? « *w Ji —
WVO O o •£a s
J 2 w s § c . k >j c
Z 2 I & 8< «5 -M 4)

Q

si
I I

> e
* i l l

Si,

O <S) > </>
S a 5. Q
1 * 9

| f | i
ocUl>

s 3 S.
& £ f l i |
I* i l l
H | * | S
<*=&f.a =

oo
c *o>
£ o
5 * *•o

• Q

• ’Q-c

S * 5 g
■ s ;* 2

u 2 n . S

m

i n

o s

C \ I

< / > !

i « b■B i<s
I s ~
A | | 3

E t c
&

Ji_ J!-
> 1 S “ g
s l ^ s g
u S f N*J
«J! a 2 ®

5 # o s•a w
j5 ffi ̂ J p N

eo
* « § S

4jJ! o>~Sh
5 " £ i 5 »
■s|IS8S
i ^ § J 3
El'S-1 ®
S & l s * £* o f s 5 <
»s &« ®o.£ 4> j* .c
? s = S| i
< < £ 8<<

** . u ’5 .
• * . w f l > >

g f i ^ l l
i t x U i
e 1 * I S'!
I g-S «f I16 2 4 It ■■ ft [- *
* | £ = £ l S = «« « u g - = “ --

v a
S i-o | C » C a .o
" e 6
I " • * = a
S l l

• • • • • • • • •
J i l i s i
£ * 1 5 'x O-0 - i2 3 M i

i ; !
«j 8.
C u « j
“ e c *
s3 £
^ SS

u- 18
• JS c3 V

< a " S S ’ 2
H a —
U
OQ l l

e a«M
S

X o
2

O V
Q>
-C

w ^

§ a•M
’S E

05
C•P4

c o
(0 u
o,—S? “

o
3
• o

8 (3
E i

0 -M ^
*

(0 w

h.V
3
a
E
o
V

<0o
°p

! i
'So
H E
QC
255
= |

a

<A (A

“ 1

13
£ I(A>C/5

(A3•Oe

*- £ s §(A ’C
« « U

S
•2 S
2c/)
S ■-
fraO 3 T «
u O- «*■
<o s i
E u 752 _ S i
<» «J «J
^ C

o
! oo

+* C -W .i i5 sl^aS
i SH!f ^■■ •• At ^ A Ma

i s
Im *> (a ̂U *£ 3 O T3 w
w g »

* (0
: e
0*0 ** c 0) (0
3 * « •
3 "SC/5 fi

e
o u

U so '“ O
00
SO

s |IJS
■ s l “ ^
a wo e «

E
o
t̂:

-D
JO
«

BROWN AND WHITE AND COLORED ALL OVEN

Richard F. Suitor
166|Tremont Street
Newton, MA 02158

This article consists of two parts. The first
is a brief discussion of the colors of the Apple
and their relationships to each other and to the
color numbers. Some of that information is used
in the second part to generate a random color
display according to certain principles sugges
ted by Martin Gardner in his mathematical games
column in Scientific American.

The Color of Your Apple
The color of your Apple comes from your color
TV. The video signal has many components. Most
of the signal carries the brightness information
of the picture - a black and white set uses this
part of the signal to generate its picture.
Superimposed on this signal is the "color car
rier:, a 3*58 MHz signal that carries the color
information. The larger this signal, the more
colorful that region of the picture. The hue
(blue, green, orange, etc.) is determined by the
phase of the color signal. Reference timing
signals at the beginning of each scan line syn
chronize a "standard" color signal. The time
during a 3*58 MHz period that the picture color
signal goes high compared to when the standard
goes high determines the hue. A color signal
that goes high when the standard does gives or
ange. One that goes low at that time gives
blue. Signals that are high while the standard
goes from high to low or from low to high give
vifflet and green. (This, at least, was the in
tention. Studio difficulties, transmission
paths and the viewers antenna and set affect
these relations, so the viewer is usually given
final say with a hue or tint control.)
The time relation of the color signal to the
standard signal is expressed as a "phase angle",
is measured in angular measures such as degrees
or radians and can run from 0 to 360 degrees.
This phase angle corresponds to position on a
color circle, with orange at the top and blue at
the bottom, as shown in Figure 1.

The perimeter of the circle represents different
colors or hues. The radial distance from the
center represents amount of color, or satura
tion. The former is usually adjusted by the
tint control, the latter by the color control.
A color that can be reproduced by a color TV can
be related to a point in this circle. The angu
lar position is coded in the phase of the 3*58
MHz color carrier signal; the radial distance
from the center is given by the amplitude of the
color carrier.
The numerical coding of the Apple colors can be
appreciated using this circle and binary repre
sentation of the color numbers. The low order
bit corresponds to red (#1). The second bit
corresponds to dark blue (#2), the third to dark
green (#4) and the high order bit to brown (dark
yellow, #8). To find the color for any color
number, represent each 1 bit aa a quarter-pie
piece centered over its respective color, as in
dicated in Figure 1. The brightness or light
ness of the color corresponds to the number of
pie pieces and the color corresponds to the
point where the whole collection balances.
Black, #0, has no bits set, no pie and no
brightness. White, #15, has four bits set, the
whole pie, is of maximun brightness and balances
in the center of the circle at neutral. Orange,

#9 or 1001 in binary, has pie over the top hemi
sphere and balances on a point between neutral
and orange. The #5, binary 0101, has two sepa
rate wedges, one over red and one over green.
Since it is symmetric, it balances at the cen
ter. It represents a neutral gray of intermedi
ate brightness. So does the #10. The #14 has
pie over every sector except the red one. It >is
bright and balances on a line toward forest
green. It gives a light, somewhat bluish green.

ORANGE

YELLOW

GREEN

FOREST
GREEN

RED

VIOLET

DEEP
BLUE

MID BLUE

Figure 1.
Color circle shows relations of

color to color number bit position.
A diagram representing the relations of all the
colors is given in Figure 2. Each of the one,
two and three bit numbers form planes, each cor
responding to a color circle. One can think of
these positions as points in space, with bright
ness increasing with vertical position and hori
zontal planes representing color circles of
differing brightness.
The colors of the Apple are thus coded by the
bit patterns of the numbers representing them.
You can think of them as additive combinations
of red, dark blue, dark green and brown, where
adding two colors is represented by ORing the
two numbers representing them. Subtractive com
bination can be represented by ANDlng the light
colors, pink, yellow, light green and light
blue. The more bits set in a number, the
brighter; the fewer, the darker. The bit pat
terns for 5 and 10 have no 3-58 MHz component
and so generate a neutral tone. At a boundary
between 5 and 10 however, this pattern is dis
turbed and two bits or spaces adjoin. Try the
following program which has only grays dlsp-
played:

10 GR
20 FOR I = 0 TO 9
30 COLOR = 5
40 HLIN 0,39 AT 2«I
50 VLIN 20,39 AT 2«I
60 VLIN 20,39 AT 2«I+21
70 COLOR = 10
80 HLIN 0,39 AT 2«I + 1
90 VLIN 20,39 AT 2«I + 1
100 VLIN 20,39 AT 2«I + 20
110 NEXT I
120 RETURN

The top half of the display has HLIN's, alter
nating 5 and 10. The bottom half has VLIN's,
alternating 5 and 10. What do you see? The bit
pattern for a number is placed directly on the
video signal, with the four bits occupying one
color carrier period. When two bits adjoin at a

6:33

l l l l l
'white

Figure 2.
Color space locations of the Apple II colors.
Each horizontal plane forms a color circle

of different brightness.

5,10 boundary, a light band is formed. When two
spaces adjoin, a dark band is formed. The
slight tints are due to the boundaries having
some color component. Changing the 5,10 order
reverses this tint.
Now is perhaps a good time to consider just how
large a 3 .5 8 MHz period is. The Apple text is
generated with a 5x7 dot matrix, a common method
of character generation. These same dots cor
respond to individual bits in the high resolu
tion display memory. One dot is one-half of a
3.58 MHz period and corresponds to a violet (#3)
or green (#12) color signal. This is why the
test is slightly colored on a color TV and the
high resolution display has two colors (other
than black and white), green and violet. (But
you can make others, due to effects similar to
those seen in the BASIC program above.)
(The design of color TV has further implications
for the display. The video black and white sig
nal is limited to about 4 MHz, and many sets
drop the display frequency response so that the
color signal will not be obtrusive. A set so
designed will not resolve the dots very well and
will produce blurry text. Some color sets have
adjustments that make the set ignore the color
signal. Since the color signal processing in
volves subtracting and adding portions of the
signal, avoiding this can sometimes improve the
text resolution. Also reducing the contrast
especially and the brightness somewhat can help
with text material.)
The color TV design attempts to ..remove the color
carrier from the picture (after duly providing
the proper color), but you may be able to see
the signal as 3 or 4 fine vertical lines per
color block. They should not be apparent at all
in the white or black or either gray (except
possibly on a high resolution monitor).

Tan is Between Brown and White
This section presents a brief application of the
concepts of the relationships in color space of
the Apple colors. Many of you, I suspect, are
regular readers of Martin Gardner's "Mathemati
cal Games" column in Scientific American. I
strongly recommend it to those of you who have
not already been introduced. It publicized
"Life" (MICRO 5:5) and motivated "Applayer"
(MICRO 5:29), and was the motivation for this
program. There's a lot of gold in the mine yet.
In April, the column discussed the aesthetic
properties of random variations of different
kinds. To summarize briefly, three kinds are:
WHITE Each separate element is chosen randomly

and is Independent of every other ele
ment. Called "white" because a fre
quency spectrum of the result shows all
frequencies occur equally, a qualitative
description of white light.

BROWN Each separate element is the previous
element plus a randomly chosen devia
tion. Called "brown" because Brownian
montion is an example.

1/F So called because of its frequency
spectrum, intermediate between "white"
and "brown".

The column presented arguments, attributed to
Richard Voss, that 1/f variations are prevalent
and aesthetically more satisfying than "white"
(not enough coherence) or "brown" (not enough
variation). An algorithm was given for generat
ing elements with 1/f random variations. Brief
ly, each element is the sum of N terms (three,
say). One term is chosen randomly for each ele
ment. The next is chosen randomly for every ot

6:34

her eleaent. The next is chosen randomly for
every fourth eleaent, and ao forth.

With the Apple, one can experiment with these
concepts aurally (hence Applayer) and visually
with the graphic displays. Color is a dimen
sion that was not discussed much in the col non.
This section presents an attempt to apply these
concepts to the Apple display.
Most of us know what "white" noise is like on
the Apple display. An exercise that many try is
to choose a random point, a random color, plot
and repeat. For example:

10 GR
20 X : RND(40)
30 Y = RND(40)
40 COLOR = RND(16)
50 PLOT X,Y
60 GOTO 20

Dispite the garish display that results, this is
a "white" type of random display. Except for
all being within certain limits, the color of
one square has no relationship to that of its
neighbors and the plotting of one square tells
nothing about which square is to be plotted
next.
To implement the concept of "1/f", I used the
following:
1. X and Y are each the sum of three numbers,
one chosen randomly from each plot, one every 20
plots and the third every 200.

2. A table of color numbers was made (DIM(16)
in the program) so that color numbers near each
other would correspond to colors that are near
each other. The choice given in the program
satisfies the following restrictions:

a. Adjacent numbers are from adjacent
planes in Figure 2.

b. No angular change (in the color planes)
is greater than 45 degrees between
adjacent numbers.

3- The color number is the same for 20 plots
and then is changed by an amount chosen randomly
from -2 to +2. This is a "brown" noise genera
tion concept. However, most of the display
normally has color patches that have been gene
rated long before and hence are less correlated
with those currently being plotted. I'll claim
credit for good intentions and let someone else
calculate the power spectrum.

4. Each "plot" is actually eight symmetric
plots about the various major axes. I can't
even claim good intentions here; it has nothing
to do with 1/f and was put in for a kaleidoscope
effect. Those who are offended and/or curious
can alter statement 100. They may wish then to
make X and Y the sum of more than three terms,
with the fourth and fifth chosen at even larger
intervals.

The program follows. A paddle and push buttons
are used to control the tempo and reset the dis
play. If your paddle is not connected, substi
tute 0 for PDL(0).

1 D I M H < 1 6) : H (1 > = 0 : H ('.£> = £ : H < 3
j = 6 : h < 4 > = 7 : R < 5 > = 3 : H < 6 >
7 > = 5 ! f I < 8 > = 1 1

£ ft<9> =9sft< 1 0>* 8 : f l d l > = 1 0 : f t < l £
> = 1 3 : 0 < 1 3 > = 1 5 : 0 (1 4) = 1 4 : 0 < 1 5
> = 1 £ : 0 < 1 6 > = 4

I Q G O T O 3 0 0 0

1 0 0 P L O T X j Y : P L O T 3 8 - X j Y : P L O T

X > 3 8 - Y : P L O T 3 8 - X . . 3 8 - Y : P L D T
Y - X : P L O T 3 8 - Y? 3 8 - X : P L D T Y *
3 8 - X : P L D T 3 8 - Y . X

1 1 0 R E T U R N
1 £ 0 2 = 1 6
1 £ 5 L = R N D < 5 > - £
1 3 0 U = R N D C 9 X : V = R N D <9>
1 4 7 F D R B = 1 T D 1 0

1 5 0 R = U + R N D < 9 > : S = V + R N D <9>
1 5 5 I F P E E K < - 1 6 £ 8 6 > > 1 £ 7 T H E N GR

1 6 0 K = K + L : I F K > 1 6 T H E N K = K - Z
1 6 5 I F K < 0 T H E N K = K + Z

1 7 0 C 0 L 0 R = f t O O
1 8 0 Q = < P D L <0> • '£ ; ' £
1 9 0 F O R I = - Q T O Q : I F P E E K < - 1 6 2 8 7

> 1 £ 7 T H E N £ 0 0 : N E X T I

c!OU F O R 1 = 1 T O c'Li
c l U X=R! + R N D 1 - — i R N D < 6 > : G O S U B

1 0 0 : N E X T I
£ £ 0 N E X T B
£ 3 0 G O T O 1 £ 0

1 0 1 0 K = 1 : L = 5
1 0 £ 0 2 = 1 6

£ 0 0 0 G O T O 1 £ 0
3 0 0 0 G P : C A L L - 9 3 6
3 0 1 0 P R I N T " P O D D L E 0 C O N T R O L S P O T T E R N

S P E E D "
3 0 £ 0 P R I N T " U S E B U T T O N 0 T O GO H T D N C

E T O H I S P E E D "
3 0 3 0 P R I N T " H O L D B U T T O N 1 T O C L E f t R S C

R E E N "
3 0 4 0 G D T O 1 0 1 0
9 0 0 0 E N D

> C R L L 8 5 8

DARRELL'S APPLEWARE HOUSE

We are the APPLE experts when it comes to software. We are professionals
and not just hobbyists. Data Processing is our business.
Most programs are done in Integer Basic to allow user modifications. The
following programs require 2OK or more of memory. All programs use
parallel port printers.
BUSINESS INVENTORY ($160.00 for package)

° PROGRAM 200 ($50) - Completely maintains inventory file.
° PROGRAM 205 ($20) - Fast machine language sort on Part No.
° PROGRAM 210 ($50) - Prints sales slips, updates inventory file.
0 PROGRAM 220 ($50) - Generates reorder report by manufacturer code.

APPLEDITOR ($50) - A word processor that takes care of all your letter
and document needs. In two versions, 39 characters
and 79 characters.

APARTMENT RENTAL PROGRAM - Prints bill and labels. Maintains arrears
for each unit.

MACHINE LANGUAGE SORT FOR THE FOLLOWING PROGRAMS ($20)
UNIVERSAL DATABASE ($60) - You define your database once for each use

you have in mind.
DAILY CALENDAR ($50) - Search your future or past appointments.
HOME IMPROVEMENT FILE ($50) - Store all your improvements on file for future,
HOME INVENTORY FILE ($50) - Store all your home furnishings on tape for

insurance purposes.
EXPENSE ACCOUNT FILE ($50) *- Maintain all your travel, meals and business

or personal expenses on tape.
VENDOR FILE ($50) - Store all your vendors on file.
FILING SYSTEM CROSS REFERENCE FILE ($50) - Now you can find everything

in your files.
MACHINE LANGUAGE SORT FOR ANY RECORD UP TO 255 CHARACTERS ($20)
GAMES: CAR RACE PROGRAM IN HIGH RESOLUTION GRAPHICS ($7.50)

BINGO FOR 36 PLAYERS ($10) - Uses printer to print Bingo cards.
For further information about above programs, send $1.00 for postage and
handling to:

DARRELL'S APPLEWARE HOUSE
17638 157th Avenue, S.E.
Renton, Washington 98055

No C.O.D. Allow two weeks for personal check to clear. Washington
residents add 5.4% sales tax. For orders under $100.00 please add
$2.00 for shipping and handling. Dealer inquiries welcome.

335.

336.

337.

338.

339.

340.

341.

342.

343-

344.

345.

346.

347.

6502 BIBLIOGRAPHY
PART V

William Dial
438 Roslyn Avenue
Akron, OH 44320

Smith, Stephen P. "6502 Disassembler Fix", DDJ No. 23> Issue 3, Pg 3 (March 1978)
ROR and ROL instructions were omitted in the previously published disassembler -
DDJ 3, Issue 1. This offers a simple fix.

KIM-1 User Notes, Issue 9/10, (January - March 1978)
Butterfield, Jim "Dicey" page 17. A program to roll up to six dice.
Butterfield, Jim "Teaser" page 1 7. Jumbo version of Bob Albrecht's "Shooting Stars".
Lewart, Cass "Correction for Lancaster's TVT" page 20.
Oliver, John P. "Comments and Corrections for SUPERDUMP/LOAD" pg 21.

Quosig, Karl and Susan "Input/Output” , Personal Computing £, No. 4, pg 8 (April 1978).
Comments on PET problems.

Bishop, Robert J. "Rocket Pilot", Kilobaud No. 13, pg 90 (Jan. 1978)
And interactive game for the Apple II.

OSI-Small Systems Journal £, No. 1 (January-February 1978)
Anon. "What's a USR Function". Via the USR function, one can have a 6502 BASIC program

which works in conjunction with one or several machine code programs.
Anon. "Quickie". A 6502 BASIC program for converting decimal to binary numbers.
Glasser, Daniel "Chessboard". Program in 6502 BASIC for a computer chessboard which

moves pieces and displays the new board. Not a chess program.
Anon. "DOS CNTRL". A BASIC program to perform transfers to or from OSI's new hard

disk drive.
Anon. "Track Zero Writer". A Machine language program to modify track zero.
Anon. "9 Digit BASIC". A concise method for modifying 0SI 9 Digit BASIC for an

end-user 9 Digit BASIC.
Anon. "0S-65U Performs". A description of a new system said to be a new standard for

microcomputer operating systems.
Anon. "500/510 Breakpoint Utilities". A breakpoint program.
Anon. "510 Tracer". A tracer program which prints a disassemble of the next instruction

to be executed.

Bishop, Robert J. "Fiendish New QUBIC Program", 73 Magazine, No. 209, Pg 78 (Feb 1978).
An attempt at producing an improved version of the original Qubic program.

Rosner, Richard "Daddy, Is It The PET?", ROM ±, No. 9, pg 26 (Mar/April 1978)
Description of many features and operations of the PET, including many "how to"
instructions.

Bishop, Robert J. "LOGAN - A Logic Circuit Analysis Program", Interface Age 2, No. 6,
pg 128 (May 1977). An Apple I BASIC program for analyzing networks of logic gates.

Bishop, Robert J. "Apple Star Trek", Interface Age 2, No. 6, pg 132 (May 1977).
Star Trek written in Apple I BASIC.

Chamberlin, Hal "Microcomputer Input/Output", Popular Electronics J_3, No. 5, pg 86 (May 1978).
Comments on the KIM's memory-mapped 1/0 system.

Peoples Computers £, No. 6 (May/June 1978)
Johnson, Ralph "Letters". The University of California at San Diego plans a Pascal

system for the 6502.
Cole, Phyllis "Apple II". A review of this 6502 based micro.
Voros, Todd L. "Sketchcode". A technique to minimize errors and simplify the process

of debugging. Listed in 6502 assembly code.
Offen, Dave "Kaleidoscope". A continuously running graphics program for the PET.
Hofheintz, M. C. "Tiny GRAPHICS". A short graphics program for the PET.

Gordon, H. T. "Editha", DDJ 3.» Issue 5, No. 25, Pg 34 (May 1978). A revision of the
Fylstra KIM-1 Editor program "SWEETS" published in BYTE.

Tullock, Michael "PET Files", Personal Computing 2, No. 5, pg 20 (May 1978). Things your
user's manual never told you about PET. How to use files.

6:37

348.

349.

350.

351.

352.

353-

354.

355.

356.

357-

358.

359.

O'Reilly, Francis J. "Instruction Search", Byte 3, No. 5, pg 153 (May 1978). Discussion
of 6502 op code 27 and the search for other as yet undefined instructions.

Carpenter, Charles R. "Tiny BASIC Shortcuts", Kilobaud, Issue 18, pg 42 (June 1978)'.
Suggests methods to expand the capabilities of Ton Pittman's Tiny BASIC for the 6502.

O'Haver, T. C. "More Music for the 6502", Byte 3, No. 6, pg 140 (June 1978). A music
composition and generation program.

O'Haver, T. C. "Audio Processing with a Microcomputer", Byte 3.> No. 6, pg 166 (June 1978).
Adding a virtual tape loop. Uses a 6502 processor.

Eaton, John "Low Cost Keyboard - II", 73 Magazine, No 213, Pg 100 (June 1978). Part II
of an article on the low-cost keyboard. Software is designed around the 6502.

Swindle, David "A Sensible Expansion: Atwood Memory for your KIM", Kilobaud, Issue 19,
pg 60 (July 1978). Description of a low cost method to add memory to KIM.

MICRO, Issue 4 (April/lty 1978)
Carpenter, C. R. "Variables Chart". Chart to layout and keep track of string and

numerical variables for Apple II Applesoft BASIC.
Floto, Charles "The PET Vet Examines Some BASIC Idiosyncrasies". Includes suggestions

and modifications for a Mailing List Program by Richard Rosner.
DeJong, Marvin L. "A Complete Morse Code Send/Receive Program for the KIM-1". Converts

ASCII from a keyboard to a Morse code digital signal and also converts a Morse code
digital signal to an ASCII code for display on a video system.

O'Brien "PET Software from Commodore". New selected Application notes from Commodore.
Floto, Charles "Early PET-Compatible Products". A review of several new accessories

for the PET.
Rowe, Mike "The MICRO Software Catalog". A continuing catalog of software available

for 6502 based systems.
Carpenter, C. R. "Apple II Printing Update". Updated information and modifications of

the system described previously in MICRO No. 3-
Chamberlin, Hal "Standard 6502 Assembly Syntax?". A plea for standardization.
Rowe, Mike "A Worm in the Apple". Discussion of some problems encountered in inter

facing the Apple to other devices such as the 6820 PIA.
Jenkins, Gerald C. "A KIM Beeper". A short blast or two of audio for load errors,

end-of-line, etc.
Auricchio, Rick "An Apple II Programmer's Guide". Some of the previously undisclosed

details of the Apple Monitor.

O'Connor, Clint "Book Review: Programming a Microcomputer: 6502", Kilobaud, Issue 20,
pg 8 (August 1978). A very favorable review of Caxton C. Foster's book.

Grossman, Rick "KIM Plus Chess Equals Microchess", Kilobaud, Issue 20, pg 74 (August 1978).
A challenging game of Chess can be played in KIM's. 1K of memroy using MicroChess by
Peter Jennings.

Palenik, Les "FINANC - A Home/Small-Business Financial Package", Kilobaud, Issue 20, pg 84
(August 1978). Programs include Calculations on investments, Depreciation, Loans, etc.

Braun, Ludwig "Commodore PET", Creative Computing 1, No. 4, pg 24 (July/August 1978)

Creative Computing 1, No. 4 (July/August 1978).
Braun, Ludwig "Commodore Pet". An equipment profile which stresses the value of the

PET as a teaching machine.
North, Steve "Apple II Computer". An equipment profile points out that the Apple is

not a machine for the classroom or for the S-100 hardware buff but is one of the
most versatile micros on the market.

Dawkins, Gary D. "High-Resolution Graphics for the Apple II". Allows user to draw a
shape in high-resolution graphics mode from the keyboard.

Ahl, David H. "Atari Video Computer System". An equipment profile of a 6505 based
programmable game system.

6:38

360. MICRO, Issue 5 (June/July 1978)
Covitz, Frank H. "Life for your PET". LIFE written in machine language for the PET.
Rockwell International ""Rockwell's New R6500/1". The 6500/1 is a single chip NMOS

microcomputer, 1 or 2 MHz, fully compatible with the 6500 family.
De Jong, Marvin L. "6502 Interfacing for Beginners: Address Decoding I". The first

installment in a continuing series.
Rowe, Mike "Half a Worm in the Apple". More on the controversy on interfacing the

Apple to PIA's. See also EDN May 20, 1978.
Sander-Cederlof, Bob "A Slow List for Apple BASIC". Program slows down the list

process so it can be more easily reviewed.
Rowe, Mike "The Micro Software Catalog: II". The second part of this continuing

series.
Synertek Inc. "Synertek's VIM-1". A good description of the many features of the

6502 based VIM-1. Similar to and compatible with KIM-1 with some new features.
Suitor, Richard F. "Applayer Music Interpreter". A music interpreter written in

6502 assembly language for the Apple, but can be used on other 6502 systems.
Dial, William "6502 Bibliography - Part IV". The fourth part of the continuing

bibliography of the 6502 literature (of which this is the fifth parti).
Williams, J. C. "A Block Hex Dump and Character Map Utility Program for the KIM-1".

A fully relocatable utility program which will dump a specified block of memory
from a KIM to a terminal in several formats.

Rockwell International "Rockwell's AIM is Pretty Good". Rockwell's AIM 65 is an
assembled versatile microcomputer system on one board plus keyboard. It has a
20-character display and a 20-character thermal printer, l(K ROM monitor, 1K RAM
expandable on board to l(K. Application and Expansion connectors are fully KIM-1
compatible. TTY and Audio Cassette, DEBUG/MONITOR/ ROM or EPROM on board up to
16K. 8k BASIC will be available in ROM.

Carpenter, Chuck "Apple II Accessories and Software". Items reviewed include a
renumber and append program, a serial interface board, a MODEM, Applesoft II,
and the "APPLE II BASIC Programming Manual.

McCann, Michael J. "A BASIC 6502 Disassembler for Apple and PET". Accepts machine
language -object code- and produces a symbolic representation that resembles an
assembly listing. Originally written in Commodore BASIC, it will work with
Applesoft BASIC as well.

PROGRAMMING A MICRO-COMPUTER: 6502
by Caxton C. Foster

(Reviewed by James R. Witt, Jr.)

For those of you in the computing world who have
recently purchased or constructed a microcompu
ter based on the 6502 microprocessor (the KIM-1
fits this description) and can't put it to rea
sonably practical use, then perhaps your head
aches are over! Programming a Micro-Computer:
6502 by Caxton C. Foster may be exactly what
you need to halt your frustrations. Foster pre
sents the reader with a combination of reference
manual for programming and an introduction to
6502 systems, specifically using the KIM-1 as a
model.

The motivation behind Foster's work is practi
cality. Right from the beginning of the first
chapter a hypothetical situation is introduced,
circumstances that one might face in the course
of an average day, and the microcomputer is sug
gested as a solution. Initially, a simple prob
lem is introduced, a problem one would not ex
pect a computer to solve due to its simplicity.
Yet, this enables the reader to grasp the basic
operation of running an uncluttered program suc
cessfully. Possible reasons as to why a certain
program fails are provided to lessen confusion.

With successful completion of one program, the
author wastes no time moving on to new situa
tions. This may seem somewhat fast and confus
ing to those who greet micros as a totally new
experience. Yet the situations do become more
interesting and more challenging to solve by
computer software. Such programs include:

"Keybounce", "A Combination Lock", and "Digital
Clock" among others. Several of these programs
are completely legitimate and fully operable.

Ad noted before, Foster moves at a swift pace.
At certain points, various instructions and
KIM-1 anatomy are condensed into a mere page or
two. Basic understanding of digital electronics
is assumed often and may be required before
fully digesting some of this material. These
two minor weaknesses may tend to boggle the mind
of the newcomer and hinder his comprehension of
the purpose ' programming and its make-up.
Suggestions: For those who are newcomers to the
"sport" of computing and digital electronics,
you may want to consider some other preliminary
instructions BEFORE undertaking this book. If
you have some sense of digital, but little know
ledge of micros, you should tackle it, but
should make notes of important items the first
time through each chapter, and then reread the
chapter to pull the odds and ends together. If
you have written simple programs but have an
appetite for more complex proglem-solving, then
Programing A Micro-Computer: 6502 will be a
definite aid and resource in satisfying your
hunger.

Programing A Micro-Coaputer: 6502, by Caxton
C. Foster, published by Addison-Wesley, 1978.

SUBSCRIPTION AND RENEWAL INFORMATION

If you are a subscriber to MICRO, then the code
following your name on the mailing label Is the
number of the last Issue your current subscrip
tion covers. If your code is 06, then this is
your last issue. MICRO will NOT send out
renewal notices. So, if your number is coming
up, get your subscription renewal in soon, and,
please check your label for correct address and
notify us of any corrections or changes.
MICRO is currently published bi-monthly. The
first issue was OCT/NOV 1977. The single copy
price is $1.50. Subscriptions are $6.00 for six
issues in the USA. Six issue subscriptions to
other countries are listed below.

[Payment must be in US $.]

Surface: Canada/Mexico $7.00
All other countries $8.00

Air Mail: Europe $14.00
South America $14.00

Central America $12.00
All other countries $16.00

Issues #1, 2, 3, 4, and 5 are available while
the supply lasts. The price is $1.50 per copy
- USA, Canada or -Mexico. Other countries add
$.50 per copy surface or $1.25 per copy air
mail.

Name:
Addr:

Zip:
City:
State:
Country:
Amount: $ Start MICRO #:
Back Issues:

Your name and address will be made available to
legitimate dealers, suppliers, and other 6502
interests so that you may be kept informed of
new products, current developments, and so forth
- unless you specify that you do not wish your
name released to these outside sources.

Send payment to:
MICRO, P.O. Box 3, S. Chelmsford, MA 01824, USA

READER FEEDBACK

With this sixth issue of MICRO, we come to the
end of MICRO’S first year. We are quite pleased
with the growth of MICRO, with the support we
have received from authors and advertisers, and
with the generally positive feedback from our
readers. While it is always nice to read "love
letters", we would like to get some specific
information about you and your interests in the
6502 world. Please take a few minutes to answer
the followirig questions. Your answers will very
definitely effect the future course of MICRO.

1. Please describe your current 6502 based
equipment in detail: type, amount of memory, and
so forth:

2. Describe products you would like to purchase
in the next year, whether or not they currently
exist, and what you would consider a reasonable
price:

3. Describe the uses you have or foresee for
your 6502 based equipment:

4. What kind of articles do you want to see in
MICRO:

5. Assuming the size stayed the same, would you
like to see MICRO published monthly?

6. The current printing format of MICRO - the
heayy stock and three hole punching - costs
more than a standard magazine format. It was
designed so that readers could take the journal
apart and save article of interest in notebooks.
We will continue this format if enough readers
feel strongly about it. Please circle one:
Keep Format
or Else!

Prefer
Current
Format.

Don't
Really
Care.

Prefer
Normal
Magazine
Format.

7. Please rate your skill level in micros:

Hardware: Beginner Intermediate Expert
Software: Beginner Intermediate Expert
8. What was your favorite MICRO article?

Thank you for taking the time. Send this sheet
to:

MICRO, P.O. Box 3, S. Chelmsford, MA 01824

6:40

PET COMPOSITE VIDEO OUTPUT
Cal E. Merritt

R. 1, 4 Richfield Lane
Danville, IN 46122

I used one of the existing PET 5 volt sources.
The easiest way to steal the video and drives is
to carefully scrape clean the foils next to the
monitor plug and tack solder a twisted pair to
each signal and to the closest ground buss.
Other variations would work equally well.
To avoid metal shavings and such falling on the
main board, I removed the back cover from the
monitor (Power OFF) and mounted a 6NC jack two
inches to the right of the brightness control

The circuit is very simple and oan be put to
gether with a wire wrap tool In a few mlnutea.

Video monitors seem very tolerant and the two
units I have used work fine. The only problem
encountered was in attempting to do all white
screen or very dense graphics which caused sync
tear in one of the monitors. Normal or dense
listings worked well.

OUTPUT WAVEFORM

and fed it with a twisted pair. I mounted the
board under one of the bolts that hold the mon
itor to the main chassis and attached the drive
twisted pairs to the existing ones for the mon
itor .
This circuit provides composite video output
from the PET. I have used the output to drive
two different video monitors with good success.

All three monitors I tried worked with this vid
eo output. The appearance of the video will be
a function of the quality of the monitor. Some
of the scrapped out commercial units available
with the 10MHz and more bandwidths look excel
lent with the PET video. I have had a number of
people comment that my 12" commercial monitor
looks better than the built-in unit. The add-on
does not alter the existing PET display in any
way.

TOMER FROM THE PET

Karl E. Quosig
2038 Hartnell Street
Union City, CA 94587

It ia by now well known that the PET has no
aource of power for uae outside of itaelf. The
only aource available ia at the aecond Cassette
Interface. This +5 VDC line will not aource
very much current; in fact, it will not even run
a aecond caaaette recorder. Alao, all the +5
VDC regulatora inaide the PET are already run
ning quite warm. If you want to experiment with
the PET, say with the Parallel Uaer Port (Moa
Technology 6522 VIA), then where do you get the
power without a complicated power aupply inter
face? The anawer ia simple. I found the fol
lowing inside the PET. One, the bridge recti
fier is good for 3 Amperes. Two, the PET draws
1.5 Amperea worst caae loadv- Conclusion: it
should be posaible to get 1 Ampere out of the
PET without straining a thing.
To do thia, all we need to do ia run a line from
the + (poaitive) side of the PET'a filter capac
itor and make it available at the rear of the
PET (I put a teat lead jack between the Parallel
and IEEE Porta). Thia ia -*-8 VDC Unregulated and
by attaching a 3-point Regulator (aee diagram
below), aay at our project board, we have plenty
of power for all aorta of home projecta. As an
example, I brought all of the Parallel User Port
pinouts down a 24" -ribbon cable along with the
-*-8 VDC line to a chassis which haa the -*-5 VDC
regulator and other circuitry, and terminated
thia on a homebrew mother board compriaed of

22-pin edgecard connectors. I can now experi
ment with things auch as noise malcera, joy
sticks, etc. and have plenty of power for them.
I believe this should be of great benefit for
those of you who like to mesa around with the
hardware. Warning #1: If you are going to
drill a hole in the PET aa I did, disconnect all
connectora (very, very gently) to the PET'S Main
Board and remove it before going to work. Clean
inaide thoroughly before re-inatallation.
Warning #2: In your projecta, do not connect
inductive loada directly to any output of the
PET. Inductive loads must be fully buffered.

_ ♦8<<JNRE<3

21,000 u f
t5v r --

(IN PET)

_ COM

r

bcm
Of
PC T

v v

* 5 <REG) .

IA M AX

3 0 0 0 u ? 2 3 p F

I 5 v " 15 w —

COM .

r

6:42

commodore __ Radio Shack

PET TRS-BO
EITHER WAY... We’ve got software for you!
You can find out what our customers already know—Personal
Software consistently offers great software products. Check out the
programs below—they each represent many man-months o f expert
programming effort. We’re sure you 'll be pleased with the results.
6502 ASSEMBLER IN BASIC by Dan Fylttra for 8K PETs: Accepts all
standard 6502 instruction mnemonics, pseudo-ops and addressing
modes. Evaluates binary, octal, hex, decimal, and character
constants, symbols and expressions. Assembles object programs
anywhere in memory. Includes one and two pass versions of the
assembler, text editor and disassembler, w ith a 30 page manual and
PET machine language programming h in ts $24.95
MICROCHESS 1.5 by Peter Jennlng* for 4K Level I and II TRS-80s: In
Z-80 machine language, easily-loaded from cassette using the
CLOAO command (TBUG is not needed). Uses standard algebraic
chess notation to describe moves, and checks every move for legality.
Handles castling and en passant captures. You can play white or
black, set up and play from special board situations, or even watch the
computer play against itself! With 3 levels of chess p la y___$19.95
BRIDGE CHALLENGER by George Duitman for 8K PETs and 16K
Level II TRS-80s: You and the dummy play four person Contract
Bridge against the computer. The computer w ill deal hands at random
or according to your criterion for high card points. You can review
tricks, swap sides or replay hands when the cards are known. No
longer do you need four people to p lay !................................... $14.95
ORDERS: Check, money order or VISA/Uaster Charge accepted;
programs and cassettes guaranteed. Our catalog describes many
other great software products, including an ASTROLOGY program, a
FOOTBALL game, a GRAPHICS u tility package and many others. For
your free copy, send a letter giving your PET or T RS-80 serial number,
memory size, and your most wanted software product.

Personal Software™ H
P.O. Box 136-SSf, Cambridge, MA 02138

VISA/MC telephone orders welcome at (617) 783-0694

“ PET SCHEMATICS “I
Another First From “PET-SHACK”.

For only $34.95 you get:
24” x 30” schematic of the CPU board, plus oversized
schematics of the Video Monitor and Tape Recorder,
plus complete Parts layout—all accurately and
painstakingly drawn to the minutest detail.

PET ROM ROUTINES
Another Breakthrough From

“PET-SHACK”
For only $19.95 you get:
Complete Assembly listings of all 7 ROMs, plus iden
tified subroutine entry points; Video Monitor,
Keyboard routine, Tape Record and Playback routine,
Real Time Clock, etc.
To entice you we are also including our own Machine
Language Monitor program for your PET using the key
board and video display.
You can have the Monitor program on cassette for only
$9.95 extra. N q w £ V | S A
Send check or money order

TO: PCT-SHftCK Software House P37
Marketing and Research Co.
P. O. Box 966
Mishawaka, IN 46544

H CM lA H CMOs i—< Os iA CM CM lA CM lA i-H <rCO ••CM CM 0) lA lA NO NO NO NO
o
CD

KUo

au

toto<

C“a)COu3O
(4o
oic•H CL a.0000a>i-HCD
„
003CO
COGO
1 o oLbJ 4-> 4->LbJ o oLbJ pH H* Hi-* Li. jjjL.
CO CO <0- Q) a) a>h- p-l £.UJ u2C co 4-> (has£. 4-> X
03 CJ 0)0XJ—

KN i-H
i-H

iX

Q_Q_

COCDUoc>s
COo
•H*oI-* <

8? CJ S00 ►—*a> in 00»—i c 4->♦H CD 0) QU. u 5Q) o *oCD E 'O o4-> o o uoGO <S v5 E6 a. N1 00 o a> 4->CO 00 a> o i-H •pHcr 0) c >»— i-H •H E •pH I— OE o 4-> UJ oa> u o CD O u 00 O E£. CD 4-> X 4-> u. a+j •4-> 0) I— O UJ o c E O h io i-H i-H Q) 0) O —• 3• CD 4-> Ll. ti-H O U. O ̂05 —1 a> 0) CD U 1 >■ c^ H > 05 > 01 XCD 1— CD CD<D a> 4-» - UJ Q) U U1-2 Hr H“ H U.O tC i—* OL.Li tn CL CD LjJ U £ CD J? >s U>sCD u.
o X £ O —i £. UJ u0) CD a> o 0)0 >— or U O U. O£. £ CD t-H»— »— V— 51 UJ

i-H lACM CM
i-H CM CM CM CM u0)E♦pHU »—opH 4-> CD1 •pHX c (0

£ CD

*oc(0
a

uo
u<D
<D00 C 0) C CD CD 0)U
CM •a nm
nO ^ h0)
CJ CDK-* £.O< -H
C D X

X

f i
£

CD X
< Q)<

£
< X

07 4->
O
CP U

U. o 4->
t j u . o
0) a

4-> (h 4->
c 0) 3

•-* 00 O
•o -Q

> - c E C O
I— CD 0) c 0) H-
1— -Q 0) CO TD

it !\ 00 COO •H o>
1— D •pH

•H 0) CO
CM 0) u £ . o• o • 4-> U 4J

sa3 c r i A n •H 0)
NO OOX s

<t- CD
& .

O •
O 0) 0) 0) (h UJ

•-H CD E UJ U.
C Jh Q^C O r-t
D> CD E O O P-* (H u

•H £ . •pH *pH CD £ CD
CO O c o x I— O X

£ «
UJ
Q_

o
Q-

>s(hO

•aa
a . o r

ouaCO
t coIt- 4->OXcn4-> *H 0) Q)

as <
•H4-> >> (h t-« © Q CL. CJ

a •oc «—l CJ CDl-H 0X t-*
a) o>.C -Q
O

£ T3 0)
“ I
-o ̂
3 a 0)09 Va mCOCO

0)Xoor
a> °
I -

oCM CJ
CD

>sCD
aa
o>♦ Co: I“>

;<s

o> cC -H•H > 4-> U £. CD
c t x

CDuo>ot*Q_
0)>

♦H X
0) COo<0)
■Oc
X
0)■OO O

CJ c

a»r8
. 00!<s
0) -j' 4->
0) c

H *Ha >
E (-> O CD

o X

03c•H
c

X(h 0) • a o 0)0) "D CQ •—* CO
X M►—* Q)^ CJ

EON CD KN (h ••
Q U AOUa.

x c
(h0)4->aCDUCD
■O
cCO CO
a coe-H

CJ
o •
o ni-H

CQ

<S)

u
<2
■O u •H CDaco
ga•Hcjuj O' u 3 0) jO -O
£ 2

u0)
CQhO

■o<DU
or“H
oCJ
■a u
c oCD -U

■o-oC (h CO CD £. C CJ 2 -H
o c r

CQ

■OCD
o

■O
cCD
J*
oCO

CL. CD X 0) <c
c

DO(4jO3in
cj u i-* o
L O 4->
C -H
CQ =3 COU 0) *
Q H -u <D•U -O C (-<►—I CO
0) u*—H -H Q.QT Q.<

©
(3
©

r̂. CM lA GO lA On »—t lACM kn CM CM CM »—* rM
LA LA lA LA LA NO VO VO

CQ

5

-U (430>.C•O-P
00 < c

a>i-i N CL̂ J
5-SXC JI
5.X
C7«0•H U 3t co
*ox9

Q.a
co>
•S'S
•o3

•o0)
u 0) 0)

OV4-> CD C 3 <D CT CL C (4

0) • ccr

u CJ

£

i

a
*
a> u £ a)

*oa>

0)ir
aa
j?

oQ.
■ 8. -

00Q) U•-» a>.a 4->CD c
. u * CDCJ
c •

•h a :4->c ••H CJ U Q_

8.

-is
5*T3 o a) cr £

(4CD U > CD CJ

0.0
5-

CD*o
OiU
C 0)•H 4->4-> C
•5 8.U U Q_ CD CJ

ao
CL<

0)
Q.
5-
4-> ̂

E a>(h 1C
O -H

<D■o

Ua>
E
E
CDU O
O -H

Q. UUI—* *H •-* tt I oQ> <C i-H
S - . 3ac
5

0)

o
KH
CO
c

H CD
CL

£
a> u .

—\ o

a>
£

a n
a u

^ a>
4-> ■o

c
u a>
o o

•pH U. 1

e a>
u

4-> a>
(-« X co *o
o o •H C

X O i
- ' J ?

CP 0) X
0 . 0

U . -H —i o
H i CO CO

£ <

*ocCO
Q.
(hO
U0)
a>n c co c
CD <D o>CJ

•h o o x
CM •O OiA
vO h0)
O CD ■“» £
CO u
C *H
CQ X

0) X \—
5 (-4CD Q- X

4->u.

T
R a CQ<.

u A
0)4J ■O
a> c a>
u CD E
a 0) a>
u 0) £a> (-* a> o . H- C

4-> o •pH
5 - > .

o o .
C 4-> u u 03 CO o»-4 .pH O Q> CD (h CD r .3 CO 4-> u ~o CO ‘H 03u CO CO C O CD X *““* •pH•pH a> a> o u U UJ COCO • o a >- CO CD

i 1"
o u Li. 4J • •C 00

5 - ^
CO X r-j

■O o
Q£ (h KH a> •-* X KH 4_>y „ ay cd ♦ Q} Q-

o C £ u a>
c o a> s •H O a> *o 0) J3_J -H h £ a - H r-t c H o
Q. c r 0 . 0 (OX o . < n r r :
Q-

5 -
a o .

<c CO c c

APPLE INTEGER BASIC SUBROUTINE PACK AND LOAD

Richard F. Suitor
166 Tremont Street
Newton, MA 02158

[Although this article is Copyrighted by The
COMPUTERIST, Inc., at the authors request
premission is hereby given to use the subroutine
and to distribute it as part of other programs.]
The first issue of CONTACT, the Apple Newslet
ter, gave a suggestion for loading assembly
language routines with a BASIC program. Simply
summarized, one drops the pointer of the BASIC
beginning below the assembly language portion,
adds a BASIC instruction that will restore the
pointer and SAVEs. The procedure is simple and
effective but has two limitations. First, it is
inconvenient if BASIC and the routines are wide
ly separated (and is very tricky if the routines
start at $800, just above the display portion of
memory). Second, a program so saved cannot be
used with another HIMEM, and is thus inconven
ient to share or to submit to a software
exchange.

The subroutine presented here avoids these diff
iculties at the expense of the effort to imple
ment it. It is completely position independent;
it may be moved from place to place in core with
the monitor move - command and used at the new
location without modification. It makes exten
sive use of SWEET16, the 16 bit interpreter sup
plied as part of the Apple Monitor ROM.
To use the routine from Apple Integer BASIC,
CALL MKUP, where MKUP is 128 (decimal) plus the
first address of the routine. The prompt shown
is "C". Respond with the hex limits of the rou
tine to be stored, as BBBB.EEEE (BBBB is the be
ginning address, EEEE is the ending; the same
format that the monitor uses). Several groups
may be specified on one line separated by spaces
or several lines. Type S after the last group
to complete the pack and return to BASIC. The
program can now be saved.

To load, enter BASIC and LOAD. When complete,
RUN. The first RUN will move all routines back
to their original location and return control to
BASIC. It will not RUN the program; subsequent
RUNs will.
A LIST of the program after calling MKUP and be
fore the first RUN will show one BASIC statement
(which initiates the restoration process) and
gibberish. If this is done, RESET followed by
CTRL C will return control to BASIC.

WARNING #1: The routine must be placed in core
where it will not overwrite itself during the
Pack. The start of the routine must be above
HIMEM (e.g. in the high resolution display re
gion) or $17A 4*N W below the start of the
BASIC program, where N is the number of routines
stored and W is the total number of words in all
of these routines. Also, those routines that
are highest in memory should be packed first to
avoid overwriting during pack or restore. Oth
erwise it is not necessary to worry about over
writing during the restore process; only $1A
words just below the BASIC program are used.
WARNING #2: Do not attempt to edit the program
after calling MKUP. If editing is necessary,
RUN once to unpack, then edit and call MKUP
again.

The routine works as follows. It first packs
the restore routine just below the BASIC pro
gram. It then packs other routines as request
ed, with first address and number of bytes
(words). When S is given, it packs itself with
the information to restore LOMEM and the begin
ning of the BASIC program. The first $46 words
of the routine form a BASIC statement which will
initiate the restoration process when RUN is
typed.

If a particular HIMEM is needed by the program
(e.g. for high resolution programs) it must be
entered before LOADing. The LOMEM will be reset
by the restoration process to the value it had
when MKUP was called.

I do not have a SWEET16 assembler, hence all of
those op codes are listed as tables of data. In
the listing, comments indicate where constants
and relative displacements are differences be
tween labels in the routine.
Some convenient load and entry points are:

BASO (load) MKUP (entry)
hex hex decimal

800 880 2176
A90 B10 2832
104C 10CC 4300
2050 20D0 8400
305*1 30D4 12500

Editor's Note: While we encourage the use and
distribution of this subroutine, we do request
that proper credit be given. Please place the
following notice on any copies that you make:
"This PACK & LOAD Subroutine was written by:
Richard F. Suitor and published in MICRO #6."

6:45

08 0 0
08 0':
08 Ob
08 09
08 I'm?
08 OE
081 1
081 4
0816
0819
081C
08 IE
i’i 8 £ 1
0824
0826
0829
082C
08 EE
0831
0834
0836
0839
083C
083E
0841
0844

0846
0847
0849
084B
084D
084F
0851
0852
0854

46 0 0 0 0
64PI 01
0 065B7
4C 0 0 03
64B2
020 065
382E3F
B£Cfi
CC.7212
B74600
72 IF
B20 001
0364B3
03 0 0
6538£E
3FB2CB
0072
1£38£E
3FB£Cfi
007£
12B746
007215
B£00
017£03
4DB101
0 0 01

0010 : IMT BRSIC SUBI
00£0 s CRLL BR:S0+128
0030 RCCL .BL 0000
0040 BSOL .BL 0002
0050 TRBL .BL 0004
0 06 0 TBCL .BL 0006
0 07 0 HI MS .DL 0008
0 08 0 LMRT .DL 00 OR
0 09 0 BPRG .DL OOOC
01 0 0 FRML .DL 0 0 OE
Oil 0 NEYT .DL 0010
01 £ 0 BPR2 .DL 0012
013 0 PTLL .DL 0014
014 0 XTfiB .DL 0016
015 0 SKPL • DL 0018
016 0 MODE .DL 0 031
0170 YSfiV .DL 0 034
018 0 PRMP .DL 0 0:33
019 0 LMML .DL 004ft
0£00 HI ML .DL 004C
0£1 0 LMWL .DL OOCC
02 £ 0 BBSL .DL OOCft
023 0 JSRL .DL OOCE
024 0 BSCS .DL E 003
0250 BUFF .DL 0200
0260 GTNM .DL FFR7
027 0 PBL2 .DL F94ft
0280 CDIJT .DL FDED
0290 BELL .DL FF3ft
0300 GTLH .DL FD67
031 0 S W16 .DL F689
032 0 : BHSIC INST. Tl
0330 BftS 0 .HS 4600 01

*. LORD

0340

037 0

03^0

0400

041 0

BRSIC

, HS 0065B74C000364B£

,HS 0£006538£E3FB2CR

.HS 007212B74600721F

. HS ii£ 0 0 01 0364B3 03 00

. HS 65382E3FB2CB 0 07£

.HS 1£38£E3FB£CR0072

.HS 1£B746007£15B2 00

. HS 017£034DB1010001

0420 : INIT . RESTORE OP
D8 0430 PTBK CLB
fi£01 0440 LDX 01
B5Cfi 0450 PTO£ LDfi ♦BBSL»X
9502 0460 STfi ♦BS0L»X
B54C 0470 LDfi ♦HIMLj X
9508 0480 STfi ♦HIMS»X
Cfi 0490 DEX
10F5 0500 BPL PT02
2089F6 051 0 JSR SU16

SYMBOL TfiBLE
fiCCL 0000
BSOL 0002
TfiBL 0004
TBCL 0006
HIMS 0008
LMRT OOOfi
BPRG OOOC
FRML 000E
NBYT 001 0
BPR2 0012
PTLL 0014
XTfiB 0016
SKPL 0018
MODE 0031
YSfiV 0034
PRMP 0033
LMML 0 04fi
HI ML 0 04C.
LMWL 0 OCC
BBSL OOCfi
JSRL OOCE
BSCS E 003
BUFF 0200
GTMM FFfi7
PBL2 F94fi
COUT FDED
BELL FF3fi
GTLH FD67
SW16 F689
BfiSO 0800
PTBK 0846
PT 02 0849
PT 04 0870
MKUP 0880
MK£1 0882
MK££ 08B3
MK01 08B4
MK 06 08CFI
MERR 08D1
MK 05 08DE
MK 02 08E 1
MV51 08EB
MV52 08F5
SM0£ 0909
SM03 09 OB
MK 09 09 OC
MK11 091 fi
MK1£ 091B
MK 1 0 0932
SM04 0946
PTLP 0952
PLPO 0955
PLP1 095ft
PLP2 0966
ST16 096fi

6:46

*

0857 105201 0520 .HS 105201 PLTP—BftSO085ft 185701 0530 .HS 185701 PLTP+5—BftSO085D ftl3767 0540 .HS ftl 37673567360860 356736
0863 24B636 0550 • HS 24B636
0866 lftllOO 0560 .HS lftllOO ST16+1-PLP10869 Bft3ft 0570 .HS Bft3ft086B 6733 0580 .HS 6733086D 00 0590 .HS 00086E ft201 0600 LDX 01

0610 5 SET LDMEM *, BftS IC PRDG STftRT0870 B50ft 0620 PT04 LDft ♦LMRTjX0872 954ft 0630 STft ♦LMML» X0874 95CC 0640 STft ♦LMWL» X0876 B50C 0650 LDft ♦BPRG»X0878 95Cft 0660 STft ♦BBSL»X087ft Cft 0670 DEX087B 10F3 0680 BPL PT04087D 6C1400 0690 JMP <:p tl l> TD RESTDRE LP
0700 :SUBR TD SET UP PftCK0880 ft201 0710 MKUP LDX 010882 B54ft 0720 MK21 LDft ♦LMML»X0884 950ft 0730 STft ♦LMRT >X

0886 B5Cft 0740 LDft ♦BBSL» X0888 9512 0750 STfi ♦BPR2» X088ft 95 OC 0760 STfi ♦BPRG»X088C B5CE 0770 LDfi ♦JSRL» X088E 9504 0780 STfi ♦TftBL» X0890 B54C 0790 LDfi ♦HIML» X0892 9508 0800 STfi ♦HIMS»X0894 Cft 0810 DEX
0895 l.OEB 0820 BPL MK21

0830 :INIT 8, PftCK RESTDRE LP0897 2089F6 0840 JSR SW16089ft 24B939 0850 .HS 24B939089D 118000 0860 .HS 118000 MKUP-BftSO08ft0 22B131 0870 .HS 22B13108ft3 105201 0880 .HS 105201 PLTP-BftSO08ft6 R13218 0890 .HS ftl32181800 ST16-PTLP08ft9 1800
08RB ft833E3 0900 .HS fi833E308ftE 1C5000 0910 .HS 1C500008B1 0C42 0920 .HS 0C42 MV52-MK2208F3 00 0930 MK22 .HS 0008B4 ft9C0 0940 MK01 LDfi 0C0
08B6

0950 : GET LIMITS & PftCK PRDGS8533 0960 STft ♦PRMP08B8 R900 0970 LDft 008Bft 8531 0980 STft ♦MODE08BC 2067FD 0990 JSR GTLM08BF 8616 1000 STX ♦XTfiB08C1 ftOOO 1010 LDY 0008C3 B90002 1020 LDft BUFF > Y08C6 C9D3 1030 CMP 0D3 S08C8 F068 1 040 BEQ MK1008Cft 20ft7FF 1050 MK06 JSR GTMM08CD C9ft7 1060 CMP 0fi7 F (' . O08CF F010 1070 BEQ MK0208D1 98 1080 MERR TYft08D2 ftft 1 090 TftX08D3 204ftF9 1100 JSR PBL2 ERRDR IMDICftTDR08D6 ft95E 1110 LDfi /
08D8 20EDFD 1120 JSR cdut08DB 203ftFF 1130 JSR BELL08DE 18 1140 MK05 CLC08DF 90D3 1150 BCC MK0108E1 E631 1160 MK02 IMC ♦MODE08E3 20ft7FF 1170 JSR GTMM

1180 ! ftl 6 ft3 NDW HftVE 1ST s.ftS £
1190 s SET UP MDVE TD JUST BELOW
1200 s ftWD LDUER BBSL

08E6 2089F6 1210 JSR SU16
08E9 011E 1220 .HS 01 IE SM02-MV51
08EB 183C00 1230 MV51 .HS 183C0068326833
08EE 683268
08F1 33
08F2 B238E3 1240 .HS B238E3
08F5 839623 1250 MV52 .HS 839623D207FR
08F8 D207Fft
08FB 283318 1260 .HS 2833180800
08FE 0800
0900 889688 1270 .HS 8896889688968896
0903 968896
0906 8896
0908 OB 1280 .HS OB
0909 OCEO 1290 SM02 .HS OCEO MV51-SM03
09 OB 00 1300 SM03 .HS 00
09 OC C9EC 1310 MK09 CMP OEC F('S')
09 OE F 022 1320 BEQ MK10
091 0 C9C6 1330 CMP 0C6 F <CR>
0912 FOftO 1340 BEQ MK01
0914 C999 1350 CMP 99 BLftNK
0916 F003 1360 BEQ MK12
0918 D0B7 1370 BNE MERR
091ft C8 1380 MK 11 I NY
09 IB B90002 1390 MK12 LDft BUFF»Y
09 IE C416 1400 CPY ♦XTftB
0920 B092 1410 BCS MK01
0922 C9ftO 1420 CMP OftO BLftMK
0924 F0F4 1430 BEQ MK11
0926 C98D 1440 CMP 8D
0928 FOSft 1450 BEQ MK01
09£ft C9D3 1460 CMP 0D3 S
092C F004 1470 BEQ MK 1 0
092E C631 1480 DEC ♦MDDE
0930 F 098 1490 BEQ MK06 ftLUftYS

1500 : PftCK 1ST PftRT *< CLEftN UP
0932 2 089F6 1510 MK10 JSR SU16
0935 2132 1520 .HS 2132
0937 185201 1530 .HS 185201 PTLP-BftSO
093ft 083725 1540 .HS H83725772977
093D 772977
0940 2177 1550 .HS 2177
0942 2733 1560 .HS 2733
0944 OCftF 1570 .HS OCftF MV52-SM04
0946 6666 1580 SM04 .HS 6666
0948 00 1590 .HS 00
0949 ft50C 1600 LDft ♦BPR6
094B 85Cft 1610 STft ♦BBSL
094D ft50D 1620 LDft ♦BPR6+01
094F 85CB 1630 STft ♦BBSL+01
0951 60 1640 RTS

1650 :RESTDRE LDDP
0952 2089F6 1660 PTLP JSR SU16
0955 613361 1670 PLPO .HS 6133613800 6ET PDII
0958 3800
095ft 2089F6 1680 PLP1 JSR SU16
095D 4153F8 1690 .HS 4153F804FB
0960 04FB
0962 21D605 1700 .HS 21D605
0965 EF 1710 .HS EF PLP0-PLP2
0966 00 1720 PLP2 .HS 00
0967 4C03E0 1730 JMP BSC2
096ft 00 1740

1750
ST 16 .HS

.EN
00

6:M8

A PARTIAL LIST OF PET S C R A T C H P A D H E H G R Y
Gary A. Creighton

fi25 Orange Street. No r 43
Mew Haven, CT 06510

A function and a symbol defined:
DEF FN INDtLOC) * PEEK{LGC+!)»256+PEEK(LOC)

Which specifies an indirect address in the form:L0C+1= {Page)
»•* m u L 0 C “ (I t e m)Hi LuC) specifies contents of a memo r y location.

HC Q)
FN IMDM)
M(3>
M(5)
FN INDIA)

H C 1 0 - 8 9)
M[90-98)

M C 9 1)
H(93)
FM I N D (1 1 3)
FM I N D C t T 5)
FN INDM22)
FN I NDC T2*i)
F N 1H D { 1 2 6)
FN IND(130)
FN i ND(t 30)
FN IN D v 132)
FN INDt1 3>D
F N I N D { 1 3 6)
F ff 1 WDf 1 38)
FN IND(1HD)
FN 1 N D C 1 4 2)
F N I N D { 14 U)
FN IKDI1K6)
W(Hi 0 J
H(149)
FN HD<150)
FN I N D t 1 5 3)
rt{156)
FN INDM57)
H t 157-16 1)
Ht 163-165)
FN IM D f 164)
Ht 7 66-170)
Kf171-175)
M t 176-181)
HC 18 1)
Ml 1 8 4 - 1 8 9)
M (19?)

H C 1 9 4 - 2 1 7)

FN I N D U 0 1)
M (2 T 6 - 2 2 2 }
FN IND(224)
M(226>

JMP instruction
U3H jump location
Present I/O Device Number (suppress printout)
POE function store
Arguments of commands with range 0 to 65535
(PEEK, POKE, WAIT ,S1fS, GOTO, GOSUB, Line NumberrflAM check)
Input Buffer
Flags for MISMATCH, Distinguishing between similar
subroutines, etc.
Ignore Cade Value and do direct [between quotes, etc.)
(0 INPUT, 64 GET/GET*, 152 READ) Flag
Transfer Number pointer
Number pointer
Begin Basie Code pointer
B'-gin Variables pointer
Variable List pointer
End Variables pointer
Lowest. String Variables pointer
Highest String Variables pointer
First Free After Strings pointer
Present Line Number {if H£T3?)=255, no line number)
Line Number at BREAK
Continue Run painter (if M (1J) 1) = 0 , can't continue)
Line Number of Present DATA line
Next DATA pointer {for READ)
Next Data/Input After Last Comma pointer
Coded 1st Character of Last Variable
Cod f?d 2nd character of Last Variable
Variable pointer Call variables)
Variable pointer
Comparison Symbol Accumulator {<=>)
Pointer to FN pointer
Number Store/Work area (SQR)
JMP C FN 3ND(164))
Function Jump address
Number Store/Work area (Transc endenta 1 a (not EXP) i SQR)
Number Store/Work area {Tran scendenta1s & SQfl)
Main Number Store/Work area
Number Sign
Secondary Number Store/Work area
Length of things in Input Buffer Mt 10-69) or
Length of things in Output Number MC256-)...other
Subroutine: Point through code one at a time, RTS with
code value in accumulator and Carry FI eg Clear If
0 if end of line. Ignore Spaces, ASC{0-9}
Code Pointer
Number Store/Work area (RND)
Screen Memory flow location
Screen Column position

r1 IND(227>
M(2 3 1*)
M(£3BJ
H(239)
K(240)
Mt 24 1 >
H(242)
FN IN D(2 4 3)
H (2 * 5)
FN IND(2*t7)
H{ 251)
MC 256)
H(256-)

H(31 17-51 1)
HC 512-51**)
H{ 5 15)
H{ 516)
H(517-518)
HC 52 1 > or
H{ 59410)

H(523>
H (5 2 4 }
H(525)
M(526)
H(527-536)
FN IN D(5 37)
FM IND(539)
H (5 U 7 J

M(548)
H(549)
H(550)
H (5 5 n
K(553-577)
K(576-567)
Mt 588-597)
H(59fl-607
M(600)
H(610)
H(6l1>
H(612)
M(616)
H{ 6 3 ^ - 8 2 5)
H(826-1023)

I/O Option
Device I
Wraparound
Tape #1 or
Screen How
Load Into/

Mo t * Hamory (fro* or to) pointer
Quote flag (0 end quote)(1 begin quote)
Length of File naue after SAVE VERIPT etc.
File t

(0 read, 1 write, 2 write/EOT)
(0 keyboard, 1 tapefl, 2 tpae#2, jj screen)
flag (39 single line, 79 2nd of double line)
#2 Buffer pointer
(0 - 2 *1)
Verify from? Save into pointer

Insert Counter (INST)
Hinus sign or Space for Output Number
Output Number ASC Digits til a Hull (0) or
Tape Read Working Storage
Stack area
Tl clock
Only One Value per Keypush flag
SHIFT flag (0 no shift, 1 shift)
Tl Update Interrupt Counter
Bit Cancel Keys
Turns hits off under the following rules;
BIT KET PECIMftL t
0 RVS 25 4
1 253
2 space 251 More than one key
3 247
4 stop 239 may be pushed at once,
5 (none)
6 191 Decimal I is Binary
7 127 equivalent,

V E U I F m O A D flag (0 LOAD, 1 VERIFTf)

Run Buffer)

is

ST Status
(ey Pushed Counter (HOD 10}
RV5 flag (0 RVS off, 1 RVS on) or any key pushed)
Input Run Buffer (keys stored during a RUM
Interrupt Vector (normally at: Store Keypush
8BK instruction Vector (User loaded) in Input
Keyboard Input Code
(Stays equal to Input code til finger off key,
Hatches up one to one with H{5922&-59307) which
Keyboard Input Code to ASC Code Table)
Blink Cursor flag (if 0 (no key pushed))
Cursor Blink Duration counter (20 interrupts)

Value of Input Char, when Cursor moves on
no Cursor Breadcrumbs left behind
Page Array / single or double Line flags

of one of 10 filee
f of one of 10 files

one of 10 files
screen/input from keyboard flag

Screen
Insure
Screen
File #
Device
I/O option
Input from
Number of Open Flies
Device Number of Input Device (0 keyboard normally)
Device Number of Output Device (3 screen normally)
Tape Buffer Iten Counter
Tape #1 Buffer area
Tape #2 Buffer area

i a aasa's)'

