## NaERO'

The Magazine of the APPLE, KIM, PET and Other 6502 Systems

+ Apple II

KIM 1
no 8 Dec 78 - Jan 79 \$1.50
P.O. Box 687224 S.E. 16th Street Ames, lowa 50010

515/232-8187
DB/65
A complete hardware/software debug system for the Rockwell, Synertek, MOS/Technology 6500 microprocessor family.


## Features

Standard in-circuit emulator
Hardware breakpoints
Single step mode
Eight software breakpoints

* Real-time software breakpoints
* RS 232C or current loop terminals
* Symbolic disassembly of user program
* Serial/parallel load capability
* Program trace of instructions and registers
* Prom resident debugg monitor
* Software history of instruction addresses
* 2 K ram standard with sockets for additional 6 K if required
* Scope sync output
* User NMI and IRQ vectors supported
* Write protect
* User program may reside in high memory

IN THIS ISSUE .../NOTES.../MICROBES ..... 3
6502 Interfacing for Beginners: Buffering the Busses ..... 5
by Marvin L. De Jong
LIFE for your Apple ..... 11
by Richard F. Suitor
Computer-Determined Kinetic Parameters in Thermal Analysis ..... 15
by Dr. L. S. Reich
Continuous Motion Graphics or How to Fake a Joystick with the PET ..... 23
by Alan K. Christensen
Storage Scope Revisited ..... 29
by Joseph L. Powlette and Donald C. Jeffery
An Apple II Program Relocator31
by Rick Auricchio
SYM-1 Tape Directory ..... 35
by John Gieryic
Inside PET BASIC ..... 39
by Jim Butterfield
An Apple II Page 1 Map ..... 41
by M. R. Connolly Jr.6502 Bibliography - Part VII45
by William R. Dial
Advertiser's Index

| AB Computers | 26 | NEECO | IBC |
| :--- | ---: | :--- | ---: |
| COMPAS Microsystems | IFC | Newman Computer Exchange | 21 |
| Computer Components | 2 | Optimal Technology | 10 |
| The Computerist, Inc. | 10 | Personal Software | 22 |
| Computerland | 43 | Pet Shack Software House | 27 |
| Computer Shop | 44 | Plainsman Microsystems | 37 |
| Connecticut microComputer | 20 | Qix Systems | 28 |
| Digital Dynamics | 34 | Softside Software | 19 |
| Enclosure Group | BC | Speakeasy Software Ltd. | 8 |
| Forethought Products | 28 | Synertek Systems Corp. | 38 |
| H. Geller Computer Systems | 48 | The Think Tank | 9 |

MICRO is published bi-monthly by:
The COMPUTERIST, Inc.,
P.O. Box 3, S. Chelmsford, MA 01824

Controlled Circulation postage paid at:
Chelmsford, MA 01824.
Publication Number: COTR 395770.
Subscription in US: $\$ 6.0 \mathrm{C} / 6$ issues.
Entire contents copyright 1978 by:
The COMPUTERIST, Inc. ©
Please address all correspondence, subscriptions, and address changes to: MICRO
P.0. Box 3, S. Chelmsford, MA 01824
Editor/Publisher
Robert M. Tripp
Ass't Editor/Publisher
Gary W. Dozier
Business Manager
Donna M. Tripp
Administrative Assistant
Susan K. Lacombe

Circulation Manager Maggie Fisher
Distribution Eileen M. Enos

Micro-Systems Lab Robert J. Gaudet

Gofer
Fred Davis

# GS02 SYGIEM SPECIALS 

## SYSTEMS* <br>  Synertek VIM ${ }^{\text {s }} 26900$ • Microproducts Super KIM ${ }^{5} 39500$ <br> *Delivery on most systems is usually stock to 2 weeks. Call or write for specific information.

## 16K RAM CHIP SET FOR APPLE II

All chips tested and burned in. Chips are 200ns. and are guaranteed for 1 year. ONLY

## WORKSHOPS: Call for details.

KIM-2nd Saturday of the Month • PET-3rd Saturday of the Month
APPLE-4th Saturday of the Month

## CLASSES: Apple Topics

We offer a series of free classes on Apple II to aquaint owners with some of the unique features and capabilities of their system. Topics covered are Apple Sounds, Low Res. Graphics, Hi Res. Graphics, Disk Basics, and How to Use Your Reference Material. Sessions are held every Thursday Night at 7:00 p.m.

## SOFTWARE

We now have a complete software catalog. APPLE:
Appletalker*
Bomber*
space Maze
Apple-Lis'ner*
Talking Calculator
color Organ*
Las vegas Black Jack
microchess
dthello
Microproducts Assembler-Tape
Microproducts Assembier-Disk
ram Test
ROM Test
Appie Music
Ron Graff's Educational Programs
Softape Instant Library
is tapes plus softape membership!
ON DISK:
Inventory System
Text Editor
Mailing List
Mailing List
Memo Calendar
Electronic Index Card File
Best of Bishop*
( 6 programs on one disk)
Programs by Bob Bishop
PET:
Finance
Microchess
Bridge Challenge
Othello
Casino Pac 13 Cames
Lite
Star Wars
Star Trek
Galaxy Games
Off The Wall/Target Pong
Mortgage
Diet Planner /Biorythm
Basic BASIC
Pet System Monitor
Point \& Figure Stock Market Plot

WHY SHOULD YOU BUY FROM US?
Because we can help you solve your problems and answer your questions. We don't claim to know everything, but we try to help our customers to the full extent of our resources.

## COMPUTAR GOMPONENIS OF ORANGE COUNTY 6791 Westminster Ave., Westminster, CA 92683 714-898-8330 <br> Hours: Tues-Fri 11:00 AM to 8:00 PM-Sat 10:00 AM to 6:00 PM (Closed Sun, Mon) <br> Master Charge, Visa, B of A are accepted. No COD. Ailow 2 weeks for personal check to clear.

Add $\$ 1.50$ for handling and postage. For computer systems please add $\$ 10.00$ for shipping, handling and insurance. California residents add 6\% Sales Tax.

This is the last bi-monthly issue of MICRO. Starting with the February 1979 issue, number 9 , MICRO will be published monthly. The increase publication frequency is due to high volume and high quality of the articles being submitted for publication. Our backlog of good articles is growing too large. Also, with the addition of the Synertek SYM-1 and the Rockwell AIM 65, we anticipate a flood of new material to service these devices. The size and shape of MICRO will remain essentially unchanged: $81 / 2 \times 11$ format and 52 pages (or more) per issue. The subscription rate will remain the same: $\$ 1.00$ per issue. Subscriptions will be accepted for any period of six issues or more. Another plus of monthly publication is that there will be a shorter delay between receipt of material and publication. This will permit us to print current club notes, special activity notices, and so forth.

Continuing his tutorial on "6502 Interfacing for Beginners", Marvin L. De Jong this month presents "Buffering the Busses". Earlier sections discussed the logic of the Address, Data and Control Busses. This article goes into some of the necessary detail on actually using these in real systems.
In the June/July 1978 issue of MICRO, Dr. Frank Covitz presented "LIFE for your PET". Now all of the Apple owners get an equal opportunity to play "LIFE" with Richard F. Suitor's "LIFE for your Apple" (A suggested title of 'LIFE IN your Apple' was rejected as implying worms!). This program combines a BASIC program to setup the initial pattern with assembly language code to perform the numerous tests and transformations. While it is okay to have fun and enjoy this program, you are expected to learn about using your display at the same time.

No one will mistake the article by Dr. L.S. Reich as a game. "Computer-Determined Kinetic Parameters in Thermal Analysis" presents a serious use for an Apple II in a lab analysis situation. This is definitely not a "beginners" article, but we hope it will help induce others to present some of their "real" uses for their microcomputer systems.

Alan K. Christensen shows how to overcone sulic shortcomings in using BASIC on the PET for realtime control with his "Continuous Motion Graphics of How to Fake a Joystick with the PET". In this article you will learn something about how the PET interpreter gets keyboard input and how your program can "hook" into this mechanism. The result is a keyboard style "joystick" which allows you to easily move around the display. A table is included which shows the relationship of the keycaps, screen value, and keyboard hex value. This table should be an aid in a variety of PET/Display oriented programs.

Powlette and Jeffery have updated the material presented by Marvin De Jong in the Dec 77-Jan 78 issue of MICRO with "Storage Scope Revisited". With a modified hardware circuit and a correction to the program, they produce results which are of quite high quality.

Rick Auricchio, to whom Apple owners are already in debt for his "An Apple II Programmer's Guide" in MICRO number 4 and "BREAKER: An Apple II Debugging Aid" in MICRO number 7, has now come up with "An Apple II Program Relocator" to further
assist the Apple II community. This program, whose utility will be obvious to any programmer who does much in assembly language, also shows some techniques for using the SWEET-16 utility.

John Gieryic has wasted no time getting into action with his SYM-l as evidenced by his need for a "SYM-1 Tape Directory" facility which he presents in his article. This complete program permits the user to examine his cassette tape to find what information is located on the tape. Since numerous calls are made to the SYM-l monitor, it is a good guide to using monitor subroutines.

Jim Butterfield, widely known for his contributions to the KIM via "The First Book of KIM", has written a couple of programs which both aid and instruct the user of PET BASIC. One program allows a BASIC program to be searched for a particular data string with all lines which contain the string to have their line number printed. A second program permits a BASIC program to be resequenced, including fixing up GOTOs and other functions which reference the line numbers. His explanation of the workings of the programs will aid in the user's understanding of how BASIC is structured.
M. R. Connolly Jr. makes life easier for the Apple II user who is trying to work with the onscreen text by providing "An Apple II Page 1 Map" and a chart of the interpretation of values stored in the screen text buffer. Given this information, it becomes relatively easy to work on the display using PEEKs and POKEs.

## ... AMD MOTES

"Attention SYM-1 and AIM 65 Users!!!! The San Fernando Valley KIM-1 Users Club is expanding its membership to include these two new and exciting microcomputer systems. We meet at 7:30 PM on the second Wednesday of the month at 20224 Cohasset No. 16, Canoga Park, CA 91306. Call Jim Zuber at (213) 341-1610 if you have any questions."
"This is to inform you of:

```
Apple Users Group
Neil D. Lipson
Phila. Area Comp. Soc. (PACS)
29 S. New Ardmore Avenue
Broomall, PA 19009
(215) 356-6183 (home)
(215) 825-3800 x278 (work)
```

For anyone owning an Apple computer."
"I am interested in starting an Apple User Group in the Cincinnati, OH area.. John B. Anderson, 5707 Chesapeake Way, Fairfield, OH 45014 "
"Lincoln Computer Club is a non-profit school club that is made up of about 60 seventh and eighth grade students. We have a PET that we use for instruction and games. We would like to exchange programs with other PET users. Send a self-addressed, stamped envelope for info to:

> PET Software Exchange
> Lincoln Computer Club
> Lincoln School
> 750 E. Yosemite
> Manteca, CA 95336

## microbes

Boy, is our face red. An entire chuck of code from "BREAKER: An Apple II Debugging Aid" ended up on the "cutting room floor". [MICRO 7:5] We apologize to the author, Rick Auricchio, and to anyone who has lost hair and/or sleep trying to get BREAKER working. The missing code is
printed below. You can tell from the PC counter where it should be inserted into the original material. This is our biggest goof to date. We are moving to new quarters right now, and will have space to keep our microcomputers avallable for testing programs, so this should not happen again.



Henry Chow of Bloomfield Hills, MI pointed out Interface" by Charles R. Husbands[MICRO 6:5].

It is very difficult for us to get listings of this sort correct. There are just too many ways to make mistakes, even with careful proofing. We are going to have to insist on computer generated listings for all articles from now on. If possible, authors should submit their source on cassette tape and let us list it on our own computers.

And now a first: A microbe in the 6502 Bibliography! Randall Julin writes that his article on the "Video Mixer" should have indicated "... video signals put out by the PET's Parallel User's Port, not the IEEE 488 bus."

## 6502 INTERFACING FOR BEGINNERS:

## BUFFERING THE BUGSES

Marvin L. De Jong
Dept. of Math-Physics
The School of the Oz:arks
Pt. Lookout, MO 65726

## BUFFER/DRIVER CHIPS

The address bus is the set of 16 conducting lines interconnecting the 6502 and numerous other integrated circuits in the computer system such as memory chips, PIAs, decoding circuits, etc. On my 8 K memory board the address bus is connected to 64 memory chips. The address bus carries the addressing information from the 6502 to the other components in the system. It is, consequently, a one-way bus, in contrast to the data bus which carries signals both ways.

The control bus is a set of conductors which connect the 6502 control signals $(0, R / W$, SYNC, RST, NMI, IRQ, RDY, and SO) with the other components in the microcomputer system. Some control signals originate in the 6502 and these are bussed to the system. Other control signals e.g. NMI and IRQ, originate somewhere in the system and are bussed to the 6502. None of the control signals use a bi-directional bus like the data bus.

Finally, the data bus is a set of 8 conductors connecting the 6502 and the other devices in the system. It presents a special problem because it is required to carry information two ways, hence the name "bi-directional data bus." On a WRITE command the data bus carries an 8-bit word (one bit on each line) from the 6502 to a memory location, while on a READ command the data bus carries information from a memory location to the 6502. On my 8 K memory board each data line is connected to 8 memory chips.

## HHY BIIFEER?

There are two reasons for buffering uni-directional busses like the address bus and the control bus:

1. The address and control pins on the 6502 are rated to drive one standard TTL load. In any but the simplest computer system there will be heavier loading than this.
2. Every conductor including those which make up the busses has some capacitance. Capacitors require time to charge and discharge and "distort" rapidly changing waveshapes. Buffer chips can drive a much larger capacitance than the 6502, and consequently may be inserted to preserve the integrity of the waveshapes of the signals.

In addition, the data bus requires a special kind of buffer. Recall that the microprocessor is capable of reading data from any of 65,536 devices. But only one at a time, please. All the others should act as if they are not there, which means they should be disabled somehow. If two devices are both attached to a data pin, one trying to raise it to logic 1 and the other trying to lower it to logic 0 , not even a prophet can predict the result. The third reason for buffering applies only to bi-directional busses and may be summarized:
3. Buffers must be capable of isolating the bus from all of the devices on the bus except those which have been addressed (for example, the 6502 and an input port) and between which data is being transmitted.

We mentioned earlier that all the bus pins on the 6502 are rated to drive one standard 7400 series TTL load. This means that you could connect about four 74 LSO 0 series chips to a bus line, but if you tried to hang additional chips on these lines the circuit would probably not operate. For the address bus and the control bus the solution is to connect the 6502 pins directly to two 7404 inverters (or 74 LSO 4 's). A 7404 can drive 10 standard TTL loads and about 40 LS loads, while a 74LSO4 can drive 20 74LSOO series loads. This should provide adaquate drive for most systems, provided the bus length is not to great. If you have a KIM-1 schematic you will note that both $R / W$ and 0 are buffered in this manner, but that none of the address lines are buffered because the KIM-1 system is small enough to not require buffering. However if you expand, the address lines will also require buffering. As an example, see KIM USER NOTES, Issue $\# 7,8$ where Jim Pollock gives a KIM to $\mathrm{S}-100$ circuit.

There are other chips called Bus Buffers/Drivers which can be used either on uni-directional busses or the bi-directional data bus. They come in packages of four (quad), six (hex) or eight (octal) buffer/drivers to a chip. If you want to look up the specs on some of these chips here are a few of the more popular ones.

| 74 LS 125 quad | DM8093 quad |
| :--- | :--- |
| 74 LS 126 quad | DM8094 quad |
| LS367 hex | DM8097 hex |
| 8 T97 hex | 81 LS97 octal |

All of these except the 81 LS 97 are readily available (Jameco, Godbout, Jade, etc.). The only place I have been able to find 81LSg7s is Hamilton-Avnet. They are a bit more expensive and conse in a 20 pin package, but they are nice because they can handle eight lines. Note that we have already used the 74 LS 367 to buffer address lines. Refer to the last several columns of this feature.

The truth table and logic symbol for a typical buffer/driver are given in Figure 1. Carefully focus your beady eyes on the function of the $G$ (gate) input.

Note that when $G$ is low the output follows the input logic level. The device is then doing its thing, namely driving the particular bus line to which it is attached. The inversion circle indicates that the buffer/driver is active (works) when the gate signal is a logic 0 . Some buffers have no inversion circles, and they will be active when the gate is at logic 1. Perhaps the most important feature is the third state of the output in the truth table, which we have labelled "disabled." When the gate is high the de. vice behaves as if it were disconnected from the bus, that is just as if a switch in series with output were opened. This property is the reason for calling these devices "three-state buffer/ drivers" or" or "TRI-STATE buffer/drivers." (TRI-STATE is a trademark of National Semiconductor.)

Figure 2 shows how an LS 125 might be used on the bi-directional data bus. Only two bus lines are shown for simplicity. During a WRITE instruction the R/W line is low, enabling the buffers which drive the signals from the 6502 to the external devices. The other buffers which drive the 6502 are disabled. Analyze what would happen if they weren't disabled! During a READ instruction the $\mathrm{R} / \mathrm{W}$ line is high, it is inverted by the LSO4, and it enables the buffers driving the signal from the external devices to the 6502.

The scheme shown in Figure 2 is not the only possibility. For example, the $S-100$ bus would not have pins 3 and 5 connected, nor pins 8 and 12 connected. Instead, the data bus is divided into two separate busses at this point. The bus lines connected to pins 3 and 8 become a "data out" bus, while the lines connected to pins 5 and 12 become a "data in" bus. I am not aware of all of the advantages and disadvantages of this scheme, so we will not pursue it further.

## AN EXPERIMENT

Connect an LS 125 as shown in Figure 3. Note that RESET will very likely cause all the LEDs to light. Now run the following program:

$$
0000 \text { 4C } 0000 \quad \text { START JMMP START }
$$

This is an infinite loop. Do not try to relocate the program or the experiment may not work. You should observe that the LEDs on DO and D1 are off while the other two are one. Can you explain why before I do?

Analyzed by clock cycles the activity on the data bus may be summarized as follows:

The LEDs connected to D3 and D2 get a pulse once every three clock cycles, which the eye interprets as a continuous glow. Now connect the gates (pins $1,4,10,13$ ) to +5 V instead of ground. None of the LEDs light. Why?

## an OBSERVATION

Refer to Figure 1 in the "INTERFACING...." column in MICRO \#7. The input port illustrates how a buffer/driver isolates the data bus. Note that the device select pulse is connected to the gate of the LS367. Thus, only when the address lines select the input port and the 6502 is in the READ state does the LS 367 control the data lines. Otherwise it is disabled and the 6502 gets its data elsewhere.

The output port of the same circuit illustrates another point. Suppose we had say eight output ports. Data lines DO-D7 would each have eight LS inputs hanging on them, and the 6502 would probably be unable to drive them. The solution would be to buffer the data lines from the 6502 to the output ports. In this case one would probably connect the $R / W$ line to the buffer/ driver gates.

## an application

Again refier to Figure 1 in this column in MICRO \#7. Recall that the data lines were to be connected to the $D$ inputs of the LS75 to complete the output port, replacing the switch. A complete 8-bit output circuit, with buffering, is shown in Figure 4. The device select circuitry is not repeated here. Up to eight output ports can be implemented using the device select pulses finom the LS138. All you have to have are LS 75 s . The buffering shown in Figure 4 would be more than adaquate for eight ports.
The 8-bit port with LEDs attached can be used as a debugging tool among other things. At a point in a program where you suspect trouble, and want to see the STATUS REGISTER for example, put a BREAK command. The last thing on the stack after a break is the status register contents. So, the interrupt vector should point to a program which pulls
the last word off the stack and loads it at the address of the output port, STA $\$ 800 \mathrm{~F}$. A little panel could be made which indicates LED goes with which flag.

The scheme just mentioned can obviously be varied to indicate the contents of any of the important registers. One could get very elegant and use four ports to indicate $X, Y$, accumulator and status register simultaneously. Better yet, use the information you have learned to display the contents of $X, Y, A$, and $P$ while the computer is in the single-step mode.
What's next? I hope to go into a keyboard input port in a little more detail, then look at a memory interface, unless I get some other ideas that is. Anyway, you ought to step out from among the trees to get a look at the forest by taking a long and studied look at Figure 1.1 of the MOS TECHNOLOGY HARDWARE MANUAL, the first figure in the book. A lot of the ideas we have been discussing are summarized there in a diagram of the microcomputer system as a whole.

Parts list of components used for the experiments.

| 1 | AP Circuit Board |
| :--- | :--- |
| (holcis 8, 16-pin DIPs) |  |
| 1 | coil 22 wire |
| 8 | LEDs |
| 1 | Edge connector for KIM-1 |
| 1 | 74 LS 45 |
| 2 | 74 LS 138 |
| 1 | 74 LSC |
| 1 | $74 \mathrm{LS}=67$ |
| 2 | 74 LS 75 |
| 2 | 74 LS 125 |
| 1 | 74 LS 76 |
| 2 | 4.7 K to 10 K resistors |
| 2 | DIP switches |

An IS 125 and $\mathrm{LSO}_{4}$ in a bidirectional data bus buffering circuit. Only two data lines are shown buffered. Four LS125s would be required for all eight data lines. In this scheme the "write" buffers and "read" buffers are alternately disabled by the R/W line. Sometimes they are also disabled by device select pulses.



Figure 2.

Figure 3. Circuit to demonstrate data bus buffering. See text for details.

## NOW AT FINE

COMPUTER STORES

SPEAKEASY SOFTWARE LTD.
BOX 1220, KEMPTVILLE, ONTARIO
KOG 1JO


NOW AT MOST APPLE-II DEALERS :
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)$

kidstuff


## FELLOW THE

 CROWO 70

They're ALL rushing to buy the latest BOOKS on 6502 micro's!

Here are a few suggestions...

The First Book 2f KIM
by Butterfield; Ockers, \& Rehnke Step-by-step instructions on writing KIM programs , illustrating valuable techniques. Aisc, how to adapt the basic KIM-1 for home and insiness use.

Progranming a Microcomputer: 6502
by Foster
How to program a micro in machine language. Well-written and clearly organized, suitable for self-study or classroom. Emphasis on problem ID, solution, and algorithms to solve the problem.$\$ 9.00$

## Microcomputer Programming-6502

## by Zaks

How to program microprocessors with 6502:
arithmetic, input-output, peripherals, interrupts. Educational text requiring no prior
knowledge - for any 6502 micro.
$\$ 9.95$
Send your name, address and check or m.0. or charge to VISA or Master Charge (incl. number, exp. date, and interbank no.)

ASK FOR OUR HUGE MAIL ORDER CATALOGUE AVAILABLE IN LATE JANUARY, 1979

DON'T
FORGET
THESE ARE GKEAT CHRISTMASS GIFT
SUGGESTIONS!!!!


A $\mathbf{S}_{\text {. }} \mathrm{K}_{\text {w }}$
The COMPUTERIST ${ }^{\text {© }}$ how to expand your system four ways with one multi-purpose pc board --


- 8K Power STATIC RAM
- 8K EPROM logic (INTEL 2716/TI 2516)
- EPROM PROGRAMMER
- I/O - Versatile Interface Adapter

28 -bits ports + serial/parallel shift register + timers

- On-Board VOLTAGE REGULATORS
- Switch Selectable Address for RAM and ROM
- All ICs are socketted

AIM 65 / SYM-1 / KIM-1 Compatable

- Assembled - Tested - Burned In
- Hundreds in use around the world
- Reasonable Price - $\$ 245$ (without EPROMs)
- Free Connection Cables with this AD.

The COMPUTERIST ${ }^{\text {© }}$ is a leading producer of products for the AIM/SYM/KIM (ASK ${ }^{\text {I }}$ ) family of microcomputers. Send for your copy of our catalog which describes our current and soon-to-be released product including:

VIDEO PLUS ${ }^{\text {m }}$, MOTHER PLUS ${ }^{\text {m }}$, POWER PLUS ${ }^{\text {tm }}$; PROTO PLUS ${ }^{\text {tm }}$ and other ASK hardware; PLEASE ${ }^{\text {tm }}$, HELP ${ }^{\text {tm }}$ and other ASK software; Enclosures for the AIM, SYM, and KIM.


Stepping on board MICRO from PERSONAL COMPUTING has been quite an experience during the few short weeks I've been here. Thank goodness I have at least one microcomputer at home that is 6502-based! During the winter and spring of '79 I plan to add an APPLE II and a SYM to the OSI Challenger, making my intentions relatively solid in promoting the versatile world of $t$ 6502 microprocessor.
I entered the micro world in April of ' 76 as an entrepreneur/hobbyist. My sixteen years in printing, advertising and publishing, along with several college courses and special academic projects in computer programming combine with a minimal writing/editorial background to round out my qualifications.

MICRO has several positive changes ahead over the next year, and I look forward to being a part of those changes.

Those of you who are manufacturers or software houses are reminded to submit (in OUR format) information on your products for listing in ourSoftware Catalog and Hardware Catalog.
The circulation has been steadily growing and although rates for advertising will be increasing, it won't be at the same rate as circulation.

Articles are starting to come in at a good pace, but we are always looking forward to new copy describing your 6502 application in hardware or software. Sophistication or simplicity, the article YOU write may bring in further inquiries or commentary from other 6502 users. This kind of dialogue proves to be very stimulating to most of us, so put that pen to paper and start writing!

MICRO will grow with its readers; just let 1 know what you want and we will try to please. Wes want to continue to be Number One in the 6502 world!


Softwere avelamile for F-3, 6200, 8080, 8015, 2-80, 6502, Kum-1, 1002.

The EP-2A-79 will program the 2704, 2708, TMS 2708, 2758, 2716, TMS 2516, TMS 2716, TMS 2532, and 2732. PROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC, $50 / 60 \mathrm{HZ}$ at 15 watts. It is supplied with a 36 -inch ribbon cable ( 14 pin plus) for connecting to microcomputer. Requires $11 / 21 / O$ ports.
Assembled and tested \$145, Plus \$15-25 for each persenality module. Specify software.

Richard F. Suitor
166 Tremont St.
Newton, MA 02158

A listing of LIFE for the APPLE II is described briefly here (see MICRO $\$ 5$ for a pet version and discussions). Because my experience with gener.. ation time in BASIC paralleled Dr. Covitz', the generation calculations are in assembly language. The display is initiated in BASIC and the routines are called from BASIC, which will slow down the generation time if desired.
The entire ( $40 \times 48$ ) low resolution graphics display is used. An unoccupied cell is 0 (black). An occupied one is 11 (pink). During the first half of a generation, cells that will die are set to color 8 (brown). Those to be born are set to color 3 (violet). During this stage, bit 3 set indicates a cell is alive this generation; bits 0 and 1 set indicate a cell will be alive the next). During the second half (mop-up) part those with bits 0 set are set alive (color 11), the rest are set to zero.

The BASIC program allows one to set individual. cells alive, and to set randomly in N alive in a rectangular region. The boundries ( $x=0$ ancl 39; $Y=0$ and 47) do not change, but may be in-
itialized. At the start of the program, NO PADDLE INTERVAL? is requested. If during the program the paddle reads close to 255 (as it will if none is connected) the number input here will be used instead. Zero is fastest, several generations per second. Entering 200 gives a few seconds per generation.

When $X$ and $Y$ coordinates are requested, put in the coordinates for any cells to be set alive. A negative $X$ terminates this phase. Setting $X=N$ and a negative $Y$ will initialize a rectangular region to 1 in $N$ randomly occupied and terminate the initialization. The boundaries of the rectangular region must be input and may be anywhere in the full display. A glider gun can be fit vertically in the display. However, don't initialize for $Y$ (other than random) for the scrolling during initialization input will wipe it out.

Before RUNning the BASIC program, set LOMEM: 2500 to avoid overwriting the subroutines.

```
>LIST
    1 TEXT
    2 GEN=2088
    3 MDF=2265
    5 DIM AS (7)
    7K1=1
    8 K2=1
    0 CALL -936: YTAB 5: TAB 9: FRIMT
    "CIMWAY'S GAME DF LIFE"
    30 YTAB 15: PRINT "INITIATE FATTERN
            BELDU. X<O WILL START*
    35 PRINT "THE LIFE PROCESS, A Y<0
        WILL GIvE A"
    40 PRINT "RANIIMM PATTERN WITH DHE I
        N& ALIVE"
    50 vTAE 22: INFUT "RETURN TQ COMTIN
        UE",A$
        99 GOTD 1000
        100 REM
        1'02 POKE -16302,0
        103 GOTD 130
        104 FOR I=1 TO K3
        105 EALL GEM
        107 FOR K=1 TO K1: NEXT K
        110 CALL MDF
        11E FOR K=1 TQ KE: MEXT K
        120 NEXT I
        130 REM
        131 KX= PDL (0)-10
        132 IF KX>240 THEN KX=K.X1
        135 IF KX<0 THEN KX=0
        140 K1=KN*6
        150 K2=Kx*2
        155 K3=500 < (K1+50)+1
        160 GOTD 104
```

1000 GF
1010 CALL -936
10 EO IMFUT "HD FAIIILE TIME INTEFVFL " . Kl 1
 , $\mathrm{X}, \mathrm{Y}$
1105 IF YO THEM 1800
1110 IF R<O OF Y Y THEH ESOO
1120 IF SO SE DF THEN 1100
1130 FLDT X, $\mathrm{T}: ~ G a t D ~ 1100$
1800 INFUT " C IIEECTIOH LIMITS " , I1, IE
 1800
1EEO IHFUT "Y IMFEITIDH LIMITS " , . 11, E
1690 IF $11<0$ DF IE 47 DF $11>$ IE THEN 18 E 0
2000 GFLL -GEE: GR
2091 FDKE -1630E, 0
Eade CALL -1998
E005 FDF: I=I 1 T T IE
2010 FGR .I=.11 TD. Je: COLDF:=11: IF RHI O THEN EDLDF:=0
EOEO FLDT I, I
E0SO ME:KT I
EO40 HEKT I
E100 ERTD 100
E5OO FOKE -1630E,
2510 COLDF=0
ESE0 FOF K=40 TO 47
E530 HLIN 0, 39 AT K
ES40 ME:T K
$2590100 T 0100$
gigu EHI

|  |  | 0010 | ：LIFE FIGITIHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | ロ0ご | ：EMTEF AT EEHI H | ATHI MDF |
|  |  | 000 | ：EDES ArtI EES5 I | IEC．FESF． |
|  |  | 01040 | 口LLH ．IL 0 Ong | QLI HOFIZ LIHE |
|  |  | Q0900 |  | HEW LIHE |
|  |  | Dino |  | \％ OF पEG．EELLS IH S\％ |
|  |  | On7 | BUME－IL Bunt 1 | 1：E FGF OLI：HE！ |
|  |  | 0180 | ElIF1－IL 09404 | 40 YERT．पC： 4 O |
|  |  | 069 | EFIF ．ILL 19 |  |
|  |  | 0100 | EFIM ．ILL DGF |  |
|  |  | 0110 | EULFE－ILL 0970 |  |
|  |  | －1E！ | EFEF ．IL \＃97E |  |
|  |  | 0130 | EFEM ．IL OGEF |  |
| 0800 | F50．5 | 0140 | HELCH LIIA＋$+16 \mathrm{LH} H+01$ |  |
| DE0 | 8 SO | 0150 | STA＊［LLL $1+$＋ 1 |  |
| $0 \mathrm{OB4}$ | F504 | 0160 | LIIA＊HWILH |  |
| OEDE | E50 | 0170 | STH＊CLLH |  |
| Dede | 18 | 0180 | ELE |  |
| 0809 | 6980 | 0190 | HIIS S |  |
| OG0E | 8504 | Øご0 | STE＋HWLH |  |
| DSOL | HE 5 | Oこ10 | LIAH＋HINLN＋ $\mathrm{OH}_{1}$ |  |
| OEDF | 6900 | いこご | FIIC： |  |
| 011 | 5908 | 0 O\％ | EMF IE |  |
| 0813 | ［1000 | 0240 | EHE SHME |  |
| 0815 | H504 | のこらに | LIIN＋HWOLH |  |
| 0817 |  | ne60 | HIIL 37 |  |
| 019 | 095 | 0 0 0 | EMF SE |  |
| QE1E | 10 | 0こs0 | EFL LFET |  |
| UE1I | 8604 | 0゙90 | STA－HWULH |  |
| OE1F | HCO | 0800 | LTIH 14 |  |
| Ø玉こ1 | 8505 | 0310 | SHIE STA＋HWLH＋ | 11 |
| D8ころ | 18 | DEこ0 | CLE |  |
| DEこ4 | 60 | ［300 | FTS FTTS |  |
| ロミご | 38 | 0340 | LFST SEC： |  |
| ロシご | EOFE： | 0350 | EISE ETS 1 |  |
|  |  | 050 | ：GEHEFHTE EIFTHEGQLDF＝\％\％IEHTHS区QL＝8 |  |
| 08こを | EOGHOE | 0370 | GEHİ ISE IHIT |  |
| 日GこE | Ebnome | 0580 | EEH1 SE HELH |  |
| V®EE | 90101 | 0590 | ECCE GEHE |  |
|  |  | 0400 | ： FLL LIMHE IF EHEE＇r SET |  |
| 0830 | E． 0 | 10410 | FTS |  |
| ISS 1 | Fig | 0420 | GEHE LI＇r＇قT |  |
| 1838 | 98 | 0430 | TYH |  |
| 1854 | HH | 0440 | TH\％ |  |
|  |  | 0450 | SDMF YEFT DES 4S |  |
| 06c | H\％69 | Ø4E0 | GEVE LIIA 10 |  |
| ！69 | 994010 | 1470 | STA EIUF $1:{ }^{\prime}$ |  |
| 9ESH |  | 0480 | OTA EUAFE＇ $\mathrm{r}^{\prime}$ |  |
| 0 OE | E10 | 0490 | LIIF COLLH＇，＇r＇ |  |
| UST | FGOF | 0500 | EES GETY： |  |
| 184 | 10 DE | 万10 | EFL GErt |  |
| 1843 | FE4GIG | ロージロ | IHE：EILIF $1: \%$ |  |
| 084E | FEPD日G | OEE0 | INE EUPE，$\because$ |  |
| 54\％ | E日g\％ | 0540 | GERT FHTI Dig |  |
| 194E | F0日\％ | D550 | EEO GErts | Note：The stars in the operand |
| 9845 | FE4 4 OT | O600 | IHC ELSF $1, \mathrm{~S}$ | zero page mode． |



| 0E00 | 9104 | 1120 | 6415 | STA CHWLO： 7 | CWWめ： |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 080 | 8 E | 1130 | Gt13 | IE＇${ }^{\text {d }}$ |  |
| 1080 | Fode | 1140 |  | EEQ 5r14 | 514 4 |
| 1005 | 10 EB | 1150 |  | EFL Grick | GHLF |
| 1007 | 40EEUE | 1100 | 61＋14 | IMF EEM1 | GEM1 |
| IESA | F904 | 1170 | IHIT | LIIH IT4 | 0.14 |
| DECOL | 8505 | 1180 |  | STA＊H6LM $1+01$ | ＊H6LH＋01 |
| UESE | Forg | 1190 |  | LITH OIG | 010 |
| Uemit | 8504 | 1こ00000000 |  | STA HWLH | －MWLCH |
| DETE | 5 SE 09 | 1210 |  | STH EFPF＋EC | EFP 1 F＇EC |
| 0ETE | 8196 | 1こE0 |  | STA EFEF＋EE | EFEF＇EE |
| 0ELE | 60 | 1E30 |  | FTS |  |
|  |  | 1 こ40 | ： HLF | UF：IF E：LLE： |  |
|  |  | 1250 | ：ITHE | FWISE，FLIWE | E，HLIVE COL＝113 |
| Ders | 206\％ | 1ご0 | MaFor | ．ISE IHIT | IMIT |
| USTIT | E0000 | 1270 | MUF1 | ISE MALCH | HMLH |
| DEITF | 9001 | 1 E80 |  | EIC MOFE | MOFE |
| OEE1 | 60 | 1290 |  | FTS |  |
| USEE | FOEF | 1300 | HIDFE | LIG 27 | 27 |
| DeE4 | E10E | 1310 | H0F3 | LIIF COLL ¢，Y |  |
| DeEs | FODA | 13 O |  | EEQ MOFE | MOF： |
| 0EEE | E9FF | 1330 |  | FHMI PF | FF |
| DEEA | 6910 | 1340 |  | CMF 10 | 10 |
| DeEs | 300E | 1350 |  | EMI MOF4 | MOF 4 |
| DEEE | 0980 | 1360 |  | DEF EO | 80 |
| DSF： | 910 O | 1370 | 14DF＇4 | Sta cull a Y | （0LLけ，$\%$ |
| 09Fこ | F104 | 1380 | MUF：5 | LIIF MHLH\％， Y | आWLH\％$\%$ |
| DEF4 | Fion | 1390 |  | EEV MDF 7 | M $\mathrm{CFF}_{7} 7$ |
| O8FE | E9F ${ }^{\text {F }}$ | 1400 |  | AliI SFP | QFF |
| 0EFE | EF | 1410 |  | FRE： |  |
| DEFG | 900 E | $14 E 0$ |  | ECE MDFE | MDFE |
| DeFE | 0904 | 1430 |  | IDEA IS 4 | ［14 |
| USFI | E月 | 1440 | MOFE | Eal |  |
| DEFE | 91104 | 1450 |  | STA MHLM，$\because$ | MWLH： 9 |
| 1900 | 85 | 1460 | MDFF 7 | JEY |  |
| 0901 | F0IG | 1470 |  | BEE MOF 1 | MIFF 1 |
| 0903 | 10 IF | 1480 |  | EFL MOF： | HDF：3 |
|  |  | 1490 |  | ．EH |  |


| SMEDL | ThELE |
| :---: | :---: |
| －LLet | 000E |
| OHCH | 0004 |
| Sum | 0006 |
| blase | ［100\％ |
| EUF1 | 0940 |
| EF1F | 0942 |
| EFIM | 098F |
| ElUFE | 0970 |
| EFEF | ロ97E |
| EFEM | 096 |
| H：LM | 0etu |
| EME | ase 1 |
| FTS1 | 0 CE 4 |
| LAST | 0es |
| GEMO | uses |
| BECH | UGé |
| GEME | 0391 |
| GEME | Dess |
| GEM？ | 1947 |
| SEMS | QEEO |
| SEM4 | 0 OE 5 |


| GEME | $0 \mathrm{0c}$ |
| :---: | :---: |
| GHLF | 197A |
| GELE | 0990 |
| GETE | 089 |
| 6416 | 9e9r |
| 5140 | OEEE |
| 6411 | Qes4 |
| G＋1E | neme |
| 6415 | 0 cos |
| 5018 | 06E |
| 6itl 4 | 0807 |
| IHIT | पह¢： |
| MDF 0 | 0 OLG |
| Mila 1 | Cemi |
| NOFE | arez |
| MDFS | OEE4 |
| MDF 4 | USFO |
| MOF | UEFこ |
| MOFE | 08FT |
| MIEF 7 | 0900 |

# CORPUTER-DETERMINED KINETIC PARAMETERS <br> IN THERHAL ANAL.YSIS 

Dr. L.S. Reich<br>3 Wessman Drive<br>West Orange, NJ C7052

## INTRODUCTION

Two techniques employed in thermal analysis which are popular with chemists, chemical engineers, and other scientists studying the thermal degradation of various materials, e.g., teflon, are thermogravimetric analysis (TG) and differential thermal analysis (DTA). An important aspect of thermal analysis is the quantitative estimation of kinetic parameters for the material being degraded such as, activation energy, $E$ (cal/mole), and reaction order, $N$.

Prior to the advent of computers (and programmable calculators), there was an understandable tendency to avoid accurate, sophisticated (but time-consuming and laborious) methods of data analysis to obtain values of $E$ and N. Graphical methods were employed to a large extent. Recently, the author reported an accurate, sophisticated method (no graphics need be involved) whereby raw conversion-temperature data could be rapidly analyzed by a computer (also, but more laboriously by a programmable calculator, e.g., HP97) to yield values of $E$ and $N$ (Thermochim Acta, 24. 9 (1978); ibid., 25,367 (1978). (In these reports, there was no description of the computer program used.) By employing an Apple II computer with Applesoft II Basic (20K) and the program listed in this article (ca. 10-11K free bytes required depending upon the amount of data entered), the time required to estimate $E$ and $N$ by the reported method, for the thermal degradation of teflon via TG (as an example), beginning with data entry to the display of preliminary results followed by one iteration to obtain accurate final results, was only ca. 4 min .

In this article will be described the computer program which can be used with the previously reported method for the estimation of $E$ and $N$ from data derived by thermal analysis.

## SOME BACKGROUND INFORMATION

In the report previously mentioned (loc. cit.), the following expression was derived (can be used for TG and DTA):

$$
\frac{E}{R}=\log \left[\left(\frac{1-\left(1-\alpha_{1}\right)^{1-N}}{1-\left(1-\alpha_{2}\right)^{1-N}}\right) T(1)\right] U(1)
$$

where, $\left.T(1)=\left(T_{2} / T_{1}\right)^{2} ; U(1)=T_{1} T_{2} / T_{1}-T_{2}\right) ; R=$ gas constant ( $1.9872 \mathrm{cal} / \mathrm{deg}$-mole); $\alpha$ denotes fractional conversion; $\alpha /$ corresponds to temperature (K), Tı, etc.

For two pairs of given values of $\alpha$ and $T, i . e .$, $\alpha_{1}, T_{1}$ and $\alpha_{1}, T_{2}$, values of $E / R$ can be calculated from the above expression for various arbitrarily selected values of $N$. However, assuming uniqueness, only one pair of $E, N$ values will be significant. By using other pairs of $\alpha$ and $T$ values, other sets of values of $E$ and corresponding $N$ will be obtained. In all these sets there should be only one pair of $E, N$ values in
common. However, such values would rarely, if ever, be expected to be exactly equal in practice due to experimental limitations such as, sample impurities, heat transfer effects, etc. Therefore, these values were taken to be those whose mean deviation (MD) was the least of all of the MD's obtained for all the sets of values obtained. Although the above expression does not apply when $N$ is exactly equal to unity it is rare in practice for reactions to be exactly first-order and hence this equation is considered to be of general validity. When values of $N$ close to unity are used, the value of $N$ may be set equal to 1.0001 , for example, in order to avoid the error message, "division by zero error" (this technique was employed in this paper). Once $E$ and $N$ have been evaluated, another parameter, the pre-exponential factor, may also be evaluated. This factor was not considered in this paper.)

## THE PROGRAM

The program listed has the following limitations. The values of $N$ should not be greater than 3 (termolecular reactions are extremely rare, if they occur at all, during thermal degradations). Also, the data which is entered in
 raw data do not contain so many data pairs of conversion-temperature, but if necessary, the number of such pairs may be increased by adjusting the DIM statement for $A$ and $T$ in line \#7). The value of $N$ cannot be equal to 1 exactly, otherwise an error message will result. This may be circumvented by using $N=1.0001$, for example. The Apple II screen will only accommodate ca. 6 columns of $E / R$ values ( $6 \mid N$-values). Nevertheless, more than $6 \mid N$-values may be used, even though the display may appear confusing. about $10-11 \mathrm{~K}$ free bytes will be required for the program, depending upon the amount of data entered. Further, since subscripted variables must contain integer subscripts and since $N$ usually varies from .5-2, reaction orders are given as $\mathrm{N} x$ 100. This increases the DIM statement and consequently the number of bytes required by the program.

In the program itself, explanatory REM statements are to be found in line \#'s 8, 47, 70, 80, 135, and 138. Prior to running the program, data pairs of conversion-temperature ( $K$ ) must be entered (see line 非200). Then line 非5 must be properly adjusted. In this line $\#$ (see line \#2) $Y$ denotes the initial order ( x 100 ), $Z$ denotes the final order (x100), and the increment is given by $V(x 100)$. Thus, for the teflon data depicted in line $\$ 200$ (from TG), the initial order will arbitrarily be $.86 \quad(Y=86)$ and the final order $1.11 \quad(z=111)$ while the increment will be $.05(V=5)$ to yield 6 N -values. The preliminary results obtained using these values were: $E / R=33091 \pm 872$ for $N=1.01 \pm .05$. Since the value of $N$ was now established as ca. 1 more refined values were obtained using $Y=$ 97.01, $Z=101.01, V=1$ (the .01) was used to avoid a division by zero error message). Final values now were: $E / R=32792 \pm 822$ for $N=.98 \pm .01$.

As stated in line \＃8，line 非＇s 10－40 are used to form an $M \times \mathrm{J}$ array of conversion－temperature， A（M，J）Line \＃＇s 48－76 allow the calculation of E／R（Z（N）），according to the expression pre－ viously mentioned，for various orders and for various conversion－temperature data pairs．Also， $S(N)$（line $\# 70$ ）is the summation of all $Z(N)$ （E／R）values for any particular order，$N$ ，and is subsequently used to obtain the average $E / R$ value and its MD for a particular $N$（see line \＃125）．Line \＃＇s 84－110 allow the determination of the sum of absolute differences，$D(N)$ ，be－ tween $E / R$ values and the average $E / R$ value for a
particular value of order，N．The average $E / R$ value and its MD are calculated for a particular N in line 非125．Finally，line 非＇s 140－165 allow the determination of the average $E / R$ value that corresponds to the minimum MD at a certain order N．Line \＃＇s 139 and 160 are used to estimate the value of $N$ which corresponds to the＂most probable＂E／R value．In line \＃175，the most probable E／R value（minimum MD），its MD and cor－ responding $N$ are printed．Along with the pro－ gram listing are given results of an actual run using the teflon data in line $\$ 200$ obtained by means of TG．

## PROGRAM LISTING

1 PRINT＂THIS PROGRAM ESTIMATES E／R VALUES FROM TG／DTA DATA OF CONVERSION VS．TEMPERATURE（K）．THE PROGRAM DOESN！T APPLY FOR REACTION ORDERS $>3.1$

2 PRINT＂IN LINE \＃5， $\mathrm{Y}=$ INITIAL ORDER（ $x$ 100），$Z=$ FINAL ORDER（ $x$ 100），WHILE THE INCREMENT IS GIVEN BI V（ $x$ 100）．＂

3 PRINTHFOR EACH RUN，THE VALUES IN LINE \＃ 5 WILL PROBABLY NEED ADJUSTMENT．ABOUT 10－11K FREE BYTES WILL BE REQUIRED．＂

4
PRINT＂WHEN DATA PAIRS OF CONVERSION－TEMP（K）HAVE BEEN ENTERED AND LINE \＃ 5 HAS BENN ADJUSTED AND YOU ARE READY， TYPE＇CONT＇$n: ~ P R I N T " R E M ~ S T A T E M E N T S ~ A R E ~ I N ~ L I N E ~ \# ' S ~ 8, ~$ 47，70，80，135，138．＂：STOP

5 PRINT：$Y=86: Z=111$ ：V＝5
7 DIM S（310），$D(310), A(44,2), Z(310), \mathrm{U}(44), T(44), C(310)$
8 REM LINE \＃＇S $10-40$ FORM ARRAY A（M，J）OF CONVERSION－ TEMP DATA

10 FOR M＝ 1 TO 50
15 FOR J＝ 1 TO 2
20 READ A（M，J）
30 IF $A(M, 1)=0$ THEN 40
35 NEXT J，M
$40 \quad M=M-1$
42 PRINT＂E／R VALUES OF RFACTION ORDERS，N（x 100）：＂
43 PRINT
45 FOR K＝Y TO Z STEP V：PRINT＂N＝＂K＂＂；：NEXT
46 PRINT
47 REM LINE \＃＇S 48－76 ALLON THE CALCULATION OF $Z(N)(E / R)$
FOR VARIOUS ORDERS AND FOR VARIOUS CONVERSION＿TEMP
DATA PAIRS
48 FOR I $=1$ TO M－1
$50 T(I)=(A(I+1,2))_{\Lambda} 2 /(A(I, 2))_{\Lambda^{2}}$
$55 U(I)=A(I, 2) * A(I+1,2) /(A(I, 2)-A(I+1, z))$
57 FOR Ne Y TO Z STEP V
$60 Z(N)=\operatorname{LOG}\left(\left(1-(1-A(I, 1))_{A}(1-(N / 100))\right) * T(I) /\right.$
$\left.\left(1-(1-A(I+1,1))_{A}(1-(N / 100))\right)\right)^{*} U(I)$
65 PRINT $\operatorname{INT}(Z(N)) ; "$ ";
$70 S(N)=S(N)+Z(N):$ REM $S(N)$ IS SOM OF ALL $Z(N)(E / R)$ values for any particular order, ${ }^{\text {a }}$
72 NEXT N
74 PRINT
76 NEXT I
78 PRINT: PRINT "PRESS A KEY TO CONTINOE!"; : GET A\$:PRINT
80 REM LINE \#'S 84-110 ALLOW DETERMINATION OF SUM OF absolute differences ( $D(N)$ ) betwern e/r values and the average e/r value for a particular vaide of order, $N$
84 FOR I= 1 TO M- 1
95 FOR N= Y TO Z STEP V
$100 Z(\mathbb{N})=\operatorname{LOG}\left(\left(1-(1-A(I, 1))_{\Lambda}(1-(\mathbb{N} / 100))\right) * T(I) /\right.$
$\left.\left(1-(1-A(I+1,1))_{\wedge}(1-(N / 100))\right)\right) * U(I)$
$105 \mathrm{D}(\mathrm{N})=\mathrm{D}(\mathrm{N})+\operatorname{ABS}(\mathrm{Z}(\mathrm{N})-(\mathrm{S}(\mathrm{N}) /(\mathrm{M}-1)))$
110 NEXT N,I
115 PRINT
117 PRINT "avg. e/r values and taeir mean deviations for VALUES OF ORDERS ( $\mathrm{N} \times 100$ ): Na " Y " TO " $\mathrm{Z} "$, INCREMENT " V" ARE RESPECTIVELY: "

118 PRINT
120 FOR W= Y TO Z STEP V
125 PRINT $S(W) /(M-1) "+O R-W(W) /(M-1)$
127 PRINT
130 NEXT W
134 PRINT : PRINT "PRESS A KEY TO CONTINUE!"; : GET A\$: PRINT
135 REM LINE \#'S 140-165 ALLOW DETERMINA'TION OF THE E/R VALUE tHat CORRESPONDS TO THE MINIMUM MEAN DEVIATION at a certain value of order, n
138 REM LINE \# 139 ALONG WITH \# 160 ARE JSED TO DETERMINE VALUE OF ORDER, $N$, CORRESPONDING TO T:IE 'MINIMUM
E/R VALUE
139 FOR J= Y TO Z STEP V : C(J)= J : NEXM
140 FOR W= Y TO (Z-V) STEP V
145 FOR U= ( $\mathrm{Y}+\mathrm{V}$ ) TO Z STEP V

```
147 IF D(W)< D(J) THIEN 165
155 Q= D(W): R= S(W): D(W)= D(U):S(W)=S(U): D(U)=Q:S(U)=R
160 E= C(W): C(W)=C(J):C(J)= E
165 NEXT 0,W
170 PRINT: PRIST "IF ABȩG VALUES HAVR A MIMIMDM, THE MOST
        PROBABLE VALUE OF E/R, ITS MEAN DIVIATION, AND ORDER,N,
        ARE RESPECTIVELY:"
175 PRINT : PRINT TAB(5); INT((S(Y)/(M - 1)) + .5)" + OR - "
    INT((D(Y)/(M - 1)) + .5)" FOR A VALUE OF N= "C(Y)/100" +
    OR - "V/100
200 DATA .016,773.2,.087,803.2,.216,8:3.2,.489,843.2,.663,
    853.2,.826,863.2
500 DATA O
```


## RESULIS FROM A RUN USING TEFTON DATA (FROM TG)

COMMAND 'RUN' $\longrightarrow$ STATEMENTS IN LINK \#'S $1 山 4$ and "BREAK IN 4" COMMAND ' CONTI $\longrightarrow$
"E/R VALUES OF REACTION ORDERS, $\bar{M}(\mathbf{x} 100):$

| $N=86$ | $N=91$ | $N=96$ | $N=101$ | $N=106$ | $N=111$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 34137 | 34176 | 34214 | 34253 | 34292 | 34331 |
| 30533 | 30659 | 30784 | 30910 | 31036 | 31162 |
| 32526 | 32891 | 33259 | 33629 | 34003 | 34379 |
| 30958 | 31682 | 32416 | 33162 | 33918 | 34685 |
| 29959 | 31110 | 32289 | 33498 | 34735 | 36001 |

PRESS A KEY TO COAIINUE!

COMMAND: KEY PRESSED TO $\longrightarrow$
"AVG. E/R VALOES AND THEIR MEAN DEVIATIONS FOR VALUES OF ORDERS (N x 100): $\mathrm{N}=86$ TO 111, INCRHMENT 5 ARE RESPECTIVELY:

```
31623.193 + OR - 1367.13721
32103.8155 + OR - 1144.06226
32593.017 + OR - 915.268713
33090.8084 + OR - 872.206769
33597.1905 + OR - 1024.30262
34112.159 + OR - 1179.69265
```

PRESS A KEY TO CONTINUE! "
" IF ABOVE VALUES HAVE A MIITMUM, THE MOST PROBABLE VALUE OF E/R, ITS MEAN DETIATION, AND ORDER, N, ARE RESPECTIVELY:

33091 + OR - 872 FOR A VALUE Or' $\mathrm{N}=1.01$ + OR - . 05 "
Another run was made using a smaller increment, $V=1$, and $Y=97.01, Z=101.01$ (the .01 aroids a "division by zero error" message) to yield the more accurate final result:
" 32792 + OR - 822 FOR A VALJE OF N= . 9801 + OR - . 01 "

These results are in excellont agreement with results obtained from the same data by othir methods (non-computer) which were laborious and time-consiming.


Now you can giv: your PET microocomputer real fine point graphics capabilities The Softaide So itware Graphics Pac will quadruple your PET's video resolucion. With the Graphlcs Pac you can individually control 4000 poincs on screen. Don'r be limited to th: $25 \pi 401000$ point display that you are using now. Draw graphs, plot mathematical and scientific equations, or drar pletures for fun and gamas.
It's easy to use: Plot points in staple $X, Y$ notition. Two versions come on the Graphics pac. One veraion plots point 0,0 in $t$ je upper left hand corner and ts suitable $\mathbf{c o r}$ graphic pictures. The orher versit in suited for graphing and plotring has point 0,0 in the center of the ecreen so :hat you can use all four quadranes so that $-40 \times 39$ and -25 Y 24.
as an extra bonus, a third progran in included on the tape. To fintroduce you to the graphics pac's uses we have included a high resplation version of doodle:


Hew, And Sophis:ycated, destined to become a gew classic, IIRE is a challenging new of bis business. BIRE places you in charge of a compaiy that manufactures bicveles. fith laflation, breakdowne, and the changing seasons $t$ fying to sap your business savaly, you have to be Judictously haudilag prices, in rentory, workers, and 3d campaigns, keep pour sompany in the black. BIKE is da igerousiy addicrive, and just 3s Eun. Once you geare you just will not want to stop, and that's the trich. Well, ycu rever have to stop! The game allows you to gtore the data from your game on a tape, and to continue whare you lefr off when you nexr heve the time. Woreh a تillition dollars of fun Ge'11 offer BIKE at 59.35

Super Doodle is perhaps the most sophiscicated fiencil you won': have to draw ofth! You control frencil you von : have to draw with. You control eaving a trail of not one, but any of the Pet's 256 ciaracters. Huci more sophistica siftware ver ton also hashistica ed than any regular vereion of Doodle, the Softside Siftware version also has clear control, a return to center key, and a celate key. Th: kids ull love lic, in fact anyone will lave being able to at long last put the PE's incredible graph
a
a

Got a question? Feel free to drop a letter in th: mail or give us a call. We will do our best to help you.

# DAM YOLJR PET <br> DAM YOUR TRS-8ロ DAM YOUIF KIM DAM YOUR 

```
MEASURE - RECORD - CONTROL
```

- TEMPERATURE
- DIRECTION
- pressure
- LIGHT LEVELS
- db
- POLLUTION CONTROLS
- DARKROOMS
- HUMIDITY
- LIGHT
- ENERGY COINSERVATION EQUIPMENT
- GREENHOUSES
- SPEED
- WEATHER STATIONS
- NOISE POLLUTION
- pH
- EARTHOUAKE TREMORS
- VELOCITY
- ACCELERATION

Data
ACQUISITION MODULES
by $\quad \square \square_{\square}^{\square}$

NOW YOUR COMPUTER CAN LISTEN TO THE REAL WORLD. YOU GET 168 BIT ANALOG INPUTS WITH OUR AIM16.



|  <br> வ'山; வ <br>  <br>  <br>  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |



MICROCHESS is the culmination of two years of chessplaying program development by Peter Jennings, author of the famous 1 K byte chess program for the KIM-1. MICROCHESS 2.0 for 8K PETs and 16 K APPLEs, in 6502 machine language, offers 8 levels of play to suit everyone from the beginner learning chess to the serious player. It examines positions as many as 6 moves ahead, and includes a chess clock for tournament play. MICROCHESS 1.5 for BRIDGE CHALLENGER by George Duisman for 8 K PETs, Level II 16 K TRS-80s, and 16 K APPLEs: You and the dummy play 4 person Contract Bridge against the computer. The program will deal hands at random or according to your criterion for high card points. You can review tricks, swap sides or replay hands when the cards are known. No longer do you need 4 people to play!
ORDERS: Check, money order or VISA/Master Charge accepted programs and cassettes guaranteed. If you have questions, please call us at 617-783-0694. If you know what you want and have your VISA/MC card ready, you can DIAL TOLL FREE 1-800-325-6400

## YOUR

KTRS-80s, in 2-80 machin Level I and Level II versions are included and can be loaded on any TRS-80 without TBUG). MICROCHESS checks every move for legality and displays the current position on a graphic chessboard. You can play White or Black, set up and play from special board positions, or even watch the computer play against itself! A vailable now at a special introductory price of only . . . . . . . . . . . . . $\$ 19.95$
STIMULATING SIMULATIONS by Dr. C.W. Engel for 8K PETs, 4K Level I and II TRS-80s, and APPLEs with Applesoft II: Ten original simulation games such as Forest Fire, Lost Treasure, Gone Fishing and Diarnond Thief, progressing from elementary to quite complex with most suitable for schoolchildren. Includes a 64 page book giving flowcharts, listings and suggested modifications . . . $\$ 14.95$ (24 hours, 7 days; in Missouri, dial 1-800-342-6600). Or you can mail your order to the address below. Personal Software ${ }^{\text {tM }}$ products are now AVAILABLE NATIONWIDE FROM COMPUTER STORES.
Look for the Personal Software ${ }^{\text {rm }}$ display in your local store!

If you are a subscriber to MICRO, then the code following your name on the mailing label is the number of the last issue your current subscription covers. If your code is 07 , then this is your last issue. MICRO will NOT send out renewal notices. So, if your number is coming up, get your subscription renewal in soon. and, please check your label for correct address and notify us of any corrections or changes.

MICRO has been published bi-montly since 1977. Starting with the February 1979 issue, it will be published monthly. The single copy price is $\$ 1.50$. Suhscriptions are $\$ 12.00$ per year in US.

Annual subscriptions in other countries are as listed below. All payments in US $\$$.

| Surface: Canada/Mexico | $\$ 15.00$ |
| :---: | ---: |
| All Other Countries | $\$ 18.00$ |
| Air Mail: Europe | $\$ 30.00$ |
| South America | $\$ 30.00$ |
| Central America | $\$ 25.00$ |
| All Other Countries | $\$ 35.00$ |

$\qquad$
$\qquad$
$\qquad$
State: . . . . . . . . . Zip:
Country:
Amount : \$ . . . . . . . . Start MICRO \#: . . .
Send payment to:
MICRO, P.O. Box 3, S. Chelmsford, MA 01824 , USA
Your name and address will be made available to legitimate dealers, suppliers, and other 6502 interests so that you may be kept informed of new products, current developments, and so forth - unless you specify that you do not wish your name released to these outside sources.

Alan K. Christenjen<br>1303 Suffolk<br>Austin, TX 78723

When using the PET graphics to represent motion it becomes apparent that the BASIC supported routines are not fast enough to allow smooth movement. If the keyboard and screen are accessed directly the appearance of controlled motion can be greatly enhanced. As an example I will use a short game written in BASIC although the techniques can be used by machine language programs with even better results.

Let me first describe the game and then explain how the effects are produced. The initial appearance of the screen is two walls at the right and left sides of the screen with a ball and pound sign (\#) which $I$ will refer to as a bat (see figure 1). The ball goes into motion and appears to bounce off the top and bottom of the screen and the walls. Each time the ball strikes a wall it causes part of the wall to disappear. The ball will also bounce off the bat and the player is able to control the motion of the bat. This is done with the keys surrounding the number 5. As each key is pressed the bat moves in the same relative direction as that key was to key number 5 (see figure 2). For example if the number 8 is pressed the bat moves straight up. If the number 1 is pressed the bat moves along a diagonal towards the lower left side. The bat will continue to move for as long as the key is pressed. The object of the game is to make the ball strike the grey area of the left wall before it strikes the grey area of the right wall.

Lines 5-100 of the program are initialization. A special input array is set up (more about this later) and boundary conditions are set. Lines $80-90$ print the walls. If the walls were placed directily on the screen the right wall could be one column further right and both walls could be extended one line. For this example I chose the simplest method of initializing the screen.

The boundaries are memory locations 32768 thru 33727. The characters on the PET screen are related directly to the values in memory locations 32768 thru 33767. The screen fills from left to right and is 40 characters wide therefore poking a value into byte 32768 causes a character to appear in the upper leftmost (home) position, byte $32768+39$ is the upper rightmost postion, byte $32768+40$ is the leftmost position of the second line and so forth until byte 33767 which is the lower rightmost character position. Table 1 gives the values for each character to cause it to appear on the screen. Lines $25 \& 30$ set the conditions to keep the ball and bat from moving off the top or bottom of the screen. The grey areas of the walls provide the boundaries for the sides of the screen. The right grey area is actually the reverse field (rvs) of the left grey area therefore a peek (32768) would return a value of key $\&=38+64$ (for shift) $=$ 102 while a peek (32768 + 39) would return 102 +128 (for rvs) $=230$. This provides an easy method of detecting when the sides of the screen are reached (and in this example an indication that the game is over).

To provide motion for the ball a horizontal and vertical displacement are used. This is so the ball can move in directions other than up, down, sideways, or diagonal. XO is 32768 + the column and $Y O$ is the line number with $O$ as top line. $X$ and $Y$ are increments which are added to $X O$ and

Yo to get the next position. ( P 1 is the next position while $P 2$ is the current position). If the nect position is beyond the top or bottom of the screen the direction of $Y$ is reversed and the next position is set to the current position lines 120-125) this provides a bounce. The character on the screen at the next position is now checked (line 155). If this is equal to 35 , the pound sign, (line 160) then the bat has strucl: the ball and it bounces off at a new angle. The magnitude of vector ( $\mathrm{S}, \mathrm{Y}$ ) is fixed at 1 so that the ball cannot outrun the bat. If the next position has a screen value of 160 $(32+123$ for rvs blank) the white area of a wall was struck and the horizontal direction is reversed (line 180) but the new position is allowed to stand causing the ball to move into the wall. Lines $185-190$ check for the winning or losing conditions. Finally in line 195 the next position is poked to the screen and the current position is blanked out (line 210). The current position is reset to the new position after looping to line 105 and the ball continues to move.

The ba: is supposed to respond to the player and so a different movement scheme is used. The keyboard input routines supported by BASIC require one or more keys to be pressed and released for each input value to be received. This requires the player to tap at the keys like a wood pecker to cortrol motion. To avoid this problem the progran accesses byte 547 of the operating system working storage. When the interpreter is runnins the operating system places a unique value in this byte for each key that is pressed. (table 1 also gives these values, they are not the same as the screen character values). These values are then translated to a displacement for the bat.

The bat position is initialized and always kept at the actual address of the memory location which corresponds to the bats screen character position. Al contains the next position while A2 contains the current position. In lines $35-45$ an array $E$ was set up with displacements stored at incex values matching the values which may appear when any of the 8 keys surrounding number 5 is pressed. All other values of $E$ are zero. By using the value at Peek (547) as an index to E the proper displacement for that key is obtained. lor example when key number 2 is pressed, the vilue 18 appears at byte 547 and $E(18)=40$ which when added to the current position gives a next position one line lower(see lines 130-135) but if no key is pressed byte 547 contains 255 and si ice $E(255)=0$ the next position is the same as the current position and no motion takes place. The position is checked against the boundaries (line 140-150) and the screen is updated (lines 200-205). The program is now fast enough for the motion to appear continuous.

One drawback to this input scheme is that even though the keyboard buffer is not used to control tae bat, it still fills up. Lines 310 and 320 show how the buffer had to be emptied before using the BASIC input routines again in line 370. When using the continuous keyboard input from a machine language routine it is important to leave the interrupt set to keyboard input or byte $5 \$ 7$ may not get updated.

| KEY | $\begin{aligned} & \text { SCREEN } \\ & \text { VALUE } \end{aligned}$ | KEYBOARD <br> VAL (547) | KEY | $\begin{aligned} & \text { SCREEN } \\ & \text { VALUE } \end{aligned}$ | KEYBOARD <br> VAL (547) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | 27 | 7 | ; | 59 | 28 |
| 1 | 28 | 69 | $<$ | 60 | 5 |
| $]$ | 29 | 14 | $=$ | 61 | 1 |
| $\uparrow$ | 30 | 59 | $>$ | 62 | 12 |
| $\leftarrow$ | 31 | 75 | ? | 63 | 20 |

The screen character values for a shift-key is the value of the key +64 . To get a reverse field (rvs) of a character (including shift-key characters) take the character value +128 .

| Additional keyboard values: |  |  |
| :--- | ---: | :--- |
| Home | 74 |  |
| RVS | 8 |  |
| STOP | 4 | (note pressing this key will still stop the program) |
| Up, down curser | 66 |  |
| Sideways curser | 73 |  |
| Del | 65 |  |

PROGRAM LISTING




Figure 2

Showing the placement of the wall boundaries at the beginning of the game

TABLE 1


```
300 REM ##* WINNFF? ***
310 GET A$
320 IF AS <> U"I THEN 310
330 ?" 4."SHC(12)"\uparrowCONGRATULATIONG"
340 FOR I = 1 TO 100 : NEXT I
350 ?" 个 "SPC(12) "CONGRATULATIONS"
360 FOH I = 1 TO 100 : NEXT I
370 GET A$
38: IF AS = "'" THEN 330
390 GOTO 5t
400 REM *** LOSER ***
```

```
410 GET AS
420 IF AS <> "1% THEN 410
```



```
440 FORI = 1 TO InO: NEXT I
450? "t "SPC(12)"SCRRY TRY AGAIN"
460 FOR I = I TO 100: NEXT I
470 GET AB
480 IF AS = 111 THEN 430
490 GO TO 5%
500 ENU
```


## KIM-1 <br> SYM-1 (VIM)

KL 512 Power Supply
for KIM-SYM and extra memory (with KIM or SYM \$30)
KM8B from Problem Solver Systems ..... \$149

KM8B from Problem Solver Systems

8K memory for KIM-SYM-AIM
Memory Plus from the Computerist $\mathbf{\$ 2 3 9}$
8K RAM, space for 8K EPROM, EPROM Programmer, timers, and I/O

KIM Enclosure from Enclosure Group
\$23
Write for list of KIM and PET accessories

## $\$ 161$

\$238


## CASSETTE TAPES

Premium Quality low noise in 5 screw housing Perfect for PET. Apple, KIM
C-10 (10 minute)
10/6.25
C-30 (30 minute)
10/8.00
Soft plastic boxes with tape order $\quad 10 / 1.00$ 300 foot certified digital cassettes $5 / 9.75$
Write for quantity prices
4 Part Harmony Music System $\quad \$ 35$
MTU 8 bit D to A Converter,
amplifier with example software

Programming a Microcomputer: 6502
8.95

6500 Programming Manual 6.50
6500 Hardware Manual 6.50
First Book of KIM 9.00
All Hayden books 10\% off

A B Computers • P.O. Box 104 • Perkasie, PA • (215) 257.8195

# PET-EXPANDOR PRINTER from PETSHACK PET-SHACK Software House Mishawaka, IN 46544 <br> <br> P.O. Box 966 <br> <br> P.O. Box 966 <br> <br> PRINTER PRICE <br> <br> PRINTER PRICE <br> <br> WITH PET INTERFACE $=495$ 

 <br> <br> WITH PET INTERFACE $=495$}

PET TO PARELIEL INTERFACE with 5 V .8 A power supply. $-\mathbf{- \$ 7 4 . 9 5}$
PET TO 2nd CASSETTE INTERFACE. $-\mathbf{-} \$ 49.95$

- Smell size of $4.5^{\prime \prime} \mathrm{H} \times 12 \mathrm{y}^{\prime \prime} \mathrm{W} \times 9 \%^{\prime \prime} \mathrm{D}$
- Impact printing 3 capies
- Pritts 80 columnas wida
- Print Cyinder - not a matrix
- Uses 81/2" paper, pressure or pin feed
- Easy to maintain yourself, or return to us (maintenance manual suppled)
- Regular Papar - Coated paper not required.
- Ligitweight, $11 / 2 \mathrm{lbs}$ with cover
- Easy to carry with you - portable
- Prints 10 characters per second
- Single Case 64 Cheracter ASCll Cheracter Set
- Pín feed mechanism inctudad
- Full Documentation Included

This is the ideal. low cost, reliable, self maintained printer with which to complete your, PET system.
SOFTWARE PROGRAM LIST EXPANDOR PRINTER

$\qquad$
NUMBERAMA - NUMBER GUESSING GAME BASED ON 'MASIERMIND' ..... ----5. 95
STATES - HELH THE KIDS WITH THEIR GEOGRAPHY. MATCH STATES \& CAPITALS•--.--5.95
math tutor - help young iters learn math in an enjoyable waye ..... $----5 \cdot 95$
6502 DISASSEMBLER \& PEEK-A-B00 - DISASSEMBLE ROMS \& MACHINE LANGUAGEPROGRAMS. DOU日LE CHECK YOUR HAND ASSEMBLED PROGRAMS ANDdisassemble the protected basic roms in your petePEEK-A-BOO PEEKS AT YOUR MEMORY ANO DISPLAYS 25 SUCCESSIVE$\triangle O D R E S S E S$ IN $A S C I I$, HEX, DECIMAL, \& $\triangle C T U A L ~ C H A R A C T E R S . ~---12.95 ~$
MAD LIBS - PARTY FAVORITEI HILARIOUS STORIES CREATED. ..... $---5 \cdot 95$
WORLD COVQUEST - $\triangle D V A N C E D ~ G A M E ~ O F ~ S T R A T E G Y-~$ ..... ----5. 95
STAPTREK - ALL-IIME FAVORITE WRITTEN FOR THE PET'S SPECIAL GRAPHICS. ..... $----5 \cdot 95$
 angles to direct the mortaf shell to ihe iargei. ..... --- - $5 \cdot 95$
PSYCO ANNIE - TELL YOUR PROBLEMS TO PSYCO ANNIE AND GET ANINTERESTING AND PROVOCATIVE ANSWER.---5. $5 \cdot 95$
COMFUTER DEREY - EXCITING DERBY WITH FOUR EQUALLY MATCHED HORSES• UP TO FOUR PEOPLE CAN PLAY. . ..... --- -5. 95
MAILING LIST - FOR PERSONAL OR BUSINESS APPLICATIONS• VERY COMPRE- he SSIVE WITH FILE TO TAPE OR PRINTER. ..... --- -9.95
home utilities - loans, savings, eletricity, \& miles per gallono ..... ----9.95
maOhine language monitor - write machine codee save on tape. ..... ----9.95

## 6503 CONTROLLER

Use your basic KIM board as a developmen't system for the MIK controller board from Qix Systems. Develop and check programs on your KIM. Then, load a PROM with you: program and insert into the PROM socket on the MIK. You then have a non-volatile programmed controller with the following features:


- 16 Programmable buffered I/O pins.
- 512 or 1024 bytes of ROM and 128 bytes of RAM for scratchpad and stack.
- On board clock, programmable timer in=errupts, +5 V voltage regulator, debounce circuitry for nonmaskable in=errupt and reset lines.
- Uses single unregulated supply with PROM's or an additional -5V supply with 2704 or 2708 EPROM's.
- $4 \frac{1}{2}$ " by $6 \frac{1}{2} "$ board with 44 pin edge connector.
- \$109.95 assembled and tested (no PROM's included).
- \$69.95 for board with sockets for all IC's.

Qix Systems P.O. Box 401626 Dallas, Texas 75240 (214)387-5589

## You can use the versatile new BETSI to plug the more than $150 \mathrm{~S}-100$ bus expansion boards directly into your PET*!

On a single PC card, B ETSI has both interface circuitry and a 4 -slot S-100 mothertoard. With BETSI. you can instantly use the better than iS0 boards developed for the $S$ - 100 bus . For expanding your PET's memory and IO, BETSI gives you the interface. The single board has both the complete interface circuitry required and a 4 -slot $S$ - 100 motherboard, plus an 80 -pin PET connector. BETSI connects to any S-100 type power supply and plugs directly into the memory ex pansion connector on the side of your PET's case. And that's it. You need no additional cables, interfaces or back planes. You don't have to modify your PET in any way, and BETSI doesn't interfere with PET's IEEE or parallel ports. And when you want to move your system - BETSI instantly detaches from your PET.

BETSI is compatible with virtually all of the S-100 boards on the market, including memory and I/O boards. BETSI has an on-board controller that allows the use of the high-densily low-power "Expandoram" dynamic memory board from S.D. Sales. This means you can expand your PET to its full 32 K limit on a single S - 100 card! Plus, you won't reduce PET's speed when you use either dynamic or static RAM expansion with BETSI. Additionally. BETSI has four on-board sockets and decoding circuitry for up to 8 K of 2716 -type PROM expansion (to make use of future PET software available on PROM). BETSI jumpers will address the PROMs anywiere within your PET's ROM area. 100.

The BETSI Interface/Motherboard Kit includes all

> M. $H /$ ORDERS ARE NORM.ALLYSHIPPED WTTHIN \&B HOCRS. VISA AND MASTERCH.ARGE ORDERSARE BOTH ACCEPTED.
components. a 100 -pin connector, and coriplete assembly and operating instructions for \$1 19.

The Assembled BETSI board has four 100-pin connectors, complete operating instructions and a full 6-month Warranty for just $\$ 165$.


BETSY is the new Imerface/Motherhoard from Forethought Products-the makers of KIMST" - which allows users of Commodore's PE T Personal (omputer to instantly' nork
with the scares of memory and $1 / O$ hoards developed for the 5 - 100 (Imsai/. 1 thair type) hus. BETSI is availahle from stock on a single $5 \%{ }^{\prime \prime} \times 10^{\prime \prime}$ printed circuit card.


BETS is availahle off-the-shelf from your local dealer or (if they're out) directly from the manufacturer.

# STORAGE SCOPE REVISITED 

Joseph L. Powlette<br>Donald C. Jeffer'<br>Hall of Science<br>Moravian College<br>Bethlehem, PA 180.l8

Flow Chart for
Successive Approximation Analog to Digital Conversion
Marvin DeJong has written an excellent article (MICRO, No.2, pp.11-15, Dec 77-Jan 78) which serves to transform an ordinary oscilloscope into a storage scope. We have constructed several units for use in our laboratory and found them to be very useful. However, we would like to suggest a simple hardware change which will improve the quality of the circuits performance. Figure 1 is a photograph of the storage scope response to a triangular wave ( 14 Hz and voltage offset) using DeJong's circuit. The cause of the irregularities seen in this figure was traced to the second OP-AMP which is used as a comparator. The slew rate of the CA3140 is not high enough to adequately accommodate the successive approximation software routine. Figure 2 shows the collection of data for the same wave with the second OP-AMP changed to a 531 high slew rate OP-AMP. The 531, which is readily available, has the same pin-out (in the $\mathrm{TO}-5$ package) as the CA3140 but pin 4 must be connected to -15 volts rather than ground potential. Also, do not use a frequency compensation capacitor with the 531 since this will only decrease the slew rate of this OP-AMP in the comparator configuration. The 531 is not a FET input type and does not have the high input impedance ( 1.5 T ) of the CA3140. If such a high impedance is desirable, one can use a CA3140 in the following configuration preceding the 531 non-inverting voltage input.

One should also note that:

1. There is a 7 bit version of the 1408 DAC. Specify 1408 L 8 for the 8 bit converter.
2. +5 voits should be connected to pin 13 of the 1408 (see MICRO, No. 6, p. 4, Aug-Sept, 1978) 3. The flow chart. for the successive approximation routine is not correct.

DeJong is to be commended for this storage scope application. In fact, the performance of the program (with the above hardware change) approaches that of commercial units.


Figure 1


Figure 2


14 Hz Sine Wave (Voltage Offset)

De Jong's Circuit
14 Hz Sine Wave
(Voltage Offset)
Modified Circuit

## THE ULTIMATE FQR PET* ._ <br> ExSㅛ B FLOPFY DISK CONTROLLER

The EXS100 is both a S100 ADAPTYR and a FLOPPY DISK CO MROLLER on a single bcard .....

The EXSIOO can be used to interface thc PSC* to the $S 1$ y BUS, making available the seemingly
infinite amount of $S 100$ accessories .......uring the $P T^{*}$ memory expansion connector

The EXSIOO board has a complete FLOPPY DOSK CONTROLLER on-board all set up ready to control
up to three mini-floppy disks
S100 ADAPTER- $\$ 199$ - assembleo testeo
The EXSl00 board built as a stand alone 5100 BUS Adapter. (Floppy Disk Controiler parts missing)
Ready to plug into any Sl00 mainframe to expand the PET*.

## FLOPPY DISK PACKAGI- $\mathbf{\$ 9 9}$ -

The EXSIOO board, cable to the PET, SA400 MINI-FLOPPY DISK DRIVE, Power Supply, and Cabinet..
A Disk System all ready to go, a disk system that can be later expanded into a full sloo Mainframe
S100 MAINFRAME,DISK' - \$ $1195^{-}$
The EXSl00 board installed in a CGRS S100 Mainframe. Complete with SlOC Power Supply, and

System but a complete S100 Mainframe ready to accept more RAM,ROM, Printer, the works..... P. O. Bax 38E
SロUTHAMPTON, PA. 1B986

- TRADEMARK OF COMMODORE


# an apple il progran relocator 

Rick Auricchio
59 Plymouth Avenue
Maplewood, NJ 07040

After writing an Assembly-language program, the occasion often arises when one wishes the program to run in a different area of memory than that for which it was originally assembled. Relocating a program requires changing all absolute references within the program, so that it will run elsewhere in memory...this process is tedious, time-consuming, and repetitive WORK.

## ENTER THE ELECTHONIC BRAIN

Behold! We, have before us an electronic marval which thrives on such repetitive work! After all, why not just write a program to relocate others? Read on......

## HERE'S WHAT IT TAKES

When a Relocating Assembler creates object code one of the items built is a Relocation Dictionary. This is actually a table of pointers to the program instructions that have absolute addresses; it also contains some flags for use by a relocating loader so that the latter can adjust the address references during the loading process.

Unfortunately, we don't have such a luxury when relocating most programs...all we have is raw machine language to work with. Our relocator will have to scan the subject program and find all absolute references which need adjustment.

## USING RELOC8

To relocate a machine-language program, the followin; procedure is followed: load RELOC8 into the Apple and load the subject program into its "old" location. Type an Apple Move command to move the subject program to its "new" address followed by a space and control-Y. The RELOC8 program urill print all modified instructions and then exi: when it's done. For example, to relocate a subject program from "old" location 1500-1800, to "new" location 2A00-2D00, one would type the following command:

- $2 \mathrm{~A} 00<1500.1800 \mathrm{M} \mathrm{YC}$

This is a standard "move" command, moving the program with the Apple Monitor; however, we follow t.re "M" with a space and a control-Y so that RELIC8 will be entered immediately following the move command. When it is entered, RELOC8 ficks up the address values from the "move" ecmmand.

## A FEW WORDS OF WARNING

There is something to watch out for while using RELOC8. Since it scans the subject program for absolute addresses, any data imbedded within the program nay cause RELOC8 to think the data is an instruction. In that case, the data will be nodified and RELOC8's opcode scan might get "out of sync" with the real instructions in the subject program. It's best to try and keep data separate from instructions; if RELOC8 does modify some c.ata, you'll have to fix, it before runaing the relocated program.


## FUNCTIONAL DESCRIPTION OF RELOC 8

The RELOC8 program will use the Apple's SWEET-16 utility for all 16-bit data and address manipulation; use of SWEET-16 saves a lot of 6502 code at the expense of some speed loss. In order to decipher the 6502 instructions of the subject program, Apple's Disassembler is used. (The disassembler, by the way, turns out to be a rather nice utility for things like this). In order to minimize user intervention, it was decided that RELOC8 would be run as part of a standard Apple Memory-Move command. After loading the subject program in its "old" memory location, one enters an Apple Move command to copy it to the "new" memory location, followed by Control-Y (which starts RELOC8 after the Move completes).

All absolute address references which lie within the range of the subject program will be updated. References to addresses outside the subject program (e.g. for Monitor calls) need not be changed.
00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009

0000 F 689
0000 F 8 E
0000 F 8 D 0

0000002 F
0000003 C
0000003 D
00000040
00000041
00000044
00000045
0000003 A
0000003 B

| ACL | EQU | 0 |
| :---: | :---: | :---: |
| ACH | EQU | 1 |
| OBL | EQU | 2 |
| OBH | EQU | 3 |
| OEL | EQU | 4 |
| OEH | EQU | 5 |
| NBL | EQU | 6 |
| NBH | EQU | 7 |
| NEL | EQU | 8 |
| NEH | EQU | 9 |
|  |  |  |
| SWEET16 | EQU | $\mathrm{X}^{\circ} \mathrm{F} 689^{\circ}$ |
| INSDS 2 | EQU | $\mathrm{X}^{\circ} \mathrm{F} 88 \mathrm{E}^{\circ}$ |
| INSTDSP | EQU | $\mathrm{X}^{\prime} \mathrm{F} 8 \mathrm{DO} 0^{\prime}$ |
| Length | EQU | $\mathrm{X}^{\circ} 2 \mathrm{~F}^{\prime}$ |
| All | EQU | $\mathrm{X}^{\prime} 3 \mathrm{C}^{\prime}$ |
| A1H | EQU | $\mathrm{X}^{\prime} 3 \mathrm{D}^{\prime}$ |
| A 3 L | EQU | $\mathrm{X}^{\circ} 40^{\circ}$ |
| A3H | EQU | X ${ }^{\circ} 1^{\prime}$ |
| A5L | EQU | X'44' |
| A5H | EQU | X ${ }^{\circ} 5^{\circ}$ |
| PCL | EQU | $\mathrm{X}^{\prime} 3 \mathrm{~A}^{\prime}$ |
| PCH | EQU | $X^{\circ} 3 B^{\prime \prime}$ |

```
SWEET-16 INTERPRETER
DISASSEMBLE WITHOUT PRINT
DISASSEMBLE SINGLE INSTR.
DISASSEmbled InStr Length
WORK BYTES FOR MONITOR
PC LOW FOR DISASSEMBLER
..tare A gueSS...
```





## ADVERTISING IN MICRO

MICRO is currently printing 10,000 copies for distribution. 4000+ will go immediately to subscribers and dealers. The remainder will go to new subscribers and to replenish dealer stock throughout the coming year - so you get a lot of coverage for your dollar, into a readership that is eager to know about 6502 oriented products.

| DEADLINES: Issue - | FEB | MARCH | APRIL |
| :--- | :---: | :---: | :---: | ---: |
| Ad Reservation: | Jan 2 | Jan 29 | Feb 26 |
| Ad Copy: | Jan 8 | Feb 5 | Mar 5 |

The rates are very reasonable for the coverage:
Quarter Page
Half Page
Full Page
$(33 / 4 \times 5)$
$(71 / 2 \times 5)$
( $33 / 4 \times 10$ )
( $71 / 2 \times 10$ )
$\$ 75.00$
$\$ 125.00$
$\$ 200.00$
$10 \%$ discount on prevailing rate for six consecutive insertions.

Send Ad Copy to:
MICRO, P.O. Box 3, So. Chelmsford, MA 01824 or call for info or Ad reservation:
$617 / 256-3649$
$617 / 256-5515$

## "COMPUTER CANOPY'’

 DUST COVERS- Ideal for the home or office - Attractive, heavy upholstery vinyl - Protects against dust, dirt, spills
- Soft, Textured, Wainut color

POSTPAID IN U.S.A.

Delivery: Stock to 3 Weeks
$\$ 14.95$
Covers for
APPLEII
\$19.95

## SYM-I TAPE DIRECTORY

John Gieryic
2041 138th Avenue N.W.
Andover, MN 55303

The SYM-1's high speed tape format enables recording and loading of 1 K of RAM in just a few seconds ( 185 bytes per second). This quick and easy means of saving and restoring memory will have you SYM-1 owners quickly wrapped up in tape. With the possibility of 254 ID's ( 01 thru FE) you may forget which ID's you've already used or where you stored a particular identifi.er. Maintaining records sometimes seems second.ary when you are eagerly pursuing an idea.

This program will refresh your memory quickly. When DIRECTORY "finds" a tape record it will ex.tract the ID, startind address and ending ad.dress +1 . This information will be paraded across the LED's in much the same format used when you saved the data on tape. The progran will then continue its search for more records. The process is terminated by pressing the RST key.

The first part of the program (locations 205 thru 232) is taken from the monitor routine LOADT. Since this is not a subroutine (callable by a JSR), I had to copy the necessary logic
into my program. The last part of the program makes extensive use of subroutine calls to two of my own subroutines and several of the monitor's. Any newcomers to programming should take time to trace througn this in order to see the power of subroutines.

SYM TAPE DIRECTORY
High Speed Format Only: START: GO 200 CR
TAPE FORMAT:
256 Sync Char * ID SAL SAH EAL+1 EAH+1
DATA / CKL CKH EOT EOT

This program will extract the tape identifier (ID), the starting address (SAL and SAH), the ending address (EAL and EAH) and will "parade" this information on the LED's. The program will then go back to the tape and search for the next record. The program is terminated by pressing the RST key.

SYM TAPE DIRECTORY
SYM REFERENCES

| ACCESS | * | \$8886 |  |
| :---: | :---: | :---: | :---: |
| START | * | \$8DB6 |  |
| SYNC | * | \$8D82 |  |
| RDCHTX | * | \$8DDE |  |
| RDBYT X | * | \$8E28 |  |
| RDBYTH | * | \$8DE2 |  |
| OUTDSP | * | \$89C1 |  |
| NIBASC | * | \$8309 |  |
| SCAND | * | \$890B |  |
| DISBUF | - | \$A641 |  |
| DDRIN | * | \$ $0^{0} 02$ |  |
| VIAACR | * | \$A00B |  |
| LATCHL | * | \$ A004 |  |
| MODE | * | \$00FD |  |
|  | ORG | \$0000 |  |
| ID | = | \$00 | tape id location |
| SAL | $=$ | \$00 |  |
| SAH | = | \$00 |  |
| EAL | $=$ | \$00 |  |
| EAH | = | \$00 |  |
| TEMP | $=$ | \$00 |  |
| LCNT | = | \$00 | LOW LOOP COUNTER |
| HCNT | = | \$00 | HIGH LOOP COUNT |


| 0200 |  |  |  | ORG | \$0200 | PROGRAM ORIGIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0200 | 2086 | 8B | BEGIN | JSR | ACCESS | ENABLE SYM PROTECTED MEMORY |
| 0203 | A0 80 |  |  | LDYIM | \$80 | SET HIGH SPEED MODE |
| 0205 | 20 B6 | 8D |  | JSR | START | INIT TAPE ROUTINES |
| 0208 | AD 02 | A0 |  | LDA | DDRIN |  |
| 020B | 29 BF |  |  | ANDIM | \$BF |  |
| 020D | 8D 02 | AO |  | STA | DDRIN |  |
| 0210 | A9 00 |  |  | LDAIM | \$00 |  |
| 0212 | 8D OB | AO |  | STA | VIAACR |  |
| 0215 | A9 1F |  |  | LDAIM | \$1F | SET UP TIMER |
| 0217 | 8D. 04 | A0 |  | STA | LATCHL |  |
| 021A | 2082 | 8D | FIND | JSR | SYNC | SEARCH TAPE FOR RECORD |
| 021 D | 20 DE | 8D | READ | JSR | RDCHTX | GET CHARACTER |
| 0220 | C9 2A |  |  | CAPIM | 1: | COMPARE FOR ASTERISK |
| 0222 | F0 06 |  |  | BEQ | TEST | MATCH |
| 0224 | C9 16 |  |  | CMPIM | \$16 | TEST SYNC CHAR |
| 0226 | D F 2 |  |  | BINE | FIND |  |
| 0228 | F0 F3 |  |  | BEQ | READ |  |
| 022A | A5 FD |  | TEST | LDA | MODE |  |
| 022C | 29 BF |  |  | ANDIM | \$BF |  |
| 022E | 85 FD |  |  | STA | MODE |  |
| 0230 | 2028 | 8E |  | JSR | RDBYTX | GET ID |
| 0233 | 8500 |  |  | STA | ID | SAVE ID |
| 0235 | 2028 | 8 E |  | JSR | RDBYTX | GET SAL FROM TAPE |
| 0238 | 8501 |  |  | STA | SAL | SAVE |
| 023A | 2028 | 8E |  | JSR | RDBYTX | GET SAH FROM TAPE |
| 023D | 8502 |  |  | STA | SAH | SAVE |
| 023F | 20 E2 | 8D |  | JSR | RDBYTH | GET EAL |
| 0242 | 8503 |  |  | STA | EAL | SAVE |
| 0244 | 20 E2 | 8D |  | JSR | RDBYTH | GET EAH |
| 0247 | 8504 |  |  | STA | EAH | SAVE |
| 0249 | A9 00 |  |  | LDAIM | \$00 | CLEAR OUT DISPLAY BUFFER |
| 0248 | 8D 41 | A6 |  | STA | DISBUF |  |
| 024E | 8D 42 | A6 |  | STA | DISBUF | +01 |
| 0251 | 8D 43 | A6 |  | STA | DISBUF | +02 |
| 0254 | 8D 44 | A6 |  | STA | DISBUF | +03 |
| 0257 | 8D 45 | A6 |  | STA | DISBUF | +04 |
| 025A | A5 00 |  |  | LDA | ID | TAPE ID |
| 025C | 2096 | 02 |  | JSR | DISPL | SEND IT TO DISPLAY |
| 025F | A9 2D |  |  | LDAIM | '- | ASCII DASH |
| 0261 | 20 C 1 | 89 |  | JSR | OUTDSP | SEND IT TO DISPLAY |
| 0264 | 20 B5 | 02 |  | JSR | delay | PaUSE |
| 0267 | A5 02 |  |  | LDA | SAH | START ADDRESS HIGH |
| 0269 | 2095 | 02 |  | JSR | DISPL | SEND TO DISPLAY |
| 026C | A5 01 |  |  | LDA | SAL | START ADDRESS LOW |
| 026E | 2096 | 02 |  | JSR | DISPL | SEND TO DISPLAY |
| 0271 | A9 2D |  |  | LDAIM | '- | DASH |
| 0273 | 20 C1 | 89 |  | JSR | OUTDSP | DISPLAY IT |
| 0276 | 20 B5 | 02 |  | JSR | delay | pause |
| 0279 | A5 04 |  |  | L.DA | EAH | END ADDRESS HIGH |
| 027日 | 2096 | 02 |  | JSR | DISPL |  |
| 027E | A5 03 |  |  | LDA | EAL | END ADDRESS LOW |
| 0280 | 2096 | 02 |  | JSR | DISPL |  |
| 0283 | A9 00 |  |  | L.DAIM | \$00 | ADD 2 TRAILING BLANKS |
| 0285 | 20 C 1 | 39 |  | JSR | OUTDSP |  |
| 0288 | 20 B5 | 02 |  | JSR | dELAY |  |
| 028B | A9 00 |  |  | LDAIM | \$00 |  |
| 028D | 20 C 1 | 39 |  | JSR | OUTDSP |  |
| 0290 | 20 B5 | 02 |  | JSR | dELAY |  |
| 0293 | 4 C 00 | 02 |  | JMP | BEGIN | go to next record on tape |





## - THE BEST OF MICRO VOLUME 1 "

Even though we had extra copies of MICRO printed we could not keep up with the demand for back issues. We have run out of all back issues and all copies of "All of MICRO Volume 1". Since a lot of people who are just finding out about MICRD or are just getting into the 6502 world still want the information which was contained in the first year of MICRD, we have decided to print "The BEST of MICRO Volume 1".

This will contain most of the articles but none of the advertising. A few articles which were topical and are now out-of-date will be dropped and all known microbes will be corrected back in the original articles. The book will be organized by subject. Aside from these minor changes, the content will be identical to that of MICRO numbers 1 through 6. If you already have them, you will not profit by getting the new edition. If you do not have them, then this will be the only way to get the information.
"The BEST of MICRO Volume 1 " is available now. 176 pages plus five reference cards, soft cover. Price: $\$ 6.00$ at your dealer or by surface mail anywhere in the world - $\$ 7.00$.

Send your Check or Money Order to:
The BEST of MICRO
P.O. Box 3
So. Chelmsford, MA 01824

# SYM-1. <br> Finally, adependable microcomputer board. 



In performance. In quality. In availability. OEMs, educators, engineers, hobbyists, students, industrial users: Our Versatile Interface Module, SYM-1, is a fullyassembled, tested and warranted microcomputer board that's a true single-board computer, complete with keyboard and display. All you do is provide a +5 V power supply and SYM-1 gives you the rest - and that includes fast delivery and superior quality.

## Key features include:

- Hardware compatibility with KIM-1 (MOS Technology) products.
- Standard interfaces include audio cassette with remote control; both 8 bytes/second (KIM) and 185 bytes/second (SYM-1) cassette formats; TTY and RS232; system expansion bus; TV/KB expansion board interface; four I/O buffers; and an oscilloscope single-line display.

To place your order now, contact your local area distributor or dealer.

## OEM Distributors

Kierulff Electronics
Sterling Electronics (Seattle only) Zeus Components
Century/Bell
Lionex
Hallmark
Intermark Electronics
Quality Components

Technico
General Radio
Western Microtechnology
Future Electronics
Alliance Electronics
Arrow Electronics

## Personal Computer Dealers

Newman Computer Exchange Ann Arbor, Michigan

- 28 double-function keypad with audio response.
- 4 K byte ROM resident SUPERMON monitor includ ing over 30 standard monitor functions and user expandable.
- Three ROM/EPROM expansion sockets for up to 24 K bytes total program size.
- 1 K bytes 2114 static RAM, expandable to 4 K bytes on-board and more off-board.
- $50 \mathrm{I} / \mathrm{O}$ lines expandable to 70 .
- Single +5 V power requirements.
- Priced attractively in single unit quantities; available without keyboard/display, with OEM discounts for larger quantities.


## Synertek Systems Corporation.

150-160 S. Wolte Road, Sunnyvale, California 94086 (408) $988-5690$.

Technico
Columbia, Maryland
Computerland
Mayfield Heights, Ohio
RNB Enterprises
King of Prussia, Pennsylvania
Computer Shop
Cambridge, Massachusetts
Computer Cash
Anchorage, Alaska

## Ancrona

Culver City, California General Radio
Camden, New Jersey
Advanced Computer Product:
Santa Ana, California
Computer Components Van Nuys, California
Alltronics
San Jose, California

## INSIDE PET BASIC

Jim Butterfield
14 Erooklyn Avenue
Toronto, Ontario
Canada M4M 2X5

PET BASIC is pretty good: fast, powerful, and flexible. Most of the time you can write programs without ever needing to know what's inside. But there are a few handy things that you can't do without "dissecting" BASIC. Let's tak a couple of examples. Suppose you want to look through a big program for some reason. You might have a small bug: say a variable, X4, ends up with a wrong value, and you want to find out why. You could list the program, a screenful at a time, looking for every time $X^{4}$ is used; bu eye fatigue starts to set in. Wouldn't it be nice to have a utility program to do the scanning for you?

## Program FIND

Program FIND will do the job for you. To write such a program, though, we need to know how BASIC is built. The first line of your BASIC program starts at address 1025 (or 0401 hexadecimal). That's where we must start our search. Each BASIC line will have the following format: The first two locations contain a pointer to the next line of BASIC; or if they contain zeros, there is no next line and this is the end of your program. The next two locations contain the BASIC line number. After that (starting at the fifth location) we have the BASIC line itself. It's mostly in ASCII code, but keywords such as FOR, PRINT, or SQR are stored as special codes known as "tokens". At the end of the line we'll find the value zero.

How do we use this information to scan BASIC for a given expression? First, we set our address, A, to 1025; that's where BASIC starts. Next, we skip over the first four bytes (pointer and line number) and search from $A+4$ to the end of the BASIC line. We'll recognize the end-of-line by the zero at the end. If we find the expression we want, we can output the line number by obtaining it from $A+2$ and $A+3$. It's in binary, so we use the expression $256^{* P E E K}(A+3)+\operatorname{PEEK}(A+2)-$ printing this value will print the line number.

When we reach the end of the BASIC line, we must go to the next line, of course. It will be right behind the zero that marked the end of our previous line; or we can use the pointer to jump ahead with $A=256^{*} \operatorname{PEEK}(A+1)+\operatorname{PEEK}(A)$. If the pointer is zero, we know that we have come to the end of the BASIC program and can stop.

## Program RESEQUENCE

Let's move on to something more complicated. Suppose you want to renumber your BASIC program. Since we know how the line numbers are stored in BASIC, it seems easy; we'll just change them to the new values. There is a hitch, however. What happens if your program contains a GOTO 300 statement - and now line 300 is renumbered so that it becomes line 380 ? Problems - that's what happens.

What we must do is search out all the GOTOs and GOSUBs, including those included in ON.. statements, and be ready to change the old line numbers to new ones. One way of doing this is to build a table of "old" addresses, match them
with the "new" line numbers, and then correct them after renumbering has been accomplished. To help make things more complicated, we have two different ways of using the THEN statement. If we have a line such as IF $J=12$. THEN $Y=2$, there is no line number reference to correct. On the other hand, if we have IF $J=12$ THEN 530, we must be ready to fix up 530, replacing it with a new line number if necessary.

More difficulties: if we have a statement which says, for example, GOTO 5, and with the renumbering we want to change it to GOTO 100 , we won't have space! And making space isn't that easy: you may recall that the lines of BASIC are "chained" together with pointers; if we lengthen a BASIC line, all the pointers will need to be fixed upl This last problem is too tough to resolve in a simple manner - let's sidestep it by printing a warning notice if it should occur.

How do we approach this job? We separate the program into three phases. Phase 1 looks through the program for line number references and builds a table. Phase 2 does the actual renumbering (the easiest part of the whole job). Phase 3 looks through the program again and corrects the line number references. How do we look through the program? The same way as with program FIND. We're looking for three keywords: GOTO (token 137), GOSUB (141) and THEN (167). Sometimes we'll also allow a comma (44) so that statements such as ON X GOTO $100,200,300$ will be allowed. You'll see this testing for tokens on line 60220 of RESEQUENCE.

If we find one of these keywords, we must convert the following ASCII numbers into a value $V$ corresponding to the line number. During Phase 1, we build these line numbers into a table at 6009. Phase 2 is a snap. In lines 60030-60040 we change the line number and then check to see if the old number was in table V\%. IF so, we fill in the cross-reference. Phase 3 is the long one. We must repeat the search of Phase 1. Then, in 60110 to 60150 we must build the new line number (in ASCII) and insert it - with appropriate tests and warning notices.

## Making Them Work

Both FIND and RESEQUENCE are written in BASIC. That means that they will have to reside in PET's memory along with the programs they are dealing with. RESEQUENCE is constructed so that it doesn't renumber itself, of course; and FIND will examine itself, reporting any occurences of the search string. Another problem arises, however: how can you get two programs into the PET at the same time? We need to load either FIND or RESEQUENCE together with the program that is being processed. A normal PET load wipes out the old program when a new one is loaded. You could alsays add FIND or RESEQUENCE by entering it at the keyboard; this would add the utility program to the existing program in memory. But such a procedure is lengthy and it would be easy for errors to creep in. There must be a better way. One good way is to use the screen as a "holding buffer". You could load program FIND, and list it onto the screen. Then load the program you wand to search. FIND will be wiped out of memory, but it's still on the screen - so you
can move the cursor back to displayed line 9000 ， and hit RETURN eight times．FIND will be re－ stored to memory，where it now shares space with the program to be scanned．This doesn＇t work too well with a longer program like RESEQUENCE， however．The program is too big to fit on the screen－much too big．There must be another even better way．Larry Tessler of Sphinx opened the door with his program UNLIST，which made true program merging possible for the first time．Since this breakthrough，an even better method has been devised by Brad Templeton of Toronto．

## UNLIST－A Procedure for Merging Programs

Here＇s how it works．Be sure to follow the in－ structions carefully and exactly．Prepare the programs you will want to merge in the following manner．Load the program．Place a blank tape into your cassette unit．Now type：

OPEN 1，1，1：CMD 1：LIST
When the tape stopes，type：

## PRINT\＃1：CLOSE 1

and your merge tpae is ready．At a later tine， when you want to merge the program，here＇s what to do．First，mount the merge tape you previ－ ously prepared and type OPEN 1 ．Now clear the screen，give exactly four cursor downs，and type the following，but DO NO HIT RETURN：

## POKE611，1：POKE525，1：POKE527，13：？＂h＂

（ $h$ is cursor home；shows as reverse $S$ ）．Don＇t hit return：press cursor home and give six（6） cursor downs．Now type exactly the same line （two lines below the first line）and then hit RETURN．The tape will more；the merge will take place；and finally，an error notice will print between the two lines．Stop the tape if it＇s still going，and then type CLOSE1．Miraculously the merge has taken place！

How does it work？It＇s a little complex；but if I hinted that POKE 611，1 thransfers control away from the PET＇s keyboard to the cassette tape， you＇d have part of the story．And if I mention－ ed that poking 525 and 527 simulates a RETURN key being hit，you＇d have another part．Eut， you don＇t need to know what makes it work in order to use it．Use it；benefit from it；and enjoy it．
the following，but DO NOT HIT RETURN：

## FIND for PET

Need to search a program for an express，a var－ iable，or a keyword？Slip program FIND in be－ hind your program（it＇s not very long）－then insert a line 1 to say what to search for ．．． and the job＇s done．Every line in memory which contains the same expression as line 1 will be reported．This includes line 1 itself，of course，and any lines in program FIND ．．．as well as the program you＇re searching．The program is listed here spaced out for read－ ability－alose in the spaces when you input to save space．
$9000 \mathrm{~A}=1025$ ： $\mathrm{X}=\mathrm{PEEK}(1029)$ FOR $\mathrm{J}=1$ TO 1E3 ：FOR $K=A+4$ TO $A+83$
9001 P＝PEEK（K）：IF P＝X THEN GOSUB 9005
9002 IF P $\langle>0$ THEN NEXT K
$9003 \mathrm{~A}=256^{*} \operatorname{PEEK}(\mathrm{~A}+1)+\mathrm{PEEK}(\mathrm{A})$ ：IF A＞O THEN NEXT J
9004 STOP
9005 FOR L＝1 TO $80: Y=\operatorname{PEEK}(1029+L): F I Y=0$ THEN ？256＊PEEK（A +3 ）+ PEEK（ $\mathrm{A}+2$ ）；：RETURN 9006 IF Y＝PEEK（ $K+L$ ）THEN NEXT L
9007 RETURN
Example：to find all FOR statements in a prom gram；insert FIND（above）and then insert line 1

1 FOR
Now invoke FIND with RUN 9000．The program will print 1 followed by any program lines containing FOR followed by 900090009005 （ 9000 prints twice because it contains two FORs）．

FOR is a keyword，and doesn＇t store as three separate characters，so you wouldn＇t find it if you searched for characters FO．This can be handy：if you were looking for variable $F$ you wouldn＇t get all the fors printed．

Modifications：if you squeezed $\mathrm{P}=0$ just ahead of RETURN on line 9005 （it＇s a tight squeeze）a line number would print only once even when it had multiple matches；you might or might not want this feature．

IMPORTANT：Don＇t forget to wipe out line 1 and program FIND when you＇re finished with them．

## RESEQUENCE for PET

60000 END
60010 TO＝：DIM V\％（100），W\％（100）：GOSUB 60160 ： FOR R＝1 TO 1E3 ：GOSUB 60210
60020 IF G THEN GOSUB 60090 ：NEXT R
60030 GOSUB 60160：FOR R＝1 TO 1E3 ：N 2 INT （M／256）：PORE A－1，M－N 256
60040 PORE A，N ：V＝L ：GOSUB $60070: W \%(J)=M:$ GOSUB 60170 ：IF G THEN NEXT R
60050 GOSUB 60160 ：FOR $\mathrm{h}=1$ TO 1E3 ：GOSUB 60210 ：IF G THEN GOSUB 60110 ：NEXT H
60060 ？${ }^{\text {＂}}$ END＂${ }^{\text {＂}}$ ：END
$60070 \mathrm{~J}=0$ ：IF T $\langle>0$ THEN FOR $\mathrm{J}=1$ TO T ：IF V\％（J）〈 V THEN NEXT $J$ ：$J=0$
60080 RETURN
60090 IF $\mathrm{V}<>0$ THEN GOSUB 60070 ：IF $\mathrm{J}=0$ THEN $\mathrm{T}=$ $T+1: V \%(T)=V$
60100 RETURN
60110 GOSUB 60070 ：IF J＝0 THEN RETURN
60120 W＝W\％（J）；IF W＝0 THEN ？＂GO＂；＂L＂；L；＂？＂： RETUR
60130 FOR $D=A$ TO $B+1$ STEP－ $1 \quad X=I N T(W / 10):$ $Y=W-10^{*} X+43$ ：IF $W=0$ THEN $Y=32$
60140 POKE D，Y ：W＝X ：NEXT D ：IF W＝0 THEN RETURN
60150 ？＂INSERT＂；W\％（J）；＂L＂；L ：RETiJRN
60160 F＝1025：$M=90$
$60170 \mathrm{~A}=\mathrm{F}: \mathrm{M}=\mathrm{M}+10$
$60180 \mathrm{~F}=\operatorname{PEEK}(\mathrm{A})+\operatorname{PEEK}(\mathrm{A}+1) 256: L=\operatorname{PEEK}(\mathrm{A}+2)+$ $\operatorname{PEEK}(A+3) 256: A=A+3: G=L<6 E 4$
60190 RETURN
60200 S＝0
$60210 \mathrm{~V}=0$ ： $\mathrm{A}=\mathrm{A}+1$ ： $\mathrm{B}=\mathrm{A}: \mathrm{C}=\operatorname{PEEK}(\mathrm{A})$ ：IF $\mathrm{C}=0$ THEN GOSUB 60170：ON G＋2 GOTJ 60210，50190
60220 IF Cく＞137 AND C＜＞141 AND C＜$>157$ AND Cく＞S GOTO 60200
$60230 A=A+1$ : $C=P E E K(A)-48$ : IF $C=-16$ GOTO 60230 60240 IF C $=0$ AND C<9 THEN $V=V{ }^{*} 10+C$ : GOTO 60230 60250 S +44 : $A=A-1$ : RETURN

RESEQUENCE can sit quietly behind your program. When you say RUN 60010, your program is renumbered. RESEQUENCE gives error notices if:
A. a GOTO or GOSUB statement wants to go to a non-existant line;
B. there isn't enough room for a new (higher) line number.
In both cases you're given the (new) line number where this happens. RESEQUENCE doesn't run fast (allow about a second per line, more for large programs), but it's dependable and very useful.

Program comments: Line 6000 stops the user program if it gets here. Lines 60010-60020 extract all GOTO, GOSUB, and THEN references and build them into a table. Lines $60030-60040$ renumber all lines, and cross-references the table if needed. Line 60050 updates all line references.

Subroutines: 60070 looks for an entry in the line number table. 60090 inserts a new entry into the table. 60110 revises a line number reference. 60160 starts a new scan of the user program; 60170 continues the scan with the next line. 60210 scans the user program for GOTOs, etc.; value $S$ is used to accomodate ON A GOTO ... type situations.

## an apple II Page 1 Map

## M.R. Connolly Jr.

5009 Rickwood Ct. Nw
Huntsville, AL 35810

In the Apple II, the on-screen text is stored in locations $\$ 400$ through $\$ 7$ FF. Trying to determine just where a particular spot resides in memory isn't easy. The page lines are stored neither consecutively nor sequentially. The APPLE page 1 map shows in hex and decimal the starting and ending locations of each line on the screen. Any given line is sequential from space 1 through space 40; eg, the 20th position of any line is equal to the beginning location +19 decimal or 14 hex.

The value of the page map becomes apparent when used with a listing of the interpretation of
numbers stored in the map. Any normal, inverse, or flashing character, or white block, black block, or cursor block may be positioned merely by poking the correct value in the location storing the page position you require.

You might pass this off as just "nice to know" information, but it is very useful if, for instance, you are trying to make an impressive title page for a program you've spent weeks writing. Run the following short program, then try to duplicate it without using the page map and the character chart. It isn't easy!

10 CALL -936: FOR I = 1205 TO 1217: POKE I,32: POKE I+ 512,32: NEXT I 20 FOR I = 1333 TO 1589 STEP 128: POKE I, 32: POKE I+ 12,32: NEXT I
30 POKE 1463,141: POKE 1465,9: POKE 1467,67: POKE 1469,18: POKE 1471,207 40 GOTO 40

MAP OF LINE AND SPACE LOCATIONS FOR TEXT PAGE 1, APPLE II COMPITIER

|  | LOCATION |  | 8 | 780-7A7 | 1920-1959 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LINE | HEX | DECIMAL | 9 | 428-44F | 1064-1103 |
| 1 | 400-427 | 1024-1063 | 10 | 4A8-4CF | 1192-1231 |
| 2 | 480-4A7 | 1152-1191 | 11 | 528-54F | 1320-1359 |
| 3 | 500-527 | 1280-1319 | 12 | 5A8-5CF | 1448-1487 |
| 4 | 580-5A7 | 1408-1447 | 13 | 628-64F | 1576-1615 |
| 5 | 600-627 | 1536-1575 | 14 | 6A8-6CF | 1704-1743 |
| 6 | 680-6A7 | 1664-1703 | 15 | 728-74F | 1832-1871 |
| 7 | 700-727 | 1792-1831 | 16 | 7A8-76F | 1960-1999 |


| 17 | $450-477$ | $1104-1143$ |
| :--- | :--- | :--- |
| 18 | $400-4 F 7$ | $1232-1271$ |
| 19 | $550-577$ | $1360-1399$ |
| 20 | $500-5 F 7$ | $1488-1527$ |
| 21 | $650-677$ | $1616-1655$ |
| 22 | $600-6 F 7$ | $1744-1783$ |
| 23 | $750-777$ | $1872-1911$ |
| 24 | $700-7 F 7$ | $2000-2039$ |

Not used for on-screen display: 478-47F; 4F8-4FF; 578-57F; 5F8-5FF; 678-67F; 6F8-6FF; 778-77F; 7F8-7FF

MACHINE INTERPRETATION OF VALUES STORED IN \$490.7FF APPLE II COMPUTER

| FIGURE | NORMAL | INVERSE | FLASH | FIGURE | NORMAL | INVERSE | FLASH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| @ | 128,192 | 0 | 64 | $!$ | 161,225 | 33 | 97 |
| A | 129,193 | 1 | 65 | " | 162,226 | 34 | 98 |
| B | 130,194 | 2 | 66 | \# | 163,227 | 35 | 99 |
| C | 131,195 | 3 | 67 | \$ | 164,228 | 36 | 100 |
| D | 132,196 | 4 | 68 | \% | 165,229 | 37 | 101 |
| E | 133,197 | 5 | 69 | \& | 166,230 | 38 | 102 |
| F | 134,198 | 6 | 70 | 1 | 167,231 | 39 | 103 |
| G | 135,199 | 7 | 71 | $($ | 168,232 | 40 | 104 |
| H | 136,200 | 8 | 72 | ) | 169,233 | 41 | 105 |
| I | 137,201 | 9 | 73 | * | 170,234 | 42 | 106 |
| J | 138,202 | 10 | 74 | + | 171,235 | 43 | 107 |
| K | 139,203 | 11 | 75 | , | 172,236 | 44 | 108 |
| $L$ | 140,204 | 12 | 76 | - | 173,237 | 45 | 109 |
| M | 141,205 | 13 | 77 | - | 174,238 | 46 | 110 |
| $N$ | 142,206 | 14 | 78 | 1 | 175,239 | 47 | 111 |
| 0 | 143,207 | 15 | 79 | 0 | 176,240 | 48 | 112 |
| P | 144,208 | 16 | 80 | 1 | 177,241 | 49 | 113 |
| 0 | 145,209 | 17 | 81 | 2 | 178,242 | 50 | 114 |
| R | 146,210 | 18 | 82 | 3 | 179,243 | 51 | 115 |
| S | 147,2:11 | 19 | 83 | 4 | 180,244 | 52 | 116 |
| T | 148,212 | 20 | 84 | 5 | 181,245 | 53 | 117 |
| U | 149,213 | 21 | 85 | 6 | 182,246 | 54 | 118 |
| V | 150,214 | 22 | 86 | 7 | 183,247 | 55 | 119 |
| W | 151,215 | 23 | 87 | 8 | 184,248 | 56 | 120 |
| $X$ | 152,216 | 24 | 88 | 9 | 185,249 | 57 | 121 |
| $Y$ | 153,217 | 25 | 89 | : | 186,250 | 58 | 122 |
| $z$ | 154,218 | 26 | 90 | ; | 187,251 | 59 | 123 |
| ᄃ | 155,219 | 27 | 91 | < | 188,252 | 60 | 124 |
| 1 | 156,220 | 28 | 92 | = | 189,253 | 61 | 125 |
| $コ$ | 157,221 | 29 | 93 | $>$ | 190,254 | 62 | 126 |
| $\Lambda$ | 158,222 | 30 | 94 | ? | 191,255 | 63 | 127 |
|  | 159,223 | 31 | 95 |  |  |  |  |
| (BLOCK) | 160,224I | 32I | $96 \square$ |  |  |  |  |



16K_RAM_C日G
N.E.C.UPD 416 D

CERAMIC CHIPS
1-5
SETS/ \$120.00 SET
6-11 SETS/ \$112.00 SET
12-24 SETS/ \$104.00 SET
25-UP SETS/ \$ 96.00 SET

N.E.C.UPD 414 D PLASTIC CHIPS

1-5 SETS/ \$48.00 SET 6-11 SETS/ $\$ 40.00$ SET 12-24 SETS/ \$32.00 SET 25-UP SETS/ \$24.00 SET

THESE CHIPS ARE IN STOCK AND READY FOR IMMEDIATE DELIVERY! COME AN' GET 'EM!

FOR THOSE WHO CANNOT COME INTO OUR STORE, USE THE SHIPPING SCHEDULE "A" FOR THE FIRST SET ORDERED AND ADD 50 CENTS FOR EACH ADDITIONAL SET THEREAFTER FOR THE SHIPPING AND INSURANCE.
 APPLE COMPUTER INC. SOFTWARE

| 1. CHECKBOOK | $\$ 20.00$ |
| :--- | ---: |
| 2.STARTREK/STARNARS | $\$ 15.00$ |
| 3.COLOR DEMO/BREAKOUT | $\$ 7.50$ |
| 4.APPLESOFT II/F. P. DEMO W/MAN. $\$ 20.00$ |  |
| 5. RAM TEST | $\$ 7.50$ |
| 6.COLOR MATH/HANGMAN | $\$ 7.50$ |
| 7. BLACKJACK/SLOT MACHINE | $\$ 7.50$ |
| 8.BIORYTHM/MASTERMIND | $\$ 7.50$ |
| 9.APPLE II CAPABILITIES DEMO | $\$ 20.00$ |
| 10.FINANCE I (4 PROGRAM SET) | $\$ 25.00$ |
| 11. DATAMOVER/TELEPONG | $\$ 7.50$ |
| 12.APPLE CONTRIBUTED PROGRAMS |  |
| VOL. $1 \& 2$ ON DISK | $\$ 20.00$ |

1. СНЕСКВООK
2. COLOR DEMO/BREAKOUT
4.APPLESOFT II/F.P.DEMO W/MAN. $\$ 20.0 \mathrm{C}$
3. RAM TEST
$\$ 7.50$
6.COLOR MATH/HANGMAN
4. BLACKJACK/SLOT MACHINE
8.BIORYTHM/MASTERMIND
9.APPLE II CAPABILITIES DEMO
10.FINANCE I (4 PROGRAM SET)
5. DATAMOVER/TELEPONG

VOL. 1 \& 2 ON DISK

| 1. SUPERMATH/TRUE-FALSE QUIZ | $\$ 12.00$ |
| :--- | :--- |
| 2. GRADING RUOTINE/DRANING | $\$ 12.00$ |
| 3.VAR. MESSAGE/MATCHING QUIZ | $\$ 12.00$ |
| 4.DONT FALL/MEMORY AIDE | $\$ 12.00$ |
| 5.STUDY AIDE/KE YBOARD ORGAN | $\$ 12.00$ |

SPEAKEASY SOFTWARE FOR APPLE II AND PET

| 1. KIDSTUFF | $\$ 12.00$ |
| :--- | ---: |
| 2.MICROTRIVIA | $\$ 12.00$ |
| 3. WARLORDS (4 PLAYERS) | $\$ 12.00$ |
| 4.BULLS \& BEARS (8 PLAYERS) | $\$ 12.00$ |

Add handling and shipping charges as per schedule. Shipped by UPS unless specified otherwise. Delivery is stock on most items. No delay in shipment for payment by cashier's check, money order or charge cards. Allow three weeks for personal checks to clear. Washington state residents ad $5.4 \%$ sales tax. Availability, prices and specs may change without notice.
A. $\$ 2.00$
C. 10.00 E. $\quad 30.00$
B. 4.00
D. 20.00 F. $\quad 40.00$
$\square$ VISAIBAC
$\square \mathrm{M} / \mathrm{C}$
Expiration date:
Card\#:
Signature:
Name (Print): $\qquad$
Address:
City:
State: $\qquad$ Zip:

# COMPUTER 

 SHOP
## NOW WE HAVE OSI AND YOU CAN GET ONTO THE BUS

ALEME $\begin{aligned} & \text { Ohio Scientific's } \\ & \text { Challenger } 1 P \text { is }\end{aligned}$ 50 E the easy-to-use home computer. F A A B ERy your TV* and a Q日M cassette BABEDATDR $\begin{gathered}\text { cassete } \\ \text { player }\end{gathered}$ TEACEB, there is to it. There's nothing to build.
You can create your own personal programs. Or select from a whole library of programs on Y E E B M E E $\begin{array}{r}\text { iow-cost } \\ \text { cassettes. }\end{array}$ W EP Everything from teaching arithmetic to spectacular ATME $\begin{gathered}\text { video games to balancing your } \\ \text { checkbook. Something for every }\end{gathered}$ M $\cap$ - member of your family. LOWEST PRICE!

## CHALLENGER 1P

SPECIAL ! ! ! \$425.00 with 8 K


BAC, VISA,MC NO $\qquad$
$\qquad$SIGNATURENAME.
$\qquad$
Sa 5 Bu Assp. 5 SAg
A9V1A.12V1A6x6X2.AUDRESS.
$\qquad$Total of Order..Circle Items wanted. $\$$Mass. Residents Sales Tax 5\%........ $\$$Shipping, $1 \%(\$ 2.00 \mathrm{~min}$.).ZIP.......Total Remittance or Charge.

## 6502 BIBLIDGRAPHY PART VII

William R. Dial<br>438 Roslyn Avenue<br>Akron, OH 44320

380. Gordon, H. T. "Use of NOPCODES as Executable Labels", Dr Dobb's Journal 3u Issue 8 No 28 pg 29 (Sept., 1978). Discusses the use of nopcodes in 650X devices. Classifies these as monops ( 6 listed) and binopcodes ( 5 listed) and trinops ( 8 listed).
381. Swank, Joel "A Programmable IC Tester for KIM", DDJ 3 Issue 8 no 28 pg 33 (Sept., 1978) With a 6820 PIA, some 7404 buffers and a $2 I F 16$ pin socket together with a program KIM-1 can test IC's.
382. People's Computers 7 No 2 (Sept./Oct., 1978)

Zimmermann, Mark "Snooping With Your PET". A sophisticated Guide to PEEKing and POKEIng around in PET.
Gaines, John "Apple Math". A math program ror the Apple Is.
Cole, Phyllis "SPOT" (Tips for PET trainers) - Discussion of the slow documentation for the PET. Program for lining up dollars/cents tabulations. PET listing conventions.
383. Conway, John "A Tape-to-Microcomputer-Hardware Interface Requires a Wealth of Microtechniques". EDN 23 No 6 pg 101-110 (March 20, 1978). EDN project Indecomp tape interface hardware. Also the first hint of problems in interfacing Apple II with a PIA.
384. Hemenway, Jack E. "Add Floppies to Your Microcomputer to Form a Real Microcomputer System". EDN 23 No $12 \mathrm{pg} 98-107$ (June 20, 1978) re: May 20 EDN problems with tape hardware interfaces for Apple II. Also, EDN 23 discusses disk interface hardware. Final test to come.
385. Kilobaud Issue 23 (Oct., 1978)

Trageser, JIm "Budget System with KIM". How to expand your KIM system with ASCII keyboard, TVT-6 and associated software.
Ngai, Philip "Build a One-Chip Single Stepper". A debugging aid for home-brewed 6502 systems.
Kurtz, Robert L. "World of the Brass Pounders: Receive Morse Code the Easy Way". This Morse code reader is a good example of how the microcomputer can serve the radio amateur. Uses KIM-1.
Borland, D. "Financier/Mortgage with Prepayment". A pair of PET programs from Rilobaud's Instant Software Iine.
Reymer, Easton "Universal Number Converter". A program in PET BASIC for converting from one number base to another. Not only hex, decimal, octal and binary, but others. Grossman, ,Rick "DO It with a KIMSI". Use S -100 boards with the KIM. An evaluation. Bishop, Robert J. "The Remarkable Apple II". A description and evaluation of the Apple II by a veteran 6502 programmer.
386. Palenik, Les "Formatting Do11ars and Cents". Byte 3 No 10 pg 68 (Oct., 1978) This program for the PET rounds the monetary amount to the nearest cent and lines up the decimal points.
387. Bishop, Robert J. "Maze" Byte 3 No 10 pg 136-138 (Oct., 1978). This novelty program generates and displays a different maze about once a minute.
388. 6502 User Not3s 12 (Nov., 1978)

Flacco, Roy "Scope Lunar Lander-final installment". The last part of a series incorporating graphics into the KIM-1 Lunar lander program.
Allen, Michael "TVT6 Etch-A-Sketch". A sketch routine for the KIM/TVT6 said to overcome the limitations imposed by a snowy screen during program execution. Hooper, Philip K. "TVT6" - Some cheap, easy and helpful TVT6 hardware modifications. Clem, D. "Expansion Decoding". One possible configuration of expansion decoding for KIM is said to be designed with TVT6 in mind.
Lewart, Cass and Lewart, Dan "TVT6 Remarks". Notes on improving the operation of the KIM/TVT6 system.

User Notes 12 (Nov., 1978) con't.
Kushnier, Ronald "Notes on the TVT6". Information on memory expansion, the TVT6/KIM as a terminal, assembly of the TVT 6, the PVI-1K kit, KIM modification and use of the TVT6 with the Radio Shack keyboard.
Brachman, Michael "Suggestions for Running the TVT6". Includes a slight software mod to display pages $02,03,00$ consecutively filling the whole screen ( 24 line x 64 character display.
Anon, "FOCAL" Staff evaluation of FOCAL for the 6502.
Latham, Don J. "Letter to the Editor". Comments on tape storage problems, KIMSI, XITEX, TVT6,Microsoft Basic, FCL-65, etc.
Rehnke, Eric "The Cheap Video Cookbook" - a book review. Very favorable review of Don Lancaster's latest book.
Martin, Timothy "KIM Interval Timers". Useful precautions in using the KIM interval timers are given.
389. MICRO, No 7 (Oct./Nov., 1978)

Auricchio, Rick "Breaker:An Apple II Debugging Aid". BREAKER is a software routine to manage Breakpoints, correctly resuming the user program after hitting a breakpoint
Watson, Allen III "MOS 16 K RAM for the Apple II. Speed codes used by 16 K Dynamic RAM. manufacturers. The author advises against using 300 ns access time chips.
Creighton, Gary A. "PET Update". Discussion of the RND function, USR, Machine Language Storing in Basic, Save and Load, etc.
De Jong, Marvin L. "6502 Interfacing for Beginners; The Control Signals". The latest article in this series discusses the theororetical basis and progresses to hardware and a program for experimenting with control signals.
Shryock, William H., Jr. "Improved Star Battle Sound Effects". Further improvements based on the original article by Andrew H . Eliason in Issue no 6 of MICRO.
Green, J.S. "650X Opcode Sequence Matcher". A program that correlates and points to parallel sequences of opcodes, comparing the two sets and displaying the differences.
McCann, Michael J. "A Memory Test Program for the PET". Program is written in Commodore BASIC and occupies the lowest 4 K of memory.
Rowe, Mike (Micro Staff) "The MICRO Software Catalog: IV" Ten more programs are reviewed in this continuing series.
Schwartz, Marc "Apple Calls and Hex-Decimal Conversion". How to access machine language routines by Calls and how to use Apple in helping make the hex-decimal conversion.
Dial, William R. " 6502 Bibliography: Part VI". The 6502 literature continues to expand.
Dial, William R. "6502 Information Resources". A list of the magazines used in compiling the 6502 Bibliography and their subscription prices.
Powlette, Joseph L. and Wright, Charles T. "KIM-1 a Digital Voltmeter". Hardware and Software to convert the KIM-1 to use as a digital readout voltmeter.
Miller, Fred "Cassette Tape Controller". Control two tape units with your KIM.
Eliason, Andrew H. "Apple II High Resolution Graphics Memory Organization". A useful contribution toward better understanding of the Apple II HIRES Graphics.
DeJong, Marvin L., Riverside Electronics Design's KEM and MVM-1024: A User's Evaluation". A generally favorable evaluation of the KEM expansion board for KIM and the keyboard/video monitor board.
Sullivan, Chris "A Digital Clock Program for the SYM-1". This 24-hour clock program provides a good way for the new SIM owner to become familiar with the uonitor subroutines.
Herman, Harvey B. "Peeking at PET's Basic". The PEEK function is used to look at the BASIC itself.
Tepperman, Barry "Kimbase". A program to convert from almost any number system to another. Contains many useful subroutines for multiplying, dividing and other uses.
390. Anon, "Tone Routine for Apple II". Southeastern Software Newsletter Issue No 3 pg 6 (Oct., 1978) The tone routine used with Apple Integer Basic can be used with Applesoft but must be relocated.
391. Haller, George "Storing and Recoving Data in Applesoft II". Southeastern Software Newsletter Issue No 2 pg 4 (Sept, 1978) Program for storing and recoving data in Applesoft II.

Williams, Don "Key Klicker Routine". A machine language program to provide a click each time your silent keyboard is punched
Anon, "Routine to Find Page Length". A routine to fill a page with repetitive material or to determine the length of a screen page of print statements.
Anon, "Printer Driver Fixes". A short program to prevent problems when using the Apple with a printer with more than 40 columns.
Anon, "Apple II Mini-Assembler". Discussion of the Apple II mini-assembler. Aldrich, Darrell "Use of Color Mask Byte in HIRES". Brief description of this 1 m portant aspect of Apple HIRES.
Anon, "Memory Map-Apple II with Applesoft Basic Loaded". Convenient tabulation of memory positions.
Anon, "List of Handy Calls". Sixteen calls are listed for the Apple II.
Apple Computer Staff "System Monitor". Discussion of how to get the most out of your Apple Monitor.
Huelsdonk, Bob "Memory Test". A test for Apple memory by loading each location with 55 , testing, loading with AA and testing. Offending address will be shom.
393. Call - APPLE 1 No 7 (August, 1978)

Golding, Val J. "A Disk Utility Program". A program to record a group of programs on tape from a disk.
Backman, J. A. "Poor Man's HEX-DECIMAL-HEX Converter". With this table and a scratchpad, conversions are a snap.
Thyng, Mike "Basic File Handling". Discussion of the actual commands necessary to get data to and from diskettes using the Apple with a PERSCI disk drive.
Apple Computer Staff "System Monitor". Cassette I/O's, Memory Move and Verify, Debugging Aids, Single Stepping, Tracing, using the Apple II monitor.
Anon "Applesoft Zero Page Usage". Explanation of the functions residing in page zero of Apple II.
Huelsdonk, Bob "Routine to Print Free Bytes". Routine for Apple II with less than 32K memory.
Huelsdonk, Bob "A Patch for Double Loops". Discussion of precautions to use with with double loops in Applesoft on the APPLE II.
Apple Computer Staff "Loading Machine Language as Part of a Basic Program". Reprinted from Contact No 1, May 1978. Provides a way to include a machine language program within a Basic Program.
394. Call - APPLE 1 No 8 (Sept., 1978)

Aldrich, Ron "Convert". Program Loads Integer Basic Program from Disk, saves to a text file on disk, then executes that file in Applesoft II.
Thyng, Mike "Arrays". A description of the use of arrays with the Apple.
Chapman, Dan "Video Display Organization". A program to demonstrate the Video Display organization.
Anon "Routine to Save an Array". (reprinted from Apple Stems Vol 1 No 2 July, 1978) A routine to save both integer or floating point real numbers in an Applesoft II array.
Lam, S.H. "Monitor Commands from Basic." This routine allows execution of Apple Monitor commands from Basic with return to Basic.
Williams, Don "Linkage Routines for the Apple II Integer Basic Floating Point Package". A discussion of the Apple II ROM routines.
Hill, Alan G. "Return to TEXT from Graphics". A handy routine which permits the use of Control $Y$ to return to Text from Apple Graphics.
Anon "Integral Data IP 125-225 Driver". A slight modification of the Apple Red Book teletype routine for use with the Integral Data printer.
Huelsaionk, Bob "Printer Driver Fixes". Protocol to use a printer with more than 40 columns with the Apple.
395. Call - APPLE 1 No 9 (Oct., 1978)

Cook, John B. "Applesoft Tone Routines". Relocation of the tone routines is necessary for use with Applesoft II on the Apple.
Scott, Michael M. "A Brief History of Applen. An interesting account by the President of Apple Computer Co.


## INTRODUCING

## DUAL DRIVE MINIFLOPPY FOR PET!



DKH641 IS A PRODUCT OF CONVENIENCE LIVING.

- OUAL MINI FLOPPY DRIVE WITH 100K PER DISK SIDE FOR TOTAL 2OOK ON LINE. - DESIGNED FOR COMMERCIAL SPEED REQUIREMENTS •FAST LOADING SPEED. - DISKMONTM (DOS) AUTOMATICALLY REORGANIZES FREE DISK SPACE AFTER save or erase.
*DISKMON IS RESIDENT IN ROM VIA DISK CONTROLLER BOARD PLUGGED INTO EXPANDAPET.:
*DISKMON ADDS 14 COMMANDS TO BASIC INCLUDING DISK DATA FILES.
- DISKMON COMMANDS SUPPORT COMMERCIAL PRINTER OFFPARALLEL PORT SUCH AS CENTRONICS 779.
-FULL DISK SOFTWARE SUPPORT • FORTRAN \& PLM COMPILERS THIS JANUARY. -90 OAY MANUFACTURER'S WARRANTY ON HARDWARE'READY TO USE ON - DELIVERY. WITH FULL INSTRUCTIONS AND UTILITY DISKETTE
*CALL OR WRITE FOR ADDITIONAL INFORMATION * INITIAL QUANTITIES LIMITED.
- THIS SYSTEM IS FULLY SUPPORTED BY SOFTWARE FROM THE MANUFACTURER
- ORDERS ARE NOW BEING ACCEPTED FOR DECEMBER \& JANUARY DELIVERY.

DKH64T -DUAL DRIVE SYSTEM, COMPLETE WITH DISKMON . ............ $\$ 1295.00$
DKL067 -DISKMON ASSEMBLER LISTING/DOS ..................................... $\$ 19.95$
ASM789T - PET ASSEMBLER ON CASSETTE ............................................ $\$ 19.95$
ASM789D -PET ASSEMBLER ON PISKETTE ( 5.5 inch) ............................. $\$ 49.95$
LNK456 -AUTOLINK LINKING LOADER ON DISKEITE ........................ $\$ 49.95$
FOR300 -FORTRAN COMPILER ON DISKETTE (JAN'79) . ...................... . $\$ 69.95$
PLM400 -PLM COMPILER ON DISKETTE (JAN'79) .....
$\star \star \star$ BUSINESS PACKAGES STARTING IN 1 SI, QUARTER $1979 \star \star \star$
SYSTEM REQUIRES EXPANDAPET MEMORY (MINIMUM $16 K-S E E$ BELOW)


## SYM-PLICITY



ENGINEERED SPECIFICALLY FOR THE SYM-1 MICRO COMPUTER

- Easy Access for Adjustments
- Room for Expansion
- Protects Vital Components

EASILY ASSEMBLED

- Absolutely No

Alteration of SYM-1 Required

- All Fasteners Provided
- Goes Together in Minutes

MADE OF HIGH IMPACT STRENGTH THERMOFORMED PLASTIC

- Kydex $100^{*}$
- Durable
- Molded-In Color
- Non-Conductive

AVAILABLE FROM STOCK

- Allow Two to Three Weeks for Processing and Delivery
- No COD's Please
- Dealer Inquiries Invited


## ATTRACTIVE FUNCTIONAL PACKAGE

- Professional Appearance
- Popular "Data Blue" Color
- Improves Man/Machine Interface

TO ORDER: 1. Fill in this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

NAME $\qquad$
STREET $\qquad$
CITY $\qquad$
STATE
ZIP $\qquad$

## enclosures group

753 bush street
san francisco, california 94108

Please Ship Prepaid $\qquad$ SSE 1-1(s) @ $\$ 36.75$ each
California Residents Please Pay \$39.14 (Includes Sales Tax)

