NO． 35

$\$ 2.00$
APRIL 1981

[^0]BASTG R rogram Converter Betwesn SYM and KIM
Print Using for the PEI
Appla Memory Maps

The Perfect Fit

The Micromodem II data communications system and the Apple II* computer. What better combination to maximize the capabilities of your personal computer!
This popular direct connect modem can transmit data between an Apple II and another Apple II, a terminal, another microcomputer, minicomputer or even a large time-sharing computer anywhere in North America. The Micromodem II has unique automatic dialing and answer capabilities which further increases the communications possibilities between the Apple II and another computer or terminal.
You can send and/or receive messages or data when you are out of your office, home or out of town. Your branch business locations can communicate with each other regarding inventory and other matters over the phone. Or you can communicate with friends across the country. And you can access information utilities like the SOURCE for various business and personal applications.
The Micromodem II consists of two parts. One part includes the printed circuit board which holds the Micromodem II, ROM firmware and the serial interface. The board plugs directly into the Apple II providing all the functions of a serial interface card plus programmable auto dialing and auto answer capabilities. The on-board ROM firmware enables the Micromodem II to operate in any of three modes to perform different tasks-terminal mode, remote console and program control mode.

The other part of the Micromodem II datacomm system is a Microcoupler which connects the Micromodem board and Apple II to a telephone line. The Microcoupler gets a dial tone, dials numbers, answers the phone and hangs up when a transmission is over. There are none of the losses or distortions associated with acoustic couplers. The Microcoupler is compatible with any North American standard telephone lines and is FCC-approved for direct connection in the U.S. It works with standard dial phone service or Touch-tone service.
The Micromodem II is completely compatible with Bell 103 -type modems. Full and half-duplex operating modes are available as well as speed selectable transmission rates of 110 and 300 bps .
Why not increase your Apple Il's capabilities by outfitting it with the sophisticated Micromodem II data communications system? The Micromodem II is available at retail computer stores nationwide. For the store nearest you, call or write:

(H)Hyes

Hayes Microcomputer Products Inc.
5835 Peachtree Corners East, Norcross, Georgia 30092 (404) 449-8791
Tw Micromodern il is a trademark of Hayes Microcomputer Products, Inc.
'Apple Il is a registered trademark ot Apple Computer Inc.
The Micromodem II can also be used with the Bel. \& Howell computer.

A BRILLIANT FUTURE FOR YOUR AIM-65 WITH THE BANKER MEMORY ™

Your 36 K of free address space is the AIM's most valuable and limited resource. With today's large capacity RAM boards, ROM boards, disk systems, video boards, and other expansion accessories it is easy to deplete this resource before the application requirement is satisfied. MTU has solved this problem.

THE BANKER MEMORY contains 32 K of RAM, 4 PROM sockets for $2716 / 2732 / 2332$, a PROM programmer, 40 bits of parallel I/O, and 4 timers from two 6522 I/O chips. Addressing is extremely flexible with the RAM independently addressable in 4 K blocks, PROM's independently addressable, and I/O addressable anywhere on a 64 byte boundary (even in AIM's I/O area at AXXX by adding a single jumper to the AIM).
This may sound familiar, but read on! Unlike other AIM compatible memory boards, THE BANKER MEMORY has on-board bankswitching logic! The four 8K blocks of RAM plus the 4 PROM sockets make up 8 resources, each associated with a bit in an Enable Register. Through this Enable Register resources may be turned on and off under software control. When a resource is off, its address space is freed for other uses. You can even put BANKER resources at the same address and switch among them for virtually unlimited RAM and PROM expansion! You can even have multiple page zero's and stacks! Do you need 160K byte of memory? It only takes 5 of THE BANKER MEMORY boards and you end up with 5 page zeros and stacks to boot!

There's more! The BANKER MEMORY also incorporates 18 bit addressing which allows for the 256 K address spaces of the future. RAM, PROM, and I/O each has its own full 18 bit address decoder which allows these resources to be in different 64 K banks. This board and other MTU products, such as our 320 by 200 dot VISIBLE MEMORY and Floppy Disk Controller with 16 K DMA RAM, can turn your AIM into a truly powerful 6502 computer that far surpasses the packaged systems in functional performance.
INTRODUCTORY SPECIAL K-1032-1 32K BANKER MEMORY FULLY ASSEMBLED AND TESTED $\$ 395.00$ ($\$ 450.00$ as of March 1, 1980) or the K-1032-2 16K RAM only with bank switching and 18 bit address bus only $\$ 295.00$ Isn't it time you took a closer look at MTU - we offer you power now with an eye to the future.

$$
\text { WRITE OR CALL TODAY FOR OUR } 48 \text { PAGE FALL } 19806502 \text { CATALOG }
$$

International requests include $\$ 1.00$
VISA and MASTERCARD accepted

Photo credit:
SUPERNOVA CRAB NEBULA: Palomar Observatory, California Institute of Technology

Micro Technology Unlimited
2806 Hillsborough Street
P.O. Box 12106

Raleigh. NC 27605. U.S.A.
[919] 833-1458

STAFF

Editor/Publisher ROBERT M. TRIPP

Associate Publisher
RICHARD RETTIG
Associate Editor MARY ANN CURTIS

Special Projects Editor MARJORIE MORSE
Art Director
GARY W. FISH
Typesetting
EMMALYN H. BENTLEY
Advertising Manager
L. CATHERINE BLAND

Circulation Manager
CAROL A. STARK
MICRO Specialists
APPLE: FORD CAVALLARI
PET: LOREN WRIGHT
OSI: PAUL GEFFEN
Comptroller
DONNA M. TRIPP
Bookkeeper
KAY COLLINS

NCRO

MICRO INK, , Chemstora, MA 01824 ass postage paid at
Cheimsford, MA 01824 and additional offices
Publication Number: COTR 395770 ISSN: 0271-9002

Subscription Rates:	Per Year
U.S.	
through March 31	\$15.00
thereafter	\$18.00
Foreign surface mail	\$21.00
Air mail:	
Europe	\$36.00
Mexico, Central America	\$39.00
Middle East, North Africa	\$42.00
South America, Central Africa	\$51.00
South Africa, Far East,	
Australasia	\$60.00

For back issues, subscriptions, change of address or other information, write to: MICRO
P.O. Box 6502

Chelmsford, MA 01824
or call
617/256-5515
Copyright © 1981 by MICRO INK, Inc. All Rights Reserved

CONTENTS

7 S-C ASSEMBLER MODIFICATIONS
Enhance the usefulness of the S-C assembler for the Apple By Ned W. Rhodes
PRINT USING FOR THE PET
13 Popular program adapted to run on any PET or CBM machine By David Malmberg
17 MEMSEARCH FOR THE AIM 65
17 Scan through memory using this machine language utility program By Bob Kovacs
JOYSTICKS FOR THE OSI C4
Make your own joysticks By Charles Platt
APPLE MEMORY MAPS, PART I
Draw your own memory maps and display them By Peter A. Cook

SYM TIME-REMAINING TIMER

Measure elapsed time and create an "alarm" for your SYM By Ralph Orton
OH NO - IT'S GARBAGE COLLECT!
43 Find out what garbage collect is, and how to avoid it By Gordon A. Campbell
57 ADD A LIGHT PEN TO YOUR MICRO
Hardware detalls to install a light pen on any 6502 By Peter Alan Koski
INTEGER BASIC INTERNALS
65 A sorted list of Apple Integer BASIC memory locations By Glenn R. Sogge
ATARI ERROR MESSAGES
English language versions of Atari's number-coded error messages By David P. Allen

BASIC PROGRAM CONVERTER BETWEEN SYM AND KIM By Lee Chapel

DEPARTMENTS

5 Editorial — Robert M. Tripp
6 Letterbox
15 MICRO Club Circuit
47 New Publications
51 MICRO Dealers
55 PET Vet - Loren Wright
77 Challenges - Paul Geffen
81 Microbes and Updates
83 The MICRO Software Catalog: XXXI
896502 Bibliography: Part XXXI — William R. Dial
95 Advertisers' Index

Editorial
and lies flat when open to make it easy to use.

Other books in the MICRO/Apple series will include reprints, original articles, new reference works, and more. This will permit us to present various types of material which do not work well in a magazine format: long articles or listings, good articles of limited scope, and so forth.

We are looking for additional material for other major microcomputters to support similar books for the PET, OSI, AIM, SYM, KIM and Atari. If you have material which you may not have submitted because you felt that it was not suited to a magazine presentton, please consider it for one of the books. If you have a complete menuscript for a 6502 -based book, or even just the idea for one, please contact us. We may be interested in publishing it and distributing it to the 6502 world through our dealer network.

An Apple Solution

The February editorial addressed the problem of "Too Many Apples" -more Apple articles on a regular basis than we can incorporate in MICRO without overwhelming the other 6502-based microcomputers. The reader response may be summarized as:
no one favored "no change" or "print the extra Apple material in book form';
only a few wanted to ' print the best material without regard to microcomputer";
more wanted to "publish an Apple supplement or quarterly" or "publish a monthly Apple magazine ${ }^{\prime \prime}$; most chose to "increase the size of MICRO to accommodate additional Apple material without reducing the coverage of the other micros."

This reader feedback and our inhouse staff discussions agree, and the decision has been made to expand MICRO. Starting with the June 1981 issue, there will be "extra" pages devoted to Apple articles and advertisements. The number of pages will be determined partially by the extra adverrising required to cover the additional production, printing and postage costs-without requiring an increase in either the single copy or subscription price. There will be at least 16 extra pages, and possibly 32 pages. This expansion will permit us to provide timely Apple coverage while maintaining our policy of serving the entire 6502 community.

Robert M. Tip Editor/Publisher

About the Cover-

Screen display on this month's cover from the human point of view.
(Cover photo by Michael Rakip)

Cruising Down the River...

Imagine yourself cruising down the river on the Delta Queen. To navigate rivers you need maps and charts. Currently these are available as printed material, very detailed and very accurate. Accurate? Well, the chart was accurate when it was made, but how long ago was that? And what changes have occurred since then?

How about a computer displayable map -one that could be updated continuously by whatever authority has the charting responsibility, the U.S. Coast Guard or the U.S. Geodetic Survey? A diskette could be generated which contains the latest information along a particular route. It could provide whatever level of detail is required; from an overview as pictured on the cover, to the detail normally provided in navigational charts. As the position of the vessel is
entered into the computer, manually in a simple system or automatically in a more advanced one, the display could change to provide the current map information.

In addition to the pure mapping function, the computer could provide a wealth of other information. Time of day, current speed, vessel speed, direction, rate of fuel consumption, estimated time to destination or check point, and other operating parameters could be displayed. Automatic radio tracking equipment could provide accurate positioning information. Depth information in coastal waters could be continuously updated and modified as a function of tide tables. The possibilities for this type of microcomputer application are almost limitless.

But for now, I guess I'll just keep drifting.

INICRO
 Letterbox

Dear Editor:

First, I don't know of any available printed material that has been as interesting and informative as "MICRO Magazine".

Many little problems related to programming have been removed due to the care and testing that is done, by writers, proofreaders, editors and by the production people. The quality is outstanding as witnessed by the brevity of your 'Microbes" pages.

Now, the second part-I feel that I have received more value from this source than it has cost. Therefore, I offer this little tip for Apple II owners fortunate enough to have Disk II. Perhaps I am lazy, but my fingers get tired of constantly typing "catalog" following the end of a program. I know that many programs exist to change the disk command to cat or just plain ' C '. They are good, but why not insert these lines in place of " END^{\prime} " statement in the programs used frequently?

$$
\begin{array}{ll}
\text { XXO } & \text { INPUT"'WANT DISK } \\
& \text { CATALOG (Y/N) ?"';A\$ } \\
X X 1 & \text { TEXT:HOME } \\
X X 2 & \text { IF A\$ }=\text { " } Y \text { "' THEN PRINT } \\
& \text { D\$,'"CATALOG'" }
\end{array}
$$

Your program is still in memory should you choose to re-run it. Or with the catalog menu in front of you, a change to a different program is quite simple.

Another simple little tip is to type "VTAB < 1 THROUGH $20>$ " to move the cursor up to the program desired, enter your command, and use the right arrow key to trace over the program listing, hit return, and your command is executed. Be sure that you don't leave any part of the program type or sector information before tracing over the program title. Those little leftovers produce nice error statements.

Thanks again for an excellent publication. I look forward to seeing it each month for it makes the Apple II more enjoyable for this retired telephone man who is pretty much housebound.

John A. Backman
302 North 76th
Seattle, WA 98103

Dear Editor:
I appreciated the letter by Robert V. Davis, MICRO, January 1981, but his letter didn't take full advantage of OSI's BASIC-in-ROM accuracy and he doesn't solve the absence of the PRINT USING command for anything but whole dollars.

That would be trouble if you're working in any accounting program where you need to keep track of pennies. The subroutine I am enclosing will print out amounts in dollars and cents from $\$ 0.00$ to $\$ 167,772.15$ with full accuracy and amounts close to one billion with $7+$ decimal accuracy before going into scientific notation errors. Since Michigan income tax asks that you don't round off at one place, this program would keep you out of trouble with the taxman. Also by simply changing the value of H in line 20000 by a power of ten, and making the opposite change of T, you can set up for printing in the thousandth place or any other decimal place you wish with $7+$ decimal accuracy. This routine will also increase the amount of decimals printed with any other BASIC computer.

$\begin{array}{ll} 50 & \mathrm{IN} \\ \mathrm{CA} \end{array}$	UT"AMOUNT OF $H^{\prime \prime} ; B: A=B$
60 PP	NT'‘BALANCE' ';:GOSUB $00{ }^{3}$
70 RE	M REST OF PROGRAM
19999	PRINTING SUBROUTINE
20000	$\begin{aligned} & H=100: T=1000: \\ & G=0: C=A: I F A>T^{*} 9 \\ & T H E N G=T^{*} \mid N T(A / T): C= \\ & A-G+T \end{aligned}$
20010	$\begin{aligned} & \text { PLACE }=\text { INT }(\text { LOG } \\ & \text { (H) } / \text { LOG }(10)+.5): \text { IF A<1 } \\ & \text { THEN } 20070 \end{aligned}$
20020	$\begin{aligned} & \mathrm{A} \$=\operatorname{STR} \$\left(\operatorname{INT}\left(\mathrm{H}^{*} \mathrm{C}+.5\right)\right): \\ & \mathrm{AC} \$=\mathrm{RIGHT} \mathrm{\$(A} \mathrm{\$,PL):} \\ & \mathrm{~B}=\operatorname{LEN}(\mathrm{A} \$) \end{aligned}$
20030	$\begin{aligned} & A \$=\text { LEFI } \$(A \$, B-P L)+ \\ & \because \because+A C \$: I F G>0 \text { THEN } \\ & A \$=S T R \$(G / T)+M I D \$ \\ & (A \$, 3) \end{aligned}$
20040	PRINT TAB(20-LEN(A\$))" $\$$ ';'A\$:RETURN
20060	REM AMOUNTS LESS THAN 1
20070	$\begin{aligned} & \mathrm{A} \$=\mathrm{STR} \$\left(\mathrm { INT } \left(\mathrm{~A}^{*} \mathrm{H}\right.\right. \\ & +.5) / \mathrm{H}): \mathrm{IF} \\ & \text { LEN } \mathrm{A} \$)<\mathrm{PL}+2 \text { THEN } \\ & \mathrm{A} \$=\mathrm{A} \$+\text { " } 0 \text { ": } \\ & \text { GOTO20070 } \end{aligned}$
20080	GOTO20050
	Dale Mayers 2301 S. Washington Lansing, MI 48910

Dear Editor:
I'd like to share the following information in response to your Editorial in the January 1981 issue (MICRO Goes to School).

Our math department was given the job of learning how to operate the computers, then teach our students, then teach any interested non-math teachers. Granted, year \#1 was trial and error. We spent many hours on our own time getting our act together.

Several members of the department formed a core group which learned how to program and joined area users groups, and then brought this information back to the rest of the department for general use. We subscribe to the leading magazines for help and greatly appreciate MICRO's help with the Club Circuit.

By using small ads, we have contacted and exchanged ideas, programs, and student booklets with teachers in several states. There is a vast network out there of independent math teachers which the computer will bring together.

This year, in our lab, we are more organized. Lab slots are assigned on a week-to-week basis and we have lab assignments sheets for the students, that they receive before they enter the lab. The sheets contain information as to what programs they should work on, what section of particular programs, what disks to use, which computers to be worked on, if the printer is to be used, etc. Thus, any computer center means preparation by the teachers involved if the center is to achieve its goals in the educational environment. And with the availability of data base programs, the department has its grades, orders, inventory, small supplies, etc., on disk.

Our computer center has taken a lot of effort, but it is well worth it. If any teacher or department requires more information, they may write to Apple Bit'N Pieces Educators Group c/o our school.

[^1]
S-C Assembler Modifications

Abstract

The usefulness of the S-C assembler for the Apple can be enhanced with the addition of a command to automatically generate line numbers for the programmer while he is entering the source code.

Ned W. Rhodes
2001 No. Kenilworth St. Arlington, Virginia 22205

The S-C assembler is one of the many assemblers available for the Apple computer system. The original version of the S-C assembler was cassette-based and performed well for the user with a minimal system. Subsequent versions of the assembler have been disk-based. With the announcement of version 3.2, previous owners were invited to upgrade their assemblers for $\$ 12.50$. This I did, and along with my upgrade kit came information on how the S-C assembler could be modified to incorporate more features. In this article I will describe modifications to the S-C assembler that allow the S-C assembler to work with the auto-start ROM, automatically generate line numbers for source code entry, and allow the user to change the starting line number and increment for the auto-line numbering mode.

Adding Back the Multiply Routine

In the auto-start ROM, Apple has incorporated some features that make line editing easier and allow the Apple to automatically boot itself when power is applied. In order to give us all of these features, they had to replace some old (and very useful) code in the F8 ROM with their new routines. One of the deleted routines happened to be the Integer multiply routine which is used by the S-C assembler. So, if you have the auto-start ROM, you must patch the assembler and add the multiply code in order to make the

assembler run properly. Bob SanderCederlof (the S-C assembler creator) included the patch along with my upgrade kit and I will repeat it here.

Before we can patch the assembler, we have to create some room for the patch. Bob suggested that we move the starting address of the symbol table up a page or two, and make all patches and modifications in this new space. The assembler resides in memory from $\$ 1000$ through \$1BFF, and the symbol table follows, starting at $\$ 1 \mathrm{COO}$. The moving of the symbol table is accomplished by changing location $\$ 1010$ in the assembler. Now, I suggest that we start the symbol table at \$1E00 so that we have plenty of room for the enhancements that are to be described later on. The step-by-step instructions for moving the symbol table are:

1. Load the assembler
2. Change contents of $\$ 1010$ to $\$ 1 \mathrm{E}$
3. Re-save the assembler using BSAVE ASMB,A\$1000,L\$E00

Note that the older versions of the assembler may also be patched in this fashion, but that the address to be patched will not necessarily be the same. In that case, use the Monitor disassembler and examine memory on either side of address $\$ 1010$ until you find either a $\$ 1 C$ or $\$ 1 D$, as that was the default-starting page number of the symbol table.

The multiple routine may now be added, starting at location \$1D00 using the monitor insert command.

$$
\begin{aligned}
& \text { *1D00: A0 } 10 \text { A5 } 504 \mathrm{~A} 900 \mathrm{C} 18 \\
& \text { A2 FE B5 } 5475569554 \\
& \text { *1D10: E8 D0 F7 A2 } 037650 \mathrm{CA} \\
& 10 \text { FB } 88 \text { D0 E5 } 60
\end{aligned}
$$

And finally, we need to change the JSR instruction that points to the multiply routine to point to the relocated code for the multiply routine. You should find a JSR \$FB63 at location \$1122. The following will change the destination address to \$1D00.

$$
\text { *1123: } 00 \text { 1D }
$$

Now, the assembler may be saved as instructed in step 3 above. This modified version of the assembler will now work properly with the auto-start ROM.

Automatic Line Numbers

The other little goodie that Bob included in my upgrade kit was a routine that allowed the assembler to automatically generate line numbers so

1DA5- 8E 2D IE 1 K70 STX SCNT
IDAX- BC 2E 1E 1080 STY EPINS
$\begin{array}{llll}\text { IDAB- B9 OO O2 } 1590 & \text { LDA LBUF,Y GET CHAHACTER AGAIN } \\ \text { IDAE-FO IE } 1700 & \text { BEO DSTRT } & \text { IF ZERO GOAWAY }\end{array}$ $1710 \star$
$1720 \star$
$1730 \star$
$1740 \star$
$1750 \star$ SCAN THE INCHEMENT

1950 *
1960 *
1970 * DO THE START LINE NUMREH
1980 *
1990 *
2000 DSTRT

$2100 \star$
$2.110 \star$
$2120 \star$$\quad$ TIONE OH ABORT
2120 *
2130 *
1IDES- 4C 03102140 DONE JMP WARM WARM STAFT
2150 *
2150 *
2170 * GETNUM -- CONVEKTS ASC II TO חCD
2180 *
2190 *
$22(0)$ GETNUK

as to relieve the programmer of that task. I have often wanted that sort of a feature when I am doing a lot of coding with the S-C assembler. I have included the code that will automatically generate the line numbers in listing 1. It is placed immediately after the multiply routine that is listed in the previous section. The steps that are required to incorporate the routine into the assembler are:

1. BRUN the asssembler
2. Enter the source code from listing 1
3. Assemble the code using the assembler
4. Patch an assembler address that will allow access to the auto-line routine. Location $\$ 1388$ should contain a JSR \$FD1B. Change the address to \$1D21 using the monitor command:

$$
\text { *1389:21 } 1 \mathrm{D} .
$$

The automatic line number routine is started by typing a control- N instead of a RETURN. So, whenever you type control-N, the assembler will generate a carriage return, a line feed, and then display the next line number on the screen. I incorporated this routine in my assembler and was very happy with it with one exception. In order to change either the starting line number or the increment, you had to change the values stored in memory. This soon got to be very tedious, especially when I had to refer to the source listing in order to find the address that I had to change if I needed a different starting line number or increment. I longed for a command to change one or both of the numbers.

The 'AUTO' Command for the S-C Assembler

Listing 2 is the code to include the 'AUTO' command to the S-C assembler. The format of the AUTO command is the same as for Integer BASIC, which is:

AUTO starting line number, increment.

The design of the routine is quite simple. First the routine goes to the input line buffer and begins to scan the command, beginning with character four. It throws away all characters until it finds a space. This is done so that the user may type any character string that starts with the first three letters 'AUT'. After we have encountered a space, we count the number of characters from there until the comma. This is the number of digits in the starting line number and this value is saved for later use. Note that this value can be zero,
which implies that you can change only the increment, but don't have to change the starting line number also (for example AUTO ,10).

Next we scan the character string, starting with the first character after the comma, and ending with the null byte that terminates the input buffer string. Again the number of characters is saved and, as mentioned above, it also may be zero if you only want to change the starting line number and keep the same increment (for example AUTO 1000). The increment character string is converted from ASCII to BCD by the GETNUM routine. The resulting BCD number for the increment is saved as the new increment. Finally, the starting line number string is converted to BCD and saved as the new starting line number. Then we jump back to the assembler command mode.

Only a small problem now exists-there is no 'AUTO' command in the basic S-C assembler. We have two options: we can find the command dispatch table in the assembler and add another command to it (this may be complicated), or we can replace one of the existing commands with our new command. I chose to do the latter. The code at the end of listing 2 changes the 'JOIN' command to 'AUTO' by changing the ASCII command string and the address of the routine that actually does the command in the command dispatch table. As before, the code needs to be assembled as part of the assembler and saved as indicated above.

I have recommended that you create a source file and assemble that in order to incorporate these new features. This is not necessary, since I have included the object code as part of the listings. Instead, you could just enter the object code directly into memory and make the patches listed above. The only problem that I see with that method, is that it can be very tedious, if you were to make a small mistake. Also, it is a good idea to make yourself a back-up copy of the assembler until you have tested out your new and improved version.

Ned W. Rhodes received his BSEE from the University of Minnesota and his MS in Computer Science from the George Washington University in Washington D.C. He is currently employed by the David W. Taylor Naval Ship Research'and Development Center, where he develops high-speed minicomputer-based data acquisition systems for use during fullscale trials aboard naval vessels.

3

A real shift key

Now you can easily enter upper/lower case data using the shift key on your Apple keyboard. Existing word processors use the ESCAPE or right arrow keys as a "software" shift key. This works, but it takes a few weeks to get used to. And, if you are using a typewriter in your day to day activities, you may never get used to the "software" shift key.

The Keyboard +Plus can be teamed up with most of your existing software to allow lower case entry into programs which previously did not. When paired with the Lazer MicroSystems' Lower Case +Plus, your existing software takes on new dimensions.

The Lazer Microsystems Keyboard +Plus lets you easily enter the entire 128 ASCII character set directly from the Apple keyboard. The extra characters are [,], \{,\}, , $\sim, ~ \$, , and . This is especially handy for pascal and CP/M users.

The keyboard +Plus features a capslock mode in which the Apple keyboard behaves as if the Keyboard +Plus was not present. This allows programs which cannot properly handle lower case to function normally.

The Keyboard +Plus is directly compatible with Basic, Pascal, CP/M, LISA, and most major word processor programs including ApplePIE and SuperTEXT.

A true type-ahead buffer

Pascal and Visicalc users have already experienced the convenience of a type-ahead buffer. Now all software systems running on the Apple II can take advantage of a hardware type-ahead buffer.

A type-ahead buffer lets you enter commands and data even though the computer is busy doing something else. For example, if you type "SAVE PGMNAME" you do not have to wait for the BASIC prompt before typing "CATALOG". Since you can type "CATALOG" while the disk is still spinning, the catalog will be displayed immediately after DOS has saved your program. The savings is two fold. First, the few seconds required to type "CATALOG" after the prompt reappears is saved. Second, and even more important, the operator's attention is not required while the program is being saved. Typically, up to 10% of a programmers time is saved when a type ahead buffer is used. Programmers and Apple users will greatly appreciate the fact that keys will not be lost because you can type faster than the current operating system or program can accept data. This problem is especially evident when entering new lines into a large Applesoft program.

The need for a type-ahead buffer is sort of like the need for a telephone. If you've never used one, you probably won't see the need for one. But once you've used one, it's indispensable. After all, if a type-ahead buffer wasn't useful, you wouldn't find it on most expensive minicomputers or on the you wouldn
and the

Act now \$59.95 ...
May 1st $\$ 69.95$

Software Compatibility

The Lower Case + Plus is compatible with all major software systems running on the Apple II. All word processors and any other software that is compatible with the paymar LCA will work even better with the Lazer Micro Systems' Lower Case +Plus. When paired with the Keyboard +Plus, you get a dynamite word processor combination.

CP/M applications utilizing lower case can also take advantage of the Lower Case tPlus' display capabilities.

Pascal users (version 1.0 and 1.1) can use the patch provided with each Lower Case + Plus to display lower case from Pascal programs.

Up to 128 displayable characters.

* Inverse and normal upper and lower case.
* Two on-board character sets.

1. Standard Word processor set. 2. Graphics set.

* 7x8 font size (maximum).
* Character set can be redefined with a 2716 EPROM, EPROM programmer and a HIRES character generator such as the "Keyboard filter" from Mountain Computer.
* Optional fonts provided on diskette
* BASIC software provided on diskette.
* Pascal patch provided for 1.0 and 1.1
* Expansion socket compatible with other Lazer MicroSystems' products.
* High quality double sided PC board with solder mask and silk screen.
* One board works with all Apple II computers.
* Extensive documentation booklet.
* Compatible with most word processors.

Why buy an Apple /// to simulate an Apple II when you can buy Lazer MicroSystems products for your Apple II to simulate Apple ///'s features (and save a bundle).

Major Dealers
8314 Parkuay Comper 83 Parkway Dr
La Mesa ${ }^{\text {Galif }}$.
(714) $465-8888$.

Have your name listed here as a dealer or Lazer Microsystems inc. for details.

Distributors
Computer Data Services
64 Pinedale
Hauppauge, NY 11787
Micron Distributing
${ }_{409}{ }^{\text {Micron Distributing }} \mathrm{St}$. West
Toronto Ontario M5V 2A5 Canada (416) 363-6058

Lower Case +Plus, Keyboard +Plus, and +Plus are all trademark s belonging to Lazer MicroSystems Inc. Apple is a registered trademark of Apple Computer Inc. Paymar LCA is a trademark of Dan Paymar.
$C P / M$ is a registered trademark of Digital Research.

Order from:

Give aproximate date your Apple was purchased new. Visa and MC accepted. Give card number, expiration date, and signature.

Personal \& business checks require 2 weeks to clear \& will increase delivery time by that much. Calif. residents must add 6% sales tax.
U.S.A. orders add $\$ 2.00$ shipping \& handling. All other countries add $\$ 15.00$.
C.O.D. orders available only with non-refundable $\$ 4.00$ shipping \& handiling fee paid in advance.

Last year we tested or reviewed 141 PET programs, evaluated 54 peripherals ranging from light pens to printers, and ran 27 major articles on PET programming. Our gossip columnist blew the gaffe on dozens of inside stories, receiving two death threats, five poison pen letters and a dead rat for his pains. We also published 53 letters from PET users, 88
listings, 105
programming hints, and 116 news stories about the CBM/PET. All this added up to more than 150,000 words of essential PET information. We are PRINTOUT, the ingependent magazine about the CBM/PET. Shouldn't you subscribe?

To PRINTOUT PO Box 48, Newbury, Berkshire RG16 OUJ, England. M381
My Name is
Address.

Please Enter my Subscription to : [] Volume 2 (1981) [] Send me the set of Vol 1 (1980)
[1 I enclose my cheque or Postal Order OR
[] Debit my Access/Mastercharge/Eurocard/Barclaycard/Visa account No.
[] UK £9.50 [] Eire £ 12.50 Punts
[] Europe (surface) £14.50
[Europe Airmail £18 [] USA Airmail $\mathbf{8 4 5}$ [] Rest of World (surface) £14.50] Rest of World Air $\mathbf{£ 2 5}$ Send me a sample copy [] UK£1 [] Europe Air $£ 1.50$ [] UK £3.50 [] Eire $£ 4.50$ Punts [] Europe $£ 5$

PRINT USING for the PET

This is an excellent PET version of Gary Morris' Apple program. It runs on any PET or CBM machine.

David Malmberg 43064 Via Moraga Fremont, California 94538

Gary Morris recently published a PRINT USING program for the Apple in the October 1980 issue of MICRO (29:14). His program made use of some of the ROM routines in Applesoft. Since Microsoft developed both Applesoft and the various versions of PET BASIC, I felt that Gary's routine could be easily adapted for the PET. After consulting Jim Butterfield's many memory maps of the PET ROMs, and a fair amount of experimentation, I succeeded in modifying Gary's basic routine to work on the PET.

Listing 1 is a BASIC program that POKEs the machine code for the routine into the second cassette buffer (from 826 to 984). This program also detects which of the three versions of BASIC is operable in the specific PET and modifies the machine code accordingly. This is done by PEEKing into location 50003 which contains a " 0 " for BASIC 2.0, a " 1 " for BASIC 3.0, and a " 160 " for BASIC 4.0. The program in listing 1 will also set the USR vector (locations 1 and 2) to point to the beginning of the code in the second cassette buffer. Once this program has been run, the machine language routine is available to any BASIC program via the USR function.

As an example of how this would be used, consider the following BASIC instructions:

```
10 ED$ = "$,0.00'
20 X = 123456
30 PRINT"TOTAL IS ";:Y =
        USR(X)
```

This sequence will cause the following to be printed:

TOTAL IS \$ 1,234.56

The edit pattern to be used in formatting the output must be specified by the string variable ED\$. The edit pattern may contain almost any valid character (such as, \$\#, \%, ' $=/ \mathrm{K}$. etc.). These characters will be "skipped over' and the various digits of the number will be inserted into the blanks of the edit pattern, or overlaid on any 0 's in the pattern. The value to be printed will be edited from right to left. If the value is too large for the edit field, the left-most characters will be truncated. A comma in the pattern will be
printed only if there is at least one digit to the left of it. If the value is negative, the minus sign will be placed to the left of the highest digit.

The value to be edited is passed to the PRINT USING routine as the parameter of the USR function, e.g., X in the previous example. This parameter may be a complex expression, rather than just a variable or a numeric value. The value returned by the USR function to BASIC $\{Y$ in the previous example) will be garbage and have no meaning. Be careful not to use a variable name that is significant to the rest of the program as the left hand side of the USR equation.

Listing 1

```
10 FRINT "[CLR][ 2 DOWNJPRINT ISIHG FOR THE FET"
20 FREINT "[IOWN]ET' IHVII MALMEERG"
3Q REM RIIAPTED FROM A ROUTINE FOR THE AFFLE
40 REM E'G GRRT MOFRIS IN OCT-1GEG MIGRO
50 FRIHT "[HOME] LOAIING 2HIL CHSSETTE EUFFEF"
60 FOR I= EQG TO OS4 :REAI IIE:FOKE I.IIE FRIMT "[HOMEJ":I:IIG:HENT I
TO REM EHSIC 3.G YEFGIDH
80 IHTH S2.233.220.169.69.162.196.136
90 IATA E6.134.E7.32.201.207.160.2.177
106 IATH 6S.133.93,136.177.63,133,92.136
110 IATA 177.68.201.16.144.2.160.16.141
126 INTA 32.3.168.136.177.92.153,33.3
104 IHTH 136,16,248,165,0,185,5,1,246
140 IHTA 3.260, 206,248.174.32.3.136.185
154 IRTA 0.1,72,194,72, 201,45,208,14,189
160 INTH 32.3.201.45.144.22.262.203.240
17G IHTH 104.24.144,54.159,32,3.201,22
18U DATA 240, 3.201, 44,240.298.201,48.144
190 INTA 234.104.157.32,3.202.240, 32.192
2014 IATH 1.203.205.232.24.144.16.169.32
210 IHTH 3.201, 35.240.17.201, 4E.17E.5
220 IATA 163, 32.157,32.3.202, 240.5.2%6
2%O1DTH S2.2.144.232.174.32.3.169.6.15%
246 IATH 33.3.160.3.169,33.32,28,202.169
2EG IATH 6.1OQ.7.9E
2G0 FOKE 1.5G:FOKE Z, OREM SET USR VECTOF
270 IF FEEK(50003)<>160 THEN 310
206 FEM EASIE 4.6 MODIFICRTIONS
290 FOKE E27.147:FOKE E28.207:FOKE SOS.135:FOKE E39.193
S06 FOKE 97G, EG FOKE 970.187
310 IF FEEKC00日S)<<g THEN 37, 
30G REM EREIE 2,Q MODIFISATIOHS
320 FOKE E27 1F5:FOKE E28,2EG:FOKE OSS.215:FOKE 839.207
346 FOKE 978 S9 FOKE 9%9. 202 FOKE 983.94
35 FOKE S34.148:FOKE 8S6.149:FOKE 843.150:FOKE 845.175
3EG FOKE S4E.15G:FOKE SEG.174:FOKE 8SS.150:FGME SEE.174
3G FFIMT "[ E IONHILOHDING COMFLETEI"
```

The routine works by editing the ASCII representation of the number passed as the USR parameter. The routine assumes that this value has been "integerized" and that the ASCII representation does not contain a decimal point. The position of the decimal point (if any) will be implied by the edit pattern, i.e., the variable ED\$.

If the actual value you wish to format has a decimal point, or if you wish to scale the number to be printed differently from the way it is represented internally in the PET, you can use a BASIC user-defined function to handle the conversion before going to the USR routine. For example:

$$
\begin{aligned}
& 10 \text { DEF FNS2 }(X)=\operatorname{INT}(X * 100 \\
& +0.5 \text {) } \\
& 20 \operatorname{DEF} \operatorname{FNPK}(X)=\operatorname{INT}(X / 2.21 \\
& +0.5 \text {) } \\
& 30 \text { ED\$ = " } \$ \quad 0.00 \text { " } \\
& 40 \mathrm{Y}=\operatorname{USR}(\text { (} \mathrm{NS} \text { 2(12.3456)) }) \\
& 50 \text { ED\$ = "KILOS = } \\
& 60 \text { PRINT } \\
& 70 \mathrm{Z}=1000.0 \text { : REM POUNDS } \\
& 80 \mathrm{Y}=\operatorname{USR}(\operatorname{FNPK}(Z))
\end{aligned}
$$

will cause the following output:

```
$ 12.35
KILOS = 452
```

Listing 2 gives the assembler source code for the PET PRINT USING routine. The appropriate ROM routine locations are given for all three versions of PET BASIC, with conditional assembly determined by the value of ROMs in line 100 . The assembled code shown along side of the source code is for BASIC 3.0-the "new" ROMs. The assembler source is almost identical to that shown in Gary Morris' original Applesoft article, with the exception of the use of the STROUT ROM routine to print the formatted representation of the number (line 1450). The assembler source also has several slight differences to accommodate the differences between how Applesoft and PET BASICs handle the ASCII representation of numbers, and the value the USR function returns. The assembler source is well-commented and is very straightforward.

Listing 2

Mike Rowe
Club Circult
P.O. Box 6502
Chelmsford, MA 01824

The following club announcements are presented in zip code order.

Richmond Computer Club

Gary F. Cowardin is Treasurer for this group which meets on the last Monday of each month at $7: 30 \mathrm{pm}$ at the Science Museum of VA. This club has a membership of over 50 active members who meet to encourage organized computer use involving Ohio Scientific, Heath, TRS-80, Apple, and many other microcomputers. For further information, write:

Secretary
1004 Lorraine Avenue
Richmond, VA 23227

Jacksonville Atari \& PET Society (JAPS)

This group meets at various member's homes and businesses to assist members, exchange ideas, information and experiences. Russell A. Grokett, Ir is president for this newly-formed group. For monthly information on club meeting locations contact the president at (904] 725-0435 evenings and weekends. Or write to:

401 Monument Road \#171
Jacksonville, FL 32211

6502 User's Group

Chairman Gerald Key heads this group of $28+$ members which meets every 3rd Thursday of the month at 7:30 pm. Meetings are held at the State Savings Bank Community Room, 444 Havens Corner Road, Gahanna, OH. This club states its purpose as a means to exchange ideas, provide assistance to members, and promote the use of microcomputers. This club provides a forum for all 6502 -based users and is the only Columbus area alternative to many Apple user's groups. For further information, write:

Chairman
141 Flintridge Drive
Gahanna, OH 43230
(Continued on page 20)

80 COLUMN GRAPHICS

The Integrated Visible Memory for the PET has now been redesigned for the new $12^{\prime \prime}$ screen 80 column and forthcoming 40 column PET computers from Commodore. Like earlier MTU units, the new K-1008-43 package mounts inside the PET case for total protection. To make the power and flexibility of the 320 by 200

The image on the screen was created by the program below.

bit mapped pixel graphics display easily accessible, we have designed the Keyword Graphic Program. This adds 45 graphics commands to Commodore BASIC. If you have been waiting for easy to use, high resolution graphics for your PET, isn't it time you called MTU?

K-1008-43M Manual only $\$ 10$ (credited toward purchase) k-1008-43 Complete ready to install package \$495

Mastercharge and Visa accepted
Write or call today for our full line catalog describing all MTU 6502 products, including our high speed 8" Floppy Disk Controller for up to 4 megabytes of PET storage.

MEMSEARCH for the AIM 65

Abstract

"MEMSEARCH" is a machine language utlity program which quickly scans through memory searching for a user-specified sequence. It can assist in locating an ASCII string or an Instruction code group. A wild card feature allows for partial matching of sequences up to 16 bytes long.

Bob Kovacs
41 Ralph Road
West Orange, New Jersey 07052

Have you ever had to manually search through memory to look for a certain sequence? Whether you're searching for a particular series of op-codes or ASCII text, doing it with the help of a dump utility or even a disassembler can be painfully slow and prone to error. Clearly this is another job for the computer! The machine language routine described here will accept up to a 16-byte sequence (easily increased if that isn't enough) and identify the starting locations of any matching sequences within the memory range specified by the user.

Although this program was specifically written for use on the AIM 65 , using existing monitor routines whenever possible, it shouldn't be too difficult to adapt it to any other 65 XX system.

The Program

The flow diagram in figure 1 defines the major events and decision points in memory search routine. Entry point labels are also included to relate these functions to the implementation (see program listing in figure 2).

The program begins by establishing a memory search range and the data sequence to be found. This sequence is stored in a buffer using keyboard entry format 12 ASCII bytes per hex byte entryl and is converted to its numerical equivalent each time it is compared to memory. Although this approach is not terribly efficient, it was necessary in order to allow for wild card or don't-care entries, and still permit all 256 possible byte values for valid comparisons. I'm sure that other approaches could have been used to speed up execution time somewhat, but this method is still fairly fast. The worst case of a search through 4 K of memory (when all but the 16th entry always match) takes about 6 secondš to complete.

The main body of the program operates by comparing the entry sequence to the data within the memory bounds specified by the user. This is performed one byte at a time, starting with the first entry and then searching for a corresponding value in memory. If a match is found, then the second entry is compared to the contents of the next memory location only. This operation is repeated, always comparing the next entry with the data in the next memory location. If successive successful comparisons exhaust the total number of entries in the buffer, then the entire entry sequence has been matched. At this point the memory address corresponding to the first entry is output, and the search continues at the memory location following the matched sequence.

If at any point an entry fails to match the contents of memory, then the starting address corresponding to the first entry is incremented by one, and the entire operation begins again.

A number of monitor routines were used in MEMSEARCH to minimize its length (192 bytes program and 36 bytes variable space). A summary of the monitor routines used here is shown in figure 3 . Along with the name and entry point is a brief description of what the routine does. Those registers affected by that call to the monitor are also listed.

080 Figure 2				
0800		1	;	
0800		2	;	
0800		3	;	
0800		4	;	
0800		5	; MEMSEA	ARCH FOR AIM 65
0800		7	; By bo	b kovacs
0800		7	; 41 RA	alph road
0800		8	; WEST	ORANGE, NJ C-052
0800		9		
0800		10	;ALL KE	eyboard entries
0800		11	; IN HE	xadecimal
0800		12	;NONHEX	X Entries--"don't Care"
0800		13		
0800		14	; ALL MA	atches return beginning
0800		15	; ADDRE	ESS Of SEQUENCE
0800		16		
0400		17		ORG \$400
0400		18		OBJ \$800
0400		19	FROM	equ \$E7A3
0400		20	TO.	EQU \$E7A7
0400		21	MOVE	EQU \$F910
0400		22	LDAY	EQU \$Eb58
0400		23	PACK	EQU \$EA84
0400		24	numa	EQU SEA.46
0400		25	OUTPUT	EQU \$E97A
0400		26	REDOUT	EQU \$E973
0400		27	BLANK	EQU SE83E
0400		28	CRLF	EQU SE9F0
0400		29		EQU \$E7D4
0400		30	STIY	EQU \$A 427
0400		31	ADDR	EQU SA41C
0400		32	S1	EQU \$A41A
0400		33	;	
0400		34	;	
0400		35	;OUTPUT	title
0400	A000	36	TITLE	LDY $\# \$ 00$
0402	B9BD04	37	TITLEl	LDA MSG, Y
0405	F006 ${ }^{\text {20] }}$	38 39		BEQ TITLE 2 JSR OUTPUT
0407	207AE9	39		JSR OUTPUT
040A 040 B	${ }_{\text {dof }}$	41		BNE titlel
040 D	20F0E9	42	title 2	JSR Crif
0410		43		
0410		44	;GET BE	EGINNING \& ENDING ADDRESSES
0410	20A3E7	45	StART	JSR FROM
0413	B0FB	46		bCS Start
0415	203EE8	47		JSR BLANK
0418	201059	48		JSR MOVE
0418	20A7E7	49	STARTl	JSR TO
041 E	bofb	50		bCS StARTl
0420		51		
0420		52	;PROM PT	USER FOR HEX InPut
0420	20D4E7	53	LDBuF	JSR QM
0423	203EE8	54		JSR BLANK
0426	A 200	55		LDX \#\$00
0428		56		
0428		57	; GET EN	NTRY PAIRS \& STORE IN BUF
04.28		58	; EXIT	ENTRY MODE WITH CR
0428	2073E9	59	LDBUF1	JSR REDOUT
042 B	C90D	60		CMP \#\$0D
042 D	F011	61		BEQ LDBUF2
042 F	9DCA04	62		STA BUFHI, X
0432	2073E9	63		JSR REDOUT
0435	9DDA04	64		STA buFlo, X
0438	203.EE8	65		JSR BLANK
043 B	E8	66		INX
043 C	E010	67		CPX *\$10
043E	90 E 8	68		BCC LDBUFl


```
LDBUF2 STX ENTCNT
        JSR CRLF
;SAVE CURRENT ADDRESS
SAVE LDA Sl
    STA TEMPl
    LDA Sl+1
    STA TEMP2
;READ BUF & CONVERT TO HEX
;NON-HEX ACTS AS DON'T CARE
    LDX #$00
CNVRT LDA BUFHI,X
    JSR PACK
    BCS SKIP
    JSR PACK
    BCS SKIP
; COMPARE TO DATA AT ACTIVE ADDRESS
        LDY #$00
        LDA #$lA
        JSR LDAY
        CMP STIY+2
        OR DON'T CARE
        CPX ENTCNT
        BCS MATCH
        ADVS 1
        BCS DONE
        BCC CNVRT
;GOT A MATCH!
;OUT SAVED ADDRESS
MATCH LDA TEMP2
    JSR NUMA
    LDA TEMPI
    NUMA
    JSR BLANK
    BNE NEXTI
;NO OR PARTIAL MATCH
;BACK-UP ACTIVE ADDRESS
NEXT LDA TEMPl
    STA Sl
    LDA TEMP2
    STA Sl+1
NEXTl JSR ADVSl
    BCS DONE
    JMP SAVE
;
;NO MORE DATA--START AGAIN
DONE JSR CRLF
    JMP START
;COMPARE & BUMP ADDRESS PTR
    LDA Sl+1
    SBC ADDR+1
    MNB ADV
    INC Sl+1
    RTS
```

(continued)

Using the Program

Load MEMSEARCH through the assembler using the listing in figure 2. Save the program on tape using the 'DUMP TO TAPE' command from $\$ 400$ to $\$ 4 \mathrm{BF}$.

After loading MEMSEARCH, begin its execution using the '*' and ' G ' commands. The beginning address and ending address +1 are entered in response to the 'FROM' and 'TO' prompts. The sequence to be found is entered following the '?' prompt. Values are in hex notation without spaces between bytes (spaces are automatically inserted). Two characters must be entered per byte, and up to 16 bytes can be specified. Non-hex entries act as wild cards and match anything. Terminate the sequence (if less than 16 bytes) with a carriage return. The addresses of any matching data sequences in memory are output and the program loops back to search a new memory block.

Applications

What can MEMSEARCH be used for? Well, everyone has his own needs. I was prompted to write MEMSEARCH in order to locate certain entry points and page zero usage in the AIM 65 BASIC interpreter. Unfortunately Rockwell hasn't provided much information in this area. Nevertheless, I suspected that this was a version of Microsoft BASIC similar to the one known as Applesoft (used in the Apple II). Although quite a bit is known about Applesoft, the memory locations used in the Apple and AIM weren't necessarily the same. Thus the code wouldn't be the same (hence the need for a wild card). With the help of MEMSEARCH I was able to identify the required entry points and page zero locations in a minimum of time.

Bob Kovacs is an electro-optics engineer at Bendix where he is currently responsible for the development of a charge-transfer imaging system used for celestial navigation. He is using an AIM 65 for imager sequencing, data collection and processing in the evaluation of a breadboard system. At home, Bob is involved with hardware/software projects on his Apple II. He also enjoys skiing, gardening and photography.

MICRO Club Circult

(Continued from page 15)

Apple PI Computer User's Group

Rod Nelson, President, William T. Davis Secretary preside over this club boasting a membership of 276 . Meetings are held on the first Thursday of each month at 7:00 pm, at the Colorado School of Mines, Golden, CO. The group meets to help each other learn and enjoy computing with Apples. Contact:

Secretary

P.O. Box 17467

Denver, CO 80217

Las Cruces Computer Club

This dual Apple/TRS-80 users group meets on the first Thursday of each month at 7:30 pm at the SW Computer Center (121 Wyatt Suite 7, Las Cruces, NM 88001). Leonard Fetterhoff is club president for 25 members. For further information contact the club secretary: John Martellaro
2929 Los Amigos Ct. Apt. B
Las Cruces, NM 88001

Original Apple Corps

Kip J. Reiner is president for this club of 300 members. Meetings are held on the second Sunday of the month at noon at UCLA campus, Young Hall, Room 2224, Los Angeles, CA. This group publishes a club magazine, "Applesauce" for $\$ 15.00$ a year. They meet to expand the knowledge of Apple computers, hardware and software. For further information, write:

Secretary

19041-2 Hamlin Street
Reseda, CA 91335

Apple-Can

This $200+$ membership club meets at 7:30 on the first Wednesday of each month, currently at Forest Hill Public Library. Louis H. Milrad is the club president. This club features many guest speakers and promotes the better understanding of the Apple computer, its applications and limitations. They publish a bimonthly newsletter. Many active subgroups in Telecommunications, Medical, Pascal, Forth, Introduction to BASIC, Games, Business, etc, all with an extensive program library. For further information, contact:

Secretary

Suite 204
2 Gloucester Street
Toronto, Ontario, CANADA
M4Y 1L5

Name	Address	Registers Changed	Description
FROM	E7A3	A, X, Y	Output 'FROM' prompt; user inputs 4 character hex address \{ESC \& DEL are active) which is stored @ADDR. Carry set if non-hex value entered.
TO	E7A7	A, X, Y	Same as FROM except for prompt.
REDOUT	E973	A	Return with a single character from keyboard in accumulator. Echo to output device unless $C R$ input.
MOVE	F910	A, X	2-byte move from ADDR to S1.
LDAY	EB58	A	Performs a LDA [S1],Y without using page zero. Enter with accumulator pointing to S1 via offset from \$A400 base address.
PACK	EA84	-	Converts ASCII character in accumulator into hex and packs it with previous value jsaved in STIY +2). If not hex (i.e. 0-9,A-F) then original character is returned with carry set.
NUMA	EA46	-	Output contents of accumulator as 2 character hex.
OUTPUT	E97A	-	Output ASCII code in accumulator to active output device(s).
BLANK	E83E	A	Output a single space.
CRLF	E9F0	A	Output a carriage return and line feed.
QM	E7D4	A	Output a question mark.
Figure 3: AIM 65 Monitor Routine Summary MCRO*			

"ASCII EXPRESS \#II $\rightarrow \infty$ by bILL BLUE

Described in $\mathbb{N F}$ OWORLD as "The finest program for Apple data communicotions...." ASCII EXPRESS II allows your Apple to communicate with virtually any computer with dial-up access.

Written in Applesoft and Machine language. Ascii Express 11 includes eventhing you'd expect in a complete communications package. It features a variety of powerful features including full support of upper/lower case, autodial and answer capabilities (when used with the Hayes Micromodem). and file oriented upload/download facilities.

A built-in line edltor gives full editing functions, and programmable keyboard MACROS reduce complicated log-in procedures to a few simple keystrokes.

Downloaded files may be printed while being received, saved to disk, or printed later when offline. The copy mode allows everything shown on the screen to be saved in the large (20K) buffer.

Ascil Express II works with the Hayes Micromodem II, Apple communications card, the CCS Asynchronous Serial card. SSM-ANO Board, Lynx Telephone Linkage System. and many other communications devicis.

Uses include:

- Send/receive letters/files from networks like the SOURCE, MICRONEI, or other bulletin board type systems.
- Transferring program files between Apples, an Apple and a TRS-80, PET, etc.
- Use the Apple as a terminal to a mainframe at a remote location with the added advantage of being able to process data at the Apple before or ofter transfer.
- Minimize on-line costs by quickly transfering files and other data.

System requirements include a 48K Apple with Applesoft in ROM or the Language Card, a disk drive, and one of the above communications devices. A lower case display board is recommended, but not required.

S.D.S. offers a complete selection of communications sottware to meet almost every user's need. We think you'll find the three programs described here the best avaliable anywhere - and we back that clalm with our uncondilional guaranies of sallsfacion or your money back.

To find out more about these programs, send for more informotion, or see your local Apple dealer.

ONLINE is a completely secure dial-up system that allows you to call your Apple computer while you're awoy from home. It also provides for up to 50 optional user accounts.

ONLINE includes a versatile mail system and built-in line editor with provisions for uploading and downloading programs and files.

Its many applications include use by businesses for 24 hour answering of field representatives inquiries, taking orders or advertising for your company. It can also be used by clubs or groups for posting announcements, or transferring files.

Requires 48K Apple with Hayes Micromodem and DOS 3.3.

> SOUIHWESTERN DATA SYSTEMS
> P.O. BOX 582-M - SANIEE, CA 92071 (714) $562-3670$

by BILL BLUE

The Rolls-Royce of communications software. You may find cheaper programs but you'll never find one better. Not only does it provide everything Ascii Express II does, but then some. Designed for the CP/M environment using the Z-80 Softcard, ZTERM permits a number of features not available elsewhere.

- Receives up to 41 K of data at a time. Can send files of any size.
- Auto save mode send XOFF character when buffer is full. and resumes (with operator prompting) offer save.
- Terminal emulation allows you to define what kind of terminal your Apple should appear as.
- Entirely in machine language for maximum speed and power.

Z-TERM fully supports the Hayes Micromodem, Apple Communications card, SSM-AIO board. CCS Asynchronous Serial Card, Lynx Communications system and others! Fully supports the local Apple 40 column screen, external terminals, and all 80 column boards interchangeably and with NO configuration necessary!

If you have a z-80 card, you owe it to yourself to check this one out before you buy any communications software. If you don't have the $\mathrm{z}-80$ Softcard, you may want to get one just to run this package!
-Note: CP/M and Apple DOS files are not directly compatable.

A JOURNAL FOR OSI USERS!!

The Aardvark Journal is a bimonthly tutorial for OSI users. It features programs customized for OSI and has run articles like these:

ADVENTURES

Adventures are interactive fantasies where you give the computer plain English commands (i.e. take the sword,
look at the control panel.) as you explore alien cities, space ships, ancient pyramids and sunken subs. Average playing time is 30 to 40 hours in several sessions.
There is literally nothing else like them - except

1) Using String Variables.
2) High Speed Basic On An OSI.
3) Hooking a Cheap Printer To An ÖSI.
4) An OSI Disk Primer.
5) A Word Processor For Disk Or Tape Machines.
6) Moving The Disk Directory Off Track 12.

Four back issues already available! $\$ 9.00$ per year (6 issues)
P.C. BOARDS

MEMORY BOARDSI! - for the C1P. - and they contain parallel ports!
Aardvarks new memory board supports 8 K of 2114's and has provision for a PIA to give a parallel ports! It sells as a bare board for $\$ 29.95$. When assembled, the board plugs in to the expansion connector on the 600 board. Available now!

PROM BURNER FOR THE C1P - Burns single

 supply 2716 's. Bare board - $\$ 24.95$.MOTHER BOARD - Expand your expansion connector from one to five connectors or use it to adapt our C1P boards to your C4/8P. - $\$ 14.95$.

ARCADE AND VIDEO GAMES

ALIEN INVADERS with machine code moves for fast action. This is our best invaders yet. The disk version is so fast that we had to add selectable speeds to make it playable.
Tape - $\$ 10.95$ - Disk - $\$ 12.95$
TIME TREK (8K) - real time Startrek action. See your torpedoes move across the screen! Real graphics - no more scrolling display s. \$9.95

STARFIGHTER - a real time space war where you face cruisers, battleships and fighters using a variety of weapons. Your screen contains working instrumentation and a real time display of the alien ships. $\$ 6.95$ in black and white - $\$ 7.95$ in color and sound.

MINOS - A game with amazing 3D graphics. You see a maze from the top, the screen blanks, and then you are in the maze at ground level, finding your way through on foot. Realistic enough to cause claustrophobia. - $\$ 12.95$

SCREEN EDITORS

These programs all allow the editing of basic lines. All assume that you are using the standard OSI video display and polled keyboard.
C1P CURSOR CONTROL - A program that uses no RAM normally available to the system. (We hid it in unused space on page 2). (t provides real backspace, insert, delete and replace functions and an optional instant screen clear. $\$ 11.95$
C2/4 CURSOR. This one uses 366 BYTES of RAM to provide a full screen editor. Edit and change lines on any part of the screen. (Basic in ROM systems only.)
FOR DISK SYSTEMS - 165D, polled keyboard and standard video only.)
SUPERDISK. Contains a basic text editor with functions similar to the above programs and also contains a renumberer, variable table maker, search and new BEXEC* programs. The BEXEC* provides a directory, create, delete, and change utilities on one track and is worth having by itself. - $\$ 24.95$ on $5^{\prime \prime}$ disk - $\$ 26.95$ on $8^{\prime \prime}$.

AARDVARK IS NOW AN OSI DEALER!

Now you can buy from people who can support your machine.

-THIS MONTH'S SPECIALS-	
Superboard II	$\$ 279$
C1P Model II	429
C4P	749

. . . and we'll include a free Text Editor Tape with each machine!

Video Modification Plans and P.C. Boards for C1P as low as $\$ 4.95$

SUPER COPY - Single Disk Copier
This cOPV program makes multiple copies, copies track zero, and copies all the tracks that your memory can hold at one time up to 12 tracks at a pass. It's almost as fast as dual disk copying. - $\$ 15.95$
MAXIPROSS (WORD PROCESSOR) - 65D polled keyboard only - has global and line edit, right and left margin justification, imbedded margin commands, choice of single, double or triple spacing, file access capabilities and all the features of a major word processor - and it's fenty $\$ 39.95$.
ones

This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards for OSI systems. Our $\$ 1.00$ catalog lists it all and contains free program listings and programming hints to boot.

Joysticks for the OSI C4

You can do better than to buy OSI joysticks for the C4P. Here's how to make and test your own.

Charles Platt
P.O. Box 556
New York, New York 10011

The Ohio Scientific Challenger C4 is designed for use with joysticks, which are available from the manufacturer as an optional extra. Anyone who really enjoys playing and/or programming video games will want to take advantage of this feature, since it is much easier to control a game with joysticks than by pressing keys on the keyboard. However, Ohio Scientific joysticks are expensive, not as strong as one would like, and often out of stock at one's local OSI dealer. Having leamed these hard facts of life, I decided to take matters into my own hands. Either I would convert Atari joysticks (which are very widely available and not too highly priced), or I would make my own.

Joystick Operation

During a game program the computer needs to know in which direction each joystick is being pushed by the player|s], and whether the "action key' on each joystick is being pressed.

Inside the joystick assembly are four switches which close, one at a time, when the stick is pushed up, down, left, or right. If the stick is pushed diagonally, two of the four switches close simultaneously. In addition there is a fifth switch which is closed when the player pushes the action key.

The computer detects these switch closures via a POKE command in the game program. For example, POKE 57088,128 directs the computer's attention to Joystick A. If the program next asks for a PEEK c .emory location 57088 , this will yield a number which corresponds to which switches are closed inside the joystick assembly.

This routine is similar to a keyboard PEEK routine, and the joysticks can be thought of as extensions to the keyboard.

There is a chart on page 90 of the old C4 user's manual, giving the possible PEEK numbers and the joystick positions which they represent. Unfortunately, the column headings in this chart are incorrect. The figures in the columns headed "Action Key Depressed" are in fact produced when the action key is not depressed, while the figures in the "Action Key Not Depressed" column are in fact produced when the action key is depressed. If you write your own game program it is important to bear this in mind. This has been corrected in the 1981 version of the C4P User's Manual.

Connecting Non-C4 Joysticks

There are four trapezoidal sockets on the back panel of the C4, adjacent to the fan. The top socket is for Joystick A, the next one down is for Joystick B. (The other two sockets are for keypads A and B.)

Neither the C4 user's manual nor the maintenance manual gives precise information about which pin does what, in the joystick sockets. However, some trial-and-error tests revealed the functions that follow.

Looking at the outside of the socket, numbering the pins from left to right, the top row of pins in each socket can be labelled pins 1 through 5, and the bottom row, pins 6 through 9 . In this case, pin 1 is the ground, pin 2 connects to the action key, pin 3 connects to the "Left" switch in the joystick, pin 4 goes to the "Down" switch, pin 5 to the "Right" switch, and pin 6 to the "Up" switch. Pins 7, 8, and 9 are unconnected.

My first experiment was with Atari joysticks. By a rare fluke of standardization in the computer industry, the

Atari joystick plug exactly fits the C4 joystick socket. Moreover, the switching inside the Atari joystick unit is similar to the switching of C4 joysticks, and there are precisely six wires in the Atari connecting cablejust right for the six active pins in the C4 socket.

There is one snag however. If you look in the holes in the Atari plug, you will find that not all of them contain metal connectors. Some holes are not used and do not connect to anything. Unfortunately, these holes correspond with pins in the C4 socket which are used and must be connected to something. So you have to slice open the molded plastic Atari plug to get at the metal connectors, which must be reshuffled into the right sequence, leaving holes 7,8 , and 9 empty to correspond with unused C4 pins 7,8 , and 9 .

The Atari wires are color coded and should be matched to the C4's pin numbers as follows:

Black	Pin 1
Orange	Pin 2
Green	Pin 3
Blue	Pin 4
Brown	Pin 5
White	Pin 6

Once you have opened the plug and extracted the little metal connectors which slide onto the pins in the joystick socket [some connectors may be torn loose in the plug-opening operation and will need to be resoldered to their wires|, you can slide these connectors individually onto their separate pins, and separate them with small pieces of electrical tape to prevent accidental shorts. You can then test the joystick, using the procedure described later in this article.

When you're sure the joystick is working properly, and all your connections have been made correctly, you can drip some quick-setting epoxy over the metal connectors to encapsulate
them. When the epoxy is dry, the connectors can be slipped off the pins in one unit. The epoxy has, in fact, created a new 'plug' around the connectors, to replace the original plug which had to be sliced open.

Making Your Own Joysticks

After using Atari joysticks for a while, I became dissatisfied with their response and decided to build my own. This turned out to be extremely simple.

Each joystick unit consists of a box with a wooden top and bottom and aluminum sides. (The thin aluminum is bent around the wood and nailed to it.) The stick is pivoted where it is screwed to the bottom of the box; some self-centering action is provided by a small compression spring. The stick protrudes through a $1^{\prime \prime}$ square hole in the top of the box. Arranged around this hole, screwed to the underside of the top of the box, are four microswitches, positioned so that their contact buttons are just touching the four sides of the stick (which has a square cross-section at this point]. Lastly, a pushbutton is mounted on the outside of the top of the box to serve as the action key.

Using microswitches allows a much more positive "feel" than is available from the Atari joysticks. My homemade units provide much more precise control of video games.

Checking Joystick Operation

To make sure you have wired your home-made or Atari joysticks correctly, you can run a simple "POKE and PEEK' test program.

Program for Joystick A

```
10 POKE 2073,96:REM -
    DISABLES CONTROL.C.
    THE ROUTINE WON'T
    FUNCTION TILL YOU DO
    THIS.
20 FOR K=1 TO 200:REM -
    SEE NOTE BELOW
30 POKE 57088,128:REM -
    ACTIVATES JOYSTICK A
40 P = PEEK(57088) AND
        31:REM - PEEK JOYSTICK A
5 0 ~ P R I N T ~ P ~
60 FOR D = 1 TO 200:NEXT
        D:REM - DELAY LOOP
7 0 ~ N E X T ~ K ~
80 END
```

Since "Control-C" has been disabled in the program, there is no way of stopping the program once it has started, short of hitting the Break key. So a loop is used, incrementing K by 1 in each of 200 cycles. The program ends at the end of the loop. A delay loop is also used, to stop the figures from racing uncontrollably across the screen.

Note: line 30, the POKE command, is inside the K loop. This is because you must POKE 57088 again after each time you have PEEKed it and it has yielded data. If you write a program which repeatedly PEEKs 57088 for data and does not re-POKE it each time, you will find that the joysticks won't work properly. For a demonstration of this fault, you can run the sample program listed on page 93 of the old C4 user's manual, or pages $45-47$ in the new manual. This program erroneously fails to POKE 57088 after PEEKing it. Consequently, as listed, the program doesn't work.

When you test Joystick A, using the test program shown here, you should find that moving the stick generates, on the video screen, the various numbers listed on page 90 of the old manual, page 43 in the new manual. If the numbers are as listed, but they appear in the wrong sequence, you've probably made an incorrect connection in the joystick socket. If the numbers on the screen do not in any way match the numbers in the manual, you have probably made a programming error. Be sure that your PEEK command is PEEK(57088) AND 31. Without the "AND 31". it won't work.

If you are using Atari joysticks and you find that pushing the stick directly up and down, or from side to side, produces numbers which wrongly indicate diagonal motion, the problem is simply that you are pushing the stick too hard, thus turning on two switches instead of only one at a time. Only very light pressure is required.

Once you have tested Joystick A, you can test Joystick B by rewriting two lines of the test program:

$$
\begin{aligned}
& 30 \text { POKE 57088,16 } \\
& 40 \mathrm{P}=\mathrm{PEEK}(57088) \text { AND } 248
\end{aligned}
$$

These are the POKE and PEEK which give access to Joystick B.

Happy game playing!

NORO"
Flgure 1

AN ENTIRE STAR FLEET FOR \$39.95. YOU'LL LOVE IT!

Like some future starship admiral hurtling through the vast void of hyperspace at speeds beyond comprehension, you are challenged to a battle for cosmic supremacy.
THE WARP FACTOR, the latest computer strategy game from SSI, is what every space war fan has been waiting for - the ability to command a star fleet in realistic battle simulation against alien vessels.

It is light years ahead of all
other "space" games because it doesn't just fill your screen with pretty pictures and little substance. THE WARP FACTOR is a highpowered tactical simulation that places you squarely in the Captain's role, dealing with the critical parameters of interstellar battle such as sensor and scanner readings; energy allocation for weapons (phasers, disruptor bolts, photon and plasma torpedoes), shields, and warp engines; and battle damage.

THE STARSHIPS. With twelve different starship designs - ranging from dreadnoughts and fighters to star bases and base stations representing five Galactic Empires, you can set up an astronomical variety of confrontations against another player or the computer.

Each class of vessels is awarded a point value to reflect its relative strength so you can assemble fleets of comparable power for a balanced game. Of course your're free to play the intrepid hero against seemingly hopeless odds -perhaps mere fighters against a star base!

Employing up to ten ships, both sides can give individual or fleet orders, the latter allowing all your ships to execute your commands in unison.

THE COMPUTER aside from being the game's perfect administrator and referee, also serves as your everready, ever-capable nemesis in the multiple solitaire scenarios provided: The Reman Chase (replete with the Cloaking Device, Plasma Torpedoes, and Meutral Zone); Attack on Star Base; Attack on Base Station; and Dogfight.

THE TWO-PLAYER VERSION is

 essentially free-form. With each player choosing starships from a different Empire, you can create scenarios ranging from space skirmishes to a full-scale, all-out star war!FOR \$39.95, THE WARP FACTOR is undeniably the most complete and detailed simulation of tactical starship combat yet designed. It comes with the $51 / 4^{\prime \prime}$ program disc; a Starship Operating Manual; 3 Starship Data Cards; and a Game Selection Card - all of which will convert your computer into the gateway to galactic adventure.

THE WARP FACTOR ${ }^{\text {™ }}$. The Universe Awaits Your Command.

Credit card holders, if you own an Apple ${ }^{\oplus}$ II 48 K (Applesof ROM) and a mini-floppy disc drive, call 800-2271617 ext. 335 (toll free) and charge your order to your VISA or MASTERCARD. In California, call800-772-3545, ext. 335.

To order by mail send your check to: Strategic Simulations Inc, Dept. M, 465 Fairchild Drive, Suite 108, Mountain View, CA 94043.

All our games carry a 14-day money-back guarantee.
While you're at it, you can also get our other games: FOR YOUR APPLE ${ }^{\text {© }}$
\square Computer Bismarck: $\$ 59.95$.
\square Computer Ambush (a tactical simulation of man-to-man combat in WWII): \$59.95.
\square Computer Napoleonics, the Battie of Waterloo: \$59.95.
\square Computer Quarterback (a realtime strategy football game): $\$ 39.95$.
\square Computer Conflict (two modernday tactical warfare simulations featuring REBEL FORCE and RED ATTACKI): \$39.95
\square Computer Air Combat (a simulation of air combat in WWII): \$59.95.
FOR YOUR TRS-80 ${ }^{\circ}$:
\square Computer Bismarck 48K Disc: $\$ 59.95$. 32 K Cassette: $\$ 49.95$.

The most advanced and easiest to use telecommunications program for use with the MICROMODEM IITim or the Apple COMMUNICATIONS CARD ${ }^{\text {™ }}$
Q. WII BATA CAPTURE 4.0 work with my Communications Cardre and a modem?
A. It makes using the Comm. Card almost as easy as using the Micromodem II.
Q. Dol need an extra editor to prepare text for transmission to another computer?
A. No. DATA CAPTURE 40 gives you control of the text buffer. You can use DATA CAPTURE 40 to create text.
Q. Can l edit the text I have prepared?
A. Yes, You can insert lines or delete any lines from the text.
Q. How about texi I have captured. Can ledit hat?
A. As easily as the lext you have prepared yoursell. You can delete any lines you don't want to print or save to a disk file. You can alsoinsert lines into the text:
a. Just how much text can I capture with DATA CAPTURE 4:O?
A. II the system with which you are communicating accepts a stop character most use a control S, you can capture an unimited amount of text.
Q. How does that work? Andi do I have to keep an eye on how much I have already captured?
A. When the text buffer is full the stop character is output to the other system. Then OATA CAPTURE 4.0 writes what has been captured up to that point to a disk file. This is done automaticaly.
a. Then what himpens?
A. Control is returned to you ard you can send the stant character to the other system. This generally requires pressing any key, the RETURN key or a Controla.
a. Are upper and lower case supported II have a Lower Cass Adapter?
A. Yes. If you dont have the adapter an upper case only version is also provided on the diskette.
Q. Doll need to have my pinter card or Micronochem He or Communications Carder in any special sion?
A. No. All this is taken care of wher you fret run a short program to configure DATAC CAPTURE 4.0 to your system. Then you dont have to be concemed with it again. If you move your cards around later you can reconfigure DATA CAPTURE 40.
Q. Do I have to buld a file on the ofher systam to gel it seni to my Apple?
A. No. If the other system can list it you can capture it
Q. How easy ls il to transmh text or data to another system?
A. You can load the text or data into DATA CAPTURE 4.0 from the disk and transmift. Or you can transmit what you have typed into DATA CAPTURE 4.0.
Q. How can I be sure the other syition reealvor what send it?
A. If the other system works in Full Duplox, it echoes' what you send il, then DATA CAPTURE 40 adiusts its sending speed to the other systern and won't send the next character until it is sure the present one has been received. We call that Dymamic Sencing Speedidijustment:
Q. What II the othor system works onty it Haif Diplox.
A. A different sending routine is provided for use with Half Duplex systems.
a. What If I want to tranemit a program to the other system?
A. No problem. You make the program into a text He with a program that is provided with DATA CAPTURE 40 , load 1 : into DATA CAPTURE 4.0 and transmitt:
Q. What type fles can II read and save with data CAPTURE4.0?
A. Any Apple DOS sequential text file. You can create and edil EXEC files, send or receive VISClaLCe data files send or recelve text files created with any editor that uses text files.
Q. Canlleave DATA cAPTURE 40 running on my Apple at home and use II from another system?
A. Yes. It you are using the Micromodem lye you can call DATA CAPTURE 4.0 trom another system. This is handyl you are at work and want to transmit something to your unattended Apple at home:
Q. Where canl buy DATA cApTURE 4.0 ?
A. Your local Apple dealer. If he doesn't have it ask him to orderit. Orf yous can' wait order it directy from Southeastem Sofware. The price is $\$ 65.00$. To order the Dan Paymar Lower Case Adapter add $\$ 64.95$ and include the serial number of your Apple.
a. II order Hi directly how canl pay for 11 ?
A. We accept Master Charge, Visa or your personal check. You will get your orcer shipped within 3 working days of when we receive lt no matter how you pay for it. Send yout order to us at the address shown or call either of the numbers in tis advertisernent: You can call anytime of day: evening or Saturdays:
Q. I bought DATA CAPTURE 3.0 and DATA CAPTURE 4.0 sounds so good I want this verslon. What do 1 do to upgriede?
A. Sand us your original DATA CAFTUPE 3.0 diskette and documentaton, the 535.00 price difference and $\$ 2.50$ for postage and handing. Wo will send you DATA CAPTURE 4.0 within 3 workng days of receiving your order.
a. What dind of eupport cenl expect atter I buy It?
A. If you have bought forn Southeastern Soltware in the past you know we are always ready to answer any questions about our products or how to use them.

Requires BISKIIEs, Applesoft120 and 48K of Memory

DATA CAPTURE4:OC
 Copyrighte) 1980 -Southeastern Soltware

 Computh Compery

We welcome your personal check. We also accept Visa and Master Charge.

Southeastern Software

Dept:MK
6414 Derbyshire Drive \& New Orieans, LA 70126
$504 / 246-8438$ 504/246-7937

Apple Memory Maps, Part 1

Abstract

Your Apple can draw accurate memory maps of Integer BASIC and Applesoft programs, together with their associated variables, arrays, and strings, by using the Information contained In various pointers. DOS, MAXFILES, and RAM Applesoft can also be displayed.

Peter A. Cook
1443 N. 24th Street
Mesa, Arizona 85203
This article will be presented in two parts. Part 1 contains examples of memory maps produced by the Apple, which show where the computer stores programs in its memory. Part 2 will contain the "Memory Map" program listing and a description of how it works.

Memory maps show where computers store data in their memories. A 48 K Apple actually has 65,536 , or 64 K , memory locations in which data can be stored. Locations 0 to 49151, the first 48 K , are available for storing changeable information (Random Access Memory), while locations 49152 to 65535 , the last 16 K , are for permanently-installed data which can't be changed by the user (Read Only Memory). The computer places data into specific locations in the RAM memory area, depending on what type data it is, and which language is being used.

Various charts in the Apple reference manuals show where programs are stored in RAM, along with their associated variables, arrays and strings. The disk and cassette versions of Applesoft are also stored in this area, and so is the Disk Operating System and its file buffers. The charts are adequate for simple programs, but for more complex ones you need to know exactly how much space is used by the different program components. This is especially important if the Hi -Res graphics pages are used, or if machine language subroutines are included.

Figure 1: Language avallabillty for various conflgurations of the Apple II.

Description

The following maps cover the Apple's RAM memory area from 2048 to the highest available RAM location in your machine. The area from 0 to 2047 is not included because it is used by the computer for various internal functions and is not generally available for BASIC programs.

The MEMORY MAP program will provide the following information:

1. Maximum amount of RAM available.
2. Whether or not DOS has been booted.
3. Number of DOS file buffers reserved (MAXFILES).
4. Current language in use.
5. Whether or not a program has been loaded, or run.
6. Location and length of program, variables, arrays, and strings.
7. Amount of free space remaining.
8. Setting of LOMEM and HIMEM.
9. Location of Hi-Res graphics pages.
10. Extent: of the "garbage collection" of old strings.

The program will work with all versions of the Apple II or Apple II Plus, ranging in size from 16 K to 48 K , with either the old monitor ROM or the new autostart ROM installed. It will accept programs from cassette as well as disk, but it will only work with DOS version 3.2.

The program was designed for use with Integer BASIC, RAM Applesoft, or ROM Applesoft. However, I do not know what the results will be if you use these languages with the Pascal language system installed. Language availability for various configurations of the Apple II is shown in figure 1.

Integer BASIC Memory Maps

The following examples show how the MEMORY MAP program can be used with Integer BASIC programs. We will use a 48 K Apple II with Applesoft card in slot 0 , printer in slot 2 , and disk drive in slot 6 . For the first example, turn on the computer without loading DOS. Enter the monitor and load the

HEHORY	MİP:	INTEGER	BASIC		
	$!$	------------	-! HH-	49152	क0004
	!		$!$		
	i		1		
	$!$		1		
	1		!		
HIFES	i		i		
	$!$		1		
24.76	$!$		i		
560600		FREE SPACE	$!$	47104	\$ 6 B00
	$!$		$!$		
15.384 $\$ 4060$!		!		
	i		!		
	!		$!$		
$\begin{array}{r} 8192 \\ 29060 \end{array}$!		1		
	$!$!		
	!		!		
	1		1		
	!		1		
	1		1		
		-----------	-! LM	2048	\$ 0600

Figure 2: Integer BASIC map with nothing in memory.

Figure 3: Integer BASIC map showing area for variabies.

Figure 4: Integer BASIC map showing program area.

Figure 5: Integer BASIC map after running program.

MEMORY MAP machine language program from cassette. Enter BASIC and use CALL 13000 to run it. More detailed loading instructions will be provided in Part 2, along with the actual program itself.
3200.38DFR
Control B
CALL 13000

Figure 2 shows that LOMEM is set at 2048, HIMEM is set at 49152, and 47,104 bytes of free space are waiting to be used.

Now define a simple variable and call MEMORY MAP again.

$$
\begin{aligned}
& A=1 \\
& C A L L .13000
\end{aligned}
$$

Figure 3 shows that the variable is stored just above LOMEM and contains 6 bytes, as do all simple variables in Integer BASIC.

Clear the variable and enter the same statement in the form of a program.

> Reset, Control B
> $10 \mathrm{~A}=1$
> 20 END
> CALL 13000

Notice that the program has been stored just below HIMEM, as shown in figure 4.

Load the program again, and this time run it to see what happens.

$$
\begin{aligned}
& \text { Reset, Control B } \\
& 10 \mathrm{~A}=1 \\
& 20 \text { END } \\
& \text { RUN } \\
& \text { CALL } 13000
\end{aligned}
$$

The program creates the same variable in figure 5 that was entered in figure 3.

Now load the DOS. Type INT to remove the greeting program, then reenter the above program and run it. The DOS boot will clobber MEMORY MAP, so it too will have to be reloaded. Now that we have DOS, we can use BRUN MEMORY MAP instead of the separate commands for loading and calling 13000 .

Reset, Control B
PR\#6
INT
$10 \mathrm{~A}=1$
20 END
RUN
BRUN MEMORY MAP

Figure 6 shows the large amount of space used by the DOS and its file buffers. The default number of buffers, three, has been reserved and HIMEM has been reset to 38400 .

For a more complex case, let's reserve the maximum number of file buffers, 16, drastically change the values of LOMEM and HIMEM, and run our same program again. Be aware that LOMEM: and HIMEM: are not legal Integer BASIC commands, but can be used with DOS.

```
INT
MAXFILES }1
LOMEM: }1400
HIMEM: }1500
10A=1
20 END
RUN
BRIJN MEMORY MAP
```

The memory map in figure 7 shows that everything has been set as specified. Note the small amount of free space remaining.

Applesoft Memory Maps

Applesoft stores everything quite differently than does Integer BASIC. To demonstrate, type FP to change languages and clear the preceding program, then call MEMORY MAP.

FP
 CALL 13000

Figure 8 shows that the program storage area is now at the bottom of memory instead of at the top. With no program loaded, the program pointer starts at 2049 and the end of program pointer starts one or two bytes higher. LOMEM is set above the program. Location 2048 contains a " 0 " because each program line must be preceded by a zero.

In Applesoft, the variables, arrays, and strings are all stored in separate areas instead of in the one combined area used by Integer BASIC. We can see this by creating some simple examples and looking at the result with MEMORY MAP.
$A=1$
DIM B(10)
$C \$=$ "STRING"
CALL 13000

Figure 6: Integer BASIC map showing DOS and program.

Figure 7: Integer BASIC map with changed LOMEM and HIMEM.
MEMORY MAP: INTEGER EASIC:

Figure 8e Applesoft map with only the DOS in memory.

Notice in figure 9 that the variables start at LOMEM. Applesoft variables are seven bytes long. The variable area contains 14 bytes, for A and $C \$$. Arrays in Applesoft can be multidimensional, so they are placed in a separate location above the variables. The array space is determined by rules given in the Applesoft reference manual, pages 119 and 137. The string variable $C \$$ is stored in the variable area with a pointer to the word "STRING'" in the string area. Note that the string area contains exactly six characters.

Something interesting happens when you put the above statements into the form of an executable program. Clear the memory, type in the program, and look at its memory map to see that the program has indeed been stored. See figure 10.

$$
\begin{aligned}
& \text { FP } \\
& 10 \mathrm{~A}=1 \\
& 20 \mathrm{DIM} \mathrm{~B}(10) \\
& 30 \mathrm{C} \mathrm{\$}=" \text { STRING" } \\
& \text { CALL } 13000
\end{aligned}
$$

Now run the program and look at it again.

RUN
 CALL 13000

Figure 11 shows that the variable area still contains 14 bytes, and that array B is still the same, but there is no string in the string area. This is because the letters of the string are contained in the program area, and the pointer in C\$ obtains the string from the program.

Whenever new characters are assigned to the same string variable, they are added to the string area even if they are the same as those already assigned to that variable. A clutter of old strings thus begins to form, known as the "garbage collection." Its formation can be demonstrated by entering the same statement several times.

FP
$A \$=$ "STRING"
A\$ = "STRING"
$A \$=$ "STRING"
CALL 13000
Notice in figure 12 that there are now 18 bytes stored in the string area, even though only six of them are being used.

Figure 9: Applesoft map showing variable, array, and string areas.

The variable area contains seven bytes for $\mathrm{A} \$$, the one variable in use.

The Applesoft reference manual makes the following statement on page 53:
"Applesoft stores duplicate strings only once. That is, if $\mathrm{A} \$=$ "PIPPIN" and B\$ = 'PIPPIN" then the string "PIPPIN" will be stored only once."

Let's try it and see.

$$
\begin{aligned}
& \text { FP } \\
& \text { A\$ }=\text { "PIPPIN" } \\
& \text { ET }=\text { "PIPPIN" } \\
& \text { CALL } 13000
\end{aligned}
$$

Figure 13 shows that there are 12 bytes in the string area instead of only six. If you enter the monitor mode and examine the variable area you will see that the two string variables point to different locations in the string area. This obviously indicates that Applesoft does not store duplicate strings only once.

The actual length of a program doesn't always correspond with the amount of memory required. Just because your program is short doesn't mean you have lots of memory left over. In Applesoft it is easy to create a multidimensional array which uses up all memory space in a 48 K machine.

```
FP
DIM A(97,73)
BFIUN MEMORY MAP
```

Figure 14 shows that there are only 80 free bytes remaining after dimensioning the array. To verify that MEMORY MAP is indeed providing accurate information, you can check the free space remanning by using the $\operatorname{FRE}(0)$ command.

PRINT FRED)
80

If you don't need to use floating point numbers, a good way to save array space is to define the array as an integer array.

FP
DIM A $\%(97,73)$
RUN MEMORY MAP

Figure 10: Applesoft map showing program area.

Figure 11: Applesoft map after running program.

Figure 12: Applesoft map showing formation of "garbage collection" for one string variable.

Note the large difference in space required for the array in figure 15 as compared to the preceding one. The addition of a $\%$ sign saved 21,756 bytes!

If you don't have ROM Applesoft installed, you must load Applesoft into RAM from either cassette or disk. To demonstrate, turn off the computer and remove the Applesoft card. Turn the computer back on and load Applesoft from disk by typing FP. Then run MEMORY MAP to see where RAM Applesoft is stored.

Control B
 PR\#6
 FP
 BRUN MEMORY MAP

Figure 16 shows that RAM Applesoft is stored below the program area, and that it uses a large amount of space. By referring to the Hi-Res locations on the left, you can see that Hi-Res graphics' page one is not available when using RAM Applesoft.

For our final example, let's create the most complicated map possible by using RAM Applesoft, a different LOMEM and HIMEM, and all types of variables. I also tried to change MAXFILES, but it doesn't seem to work with RAM Applesoft. See figure 17.

```
LOMEM: 15000
HIMEM: 20000
\(A=1\)
DIM \(B(10)\)
C \(\$=\) "STRING"
CALL 13000
```

That concludes the examples. Next month's article will contain the Memory Map program listing and will describe how it works.

[^2]SOFTWARE FROM
(609) 589-5500

SUPER CHECKBOOK 3.0-A vastly improved version of our popular selling program. With new features such as: simplified but powerful transaction entry and modificafion routines, new reconciliation routines, additional features such as 30 percent increase in the total number of checks handled, posting of interest from interest bearing checking accounts, automatic teller transactions, bullet proof error handing, and smart disk routines. Plus the program still contains the options of bar graphs, sorting, activities, and account status

Disk OnlyIApplesoft $\$ 34.95$
Of special interest to owners of older versions of the program is a limited trade-in period ending May 31, 1981 . Trade.n value tape or diskette must be returned to receive new version plus $\$ \$.50$ freight and the difference between $\$ 34.95$ and the trade in value. A conversion program is included to convert clata files to the new format.

ADDRESS FILE GENERATOR-Allows the user to create any number of four types of address files: Holiday, Birthday, Home and Commercial. The program contains a menu of seven major commands used to: Create, Add, Edit, Display, Search, Sort, and Add, Edit, Files. UP to three fields may be used for the sort criteria. Major commands have subordinate commands which adds to the flexibibity of this powerful software program for maintaining and printing ad. dress files. Printer Card/Applesoft $\$ 24.95$
SPANISH VOCABULARY DRILL
FRENCH VOCABULARY DRILL
ITALIAN VOCABULARY DRILL
GERMAN VOCABULARY DRILL
These programs provide practice in foreign language vocabulary by means of three types of drills: Matching, Foreign Language to English and English to Foreign Language. Although the diskette comes with some lessons on it, these are intended to be samples. The most effective way to use these programs is to enter your own lessons from the course you are studying. To tacilitate the entry of program contains a complete Lesson Editor Which has vanous enty and revision op. tions. for converting the programs to other languages Applesoft each $\$ 24.95$

SPACE TREK J-Your mission is to patrol the galaxy, and to seek out and destroy the ships of the Klarian fleet. At your command is the starship Lexington. The Lexington has a wide variety of weapons, sensors and other devices useful in your mission. There Super. Regular Klarians have an average energy sufply of 5000 to 12000 quarks while Super Klarians have 12500 to 15000 quarks and are protected from some of the Lexingtons' weapons and attack strategies
Disk Only/Applesoft $\$ 19.95$

WORLD OF ODYSSEY - An adventure game utilizing the full power of Disk 11 , which enables the player to explore 353 rooms on 6 different levels full of dragons, dwarfs, orcs, goblins, gold and jewels. The program allows the player to stop the game. and to resume at a later time.

Disk Only/Applesofi $\$ 24.95$
GALACTIC EMPIRES - Pits 1 to 20 players against each other and the computer in a struggle for control of up to 40 star systems. The players compete by sending out fleets of ships to capture neutral planets and to attack the colonies of other players. The victor is the player who con-
trols the most stars by game's end.......

Applesofi $\$ 14.95$
Dealer Inquiries Invited
Visia and MasterCard
P. O. BOX 157

PITMAN, NEW JERSEY 08071
(609) 589-5500

Figure 14: Applesoft map of large floating point array.

Figure 15: Applesoft map of large Integer array.

Figure 16: Applesoft map with RAM Applesoft loaded.

Figure 17: Applesoft map showing most complex case.

Fast, inherently structured, programming system ready for your APPLE II or II + (24K).
Extensive, professional, 100 page bound documentation. Cleanly interfaced to DOS 3.2 or 3.3. Files are completely compatible with DOS or BASIC.

- Control C break and continue for reasonable debugging.
- Built-in, convenient editor.
- FORTH structured assembler.
- The best blend of FORTH and the APPLE's capabilities.
- Supports games, music, I/O, graphics, disk, tape.
- Supplied on APPLE diskette.
- Excellent for applications or systems programming.
- After two vears, still $\$ 49.95$ Calif. residents add $\$ 3.00$ sales tax

From your dealer or direct from: SOFTAPE, Dept. f.
10432 Burbank Blvd.
North Hollywood, CA 91601
or Call: 1-213-985-5763
FOG-279 \$49,95
Master Charge/Visa Accepted.
Apple is a registered trademark
of APPLE COMPUIER. INC

AIM SUPPORTWARE bRINGS YOU A FULL SPECTRUM OF SUPPORT for your AIM-65 SYSTEMI

ENCLOSURE, extra board opt. (enclosure gp) \$ 46. Dram Plus (Computerist) 16K... . \$325.... 32K. . . 395. Video Plus II (Computerist) . 325. Additional memory, 2114's 300nS. each. . 5.
2K dynamic RAM, 4116's 200nS. each. 5.
Power Supply: 5V-10A, 24V-.5A, - 12V-2A 65.
Mother Plus (Computerist) 125.

Stand alone processor, 2 MHz Industrial Qual. 12.
1 MHz Commercial Qual. 8.50

* 2 MHz processor will not run machine at 2 MHz .

PRINTERS; Epson MX-80 9×9 matrix, bidirectional, 80 CPS, enhancement mode, normal or double enhancement mode, adjustable \# characters per inch, right hand justification, graphics.
$\$ 645$.
PRINTERS: $\mathrm{MI}^{2} 7 \times 16$, red \& black, bidirectional, 180 CPS, tractor feed up to 19 inches . $\$ 900$. BASIC \$96 . . . PL/65 \$125 FORTH 146. AMDEK (Leedex) BW Monitor Video 100 169. Video 100 G (Green Phosphor Tube) 189. Video 100-80 (has room for std. disk \& $11^{\prime \prime} 11^{\prime \prime} \times 14^{\prime \prime}$ PC board for control electronics)
199.

Coming soon from Amdek - Terminal keyboard 58 key, 2 microprocessor control of video. Has RS-232 and built-in telephone coupler.
FORTH is a high speed interpreter. It runs approximately 10 times faster than BASIC. It is extensible, meaning you can add to it and even change word meaning. (There are no reserved words.) New command words can be as much as 31 char. long, containing any char. but space, rtn. or exc., even in first position. FORTH is modular for fast development and debugging. AIM 65 FORTH has floating point arithmetic, unavailable on some machines. FORTH is the most advanced language available on any 8 -bit micro, and comes in two 4K ROM's that plug into the BASIC SLOTS. No disk system is necessary. With FORTH on board, you will definitely be proud to be an AIM owner, and will hopefully add to the growing wealth of software written in FORTH.

AIM Supportware shops around to bring you the best prices. Also available: A run-time monitor for the AIM. 2 K in EPROM, $\$ 95$, or cassette, $\$ 70$. The Run-time Monitor is a tremendous value when the AIM is used as a controller. It incorporates a task scheduler which allows vectoring to and from sub-routines written in machine code or a higher level language.
And if you don't yet have an AIM, from ROCKWELL INTERNATIONAL, we have the Advanced Interactive Microcomputer with 8 K Monitor, 20 char. display and 20 char. printer:

```
1K RAM
4K RAM ..... 499.
4K Dual Pass Assembler. ..... 82

Coming soon from AIM Supportware:
A versatile extended editor, with convenience foremost. Features Grab \& Stash \# of lines, paragraph, or page, for move or dup. Homing point. Global search and replace, Improved Change and much more.
Also avallable from AIM Supportware: Custom software and hardware development. And within Indiana, Applications Engineering consultation.

For detailed information on any of the above, write AIM Supportware, P.O. Box 681; 1112 80. FORTH St., Terre Haute, IN 47802 or call (812) 232-8824.


For your AIM 65
MI-JI User applications connector Convenient features

MIC and EAR jocks for cossette recorders
RS232C or 20 mAmp serial ports
16 1/O lines +4 control lines --VIA signals Solder pads for remote lines


MICRO INTERFACES, Inc. P.O. Box 14520

Minneapolis, MN 55414 (612-426-4603)

Ask about our Microcomputer DC Control Sysfem (MCS) with ROM-bosed softwore for real-time control with BASIC

\section*{SYM Time-Remaining Timer}

> This program measures elapsed time and sounds an alarm when the preset limit is reached.

\author{
Ralph Orton 16015 San Fernando Mission Blvd. Granada Hills, California 91344
}

Here's a neat little timer for a "barebones" 1K SYM that can satisfy a host of timing chores for you. Time phone calls, eggs, exercise sessions and contests. Don't miss TV shows, dates or appointments. My own most frequent use is to keep from "timing out" on the local amateur radio repeaters and thus \(I\) avoid the embarrassment associated with such a happening. Operating features include:
1. No peripherals required
2. Two modes of operation
3. Long timing internals (more than 4 days) with one second resolution
4. Positive status indications
5. Settable pre-time out warning
6. Ease of operation

Before entering into an explanation of timer operation, I would like to thank John Gieryic for his helpful article in the April, 1979 issue of MICRO; "SYM-1 6522-Based Timer." It was John's article that provided the heart of this timer.

Operation is straightforward. After entering the program, enter desired pretime out warning (hours, minutes, seconds) and desired operating mode. These are entered sequentially in the order indicated above, starting at address " 0000 ". For example, you have decided, as an exercise in self improvement, to restrict yourself to \(101 / 2\) hours of TV per week. However, you're not crazy about the timekeeping involved



Figure 1: Main Routine



Figure 2: Interrupt Routine
in such an effort. So, you guessed it, here comes the SYM Timer. Starting at address " 0000 " you punch in " 10 " " 30 " " 00 ". Then to provide a one-hour warning you continue with " 01 " " 00 " " 00 ". At this point you are ready to select mode of operation.

By entering " AC " you will select the "Accumulative" mode of operation. In this mode you can "start" and "stop" the timer as often as required. The timer will continue timing at each "start" from where it was last stopped. If you had entered anything other than " \(A C\) " you would have selected the "Resettable" mode of operation. In this mode each "start" causes the timer to begin again from the original timer interval you set.

With a simple " \(\mathrm{Go}^{\prime \prime}\) " 200 " " \(\mathrm{CR}^{\prime \prime}\) SYM displays "ready". To start the timer press any key and time remaining is displayed. To stop the timer once more press any key and "ready" is displayed again.

When the timer reaches the pretime out warning the beeper will sound momentarily, and when time out occurs, the beeper will sound continuously until it is reset by pressing any key.

Well that's it-maybe! I keep fighting off the urge to toss in more and more. For instance, how about a 1 year timer that reads out "Hrs \(\times 100\) " "Hrs." "Min."? Or if that's a little ridiculous, then maybe one that displays "days" "hrs." "min." for in excess of 3 months of timing. Then of course we could have an option to display elapsed time as well as time remaining. I don't suppose it would be too difficult to toss in a 24 hour clock while we're at it. Of course it would have to operate simultaneously with all the other options.

So on and on it goes. For now, however, I will leave it to others to perfect the ultimate time machine.

NCRO"

How? Une our ADVERTISING SOFTWAREI You put it in the APPLE and produce colortut, dyramic acts on the screens of TV sets in your shop window. Even if you are not a stop owner, you can uwe thit software to broadcast messignat on TV screens in schoots, hoepitals, factories, etc. The following memage-making programs are wailable.
SUPER MESSAGE: Creates meswags in full-page "chunkr". Each name allows stato ments of mixed typestyles, typesizes and colors, in mixed upper \& lower crive. Five typestyles are mailable. They range from regular APPLE charactern, up to double-size. double-witth characters with a heavy, bold font Six colors may be usod for asch different typestyie. Vertical a horizontal centering are avaitable, and word-wrap is automatic Uars can chain pages togather to make multi-page meages. Popes cen be advanced menuilly or autometically. Muti-pege meseges can be stored to disc or reciltod ced mmanaly SEOUR

MULTHESSAGE with INTERLEAVED COLOR PATTERNS: Up to 10 merrages can be run in sequence. Colorful, dynamic patterns (kaleidoscope or abstract art) cm be interionved batwoen messeges, at user option. Consists of 28 crisp, readable characters/ linaX4 lines/pegeX3 peges of text per meswege. Charactert are \(1 / 8\) screan-height and "puff" onto the gerven at conmfortable reading speed.
REQUIRES 32 K \& INTEGER BASIC. \(\qquad\) . 36 HI-RES ALPHANUMERIC MESSAGE: Sarne as Nulti-Mesege above, but has only one mestaga/set and no interleaved color-patterns. Still very good general messagemaker! THE SCROLING WONDER: 4 brief meseages appear in APPLE uppercase characters by "floating" onts the screen from below. Mersiges enter in random wequenct, with ram dom 50\% of messages "flast". A multiple-rainbow grand finala ends tha progrem. Very good progrum to run at point of purchase.
GIANT LETTER: Brillisntly-colored letters, of full screen height, appeer onest-a-tims, in sequenct, to spell out mesages Successive words hive different colors. A running ummary of letters, in APPLE cheracters, apperrs in the bottom 4 linet of the screen, as the giant lettery wre presented. Very good program for shop windows ALL 3 ABOVE TOGETHER. ON DISK. FOR 3ZK. INTEGER BASIC

LET APPLE PLOT YOUR DATA AND KEEP YOUR RECORDS TOOI
APPLE DATA GRAPH 21: Plote up to 3 superimposed curves on the Hirves Serven both the X \& Y exte dimansioned Each curve connist of Up to 120 pieces of dath Graphs can be stored to disce and rectelied immediately for updeting. Up to 100 graphs can be storud on the same disc Great for Stock-manket Charting, Businew Management, and Clatmoom Instruction!
REQUIRES 48K \& ROM APPLESOFT \(\qquad\) \$ 4a
APPLE REDORD MANAGER: Allows complate files to be brought into memory so that rocord saerches and manipulations are instmitaneous Records within my filie can contain up to 20 fixlds, what ustr-defined haeding. Informmetion can be string or numeric. Users can browne thru files using pecpforward, pegebeckward or random-aerch commands Records cen maily be suanchad, chered or sorted se will. Fibes can be swored on than sarse drive as the mastor program, or on another, if a swond drive is mainbit. Records or files can be pronnud, if detired. Additional modules coming are a STATISTICS INTERFACE, CHECKBOOK, MAIUNG LIST \& DATA-ENTRY. REOURES \(4 B K\) \& ROM APPLESOFT \(\qquad\)
- All Software show on Ditk for APPLE DOS 3.2

How? Order any of the iterns below, and for each \(\$ 100\) worth of merchandise ordered, we will give you one of the iterne at left for FREE!

APPLE ADD-ONS
HAYES MICROMODEM for APPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 . 300
280 SOFTCARD by MICROSOFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16K RAMCARD by MICROSOFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 .
FORTRAN for APPLLE by MICROSOFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159.
COBOL for APPLE by MICROSOFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599.
BASIC Comoier for APPLE by MICROSOFT 315.

\section*{PRINTERS}

CENTRONICS 737 (3 mo. warranty) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s 795.
CENTRONICS 737 (15 mo. warranty) ............................................................ \(\$ 915\).
EPSON TX-80 with TRACTORS \& GRAPHICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 .
EPSON MX-80 with TRACTORS \& 132 Colurmis
PAPER TIGER 460 G with GRAPHICS \& 2 K Buffer

\(\$ 515\).

WORD PROCESSING
EZ WRITER PROFESSIONAL SYSTEM for APPLE . . . . . . . . . . . . . . . . . . . . 239.
EZ MAILER (Interfaces to EZ WRITER above)
VIDEX VIDEOTERM (80-Column Cord for APPLE)
VIDEX VIDEOTERM (BO-Column Cord for APPLE ...
VIDEX VIDEOTERM (Same as abow with GRAPHICS)
\(\$ 239\). \$ 295. R'TERM (80-Cohumn Card for APPLE) ........
BUSINESS PROGRAMS for APPLE \& TR-80 by SPECTRUM SOFTWARE
MICROACCOUNTANT: An ideal peckige for the very small businass, basod upon classic T-eccoints \& Double Entry Bookkepping. This efficient program records and produces reports on scocount balancses, general ledger journala, revenues \& expenses. 40 -column or eruen reports. Handles up to 1000 journal mitiew/month, for up to 300 accounts Includes a stort primer in Financial Accounting
REOUIRES A8K \& ROM APPLESOFT
\(\$ 49\).
BUSINESS CHECK-REGISTER with BUDGET: Unique system allows satting up prodefined purpose a recipient accounts ( 50 eech). Supports unique names too. Rapidscowe to check-files with scrolling display \& 40 -ool. printout, if desired. Up to 100 checke/mo. + reconciliation + AUTOMATIC BUDGET VARIANCESI REQUIRES \(48 K\) \& APPLESOFT ROM

\section*{STOCK MARKET}

STOCX MARKET ANALYSIS for APPLE by GALAXY
\(\$ 49\)
\(\$ 49\)

\section*{COD'S A. Persona! Checks ara Wotcomel}

CONNECTICUT INFORMATION SYSTEMS CO. 218 Huntington Road, Bridgeport, CT 06608 (203) 579-0472
 teroids arcade game. Féetures: Ship movement, hyper space, alien saucers, sound effects, graphic routines allowing up to 25 objects to be displayed with real time response. Played from paddies or keyboard.
\(\$ 27.50\)

\section*{Available Now! MultiBoot \({ }_{\text {tw }}\) Upgrade}

Have you not wished that your Basic software would work in both DOS 3.2 and DOS 3.3? Tired of spending hours "Muffin"ing your old programmes? Now your problems are solved with MultiBootrm Upgrade. Upgrade a whole disc in just secionds and use your disc on any of DOS 3.3, DOS 3.2 and the Language Card.
\(\$ 50.00\)

Shooting Gallery - A real time simulation of a midway arcade. Features: row targets, pop targets, different \(\cdot \mathrm{sk}\) III levels, and bonus time. May be played using either game paddles or loy sticks. \(\$ \mathbf{2 2 . 5 0}\)

All Western MicroData game software is written in assembly language for maximum speed. All programmes require 48 K and DISK DRIVE and will work on standard Apple II, Apple II plus, and Pascal systems, with either DOS 3.2 or DOS 3.3.

\section*{Western MicroData \\ Enterprises Ltd.}
P.O. Box G33, Postal Station G

Calgary, Alberta
Canada T3A 2W1
1-403-247-1621


Star Avenger -High speed guerrilla waffare in space pitting you against your Apple. Featuring a new universe each game and varying skill levels. Universe consists of 16 hi-res screens with instantaneous crossover. \(\mathbf{\$ 2 7 . 5 0}\)

For U.S. and foreign orders prices are in U.S. dollars. For Canadian orders, prices are in Canadian dollars. Send cheque or Postal Money Order only Allow 3-4 weeks for cheque to clear if not certified and allow up to 4 weaks for delivery.

Dealer and Computer Club enquiries invited.

Apple is a registered trademark of Apple Computer Inc.
Disk il ls a registered trademark of Apple Computer Inc.

Minutes are money. So, when it's possible to easily handle many times your workload, with better results, you're on to something.

And, that something is Programma's versatile and powerful Word Processing System. Because it's designed from the user's viewpoint, it's easy to work with. You can start right out doing basic word processing. And, since each step logically leads to the next, you'll be handling even complex work problems in a very short time.

Our WPS consists of two superior programs, Apple PIE (Programma Improved Editor) and FORMAT. PIE is a free-form, live-screen-oriented editor, for creating and editing text for processing. The commands let you enter or alter anything, anywhere on your screen. You can search and replace, add, delete, move, or insert, by character, word, line or paragraph. And you know what's happening, as you see it right on the screen. PIE also allows use of a lower case adapter, and can even be used as a software development tool.

The other half of our real time saver is FORMAT. It uses simple, embedded codes to set formats for letters, manuals, scripts, documents or catalogs to your specifications.

You want this centered?...that underlined? those areas indented?...something paragraphed? You make the decisions, FORMAT does the work immediately, accurately. Then, if before printing, you want to revise copy, or change a document's final appearance, you can do it with ease. FORMAT is very forgiving!

To make the most of your time, order today. Our WPS for the 32K Apple II, on mini-floppies, with thorough documentation, is now just \$129.95. At your local computer store. Or direct from Programma, 2908 No. Naomi Street, Burbank, CA 91504 (213) 954-0240.

\section*{consumer computers}

OPEN EVERY DAY 9 to 6 PST
Colifornia, Alasko G Foreign orders
Shipping Information or Backorders coll
Service Center and for Technicol Informotion
(714) 690-8088
(714) 690-0260
(714) 460-6502

ORDER TOLL FREE 800-854-6654

\section*{= "E Mapplec.computer}

ALL EQUIPMENT IS FCC APPROVED.


APPLE II PLUS 16 K 1049
APPLE II PLUS 48K
(APPLE Memory)
APFLE II Standard Models . . . CALL
DISK II DRIVE G CONTROLLER. 529
This model inctudes DOS 3.316 sector

\section*{TOP TIVE SELLEAS}
anguage System \(W /\) Pascal
Silentype Printer W/Intefoce
Hayes Micromodem II
Videx Videoterm 80 w/grophics 425

APPLE COMPUTER BC
Disk II Drive Only
nreger or Applesoft il firrnware Cord Grophics Tabler
Parallei Printer Intefface Cord
155
649
speed smorterm 80 Column video Cord. .

MOUNTAN COMPUTER MC.
Music System (10 Voices)
A/D + D/A interface
Exponsion Chossis
Introl/X-10 System.
Clock/Colendor Caro
supertolker SD-200
Romplus + Cord
Romwriter Cord

\section*{COMPUTER SYSTEM}

Clock/Colendor Module
GPIB |EEE-488 Cod
Asyncinonous Serial Intenface Card
Asyncinoinous Serial Interface Card
Centronics Porollel Interface Cord. ......... 99 We corry all CCS hordwore. Pleose coll MSC. APHE MARDWARE
ok Ram Cord Microsoft.
ABT Numberic Keypod(oid ar.......... 189
ALF 3 Voice Music Cord
Alpho Syntouri Keyboord Syste......... 229
On Sy Kad Disk System. . . . . . . . . 1399
azer Lower Cose Plus.
Micro-5ci Disk Drives
SSM AIO Seriol/Porollel Card AGT
Sup-R-Terminal 80 Col. Card
SVA 8 inch Floppy Disk Controller
Versowriter Digitizer Pad

\section*{WE HAVE MANY MORE ACCESORLES FOR THE APMLE I B STOCK-}
mLEASE CALL OR WATIE FOR A PAKE LST.


Atari 40016 K
810 Disk Drive
410 Progrom Recorder
850 Interfoce Module
822 Thermal Printer ( 40 col)
825 Printer ( 80 col )
Acari 10 K Ram Module
Atori Light Pen
We stock of Aterl ecensorive 6
softwere, please cell for more info.
PRINTERS

Anadex DP-9500 W/2k Buffer Anodex DP-9501 W/2K Buffer
C. Itok Starwriter 25 CPS
C. Itoh Stawriter 45 CP

Centronics 737
Epson MX-70 W/Graphics
Epson MX-80 132 Col
Poper Tiger IDS-445 W/Dot Plot
Poper Tiger IDS-445 W/Dot Plot. Poper Tiger IDS-460 W/Dot Plot. Paper Tiger IDS-560 W/Dot Plot. Qume Sprint 5/45 Daisywheel. . Silentype w/Interfoce for Apple II........ . . . 549 Wotanabe Digiplot

\section*{VIDEO MONITORS}

Amdex/Leedex Video-100 1.2" BGW. . . . 139 Hitochi 13" Color

389
NEC 12" P31 Green Phospher. . . . . . . . . . CALL Ponocolor \(10^{\prime \prime}\) Color . . . . . . . . . . . . . . . . . . 375
Sonyo Q" \(^{\text {BGW }}\)
Sonyo " BGW
Sanyo \(12^{\text {". }} 031\) Green Phosphe.
Sanyo \(43^{\prime \prime}\) Color.

499
.69
175
369
795
155
65


Chollenger 4 P
699 C4PMF (Mini Floppy System) . 1599 CIP Model II 449 Sargon II (Disk or Cassetre). . . . 35
Fig Forth (Disk Only)
69

\section*{APPLE SOFTWARE}

\section*{DOS Tookit.}

\section*{65}

Appleplot.
Tax Planner
Apple Writer
Apple Post.
D.J. Portolio Evaluator
D.J. News \(G\) Quotes Reporter

Apple Fortron.
Apple Pilot.
DOS 3.3 Upgrade
Music Theory
The Controller Dus. Sys
MBC. APFLKATIONS PACKAEBS

\section*{Visicalc.}

Deskrop
op Plon 11
CCA Data Management DMS
Easywriter Word Processor
ASCII Express
Super Text II
Programmo Apple Pie
The Landlord Apt. Mgmt. Pkg.
eachtree Business Sofware
Tox Preparer by HowordSoft. .
Applebug Assem/Disassm/Editor
3-D Grophics By Bill Budge
Flight Simulator
GAMES
The Wizard and The Princess
Cosmos Mission (Spoce Invaders)
Sorgon H Chess
Hi-Res football
Adventure by Microsoft
Phontoms five
Reversol (Othello).

\section*{LEASE CALL OR WRIT \\ FOR A COMPLETE \\ SOFTWARE LBT.}

ORDERING INFORMATION: Phone Orders invited using VISA. MASTERCARD. AMERICAN EXPRESS. DINERS CLUB. CARTE BLANCHE. or bonk wire transfer. Credit
cards subject to service charge: \(2 \%\) for VISA G MC. \(5 \%\) for AE. DC G CB. Mail Orders moy send credit cord account number (include expiration date). coshiers or certified check, money order, or personol check (allow 10 days to clear). Please include a telephone number with all orders. Foreign orders (exduding Military PO's) add \(10 \%\) for shipping all funds must be in U.S. dollors. Shipping. handling and insurance in U.S. add \(3 \%\) (minimum \(\$ 4.00\) ). Colifornia residents add \(6 \%\) soles tox. We occept COD's under \(\$ 500\). OEM's. Institutions \(G\) Corporations please send for written quototion. All equipment is subject to price change and availobility withour notice. All equipment is new and complete with manufocturet warranty (usually go days). We cannot guarantee merchantiblity of ony products. We ship most orders within 2 doys

WE ARE A MEMBER OF THE DETTER BUSIMESS BUREAU AND THE CHAMBER OF COMMERCE
SHOWROOM PRICES MAY DIFFER FROM MAIL OADER PRICES. PLEASE SEND ORDERS TO:
CONSUMER COMPUTERS MAIL ORDER S314 PARKWAY DRIVE, GROSSMONT SHOPPING CENTER MORTH LA MESA CALIF. 92044

\title{
Oh No - It's Garbage Collect!
}

\author{
This article describes Garbage \\ Collect in Microsoft's 6502 BASIC. The worst case is described, and a few suggestions made on how to avold it.
}

\author{
Gordon A. Campbell \\ 36 Doubletree Road \\ Willowdale, Ontario \\ M2J 324
}

I was really pleased! The simple text editor worked well. It even had a fancy quasi-INPUT routine, just like CURSOR. And it only took a couple of days to develop, since it was written entirely in BASIC. Now to get on with some articles.

The first opus went well. After several input sessions, I ran a full draft. All the changes were going well, when suddenly, right in the middle of entering a command, the PET went dead. Pushing the STOP key did nothing, so I sat back to consider my sins. After a minute, the cursor returned, and the editor was again working.

The light came on. I was the victim of the dreaded garbage collect.

Garbage collect is the compression of string space. In Microsoft's 6502 BASIC, string contents are placed at the top of memory, working down. When a string is assigned a new value, it is placed below all previous strings. At some point, memory is filled, so garbage collect squishes all the strings back up to the top. It may also be forced, by using FRE(0).

The following one-liner provide the basis for some experiments:
\[
\begin{aligned}
& 5 \mathrm{~N}=1000: \\
& \mathrm{B} \$=\mathrm{CH} \$(1): \\
& \mathrm{DIM} A \$(\mathrm{~N}):
\end{aligned}
\]

FOR \(\mathrm{J}=0\) TO N :
\(\mathrm{A} \$(\mathrm{~J})=\mathrm{B} \$:\)
NEXT:
\(\mathrm{A}(0)=" \mathrm{~B}\) ":
\(\mathrm{T}=\mathrm{T}\) :
PRINT FRE(0) TI-T
The program sets up bunches of strings, changes the first one, and forces garbage collect while printing the time required. (The CHR \$ is required since assigning a string a literal value results in the string pointer pointing at the literal in the program, rather than use of string space.)

Changing N showed that the number of strings has a roughly exponential effect on the time required. Changing the size of B\$ showed that the number of characters in the strings has no apparent effect on the time.

To find the worst case, some swift calculation shows that N can be set to 7908, and garbage collect takes 84 minutes and 13 seconds. But we can go higher. Drop the start-of-BASIC down to the first cassette buffer, and raise the top-of-memory to the end of the screen. Now N can be set to 8261 , for a time of 91 minutes and 56 seconds!

How about other machines? A call to a friend showed that Applesoft is compatible with the PET. The only difference is the \(10 \%\) that the PET spends looking at the keyboard and cassettes, and updating the clock. Down at our neighborhood Radio Shack we found that string space must be reserved with a 'CleAR n' command. There is no apparent time spent in garbage collect, but there is a value for the CLEAR command which seems to crash the system, so that may be it. Presumably the Atari with its fixed-length strings doesn't create garbage in the first place.

Published information indicates that the latest PET ROM-set does garbage collect much more quickly. In a classic trade-off of speed versus memory, it also takes two bytes more
per string. The ways to reduce garbage collect are fairly obvious: don't have more strings than are absolutely required. For example:
1. Re-use work variables.
2. Use numbers rather than strings for switches.
3. Put literals right into PRINT statements rather than use constant strings.
4. Try to create the most stable strings first.
5. Avoid loops which create a string by concatenating a character at a time onto the string.
6. Apply the usual techniques to keeping your program small.
7. Avoid sorting techniques which involve changing the actual contents of the array. Instead, use QUICKSORT, or an Assembler sort which changes the string pointers.

Garbage collect will happen in any case. In interactive programs without a large number of strings, it can be made invisible to the operator by forcing it ( \(\mathrm{X}=\mathrm{FRE}[0)\) ) during times when the operator doesn't expect to use the keyboard. For 'batch' programs, the least amount of time will be consumed by just letting it happen when it must.

In summary, the next time your PET (Apple, SYM) seems to crash, don't reset it right away. It may just be collecting its garbage.

After 15 years in main-frame data processing, Gordon Campbell purchased a cassette-based PET in the spring of 1979 Since then, the PET has grown a disk, printer, and modem. The latest expansion provides CB2 sound in stereo.

\section*{Enter our world of microcompuling...}

Discover our exciting world of microcomputing by reading SoftSide Magazine, the monthly that helps you learn to use your 6502-based system more effectively and enjoyably. In SoftSide, you'll read helpful programming hints, follow regular columns by such well-known authors as Scott Adams, and explore the wide range of 6502 -compatible software and hardware.
The focus of SoftSide is lots of entertaining software - great games, simulations and educational programs all ready to type right into your computer, each one fully documented and carefully explained. Every month you'll find at least three programs for the Apple, and three for Atari. The value of these programs is impressive - one reader told us that he estimates the value of the software in SoftSide at \(\$ 18\) per issue!
SoftSide isn't for everyone. We're looking for the kind of reader who feels challenged by tackling all kinds of programs, long or short, and is rewarded with consistently fine graphics, great adventures, and simulations, and arcade games that don't lose their appeal after one play.
If you're the kind of person who ought to be reading SoftSide, take advantage of our special offer while it lasts - 13 issues for the price of 12 (you must order with the coupon in this ad or a photocopy). For a small admission price, you can become a part of SoftSide's world of microcomputing!
"As a recent purchaser of an Atari 800 and a recent subscriber to SoftSide, I am more than a little thrilled to find a magazine like yours available. Here I am looking for clever programs and clever programming ideas. Your magazine fits the bill! I have enjoyed nearly every hour of typing in the programs (at least I do after I see the program run with the fantastic graphics)." R.K.


Here's my ticket to SoftSide's world of microcomputing.
Please send me 13 issues for only \(\$ 18\)
(at a savings of \(40 \%\) over cover price).



\section*{An AIM 65 Intelligence Test}

\section*{Please answer each question:}

1 Who has been offering complete 6502-based products since 1976?
\(\square\) Rockwell International
\(\square\) The Computerist

2 Who makes a video expansion board for the AIM 65 that fully supports the AIM Monitor, Editor, Assembler and BASIC?Rockwell InternationalThe Computerist

3 Who offers a memory expansion board fer with 32 K RAM, provision for up to 16 K EPROM, and an EPROM programmer .eviA chips?

Rockwell International
Who offers an enctosure s.
15 Which company has si. year warranty on all. of its

6 Who be offerting a controterbo
asynchir us communtcation thiteifar

7 Who consistent, es a costy oriented products.Rockwell Internan

\section*{Answers:}
1. The Computerist started

2. The Computerist Vide?
himable screen formats, EPR major AIM firmwa rently offer any
3. The Computer:


2716, 2532, a vide simile PROM/RC
hold th
4. The C \% offers AIM Plüs - an encolosure with poin im
and pansion board the poveo supply s ratedat
and pansion beard, The poyve supply is ratedat
Rocnum.

6. The Computeris. Mew multh-purpose fontrollfr bgard in quarter of 1981, which will
include floppy dish, ... and ather suntrfllers of on announced such a prodiu, ....atopp appll
7. The Computerist uses the integratom
wed that approach very well in the functions on a single board in a very pric AIM 65, but has totally abandoned the integratu_sion modules.
8 Now, where are you going to look for support forn 65?
\(\square\) Rockwell International
\(\square\) The Computerist

Answer: If you answered "The Computerist" to question 8, then you pass the AIM Intelligence Test. So send for our 1981 Product Guide. If you answered "Rockwell International", then maybe you didn't understand the question.


Prices listed are US only and do not include Shipping and Handling.
34 Cheimsford St., CheImsford, MA. 01824 617/256.3649


New Publications

\author{
Mike Rowe \\ New Publications \\ P.O. Box 6502 \\ Chelmsford, MA 01824
}

This column lists new publications received for review and also reports on pertinent publication announcements received from book and periodical publishers.

\section*{General 6502}

The 6502 Instruction Handbook by Scelbi Publications ( 20 Hurlbut Street, Elmwood, Connecticut 06110), 1981, 44 pages, \(33 / 4 \times 81 / 2\) inches, paperbound.
\(\$ 4.95\)
Designed as a shirt-pocket guide for programmers, technicians, and engineers. Portions of the publication appeared originally in SCELBI's 6502 Software Gourmet Guide e) Cookbook (by Robert Findley, 1979). This slim reference work, available from computer stores or for an extra \(50^{c}\) from the publisher, contains a synopsis of each instruction set for the 6502 CPU. Mnemonics and machine codes in hexadecimal format are provided for each addressing m.ode. Appendices list the instruction set alphabetically by assembler menemonics as well as numerically by machine code. Other information provided includes a hexadecimal-to-decimal conversion chart, a chip pinout diagram, timing data, and diagrams of chip architecture.

6502 Games by Rodney Zaks. 6502 Series, Volume IV, Sybex Inc. 2344 Sixth Street, Berkeley, California 94710), 1980, x, 292 pages, 50 figures, \(51 / 2 \times 81 / 2\) inches, paperbound.
ISBN: 0-89588-023-9
\(\$ 12.95\)
This book is designed as an educational text for the programmer who wants to learn advanced programming techniques by using the 6502. Although it can be used merely to play games with a 6502-based board, for educational purposes, the reader should be familiar both with the 6502 instruction set and with basic programming techniques. The programs listed are for the SYM but can be adapted to other 6502 -based microcomputers.

CONTENTS: Introduction-The Games
Board. Music Player-Play a sequence of up to 255 notes ( 13 different notes) and record it automatically. Translate-The computer displays a binary number. Each player in turn must press the hexadecimal equivalent as quickly as possible. The first to score 10 wins. Designed for two players. HexguessGuess a 2 -digit hex number generated by the computer. The computer will tell you how far off your guess is. You are allowed up to 10 guesses. Magic Square-Light up a perfect square on the board. Each key inverts some LED pattern. Skill and logic are required. Spinnet-A light is spinning around a square. You must catch it by hitting the corresponding key. Every time you succeed, it will spin faster. A game of skill. Slot Machine-A Las Vegas type slot machine is simulated, with three spinning wheels. Try your luck. Echo-Recognize and duplicate a sound /light sequence (also known as SIMON-A manufacturer trademark). Mindbender-Play against the dealer (the computer) with a deck of 10 cards. You may hit or stay. Don't bust! BlackjackGuess a sequence of numbers generated by the computer. It will tell you how many digits are correct and in the right position falso known as MASTERMIND-a manufacturer trademark). Tic-Tac-Toe-Try to achieve three in a row before the computer does in this favorite game of strategy. The computer's ability improves with yours. Can you outsmart it? Appendices: A. 6502 Instructions-Alphabetic; B. 6502Instruction Set: Hex and Timing. Index.

\section*{AIM 65}

AIM 65 Laboratory Manual and Study Guide by Leo J. Scanlon. John Wiley \& Sons 1605 Third Avenue, New York, New York 10158] 1981, 180 pages, diagrams and charts, \(81 / 2 \times 11\) inches, paperbound.
ISBN: 0-471-06488-2
\(\$ 7.95\)
A study and exercise book designed to introduce students to microcomputers by working with the AIM 65. Pages are perforated so that the student's answers, written in the book, can be handed in, lesson by lesson, for review by the instructor. The author, employed by Rockwell International, the manufacturer of the AIM 65, provides 32 pages of answers to the experiments.

CONTENTS: Getting to Know the AIM 65; Addition Operations; Subtraction and Logical Operations; Program Sequencing; Debugging Programs; Multiplication Operations, with Shift \& Rotate; Division Operations; Subroutines and the Stack; Unordered Lists; Sorting Unordered Data; Code Conversion from Input; Code Conversion for Output; Input/Output; A More Powerful I/O Device, the R6522 VIA; Interrupts; A Timing Program with Decimal Output; The AIM 65 Assembler; Answers to Experiments.

\section*{General Microcomputer}

The Personal Computer Book by Robin Bradbeer. Input Two-Nine, an imprint of MCB Publications Limited (198/200 Keighley Road, Bradford, West Yorkshire, England BD9 4JQ), 1980, 220 pages, illustrated, \(81 / 4 \times 5-6 / 8\) inches, paperbound.
ISBN: 0-905897-56-0 U.S. \$15.00;
\(£ 5.25\)
An introductory work on microcomputers, written especially for readers in the United Kingdom.

CONTENTS: What's It All About?-The computer can assist us tremendously, both in business and pleasure; How is it possible?; The first hobby computer; Who buys personal computers?; What do you use the computer for?; Developments in the next few years. Where Do I Start?-Ten hints to help you on your way. The Com-puter-What Is It? How Does It Work!-The computer-confusingly versatile; How the computer works, in simple terms; Binary numbers; How does the computer handle binary numbers?; The processor -the CPU-from the inside; The computer's own road network-the bus; Storage inside the computer. How Do I Talk to the Computer!-Machine Language; Assembly language; High-level languages; At which level do I begin?; BASIC-a convenient language; Firmware; Software; Which microprocessor is best? What's In the Boxes!; Input devices; Keyboard-based input; Speech recognition; Direct Input; Storage media; Cassette storage; Disk storage; Other storage media; Output devices; Video output; Printed output; Electric typewriter/TTY; Matrix printers; Daisy wheel printer; Other printers; Speech synthesis. What Can I Buy?-The Computer system; Personal computer equipment survey; Part 1, Section A-Single board computers; Kit-built systems; Training systems, Part 1, Section B-Desk top systems. Part 1, Section C-Bus-based systems-S100 Bus. Part 1, Section D-Other Buses-SS 50, Non-standard. Input/Output devices, memory storage media; other media; Part 2-Printers. Part 3-Video display units. Part 4-Other peripherals. How do I choose a system? What Can I Do With It?-Games; Education; Business use; Word processing; Information handling; Controlling things; Making money; Examples of personal computers in use. Appendices: A. Binary Arithmetic; Octal; Hexadecimal; ASCII Code. B. Bus Standards; S100 [IEEE]; SS50, etc. C. Manufacturers and Distributors in U.K. D. Computer Clubs in the U.K. E. Magazines in English... UK/USA/Continent. \(F\). Bibliography of Selected Microcomputer Books. G. Glossary. H. Some Hints on Kitbuild Systems.
(Continued on following page)

The Carl Helmers Personal Computer Letter is a monthly newsletter which began publication with the January 1981 issue. Helmers, a co-founder of Byte magazine and its former Editorial Director, provides subscribers with analyses of issues and trends affecting the small computer industry. Helmers plans to offer subscribers the opportunity to participate in a monthly Personal Computer Industry Conference Call which he will moderate. Each issue is a minimum of 8 pages; some may run to 24 or 48 pages. A one-year subscription is \(\$ 200.00\) from North American Technology, Inc., 174 Concord Street, Suite 23, Peterborough, New Hampshire 03458.

\section*{Microcomputers and Business}

Basic Business Software by E.G. Brooner. Blacksburg Continuing Education Series, Howard W. Sams \& Co., Inc. \((4300\) West 62 nd Street, Indianapolis, Indiana 46268), 1980, 142 pages, charts, diagrams, and listings, \(51 / 2 \times 81 / 2\) inches, paperbound.
ISBN: 0-672-21751-1
\(\$ 9.95\)
This book is designed primarily for business people who want to understand some of the fundamentals of business software development. But it is also for programmers who want to learn more about business software. Some familiarity with BASIC-language programming is assumed. The author aims to teach readers either to write some of their own business software or evaluate programs written by others. Sample programs are included.

CONTENTS: Introduction to SmallBusiness Software-Objectives; SmallBusiness Computers Defined; Effect on Paper Work; Businesses that Benefit; Software Costs; Self-Help Test Questions. Software Fundamentals-Objectives; Software Functions; Computer Languages; The Operating System; Software Defined; LanguageIndependent Programming; BASIC Comparison and Translation; Self-Help Test Questions; References. How To Choose Appropriate Business Software-Objectives; Practical Limits; Where To Get It; When Customizing Is Needed; Compatability; Self-Help Questions. How Programs Are Put Together-Objectives; Terms Defined; The Use of Symbols in Programming; The Step-by-Step Method; Subroutines, or Modules; Programming Hints; Summary of the Step-by-Step Method; Debugging Hints and Other Techniques; The Disk Subsystem; Self-Help Test Questions. Information Storage and Retrieval-Objectives; Data Generation and Storage; How Data Is Stored; Disk Handling; The Disk Library; File Structure; Overview of "CHECKING"

Program; Sorting Computer Data; Program Analysis; 'NAMELIST"; Self-Help Test Questions; References. Inventory Con-trol-Objectives; Who Needs an Inventory?; Inventory as a List; Inventory Functions; Program Analysis; Program Evaluation; Rapid Search Methods; Summary; Self-Help Test Questions; Reference. Payroll Pro-grams- Objectives; Payroll Requirements; Printing on Prepared Forms; Program Development; The Master File; Master Payroll Program; Entering Employee Data; Payroll Entries and Calculations; Entering Pay Data; Pay Procedure; Payroll Summary; Conclusion; Self-Help Test Questions; Test Programming Project. General Ledger Programs-Objectives; Terms Defined; General Ledger Defined; System Overview; Transaction Examples; Program Descriptions; Operating the General Ledger System; Self-Help Test Questions; Test Project. An Introduction to Word Process-ing-Objectives; Word-Processing Functions; Office of the Future; Hardware Requirements; Suitable Software; Time Sharing. Basic Computer Modeling and Simula-tion-Objectives; The Break-Even Example; Graphical Method; The Computer Technique; Other Simulation Problems; Random Numbers; Self-Help Test Questions; References. Appendix-ASCII Code Chart; Glossary; Index.

Small Computers for the Small Businessman by Nicholas Rosa and Sharon Rosa, dilithium Press [30 N.W. 23rd Place, Portland, Oregon 972101, 1980, x, 332 pages, \(51 / 2 \times 8-5 / 16\) inches, paperbound.
ISBN: 0-918398-31-2
\(\$ 12.95\)

\section*{This book is written for small business} people and is mostly about small computers, specifically microcomputers. It is intended to help the reader select the computer that best meets his business needs.

CONTENTS: The Small Computer Revolu-tion-But we're not trying to sell you; "The price of a new car"; Then why shouldn't you wait?; Now, about that rash idea...; Affording it; Turnkey in the store; Graphics; How "big" a system; Making money directly; "But I'm not a computer freak..."'; That mini- and micro- distinction; What about just renting services?; Now whaddaya mean, "Revolution?"; The integrated circuit; But what's a semiconductor?; Large scale integration; And sud-denly-;: Voila!; The significance. The Small Business Computer-Interfacing; Memories are made of this...; A final memory; Mass storage; The other stuff. This Thing Called Software-Documentation; Programs; Computer languages; Those translating programs; What BASIC looks like; Enough, already; Now, about that problem...; Acquiring the stuff. Data Processing and Word Processing-The nature of data processing; The nature of word processing; Choosing a system. How to Shape Your

Computer System-Getting into it; Using the consultant; Finding the consultant; Finding the vendor; Getting it all in writing; Involving your staff; The happy outcome. Buying Services Instead-Service bureaus; Timesharing; Whither timesharing? Amen, amen. The Minicomputer-But anyway; Acquisition notes; Again, what's a mini?; Making a decision; The cloudy crystal ball; The onrushing dawn. Shopping for Your Hardware-How much to buy?; The double system; System in one cabinet? Memory options; Where to buy; Guarantees; Notes on I/O devices; Keyboards; Writehander \({ }^{\text {TM }}\); Teleprinters, Teletype \({ }^{\text {TM }}\); Electric typewriters; CRT display; Other displays; Cassette drive; Floppy disks, diskettes; Hard disks: Winchesters; Printers; Isolators, noise suppressors; Power supplies; Front panel \(_{;}\)Modems; The computer room; "Desk tops" and accessories; Cost and quality; Watch out. The Professions and the Computer-The accountant; The law office; The doctor's office; The writer's office; That bottom line (financing); Leasing; Tax benefits. The Butcher, The Baker and The Candelstick Jobber-The small manufacturer; Construction and lumber; Warehouses; Real estate; Insurance; A portrait studio; Pharmacy; Restaurant; Finding out more. Glossary. Appendix-How It All Works. Index.

\section*{General Computer}

Software News - The Computer Software Products Newspaper is a newspaper tabloid which will appear monthly beginning in May. Sentry Database Publishing, a division of Technical Publishing, will issue the tabloid (Technical Publishing is the publisher of Datamation and is owned by The Dun \& Bradstreet Corporation). Software News will report on the software industry. It will provide analysis and commentary on applications packages, systems software, productivity aids, databases, and language processors. It will cover data and software security, software legal issues, and job opportunities; and it will offer user ratings and surveys, software vendor profiles, market statistics, and other business and financial information. The newspaper will be distributed to 50,000 software buyers and specifiers. For information, write Software News, 5 Kane Industrial Drive, Hudson, Massachusetts 01749.

\title{
DR. DALEY OFFERS SOFTWARE FOR EVERYONE
}

\section*{DATA} BASE

The data base package allows total user control
\$299.95 over the contents of each entry in the file. Features user selectable record size from 5 to 242 characters per record, statistical and plotting package, output with WORDPRO files or printer. Includes full user definable output formatting. With optional indexing routine can produce a comprehensive index of a data set.

Index
99.95

For PET or CBM \(\mathbf{4 0 0 0}\) or \(\mathbf{8 0 0 0}\) series with 32 K memory please specify your machine configuration.

\section*{MAIL LIST}
\(\$ 159.95\)
For PET or CBM 4000 or \(\mathbf{8 0 0 0}\) series with 32 K memory please specify your machine configuration.

This powerful mailing list package features a variety of options for producing labels. It includes user defined file structure and label format. Label format can list to the printer or to WORDPRO format files.

\section*{SOFTWARE}

\section*{LIBRARY}

Hundreds of schools and individuals have purchased this package for use as an educational tool or just plain fun. It contains 50 (yes fifty!) programs. This ranges from our famous TREK 3 and horse race to fun learning programs for children to checkbook and a micro mail list program with lots in between. At about \(\$ 1.40\) per program how can you miss?

Cassette \(\$ 69.95\)
Diskette
79.95

For APPLE II or PET


\section*{DR. DALEY'S SOFTWARE}

425 Grove, Berrien Springs, Michigan 49103
Phone (616) 471-5514
Sunday-Thursday noon to 9 p.m. Eastern Time

\title{
CONTINENTAL SOFTWARE THE APPLE SOURGE.
}

For Apple owners only. Thoroughly tested, well documented programs for business and pleasure. All writien by professionals. Each checked out carefully by experts in its field.

\section*{HYPERSPACE WARS}

\section*{2 GRMES IFOR THE PRICE OF \(1 \$ 29.95\)}

48K Trek. Stardate 3421.
The Terraunion is being attacked. You command United Starship Excalibur. Your mission: destroy the deadly Klepton invasion force. Four levels, Novice to Master.
3-D Space Battle. Use your on-board scanners to search for alien ships in hires three-dimensional space. Destroy as many aliens as you can before you run out of fuel or your ship is destroyed. Hi-res graphics. Req. 48K, Applesoft in Rom +1 disk drive. Dos. 3.2 or 3.3.

\section*{L.A. LAND MONOPOLY}
\(\$ 29.95\)
Bankrupt your opponents while becoming the richest player in the game. Buy, sell, rent and trade to accumulate the most cash and property. Two to six may play. Computer is banker. Create your own special version using streets in your own town.
Hi-res graphics. Req. 48K, Applesoft in Rom +1 disc drive. Dos. 3.2 or 3.3.

\section*{HOME MONEY MINDER \(\mathbf{\$ 3 4 . 9 5}\)}

Complete home financial system combines an excellent Home Checkbook Program with Budgeting. Transactions by month by budget category. Bank reconciliation. Budget for year. Total expenses compared monthly and year-to-date. Plus much more.
Req. 48K, Applesoft in Rom, 1 disk drive + printer. Avail. in Dos. 3.3.

\section*{THE MAILROOM \(\mathbf{\$ 3 4 . 9 5}\)}

Stores up to 750 names per disk. Prints master lists and labels l, 2 or 3 across. Sorts in 5 seconds. Sort on any of 12 items, search any sorted item in 10-20 seconds maximum. Easy editing, customized inputs.
Req. 48K, Applesoft in Rom, 1 disk drive + printer ( 132 column capability needed to print Master List.) in Dos. 3.3.

\section*{THE COMPUTER PROGRAMMED ACCOUNTANT FOUR MODULES}

Buy all four now-or add as you expand \(\$ 175\) each ( \(\$ 250\) after \(6 / 1 / 81\) )
The first programs for your Apple that your accountant will like as much as you do. Nobody makes it better-or easier to use-than Continental Software. Simple step-by-step instructions. Excellent error checking. Modules can be used individually, or integrated into a complete Accounting System. Manuals only: just \(\$ 15\) each.

\section*{CPA 1 GENERAL LEDGER.}

True double entry bookkeeping with complete, accurate audit trails showing the source of each entry in the general ledger. Concise, meaningful reports generated include Balance Sheet, Profit \& Loss Summary, Trial Balance and Complete Journal Activity Report. Reports show monthly, year-todate and last year monthly + YTD for comparison. Custom charting feature includes hi-res plotting of one or more accounts.

\section*{CPR2 ACCOUNTS RECEIVABLE}

Prints invoices on available custom forms or on plain paper. Back orders and extensions computed. Issues statements for all customers, one or more customers, or only those with current, \(30-1,60-90\) - or 150 -day balances. Maintain up to 300 customers. Customized journals. Allows simulation of manual special journal entries. Posts to General Ledger. Prints aging report to 150 days. Also prints customer lists and labels.
CPA3 ACCOUNTS PAYABLE
Prints checks to vendors and nonvendors on available pre-printed checks or plain paper. Each check stub shows invoice(s) paid, discounts taken, net paid, Prints Purchases and Cash

Disbursement Journals. Customized journals. Allows simulation of manual special journal entries. Prints Aging Report to 150 days, vendor list and labels and even a Cash Requirements Report. Posts to General Ledger.

\section*{CPA4 PRYROLL}


Maintains personnel records for as many as 100 employees. Quarter-to-date-and year-to-date earnings and deduction records. Employees are departmentalized and designated hourly or salaried. Prints complete Payroll Checks, 941 information, W-2s, State of California DE-3 information. Prints Payroll Journal and posts to General Ledger.

These are just some of the features of each CPA module. All require 48K, Applesoft in Rom, Dos. 3.3, 2 disk drives + printer.

\section*{At your local dealer or fill out and \\ mall today. Phome for immediate delivery.}

\section*{}


Send me these revolutionary programs:
\(\square\) Hyperspace Wars... \$
\(\square\) L.A. Land Monopoly.
\(\square\) The Mailroom. . . . . .
\(\square\) CPAl General
Ledger.
\(\square\) CPA2 Accts. Rec.


INCRO

Presented here in zip-code order are those MICRO dealers who responded to our newsletter request for Information concerning their dealership. Many have been MICRO dealers for quite some time while others are new. This service is provided to acquaint readers with these dealers and to encourage readers to visit dealers in their area. This listing is provided twice a year to update previous listings (see MICRO 29:69). This is not intended as a complete listing of MICRO dealers.

\section*{United States}

\section*{Maine}

Maine Micro Systems Inc.
555 Center Street
Auburn, Maine 04256
Contact: Hugh Blair/AI Celetti
2071782-7139
Hardware: Aim, Apple, Atari, CBM, KIM, PET, TRS-80
Software: Educational, Personal,
Business, Games
Publications: MICRO, Compute, Kilo-
baud, 80-Microcomputing

\section*{Vermont}

Computers Plus
177 Church St.
Burlington, Vermont 05401
Contact: Tim Barden
802/658-5858
Hardware: Apple, Atari, HP-85
Software: Educational, Personal,
Business, Games, General Accounting Publications: MICRO, Byte, Creative
Computing, Microcomputing

\section*{Connectlcut}

The Computer Store
63 South Main St.
Windsor Locks, Connecticut 06096
Contact: Susan Bramley
203/627-0188
Hardware: Apple, HP-85
Software: Educational, Personal,
Business, Garnes
Publications: MICRO, Byte, Nibble, Creative Computing

Southbury Professional Systems Inc. D.B.A. The Micro-Computer Store Union Square
Southbury, Connecticut 06488
Contact: Marilyn or Joseph Osterman 203/264-2983
Hardware: Apple, Atari, Vector Graphic
Software: Educational, Personal, Business, Games, Professional

\section*{New Jersey}

Software City
111 Grand Ave.
River Edge, New Jersey 07661
New York
Time Enterprise
8247 Genesee Road
Springville, New York 14141
Contact: Paul Zielinski
716/592-7665
Hardware: OSI
Software: For OSI

\section*{Pennsylvanla}

Computer Mail Order
501 E. Third St.
Williamsport, Pennsylvania 17701
Contact: Randy Gailit
717/323-7921
Hardware: Atari, CBM, PET
Software: Educational, Personal,
Business, Games

\section*{Maryland}

Computer Crossroads, Inc.
9143 G Red Branch Road
Columbia, Maryland 21045
Contact: Richard Simpson
301/730-5513
Hardware: Apple, Atari
Software: Educational, Personal,
Business, Games
Publications: Many

\section*{Virginia}

Computerland of Tysons Corner
8411 Old Courthouse Road
Vienna, Virginia 22180
Contact: Rich Doud

\section*{703/893-0424}

Hardware: Apple, Atari, CBM, PET, North Star, Dynabyte, T.l., Cromemco
Software: Educational, Personal,
Business, Games, Languages, Utilities, etc.
Publications: MICRO, Byte, Kilobaud,
Personal Computing, Creative Com-
puting, Nibble
Computer Center
2927 Virginia Beach Blvd.
Virginia Beach, Virginia 23452
Contact: Jeff Wilson
804/340-1977
Hardware: Apple, Atari

Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, Creative
Computing, Interface, Call-APPLE

\section*{North Carolina}

ETC Corporation
P.O. Box G - OLD NC 42

Apex, North Carolina 27502
Contact: Jeff Butler
919/362-4200
Hardware: AIM, CBM, KIM, OSI, PET, Billings
Software: Educational, Personal, Business, Games, Scientific, Custom Publications: MICRO, Byte, Microcomputing, Compute

\section*{Florida}

Associated Information Systems
825 Osceola Drive
Rockledge, Florida 32955
Contact: D.R. Hendricks
305/632-1090
Hardware: OSI
Software: Educational, Personal, Business, Games, Custom Programming
Publications: MICRO
AMF Microcomputer Center, Inc.
11158 N. 30th St.
Tampa, Florida 33612
Hardware: Apple
Software: Educational, Personal, Business, Games
Publications: All major computer magazines

\section*{Ohlo}

Microage Computer Store
2591 Hamilton Road
Columbus, Ohio 43227
Contact: John W. Spencer

\section*{616/868-1550}

Hardware: Apple, Atari, North Star, HP, TI, Archives, Altos, Ithica, Zenith Software: Educational, Personal, Business, Games
Publications: All

\section*{Michigan}

New Dimensions in Computing, Inc. 541 E. Grand River East Lansing, Michigan 48823
Contact: Robert Gibbs 517/337-2880
Hardware: Atari, Exidx, Vector Graphic, Intersystems
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, Interface
Age, Microcomputing, 80-Microcomputing, Compute, Creative Computing

\section*{Wisconsin}

Byte Shop of Milwaukee
6019 W. Layton Avenue
Greenfield, Wisconsin 53220
Contact: Kathleen Preston
414/281-7004
Hardware: Apple, CBM, PET, North
Star, APF
Software: Educational, Personal, Business, Games
Publications: MICRO, 68 Micro, Byte, Creative, Kilobaud, 80 Microcomputing, onComputing, Interface Age, Nibble, Apple Orchard, Compute, Softside, Personal Computing, etc.

PETTED micro systems
4265 W. Loomis Rd.
(P.O. Box 21851)

Milwaukee, Wisconsin 53221
(moving soon)
Contact: Theodore J. Polczynski
414/282-4181
Hardware: Atari, CBM, KIM, PET, Software: Educational, Personal, Business, Games, TRS-80 Instant software and creative computing Publications: MICRO, Compute, Kilobaud, Creative Computing

\section*{Minnesota}

Personal Business Systems
4306 Upton Ave. So.
Minneapolis, Minnesota 55410
Contact: Mike Carlson
612/929-4120
Hardware: Apple
Software: Educational, Personal,
Business, Games
Publications: MICRO, Apple Orchard;
Creative Computing, Peelings, Nibble

\section*{Illinois}

Data Domain of Schaumburg
1612 E. Algonquin Rd.
Schaumburg, Illinois 60195
Contact: Marilyn Clark, Steve
Shendelman
312/397-8700
Hardware: Apple, Alpha Micro, Hewlett-Packard Calculators and Accessories
Software: Educational, Personal, Business, Games
Publications: Large selection
Farnsworth Computer Center
1891 N. Farnsworth Ave.
Aurora, Illinois 60505
Contact: Luke Snyder
312/851-3888
Hardware: Apple, Hewlett-Packard, HP-85 A
Software: Educational, Personal, Business, Games
Publications: MICRO, Apple Orchard,

Call APPLE, Kilobaud, 80 Microcomputing, Byte, Creative Computing, Interface Age

Wallace Computers, Inc.
2619 N. University
Peoria, Illinois 61604
Contact: Ronald A. Wallace
309/685-7876
Hardware: Apple
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, Call APPLE, Nibble, Softalk

Main Street Computer Company
215 N. Main
Decatur, Illinois 62523
Contact: David B. Herriott
217/429-5505
Hardware: Apple
Software: Educational, Personal,
Business, Games
Publications: MICRO, Byte, Creative
Computing, interface Age

\section*{Missourl}

Back to Basic Computer Center
43 Cross Keys
Florissant, Missourl 63033
Contact: Fred or Jane Hahn
314/837-4495
Hardware: Atari, OSI, Vector Graphic Software: Educational, Personal, Business, Games
Publications: MICRO, Compute, Byte, Kilobaud, Microcomputing, Creative Computing

Computer Mart
1904 E. Meadowmere
Springfield, Missouri 65804
Contact: Rob Lurvey
417/862-6500
Hardware: Apple, Atari, IMS
Software: Educational, Personal, Business, Games
Publications: Most monthlies and quarterlies at present

\section*{Nebraska}

Computers West
7351 Pacific St.
Omaha, Nebraska 68114
Contact: Kevin J. Burke
402/391-3737
Hardware: Apple, Atari, Data General, Archieves
Software: Educational, Personal, Business, Games
Publications: MICRO, Interface Age

\section*{Utah}

Computer Translation, Inc.
1455 S. State Street
Orem, Utah 84057
Hardware: Apple
Software: Educational, Personal,

Business, Games
Publications: Byte, Creative Com-
puting, Personal Computing
Nevada
Home Computers
1775 E. Tropicana \#6
Las Vegas, Nevada 89109
Contact: Ike
702/798-1022
Hardware: AIM, Apple, Atari, CBM, PET, Bally
Software: Educational, Personal, Business, Games, Functional Programs
Publications: Wide variety of computer magazines

The 6502 Program Exchange
2920 Moana Lane
Reno, Nevada 89509
Contact: David or Don Marsh
702/784-4991
702/825-8413 (eves.)
Software: Educational, Personal, Games, High-level Languages and Utilities

\section*{Callfornia}

Malibu Microcomputing
2391DA DeVille Way
Malibu, California 90265
Contact: T. Nalevanko
213/456-1137
Hardware: Apple
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, 80 US, Compute

Omni Unlimited
105 S. Los Robles
Pasadena, California 91101
Contact: Don K. Fenstermaker
213/795-6664
Hardware: CBM, PET, Billings
Software: Educational, Personal, Business, Games, Legal, Medical, Dental, MFG
Publications: MICRO

Computer Systems Design Group
3632 Governor Drive
San Diego, California 92122
Contact: Mary Elizabeth Kroening 415/856-1954
Software: CAI/Adventure Authoring
system for Apple II named "GROW"

Computer Business Systems
22963 La Cadena
Laguna Hills, California 92653
Contact: Lou
951-4640
Hardware: OSI, Data General
Software: For same

Desert Data \& Electronics
212 Balsam (PO Box 1396)
Ridgecrest, California 93555
Contact: Larry Jenkins
714/375-4818
Hardware: Atari, CBM, OSI, PET, TI, Northstar, Dynabyte
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, Creative
Computing, Kllobaud

FORTH Interest Group
P.O. Box 1105

San Carlos, California 94070
415/962-8653
(Mail Order)
Products/Services: Source Listing for 6502

Sunset Electronics
2254 Taraval St.
San Francisco, California 94116
Contact: John Warburton
415/665-8330
Hardware: OSI
Software: Educational, Personal, Business, Garnes
Publications: All computer
Computerland
22634 Foothill Blvd.
Hayward, California 94541
538-8080
Hardware: Apple, Atari, CBM, PET
Software: Educational, Personal,
Business, Garnes
Publications: MICRO, Byte, 80 US, 80
Microcomputing, Kilobaud, Creative Interface

\section*{Computer Scene}

753 So. State St.
Ukiah, California 95482
Contact: A.D. Rorabaugh
707/462-1578
Hardware: Atari, CBM, PET
Software: Educational, Personal, Business, Games

Oregon
Computerland of Portland
12020 S.W. Main
Tigard, Oregon 97223
Contact: Cliff Bihl
503/620-6170
Hardware: Apple, Atari, CBM, PET, Cromemco, Vector
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, etc.

\section*{Washington}

The Electronics Shop
131 North Decatur
Olympia, Washington 98502
Contact: Tim
206/357-6304

Hardware: Atari, CBM, PET, S-100
Software: Educational, Personal, Business, Games
Publications: MICRO, Byte, Interface Age, Kilobaud, 80 Microcomputing, S. 100 Microsystems, Creative Computing

\section*{FOREIGN Canada (Ontario)}

Computer Innovations Head Office
1719 St. Laurent Blvd.
Ottawa, Ontario, Canada K1G 3V4
Contact: Kathryn Miller, Purchasing
or Bruce McLaws, Sales
Hardware: Apple, CBM, PET, Cromemco
Software: Educational, Personal, Business, Games
Publications: Byte, Compute,
Kilobaud, Nibble, etc.
House of Computers Inc.
368 Eglinton Avenue West
Toronto, Ontario, Canada M5N 1A2
Contact: Anita Tchoryk
Hardware: Apple, CBM, KIM, PET
Software: Educational, Personal,
Business, Games
Publications: MICRO, Byte, Interface
Age, Microcomputing, 80 Magazine, Nibble, Compute, Creative Computing
The Computer Centre
259 Davis Street
Sarnia, Ontario N7T 1B4
519/337-6332
Publications: MICRO and others
(British Columbia)
Conti Electronics Ltd.
7204 Main Street
Vancouver, British Columbia, Canada
V5X 3J4
Contact: Gary W. Skett
604/324-0505
Hardware: PET
Software: Educational (limited), Personal, Business, Games, Industrial Monitoring and Testing Hardware Publications: MICRO, Compute, Creative Computing

\section*{Australia}

Electronic Concepts Pty. Ltd.
55 Clarence Street
Sydney, N.S.W. Australia 2000
Contact: D.T. or L. Hoess
Hardware: Apple, Onyx
Software: Educational, Personal, Business, Games, Scientific
Publications: MICRO, Byte, Interface, Personal Computing, Kilobaud

\section*{Belgium}

MICRO 2000
32 Galerie D'Ixelles
Brussels, Belgium 1050
Contact: J. Marsily
5124305
Hardware: Apple, TRS-80
Software: Educational, Personal, Business, Games
Publications: MICRO, Nibble, 80-US, Call APPLE, Compute

Compulec
Naamsesteenweg 382M5
3030 Leuven (Heverlee)
Belgium 3030
Contact: Y. Rummens
16-22.34.88
Hardware: AIM, Apple, Sharp-ITT 2020
Software: Educational, Personal, Business

\section*{Netherlands}

Computercollectief
Amstel 312a
1017 AP Amsterdam, Netherlands
Contact: Frans de Vreeze
020-223573
Software: Educational, Personal, Business, Games (for Apple, Sorcerer and TRS-80)
Publications: At least 30 magazines, 300 books

\section*{France}

Alpha Systemes
51 Rue Thiers
Grenoble, France 38000
Contact: P. Binet
76.87.98.27

Hardware: Apple, OSI, Sharp, Hewlett-Packard
Software: Educational, Personal, Business, Games
Publications: Many
SIVEA
31 BD des Batignolles
Paris, France 75008
Contact: J. Cleenewerck
5227066
Hardware: Apple, TRS-80
Software: Educational, Personal, Business, Games
Publications: MICRO, Nibble, Call APPLE, Byte, Creative Computing, 80-US, etc.

\section*{SOFTWARE FOR THE APPLE II*}

ISAM-DS is an integrated set of Applesoft routines that gives indexed file capabilities to your BASIC programs. Ratrieve by key, partial key or sequentially. Space from deleted records is automatically reused. Capabilities and performance that match products costing twice as much. \$50 Disk, Applesoft.
PBASIC-DS is a sophisticated preprocessor for structured BASIC. Use advanced logic constructs such as IF...ELSE..., CASE, SELECT, and many more. Develop programs for Integer or Applesoft. Enjoy the power of structured logic at a fraction of the cost of PASCAL.
\$35. Disk, Applesott (48K, ROM or Language Card).
DSA - DS is a dis-assembler for 6502 code. Now you can easily dis-assemble any machine language program for the Apple and use the dis-assembled code directly as input to your assembler. Dis-assembles instructions and data. Produces code compatible with the S-C Assembler (version 4.0), Apple's Tookit assembler and others. \(\$ 25\) Disk, Applesoft (32K, ROM or Language Card).

FORM-DS is a complete system for the definition of input and output froms. FORMDS supplies the automatic checking of numeric input for acceptable range of values, automatic formatting of numeric output, and many more features. \(\$ 25\) Disk. Applesoft ( 32 K , ROM or Language Card).

UTIL-DS is a set of routines for use with Applesoft to format numeric outpur, selectively clear variables (Applesoft's CLEAR gets everything), improve error handing, and intertace machine language with Applesoft programs. Includes a special load routine for placing machine language routines underneath Applesoft programs. \$25 Disk, Applesoft.

SPEED-DS is a routine to modify the statement linkage in an Applesoft program to speed its execution. Improvements of \(5-20 \%\) are common. As a bonus, SPEED-DS uncludes machine language routines to speed string handling and reduce the need for garbage clean-up. Author: Lee Meador.
\(\$ 15\) Disk, Applesoft (32K, ROM or Language Card).
[Add \(\$ 4.00\) for Forsign Maill
- Apple il is a registered trademark of the Apple Computer C.

Singing the file transfer blues? Then...

\section*{Get B.I.T.S.:!}

Use your Micromodem 孔. \({ }^{1}\) A \(1 \square^{2}\) Card, or Apple Comm Card \({ }^{3}\) to:

Send data files, BASIC programs, even machine code
to most computers over phone lines.

\section*{Copy anything you see}
into a 31 K buffer then save it on disk andlor print it under your complete control

Many more features!
Seeit at your favorite computer stare today.

Trademarks held by:
1- Hayes Microcomputer Produets Inc 2-5 5 M
3-Apple Computer inc
B.I.T.S. is a tradomark of

Micrasoftware Eystems
7927 Jones Branch Dr. Suite 400 Mclean. Virginia 22102 [703] 385-2944

PET Vet

\section*{By Loren Wright}

\section*{Numbering of BASIC Versions}

There seems to be a bit of confusion on the numberings of BASIC versions. One popular numbering system for the BASICs is the one I have been following: 2.0, 3.0, and 4.0. However, the one used by Commodore is a little different. The original BASIC (the "old" ROM's] is called 1.0. The "upgrade" version, produced until recently, is 2.0 , and now we have 4.0. I will use the latter convention from now on, and will edit manuscripts published in MICRO accordingly.

All 80-column machines have 4.0 ROMs, as do recent production 40-column machines. These new 40 -column machines are called 4016 and 4032, but the actual circuit board is still the same. Some of the enclosures have plastic tops, apparently enlarged to accommodate a disk drive. The disk drive idea doesn't seem to have caught on, but I expect we'll be seeing more and more plastic tops. Also, boards continue to be delivered with holes drilled in the traces of 4016 PC boards where the second row of RAM chips would go. This is to prevent users or unscrupulous dealers from making a cheap and easy memory upgrade.

There is an upgrade kit to go from 2.0 to 4.0 BASIC, and you could even go from 24 -pirl 1.0 ROMs to 4.0 if you had another socket to install the eighth chip. As far as I know, there is no 28 -pin (6540) upgrade kit.

There are several good reasons to upgrade-faster garbage collection and more powerful disk commands, for instance. All but the most serious programmers will stay with what they have. After all, the old ROMs weren't so bad were they?

\section*{Toward Universal PET Programs}

MICRO will continue to publish articles for all three BASIC ROM sets, and for both disk operating systems, but as I mentioned in a previous column, articles that apply to all three are much preferred.

I call your attention to "PRINT USING for the PET" by David Malmberg in this issue. Not only has he reworked an excellent Apple program for the PET, but he has also accommodated all three PET ROM sets. This involved knowing the right page-zero locations and system calls for each ROM set. These are available from the memory maps and entry point lists published by Jim Butterfield in Compute and The Transactor. Malmberg also uses the contents of 50003 to identify which BASIC is being used: \(0-1.0\); \(1-2.0 ; 160-4.0\). Because the numbers involved are easy to remember, this is fast becoming a standard technique. Some other frequently-used locations that vary from BASIC to BASIC are given in table 1.

Page zero locations tend to be the same in BASIC 2.0 and 4.0, but in 1.0 they are completely different. PET system calls have different addresses, but generally they work similarly in each BASIC. Malmberg's BASIC program will run on any PET or CBM machine without modification.

\section*{80-Column Functions}

The 80 -column function table that appeared in last month's column contained some errors. The corrected version, with a couple of additions, is shown in table 2.

The window feature on the \(80-\mathrm{col}-\) umn machines can be very powerful. It confines user input land the computer's attention) to a restricted area of the screen. The SET TOP and SET BOTTOM commands fix the upper left and lower right corners of the window. The window may also be defined by POKEing four values into memory for the four edges:
\begin{tabular}{lcl} 
& Address & \multicolumn{1}{c}{ Range } \\
TOP & 224 & 0 to 24 \\
BOTTOM & 225 & TOP to 24 \\
LEFT & 226 & 0 to 79 \\
RIGHT & 213 & LEFT to 79
\end{tabular}

The window may be cleared by printing or striking on the keyboard two successive HOMEs.

Table 1
\begin{tabular}{lccc} 
& \(\mathbf{1 . 0}\) & \(\mathbf{2 . 0}\) & 4.0 \\
\hline 1) End of memory pointer & 134,135 & 52,53 & 52,53 \\
2) \# characters in keyboard buffer & 525 & 158 & 158 \\
3) Disable STOP key POKE & 537,136 & 144,49 & 144,88 \\
4) Enable STOP key POKE & 537,133 & 144,46 & 144,85 \\
\hline
\end{tabular}

Table 2
\begin{tabular}{|c|c|c|c|}
\hline Function & ASCII & Reverse Field Character & Keyboard Combination \\
\hline BELL & 7 & g & \\
\hline DELETE LINE & 21 & u & ESC, RVS, K \\
\hline ERASE to & & & \\
\hline BEGINNING of line & 150 & V & LS,\(\leftarrow 3\) \\
\hline ERASE to & & & \\
\hline END of line & 22 & \(v\) & \(\leftarrow, \mathrm{Q}, 4\) \\
\hline GRAPHICS screen & 142 & N & LS, RS \\
\hline INSERT line & 149 & U & SH, ESC, RVS, K \\
\hline SCROLL DOWN & 153 & Y & LS, ESC, K \\
\hline SCROLL UP & 25 & y & \\
\hline SET BOTTOM & 143 & 0 & SH, Z, A, L \\
\hline SET TOP & 15 & 0 Z & Z, A, L \\
\hline SET TAB/CLEAR TAB & 137 & I & SH, TAB \\
\hline TAB & 9 & i & TAB \\
\hline TEXT screen & 14 & n & \\
\hline \multicolumn{4}{|l|}{SH = either shift} \\
\hline \multicolumn{4}{|l|}{LS \(=\) left shift} \\
\hline \multicolumn{4}{|l|}{RS = right shift} \\
\hline \multicolumn{4}{|l|}{All digits are on the numeric keypad, not the main keyboard.} \\
\hline
\end{tabular}


\section*{Add a Light Pen to your Micro}

\section*{This article Includes the hardware details necessary to install a light pen on any 6502 system. Software is included for an OSI implementation.}

Peter Alan Koski
27 Dogwood Drive Allendale, New Jersey 07401

Many computer installations today offer alternate forms of user I/O other than the standard CRT/keyboard combination. Among these is the light pen. In using a light pent, the user, if choosing from a menu for example, simply points the pen at what he desires. When locating a point on a grid, the user simply locates the point using the pen, rather than inputting coordinates through the keyboard.

Although the user may find this simplification of input fabulous, for the programmer there exists a lot of overhead. The programmer must keep track of where the information is located on the screen as the program progresses, and how the information changes during program execution.

\section*{Principles of Operation}

In theory, the operation of a light pen is extremely straightforward. When a request is made to locate the pen, a distinguishable token is swept across the display until the pen recognizes its presence. At that time, if we know where the token is, we also know where the pen is. Simple as this may seem, the hardware and software doesn't always follow suit on simplicity. On graphics systems where there is often a stand-alone microprocessor to control the terminal functions, the "token" is the raster sweep. This is

Bill of Materials
R1 - photo-resistor (see text)
R2 - 1.8 K
R3 - 18K
R4-120K
\(\begin{aligned} & \text { R5 } \\ & \text { R6 }\end{aligned}-10 \mathrm{~K}\)
R7-470
Q1 - 2N5300 (RS 276-2009)
Q2 - 2N5226 (RS 276-2032)
\(\mathrm{C} 1-.005 \mathrm{uF}\)
P1 - 100K PC-type potentiometer
Table 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
0 \\
D000
\end{tabular} & \begin{tabular}{c}
1 \\
D008
\end{tabular} & \begin{tabular}{c}
2 \\
D010
\end{tabular} & \begin{tabular}{c}
3 \\
D018
\end{tabular} & \begin{tabular}{c}
4 \\
D020
\end{tabular} & \begin{tabular}{c}
5 \\
D028
\end{tabular} & \begin{tabular}{c}
6 \\
D030
\end{tabular} & \begin{tabular}{c}
7 \\
D038
\end{tabular} \\
\hline \begin{tabular}{c}
8 \\
D100
\end{tabular} & \begin{tabular}{c}
9 \\
D108
\end{tabular} & \begin{tabular}{c}
10 \\
D110
\end{tabular} & \begin{tabular}{c}
11 \\
D118
\end{tabular} & \begin{tabular}{c}
12 \\
D120
\end{tabular} & \begin{tabular}{c}
13 \\
D128
\end{tabular} & \begin{tabular}{c}
14 \\
D130
\end{tabular} & \begin{tabular}{c}
15 \\
D138
\end{tabular} \\
\hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
D200 & D208 & D210 & D218 & D220 & D228 & D230 & D238 \\
\hline 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\
D300 & D308 & D310 & D318 & D320 & D328 & D330 & D338 \\
\hline 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 \\
D400 & D408 & D410 & D418 & D420 & D428 & D430 & D438 \\
\hline 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\
D500 & D508 & D510 & D518 & D520 & D528 & D530 & D538 \\
\hline 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 \\
D600 & D608 & D610 & D618 & D620 & D628 & D630 & D638 \\
\hline 56 & 57 & 58 \\
D700 & D708 & D710 & D718 & \begin{tabular}{c}
60 \\
D720
\end{tabular} & \begin{tabular}{c}
61 \\
D728
\end{tabular} & \begin{tabular}{c}
62 \\
D730
\end{tabular} & \begin{tabular}{c}
63 \\
D738
\end{tabular} \\
\hline
\end{tabular}
probably the most sophisticated and elegant approach since the resolution is extremely high and the scan is invisible to the user.

I have taken a much more simplified approach. Rather than search the entire screen for the pen's location, I request verification at given screen locations. With this approach, the token must be displayed on the screen in order for the pen to see it. Since the standard scan rate for a monitor is \(1 / 60\) second, we have to display the token and then wait the required \(1 / 60\) second to guarantee that the token reaches the display. Obviously if we were to poll 2048 display locations, the time required wouldn't make this practical.

\section*{Hardware}

Figure 1 and the accompanying "bill of materials" presents the design for the light pen circuit I am using. The sensor used is a small Calectro photoresistor mounted in a magic marker casing. The choice of the photo-resistor over a photo-transistor was based on spectrum sensitivity. Photo-transistors that I found were not responsive to a phosphorus source. The photo-resistor was, so the choice was obvious.

The light/dark conditions are reflected via an RS-232 line which is toggled between +5 and -9 volts. RS-232 was chosen as the communications link since I have an RS-232 port on my machine (as do most). By using the light pen to drive the RTS line on the port, I can monitor the status of the pen by monitoring the status word of the ACIA. The pen's condition will be found at the RTS bit.

The circuit goes together nicely on a small piece of perf-board. The interconnecting line used is a piece of miniature shielded micro-phone cable. There shouldn't be any problem assembling the circuit and all that remains is to adjust the light pen to match the CRT used.

A BASIC routine can be used to initially align the pen. While printing the content:s of the status port, adjust the monitor's brightness/contrast and P1 of the light pen circuit. A point should be found so that touching the pen to an illuminated position will cause the RTS bit to be set low (' 0 '"), a dark position should set the RTS bit high [" 1 "]. It should be possible to find a position which is comparable to normal viewing intensity.



\section*{Software}

The two routines presented here are essentially identical except for the resulting resolution. Both are called via the BASIC USR function. The longer of the two routines accepts argument values from \(0-63\), the number corresponding to the screen quadrant to be queried. Table 1 shows the quadrant numbering scheme. The address associated with each quadrant is the address of the upper left memory location in the quadrant. Quadrants run eight locations horizontally and four locations vertically, or 32 locations total. Thus, touching the pen to any of these locations will score a hit. A hit is returned to BASIC as a 1 from the USR function, a miss is returned as a 0 . This routine is thus most useful when resolution is not critical, such as for menu selection.

The single-cell query routine polls individual memory locations and thus provides \(64 \times 32\) resolution. The argument of the USR function should be the requested memory address, less 32768. (BASIC only allows signed 15 -bit arguments.) The return value is the same as the previous: 1 if hit, 0 if miss.

Both routines use the same idea in polling the requested position. The information at the quadrant or single cell is first saved and replaced by OSI graphics character \(\$ 20\) (blank). If the pen is presently looking at a dark location, we might have its position. If not, we replace the data and return a miss. Should the pen be dark, we replace the \(\$ 20\) with \$A1 (full illumination character). At this point, if the pen sees a transition to light, we are at the correct position and return a hit after restoring the data. Had the transition not been seen by the pen, we obviously were not at the right location, and would return a miss.

\section*{Programming with a Light Pen}

When using the light pen, screen locations become very critical, thus careful formatting should be used through the memory map supplied by OSI. Remember that when using standard input and print statements, the screen has a tendency to scroll. Fortunately, this can be avoided by disabling the line feed. POKE 9644,42 will disable the scroll, POKE 9644,98 will re-enable the scroll routine. Classified

\section*{Programmer Fatigue?}

SYM-BUG/MONEX adds 15 commands to SYM's repertoire including an interactive trace/debug. Cassette @ \(\$ 0200\) or \(\$ 3800\) : \(\$ 19.95\). EPROM (2716-5v) © \$F000-\$F7PF: \(\$ 39.95\). Commented source listing: \$9.95. RAE-1//2| FORMAT CASSETTE: \(\$ 35\) (requires 8 K ). Custom assembly add \(\$ 2.00\). Foreign add \(\$ 2.00\). SASE for more information.

Jeff Holtzman
6820 Delmar-203
St. Louis, Missouri 63130

\section*{PET Machine Language Gulde}

Comprehensive manual to aid machine language programmer. More than 30 routines are fully detailed so that the reader can put them to immediate use. OLD or NEW ROMS. \(\$ 6.95+.75\) postage. VISA \& Mastercharge accepted.

Abacus Software
P.O. Box 7211

Grand Rapids, Michigan 49510

\section*{Spanish Hangman}

2,000 SPANISH words and sentences taught in a fun way on the Apple. Send for your school's free 30 -day evaluation diskette, from:

\section*{George Earl}

1302 Scuth General McMullen
San Antonio, Texas 78237

\section*{Save Money - You Can!}

By building your own computer interfaces. \(80 \%\) savings. Send \(\$ 3.95\) for simple how-to package today.

ADS
Box 9770
Jacksonville, Florida 32208

\section*{C1P Extended Monltor}

2 K EPROM has 14 cursor control/editing functions, improved keyboard decoding. Machine language save, load, display, modify, move, breakpoint processing and much more. For \(24,32,64\) char/line. \(\$ 39.95\) plus \(\$ 1.00\) shipping. \(\$ 1.00\) for complete information.
\[
\begin{aligned}
& \text { Bustek } \\
& \text { P.O. Box A } \\
& \text { St. Charles, MO } 63301
\end{aligned}
\]

The DI-SECTOR Disk for the Apple
makes 'Disecting' your Apple diskettes fast and easy. Now you can display and edit any sector from an Apple diskette on the screen and more for only \(\$ 20.00\) postpaid! ROM Applesoft is required and both DOS 3.2 and 3.3 versions are supplied.

Mike Rowe Productions
P.O. Box 43504

Tucson, Arizona 85733
(Add a Light Pen...)


\section*{Liquidating}

Selling out all my software-all for CP/M disks: Cobol, Fortran, Pascal, Compiler, Editor, Assembler, Linker, Macro, Utilities, Sorts, Forth, CBas2, CP/M Vols. 1-45. All of IMSAI's software. Some TRS, Apple, too.

> Mike Sheffield
> 3204 "A" Production
> Oceanside, California 92054

Fig-FORTH for OSI C1P/Superboard
This implementation of the FORTH Interest Group model (Release 1.1) runs under OS-65D and includes single/double precision integer arithmetic, compiler, editor and assembler. \(\$ 50.00\) includes postage, fig-FORTH installation manual, source listing, operating manual for ClP/Superboard and \(514^{\prime \prime}\) disk.

Mike Alport
5 Woodland Mounds Road
Iowa City, Iowa 52240
AlM-65 High Quality Power Supply
Exceeds Rockwell's specifications. Over voltage protection, fuse, switch, pilot light, line cord, cable-all included. Handsome metal case. Satisfaction or return unit within 10 days for full refund. VISA/MC, check (allow 2 weeks to clear). \(\$ 64.95\) plus shipping (5 lbs.).

\section*{CompuTech}
P.O. Box 20054

Riverside, California 92516
AIM-65 Newsletter * * Target
Target provides hardware and software information useful for AIM-65 and 6502 users. The 1979 and 1980 back issues are available for \(\$ 12.00\) while a continuing subscription costs \(\$ 6.00\). Just write to:

\section*{Target}

Donald Clem
Route 2
Spenserville, Ohio 45887

\section*{OSI SUPERB/C1P . Now MonitorROW}

You haven't seen a better utility ROM! Exchange MonitorROM and get: Screeneditor (insert, delete), cursor control, \(f\). 24/32/64 chr/line; cassette-sys. w. file name handler (3-4 times faster), handles BASIC, Hexcode and variable arrays, and more. Further applications and program information \(\$ 1.00\).

\section*{Gerwin Bleich}

\section*{Boschstr. 1, 3004}

Isernhagen 1, West Germany
Now - Wine Sioward and Bar Guide
Want to know which wine to buy for that special meal, or any occasion? The Super Bar and Wine Guide has it all. Complete description of over 54 Red, White and Specialty types as well as over 200 Brand Name recommendations and prices. Glossary of Terms, Wine Tips, Pronunciation Guide, Serving Suggestions and "Computer" Wine Steward. Also included is a Bartender's Guide and recipes for 40 popular Mixed Drinks. An incomparable value! Applesoft, 48 K , Disk, \(\$ 24.95+\) \(\$ 1.50\) postage.

Cine-Aero
1821 N. Frederick Street
Burbank, California 91505

\section*{Ohio Scientific}

SPACE WARS for C1P, Hi- or Lo-Res graphics. Maneuver into attack position making \(S\) turns and then make the kill with your lasers! Or use evasive action and hide off the screen, but be careful! Don't get lost! \(8 \mathrm{~K}, \$ 4.95\) for cassette

Danny Ledesma
P.O. Box 5784

Elmonte, California 91731

\section*{Atarl - PET Owners}

KINETIC DESIGNS has software for you! Games and Simulations, Music, Astronomy, Ham Radio, home use, utility, and many others. MTU Visible Memory and music programs now available! Prices start at only \(\$ 2.50\) ! |Atari \(\$ 3.50\) | Guaranteed! Send SASE for full details.

> Kinetic Designs
> 401 Monument Road 171
> Jacksonville, Florida 32211

\section*{Want Something Different?}
1. Be Your Own Astrologer-AST-T2-001 ( \(\$ 15.95\) ). For anyone with 8 K PET. 2. Primary Arcs-AST-T1-002 (\$24.95). For experienced Astrologers with \(\quad 16 \mathrm{~K}\) PET. California residents add \(6 \%\) sales tax. Foreiga add \(\$ 3.00\).

Access
P.O. Box 8726

Rowland Heights, California 91748

\section*{DHID SBEMTFF}

S-FORTH - a full implementation of Fig-FORTH including editor, virtual disk sub-system, and compatibility with OS65D-3 on \(51 / 4^{\prime \prime}\) or \(8^{\prime \prime}\) disk. \$29.95.
Source listing \$24.95.
Both for \(\$ 49.95\).
TOUCH TYPING - 15 lesson set teaches you to use all letters and numerals without the need to look at the keyboard. Requires \(32 \times 64\) display. 8 K . \$19.95.
FAILSAFE +2 - a sophisticated game based on the electronic warfare environment encountered by aircraft during nuclear war. 8K. \$8.95.
INTELLEGENT TERMINAL EMULATOR - down load, edit, then send files back to host computer. Full or half duplex, many other features. Disk systems. \$24.95.
Send for a FREE complete software and hardware catalog.
Aurora Software Associates
P.O. Box 99553

Cleveland, Ohio 44199
Cleveland, Ohio 44
\((216)\) 221-6981

(Add a Light. Pen...)

```

3040 NUM=USR(CELL-32768)
3050 IF NUM=1 THEN NUM=CNT: RETURN

```
3060 CNT \(=\) CNT +1
3100 NEXT CELL
\(3110 \mathrm{CNT}=0\)
3120 GOTO 3030
4000 REM
4010 REM OPERATOR INPUT
4020 REM
\(4025 \mathrm{CNT}=1\)
4030 FOR CELL \(=54730\) TO 54760 STEP 10
4040 OP=USR (CELL-32768)
4045 IF OP=1 THEN OP=CNT: RETURN
4046 CNT=CNT+1
4050 NEXT CELL
4100 GOTO 4025
5000 REM
5010 REM ANOTHER 5 ROUNDS ?
5020 REM
5021 REM CALL IN SCREEN CLEAR
5022 REM
5030 DISK! "CALL \(3280=31,3\)
\(5040 \mathrm{X}=\mathrm{USR}(\mathrm{X})\)
5045 REM
5046 REM CALL IN QUADRANT QUERY ROUTINE
5047 REM
5050 DISK!"CALL \(3280=31\), 1
5060 POKE \(9644,98:\) REM RE-ENABLE SCROLL
5065 REM
5066 REM
5067 REM
5070 PRIN'C " WOULD YOU LIKE ANOTHER GO AT IT ?"
5080 PRINT : PRINT: PRINT : PRINT
5090 PRINT
YES N
5100 PRIN'T : PRINT
5110 IF \(\operatorname{USR}(49)=1\) THEN 950
5120 IF USR (52) \(=1\) THEN 6000
5130 GOTO 5110
6000 REM
6010 REM EXIT TO BASIC
6020 REM
6030 DISK!"CALL \(3280=31,3\)
6040 X=USR ( X )
6050 END

Other thoughts to keep in mind, especially if taking input from a graph, is that the pen can move only to a block adjacent to the one where it is presently. Thus, once the original position is known, the next move can only be one of, at most, eight positions. The accompanying demonstration program should help to explain. The two routines and a screen clear are on track 31 in this example, and are all called into \(\$ 3280\) for execution. The quadrant routine is on sector 1 , the individual cell routine on sector 2 , and the screen clear code on sector 3 . The program is a simple arithmetic demo. Single-digit arguments and operators are input via the light pen and the result is printed to the screen without line feed. After five repetitions, the program asks the user if he would like another session. Again, the yes/no response is accepted through the light pen.

\section*{Conclusion}

Although the routines presented were written for an OSI mini-floppy system, any 6502 system supporting memory mapped video should be able to employ them. The only changes to be made are the addresses of the display block and of the ACIA.

One last thought for disk owners-a menu or display block which is repeatedly used at various points of the program may be held resident on a disk track and then CALLed to \$D000. As you'll discover, speed plays an important part in light pen I/O, since the time spent for input is nil. The processing and output must therefore be as streamlined as possible in developing an efficient system.

NCRO

SOFTWARE - GAME AND UTILITY PROGRAMS FOR AS LOW AS \$1.00. ALL WITH LISTINGS AND COMPLETE DOCUMENTATION.
KITS - UPDATE YOUR COMPUTER TO PLAY MUSIC, INCREASE OPERATING SPEED, HIGH RESOLUTION GRAPHICS AND MUCH MORE. KITS INCLUDE PARTS AND COMPLETE ASSEMBLY INSTRUCTIONS. LOW AS \(\$ 3.00\).

OUR \$1.00 CATALOG INCLUDES OSI PROGRAMMING TIPS PLUS DESCRIPTIONS OF AVAILABLE PROGRAMS AND KITS.


MITTENDORF ENGNEERING 905 VILA NUEVA DR. UTCHFELD PARK,AZ 85340

\section*{The}

For the first time ever, a computer show devoted exclusively to
The largest event in the the first time ever. Applefest ' 81 .
the Apple computers. You'll see it all at Apducation. New services. Over a hundred







- nay 6:00 P.M. sunday

\title{
Integer BASIC Internals
}

\begin{abstract}
Here's a sorted list of Apple Integer BASIC memory locations and routines, with some examples of how to use them.
\end{abstract}

\author{
Glenn R. Sogge \\ P.O. Box 203 \\ Evanston, Illinois 60204
}

Apple Computer Co. has released to its dealers a set of application and information notes that are quite informative. Included in the package is a listing of memory locations and routines used by Integer BASIC. The table with this article is a numerically sorted (by hex address) listing of this information. Also included are the corresponding decimal equivalents of the addresses and a little information about the routines. In general, routines without descriptions are the handlers for the functions named.

Hardly any information is given about how the routines are called or are used but with a little digging I'm sure you can figure out how to use at least a few of these in your own programs. At least, you now know where to begin looking. For example, the routine at \$E51B ("HEX/DEC") converts the

16-bit number contained in the X (lo) and A (hi) registers to a decimal number from 0-65535 and prints it out.

The routine at \$EE68 prints out the "*** RANGE ERR" message and the routine at \$E36B prints out the "*** MEM FULL ERR" message. A couple of useful tricks are also mentioned in the Apple material.
1. To find the absolute address of a given line, place the line number (in hex) into locations \$CE-\$CF (lo and hi). Then jump to address \$E56D (*E56DG); the absolute address will be returned in locations \$E4-\$E5 (lo and hi).
2. To execute a GOTO from the monitor, put the absolute address of the line (found by the above procedure) into \(\$ \mathrm{C} 6-\$ \mathrm{C} 7\) and put a negative byte into the mode location leg., \(\$ 80\) into \$D9-a negative value indicates run mode, a positive one indicates immediate mode). Then jump to \$E867 (*E867G) and you will be back in BASIC running at that line.

This item was picked up from a bulletin board here in Chicago and is from Mark Pump.
"If you've ever accidentally pressed RESET while an Integer BASIC program was running, this is for you. In the monitor, enter:
*E3E3G
and the statement number which was last executed is displayed. Press RESET again and re-enter DOS with *3D0G. This method can also be used to find the statement number of an outstanding Integer BASIC input statement. When the input prompt occurs, press RESET and *E3E3G to find the statement number. Exiting the program with control-C will not show the statement number if an input statement was active."

You should also notice that there seems to be some discrepancy between the list of page zero locations used given in the list and the chart on page 75 of the new Apple II Reference Manual (the white book). According to the chart, locations \$E0-\$FF are not used by Integer BASIC but the detailed list shows this to be incorrect. Some of those locations are indeed used by BASIC! Also, some locations are used for a couple of things, depending on the routine in command, so the values might not always be what you would expect.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SIE REHOF & FOF HECe: & & & SucE & 268. & ACL & CEN'L ACC LO \\
\hline HEX & DEC & NAME & DESCR & QUCE & 206 & UALGETL & PRIMARY EVAL TEMP LO \\
\hline \(0 \cdot 4 \dot{4}\) & 74 & LOMEML & LOH MEMORY LO & 30CL-00CF & 206-207 & VAL & 16-BIT IEMP FOR MAIH \\
\hline 0046 & 75 & LOMEMR & LOH MEMORY HI & OCF & 207 & VALGETH & PRIMART EVAL TEMP HI \\
\hline Sime & 76 & HIMEML & HIGH MEMORY LO & Sycr & 247 & ACH & GEN'L ACC HI \\
\hline 0415 & 77 & HIMEMH & HIGH MEMORY HI & 0000 & 208 & SRCHL & PTR FOR SEARCH UAR TSL LO \\
\hline 04E & 78 & RNDL & RANDOM * LO & OOD 1 & 209 & SHCHH & PTR FOR SEARCH UAR IBL Hi \\
\hline 0045 & 79 & RNDH & RRANDOM * HI & 00D1-00F0 & 249-240 & TOKNDXSTK & TOKEN INDEX STACK \\
\hline 40'30-046F & 80-111 & NOUNS 1 kL & NOUN STACK LO & b断 & 210 & SRCH2L & UAR TAB SEARCH PTR2 LO \\
\hline 9054-6077 & 88-119 & SYNSTKH & SYNTAX STACK HI LOCS & 0010 & 211 & SRCH2H & UAR TAB SEARCH PTR: HI \\
\hline 3078-0397 & 120-15i & NOUNSTKH & NOIN STACK, HJ & U0D4 & 212 & 1FSt 1P & IF ? THEN FAIL FLAG \\
\hline 0080-009F & 128-159 & SYNSTK & SYNTAX STACK LO LOCS & 0005 & 213 & CRFLAG & CARR RTN FLAG \\
\hline 96+10-60BF & 168-191 & NOUNSIKC & NOUN STACK COUATER & 0016 & 214 & VEPENYOH & CURR UERES IN USE \\
\hline 08A8-00C7 & 166-199 & TXTNDXSTK & TEXT INTEX STACK, & 0eU7 & 215 & PRINOH & PRINT IT NOW FLAG \\
\hline 90 CB & 200 & IXINDX & TEXT INDEX VALUE & ¢¢D8 & 216 & YSAUE & TEMP FOR X-REG \\
\hline 00 CB & 200 & OUTVAL & OUTPUT UAL TEMP & Ouls & 217 & PUNHODE & FIJN MODE FLAG \\
\hline \(\square 809\) & 201 & YIEMP & TEAP FOR Y-REG & 90DA & 218 & AUXL & AUX CNTR LO \\
\hline \(0 \mathrm{COF}^{\text {c }}\) & 201 & LEADBL & LEADING BLANKS INDEX & 00LB & 219 & AUXH & AUX CNTR HI \\
\hline 或CA & 202 & PPL & PGM PTR LO & ต่¢DC & 226 & PRL & CURR LN VAL LO \\
\hline O0CB & 203 & PPH & PGM PTR Hf & 0000 & 221 & PRM & CURR LN UAL HI \\
\hline micc & 204 & PVL & CURAR VAR FNTR LO & OeLE & 222 & PNL & CURR NOUN PTR LO \\
\hline -0CD & 205 & PVH & CUPR UAR PNTR HI & OODF & 223 & PNH & CURR NOUN PTR HI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUE 4 & 224 & FXL & CURR UERB PTR LO & ETE2 & －6．174 & AUTO & AUTO LINE＊ \\
\hline OEE1 & 225 & PXH & CURR UERB PTR HI & E828 & －6104 & IF／THEN & IF ？THEN ROUTINE \\
\hline OOE： & 226 & P1L & AUX PTR1 L0 & E83C & －6061 & coshe & \\
\hline －9E2 & 226 & DELL & DELETE LN PIR LO & E85 5 & －60．56 & GOTO & \\
\hline 90E3 & 227 & DELH & OELETE LN PTH HI & Est 7 & －6041 & GOLINE & GOTO LINE ADDK IN \＄C\＆－C7 \\
\hline －8E3 & 227 & P1H & AUX PTR1 HI & E87S & －6027 & GETMEXT & FETCH NEXT TEXI STATEMENT． \\
\hline 00EA & 228 & FLAG & GEN＇L FLAG BYTE & E8AS & －5979 & RETUIRN & \\
\hline 00 EA & 228 & P2L & AUX PIR2 L0 & E8C： & －5949 & STOPFED AT & PRINT＇STOPPED AT LINE \＃， \\
\hline 90E4 & 228 & LNAL & LINE＊ADDR LO & E8UE & －5936 & NEXT & NEXT ENE LOOH \\
\hline 00E5 & 229 & L．NAH & LINE \＃ADDP HI &  & －56．19 & FOR & FOR INITIAL ENTPY \\
\hline C9E5 & 229 & P2H & AUX PTR2 HI & （\％） & －5848 & T0／F0R & LOOF CNTR＊ 10 ＊SILE＊ \\
\hline －0E6 & 236 & NXTL & NEXT PTR LO & EALO－EA87 & －5616－5497 & UERBADPL & UERB DISPPATCH IAB LO \\
\hline ¢9）\({ }^{\text {¢ }}\) & 230 & P3L & AUX PTR3 L0 & EA8G－ERFF & －549\％－537\％ & VEFBALRH & VERE LISPATCH 1 BL HI \\
\hline UEE7 & 231 & NEXH & NEXT PTR HI &  & －5376－5223 & MESSTXT & EPROR MESS．TEXT \\
\hline －4E\％ & 231 & P3H & AllX PTR3 HI & ELTAH & －5248． & INPUT & Jitplit Roull Nt \\
\hline －OF 1 & 241 & TOKNDX & TOKEN INDEX VAL & ECOU－EDFF & \(-5120-4607\) & SYNTABL & SYNTAX TAGLE LIST \\
\hline －4F2 & \(<42\) & CONL & CONTINUE PIR LO & EEOO & －464\％ & PRNTETR & PRINT \(A\) STRIRG \\
\hline －4F＇3 & 243 & CONH & CONTINUE PTR HI & EE22 & －4．574 & LEN & \\
\hline Sut 4 & 244 & AlT OINCL & RUTO INC VAL LO & EE34 & －4sse． &  & GEI VALIE＂On \\
\hline 00FS & 245 & AUTOINCH & AUTO INC UAL HI & te： 3 t EEAE & \[
\begin{aligned}
& -4,315 \\
& -4530
\end{aligned}
\] & \[
\begin{aligned}
& \text { FLOT } \\
& \text { COLOR }
\end{aligned}
\] & \\
\hline  & 246 & AUITOLNL & CURK AUSIO LINE A LO & EES4 & -45324 & MAN & \\
\hline 40F7 & 247 & AUTOLNH & CURR AUTO LINE＊HI & EES\％ & －4521 & VT．AB & \\
\hline 90F\％ & 248
249 & ALIT OHODE
COUNT & AIJ70 FLAG
GEN＇L CNTR EYTE & EEG4 & -4521
-4504 & RNGERR & PRINTS＂＊＊＊RANGE ERR＇ \\
\hline 04F9 & 249
244 & COUNT & GEN＇L CNTR EYTE
CURR CHAR & EEAG & －4448 & CALL & CALL A itl Subr \\
\hline O日F＇A & \(25 *\) & LEADIZR & LEADING LEROS INDEX & EEB 4 & －4432 & HLIN & \\
\hline OPHE & 251 & FORNDX & FOR／NEXT LOOF INDEX & EEC6 & －4416 & ULIN & \\
\hline 00 FC & 252 & COSUBNDX & GOSJB INDEX & EELK & －4397 & PRINT & PRINT ERFKOR HSG／BELL \\
\hline \(60+5\) & 2 c & STNSTMNDK & SYNTAX STACK INDIEX UAL & EEF & －4362 & PEEK & \\
\hline OOFE & 254 & SYNPAES： & STNTAX PAGE PTR LO & EFO日 & －4352 & GETVAL25S & get a value for 1 byte \\
\hline 09＋F & 25，5 & SYNPAGH & SYNTAX FAGE PIR HI & EF68 & -4.344
-4336 & \begin{tabular}{l}
POKE \\
DIUIDE
\end{tabular} & \\
\hline －200－2FF & 512－767 & INBUFF & INFIUT BUFFER & EFIE & －43322 & DIMUARE & \\
\hline E400 & －8182 & CNTLB & CDLD ENTRY & EFAE： & －4274 & RND & RRNDOM＊GENERATOR \\
\hline E003 & -9187
-8186 & CNTLC
SETPRMPT & MARM ENTRY
CEI ILP＞PHPOMt＇ & EFEC & －4116 & RUN & RUN FROM BEGINNING \\
\hline EOOE
EO2A & －8186． & SETPFMPT &  & EFF： & －4110 & RUN \({ }^{\text {W }}\) N & RUN FROM LINE \\
\hline E02A
E64B & -8159
-8117 & NXTBYTE & GET NEXT BYTE 16BIT PNTR
LIST ALL & F006 & －4096 & SCRATCH & SCRATCH EVEFYTHINC \\
\hline E050 & －8099 & LISTXY & LIST A RANGE & F04［ & －4017 & HIMEM & \\
\hline Eッら & －8083 & UNPACK & TOKENED CODE 10 YNEHONICS & focs & －3895 & LOMEM & \\
\hline E130 & －7888 & DIMSTR & DINENSION A STRING & FODF & －3873 & LOAD & LOAD A PGH FFROM TAPE \\
\hline E171 & －7823 & 1 NPITSTR & INPIT A STHJNG & \begin{tabular}{l}
F1IE． \\
F12C
\end{tabular} & －3810 & SETHDR & SETUP HDK FOR SAUE／LOALI PARAM \\
\hline E222 & －7646 & HULT & MULTPLY & \[
\begin{aligned}
& F 220 \\
& F 146
\end{aligned}
\] & \[
\begin{aligned}
& -3796 \\
& -37 / 6
\end{aligned}
\] & SAUE & SETUP PGM SAUE／LOAD PARAK save a PGM TO TAPE \\
\hline E－7A & －7：54 & HOE & & F161 & －3743 & PRNEERR & PRINT AN ERRROR MESS \\
\hline E＇28A & －7542 & SCRN & RETURN SCRİ COLOR & F167 & －3797 & POP & PRINT AN ERROR HES \\
\hline E2B3 & －7561 & MAIMLINE & HAIN COKPILE／EXEC CODE & \[
F 171
\] & \[
\begin{aligned}
& -3737 \\
& -3727
\end{aligned}
\] & & \\
\hline E36B & －7317 & MEMFILL & PRINTS＇＊＊＊MEM FULL ERR＇ & F176． & －3722 & NOTRACE & \\
\hline E364 & －7313 & DELETE & DELETE LINEE X －Y & F170 & －3715 & TRACEIT & EXEC TRACE FUNC \\
\hline E3C0 & －7232 & ERRORMESS＊ & INPUT ERFOR MSG & & －3443 & STEP & \\
\hline EЗCE & －7218 & GETCMD & GET KEYBOARD CMII & F279 & －3463 & STEP & FOR／NEXT STEP FIJNC \\
\hline EJEO & －7200 & ERROPMESS & PRNT ERR MSG GOTO MAINLINE & F2E0 & －3360 & NODSP & \\
\hline E51B & －6485 & HEX／DEC &  & F304 & －3924 & DSP & \\
\hline ES60 & －6403 & LINADR & FIND LINE \％\({ }^{\text {\％}}\) ADDRESS & F30A & －3318 & CON & CONTINUE EXEC \\
\hline ESAD & －6．739 & NEW & & F31］ & －3294 & ASC & \\
\hline ESH7 & －6729 & CLR & & F336 & －3269 & PLIL & \\
\hline EGEC & －64120 & BKANCH & CET LO／HI 1HEN JSH： & F351 & －3247 & RDKEY & READ AN INPUT \\
\hline EGFF & －69101 & GETVERB & NEXT UERB TO USE & F371 & －3215 & EXP A & RAISE TO A POUER \\
\hline E715 & －6．379 & CEI \(16.31 T\) & GET A 16－BIT WAL & F314 & -3127
-3046 & PRP永S
INA5 & \\
\hline E736 & －65146 & NOT & & F41A & －3846 & IN＊S & \\
\hline E／4A & －6．326 & ABS & & & & & \\
\hline E7SC & －63\％8 & SGN & & & & & \\
\hline E782： & －6270 & SUETRACTION & & & & & \\
\hline E78．5 & －6267 & ADDITION & & & & & \\
\hline E／PAJ & －6．36 & TAB & & & & & －20＂ \\
\hline E7C1 & －6207 & COMMA & & & & & \\
\hline
\end{tabular}

\section*{Two Pass Assembler，Disassembler，and Editor Single Load Program DOS 3．3．，40／80 Columns，for Apple II or Apple II Plus＊}

A MUST FOR THE MACHINE LANGUAGE PROGRAMMER．Edit 6502＂is a two pass Assem－ bler，Disassembler and text editor for the Apple computer．It is a single load program that only＝occupies 7 K of memory．You can move freely between assembling and disas－ sembling．Editing is both character and line orientated，the two pass disassemblies create editable source files．The program is so written so as to encompass combined disassemblies of 6502 Code，ASCll text，hex data and Sweet 16 code．Edit 6502 makes the user feel he has never left the environment of basic．It encompasses a large number of pseudo opcodes，allows linked assemblies，software stacking（single and multiple page）and complete control of printer（paganation and tab setting）．User is free to move source，object and symbol table anywhere in memory．Requirements：48K of RAM，and ONE DISK DRIVE．Optional use of 80 column M\＆R board，or lower case availa－ ble with Paymar Lower Case Generator．
take a look at just some of the ebiting command features．Insert at line \＃n Delete a character Insert a character Delete a line \＃n List line \＃nt，n2 to line \＃n3 Change line \＃ni to n2＂stringl＂Search line \＃il to n2＂stringl＂．

LOOK AI THESE KEY BOARD FUNCTIONS：COpy to the end of line and exit：Go to the beginning of the line：abort operation：delete a character at cursor location：go to end of line：find character after cursor location：non destructive backspace：insert a character at cursor location：shift lock：shift release：forward copy：delete line number：prefix special print characters．Com plete cursor control：home and clear，right，left down up．Scroll a line at a time．Never type a line number again．
All this and much much more－Send for FREE Information． Introductory Price \(\mathbf{\$ 5 0 . 0 0}\) ．



\title{
Turn your Apple info the world's most versatile personal computer:
}

The SoftCard \({ }^{\text {m }}\) Solution. SoftCard turns your Apple into two computers. A Z-80 and a 6502 . By adding a Z-80 microprocessor and CP/M to your Apple, SoftCard turns your Apple into a CP/M based machine. That means you can access the single largest body of microcomputer software in existence. Two computers in one. And, the advantages of both
Plug and go. The SoftCard system starts with a \(\mathrm{Z}-80\) based circuit card. Just plug it into any slot (except 0 ) of your Apple. No modifications required. SoftCard supports most of your Apple peripherals, and, in 6502 mode, your Apple is still your Apple.
CP/M for your Apple. You get CP/M on disk with the SoftCard pack.age. It's a powerful and simple-to-use operating system. It supports more software than any other microcomputer operating system. And that's the key to the versatility of the SoftCard/Apple.

CIRCLE READER SERVICE NUMBER

BASIC included. A powerful tool, BASIC-80 is included in the SoftCard package. Running under CP/M, ANSI Standard BASIC-80 is the most powerful microcomputer BASIC available. It includes extensive disk I/O statements, error trapping, integer variables, 16 -digit precision, extensive EDIT commands and string functions, high and low-res Apple graphics, PRINT USING, CHAIN and COMMON, plus many additional commands. And, it's a BASIC you can compile with Mlicrosoft's BASIC Compiler.
More languages. With SoftCard and CP/M, you can add Microsoft's ANS Standard COBOL, and FORTRAN, or

Basic Compiler and Assembly Language Development System. All, more powerful tools for your Apple.
Seeing is believing. See the SoftCard in operation at your Microsoft or Apple deater. We think you'll agree that the SoftCard turns your Apple into the world's most versatile personal computer.
Complete information? It's at your dealer's now. Or, we'll send it to you and include a dealer list. Write us. Call us. \(\mathrm{O}_{\text {i }}\), circle the reader service card number below.
SoftCard is a trademark of Microsoft. Apple II and Apple II Plus are registered trademarks of Apple Computer Z-80 is a registered trademark of Zilog. inc. CP/M is a registered trademark of Digital Research, Inc.

Microsoft Consumer Products, 400 108th Ave. N.E.
Bellevue, WA 98004. (206) 454-1315

\title{
逆 1 UersalUriter \& APPLE II: The Keys to Unlimited Graphics
}

\section*{DRAWING TABLET}

Although VersaWriter operates on a simple principle, it produces graphics which match or exceed those of other digitizers. Rugged construction, translucent base, easy to use - plugs directly into APPLE II.



\section*{UNIQUE OFFER}

See VersaWriter at your local dealer and pick up a copy of our demonstration disk. The complete VersaWriter hardware and software package is a real bargain at \(\$ 249\). For more information call or write:

\section*{GRAPHICS SOFTWARE}

Easily the most capable and complete graphics software for the home computer available. Fast fill drowings in 100 colors. All text in five sizes. compile and display shapes, edit, move and much more!


Versa Computing, Inc. • 887 Conestoga Circle • Newbury Park, CA 91320•(805) 498-1956

\section*{NIKROM TECHNICAL PRODUCTS PRESENTS A DIAGNOSTIC PACKAGE FOR THE APPLE II AND APPLE \(11+\) COMPUTER. \\ "THE BRAIN SURGEON"}

All major computer systems are checked for tunctional hardware analysis on a regular basis for logical as well as some practical reasons. Finding what is exactly wrong can account for most of the money consuming down-time.

Apple Computer Co. has provided you with the best equipment available to date. The Diagnostic's Package was designed to check every major area of your computer, detect errors, and report any malfunctions. The Brain Surgeon will put your system through exhaustive, thorough procedures. testing and reporting all findings. The Tesis include:
- MOTHEREOARD ROM TEST FOR BOTH APPLE II AND APPLE II +
- applesoft card test - integer card test - memory ram test - DISK dRIVE ANALYSIS - MONITOR ALIGNMENT
- DC HAYES MICRODODEM II TEST

System Diagnosis is an invaluable aid to your program library even if your system is working fine. Hours have been wasted trying to track down a "program bug" when actually hardware could be the blame!
The Brain Surgeon allows you to be confident of your system. This can be critical when tile handling, sorts or backups are involved. You must depend on your computer during all these critical times. Aunning The Brain Surgeon prior to these important functions helps to insure that your system is important functions helps to ins
operating at peak performance.
The Brain Surgeort is easy to use and supplied on diskette with complete doc:umentation.
PRICE: \(\$ 45.00\)
REQUIRES: 48 K REQUIRES: 48 K . DOS 3.2 or 3.3
o Nikrom Technical Products 25 PROSPECT STREET - LEOMINSTER, MA 01453

Order ToulFros Alytima
Master Charge \& VISA users call: 1-800-835-2246 Kansas Residents call: \(1-600-362-2421\)

Presenting......
\[
A-\operatorname{STAT}_{79}^{\mathrm{TM}}
\]

A Statistical Analysis and File Maintenance System for the Apple II \({ }^{\text {TM }}\) Microcomputer*
A subset language of P-STAT \({ }^{\text {TM }} 78\) computes:

\section*{FREQUENCIES}

BI-VARIATE TABLES - CHI SQUARES
CORRELATION MATRICES
MULTIPLE REGRESSIONS
APPLE FILE CABINET INTERFACE COMPLETE VARIABLE TRANSFORMATIONS

Uses Standard DOS Text Files and EXEC's
A-STAT \({ }^{\text {TM }} 79\) on disk with 80 -page manual... \(\$ 125.00\)
48 K version - All programs in Applesoft \({ }^{T M}\)
Available from:
Rosen Grandon Assoclates
298 Peter Green Road
Tolland, Connectlcut 06084
(203) 875-3541
* Apple \(\|^{T M}\) is a trademark of the Apple Computer, Inc. P-STAT \({ }^{\text {TM }} 78\) is a trademark of P-STAT Inc., Princeton, N.J. A-STAT \({ }^{\text {TM }} 79\) is copyrighted by Gary M. Grandon, Ph.D.

\section*{Atari Error Messages}

\begin{abstract}
This program, when included in a BASIC program, will display the Engllish language versions of Atarl's number-coded error messages.
\end{abstract}

\author{
David P. Allen \\ 19 Damon Road \\ Scituate, Massachusetts 02066
}

Within a few days after putting my Atari computer in operation I wound up with a sore thumb. This was a result of having to continually thumb through the Atari manual to find out the meaning of the latest error message which the Atari was giving me. My threshold of discontent was being depressed lower and lower by the invidious message "ERROR-12 AT LINE 200", which continually thrust me back to the manual to find out just what I had done wrong. I figured there had to be a better way. There is

Atari BASIC language is equipped with the very handy 'TRAP' function which you can cause to spring into action every time it encounters an error condition. This command tells the computer to go to the line number immediately following the command (such as TRAP 32000) and continue executing the program at that point. The solution to my problem was simply to direct the computer to a list of error messages with instructions to find the right message, and then print it out on the screen in plain English.

Here's the way it works. The error trapping subroutine is started at line 32500, high enough to be included in most programs without getting in the way of the rest of the program. Way up in the beginning, at the earliest line possible (line 0 is a good place) we enter 'DIM SNAPS|50): TRAP 32500'. This sets up SNAP\$ to collect the error messages ('snap', 'trap', - get it? Oh, well...) and instructs the program to
```

PRINT "}": REM CLEARS SCREEN
DIM SNAP$(50):TRAP32500
REM
REM
 REM <<< ERROR TRAPPING DEMO >>>
 REM <<< BY DAVID P. ALLEN >>>
 REM
 REM
 REM
 REM
 REM
 THIS PROGRAM DEMONSTRATES
 THE PRINTOUT OF ERROR
 STATEMENTS. THE FOLLOWING
 LINES ARE DESIGNED TO PRO-
 DUCE ERRORS. AFTER EACH
 ERROR, TYPE 'GOTO' PLUS THE
 THE LINE NUMBER WHERE THE
 ERROR OCCURRED +10. I.E.,
 IF THE ERROR MESSAGE SAYS
 THE ERROR OCCURRED AT LINE
 220, THEY TYPE 'GOTO 230' TO
 REM CONTINUE THE DEMONSTRATION
 REM
 REM
 GOTO }100
 NEXT X
 READ Y
 SAVE "D2:TEST"
 PRINT #1,A$
PRINT "}": POSITION 5,12
PRINT n*** END OF DEMONSTRATION ****
270 END
326 LIST 32660
32490 REM <<< ERROR TRAPPING >>>
32491 REM <<< SUBROUTINE >>>
32493 REM
32494 REM
32495 REM INSERT 'DIM SNAP$(50):
32496 REM TRAP 32500' AT AN
32497 REM EARLY LINE NUMBER.
32498 REM
32499 REM
32500 SNAP = PEEK (195):LNM = 256 * PEE
K (187) + PEEK (186): GOSUB SNAP + 32500:
 PRINT "*** ":SNAPS: PRINT "AT LINE ";LNM;"
 ***"
32501 TRAP32500: PRINT " ": END
32502 SNAPS = "INSUFFICIENT MEMORY": RETU
RN
32503 SNAP$ = "VALUE ERROR": RETURN
32504 SNAPS = "TOO MANY VARIABLES": RETUR
N
32505 SNAPS = "STRING LENGTH ERROR": RETU
RN

```
proceed at line 32500 whenever it encounters an error condition. Line 32500 takes a PEEK at two locations which find out first what error occurred (SNAP), and where it occurred (LNM). The computer then finds the correct error message and prints it out on the screen.

Line 32501 resets the trap and ends the program, but you can have your program continue. If you replace 'END' with 'INPUT A\$: GOTO LNM + 10' your program will pause at the error message while you reflect on the wisdom of what it is telling you, then when you press 'RETURN' the program will jump to the line number that is ten places further down from where the error occurred. To make this work, all your line numbers must be ten numbers apart, and you must 'DIM \(\mathrm{A} \$(1]^{\prime}\) back in the beginning of the program. If you leave 'END' in place in line 32501, then you must use 'RUN' or some other immediate command to get things going again.

To save this program for inclusion in your future programs, enter lines 32500 through 32761 into memory through your keyboard. If you are going to save the routine on cassette, then set the program recorder up to record and execute 'LIST "C:"' and the whole nine yards will be saved on your tape in tokenized form. To retrieve it for use in another program execute 'ENTER " C :" ' after cuing up your tape to the right spot for this routine. The error trapping subroutine will then be added to whatever program you have in BASIC memory at that time.

Disk users follow almost the same routine except use 'D:' and a filename where ' C :' is mentioned above. The filename will be the one you use to identify this subroutine on your disk. I use 'ERRSUB.LST' which reminds me that this file was put on the disk with a 'LIST' instead of a 'SAVE'.

That's all there is to it. If you enter the listing contained herein, the line numbers below 32490 will cause a demonstration of the subroutine procedure to be executed. The price you pay for all of this is the use of 1982 bytes of mernory. Atari 800 users with 48 K of RAM memory will not give this a second thought; Atari 400 users with only 8 K will pause and reflect before dedicating almost 2 K to the reduction of their irritation. If it fits your program and your memory then try it out. You'll like it.
```

32506 SNAP\$ = "OUT OF DATA": RETURN
32507 SNAPS = "ERROR > 32767": RETURN
32508 SNAPS = "INPUT STATEMENT ERROR": RE
TURN
32509 SNAP\$ = "DIM ERROR": RETURN
32510 SNAPS = "ARGUMENT STACK OVERFLOW":
RETURN
32511 SNAPS = "FP OVER/UNDERFLOW ERROR":
RETURN
32512 SNAPS = "LINE NOT FOUND": RETURN
32513 SNAPS = "NEXT WITHOUT FOR": RETURN
32514 SNAPS = "LINE TOO LONG": RETURN
32515 SNAP\$ = "GOSUB/FOR LINE DELETED": R
ETURN
32516 SNAPS = "RETURN WITHOUT GOSUB": RET
URN
32517 SNAP\$ = "GARBAGE": RETURN
32518 SNAPS = "INVALID STRING CHARACTER":
RETURN
32519 SNAPS = "CAN'T LOAD - TOO LONG": RE
TURN
32520 SNAPS = "DEVICE | >7 OR =0": RETURN
32521 SNAPS = "NON-LOAD FILE": RETURN
32628 SNAPS = "BREAK KEY ABORT": RETURN
32629 SNAPS = "IOCB ALREADY OPEN": RETURN
32630 SNAP\$ = "NON-EXISTENT DEVICE": RETU
RN
32631 SNAPS = "IOCB WRITE ONLY": RETURN
32632 SNAP\$ = "INVALID COMMAND": RETURN
32633 SNAP\$ = "DEVICE/FILE NOT OPENED": R
ETURN
32634 SNAP\$ = "ILLEGAL IOCB \#": RETURN
32635 SNAPS = "IOCB READ ONLY": RETURN
32636 SNAPS = "END OF FILE": RETURN
32637 SNAPS = "RECORD > 256 CHARACTERS":
RETURN
32638 SNAP\$ = "DEVICE DOESN'T RESOND": RE
TURN
32639 SNAPS = "GARBAGE AT SERIAL PORT": R
ETURN
32640 SNAPS = "SERIAL BUS INPUT FRAMING E
RROR": RETURN
32641 SNAPS = "CURSOR OUT OF RANGE": RETU
RN
32642 SNAP\$ = "SERIAL BUS DATA FRAME OVER
RUN": RETURN
32643 SNAP\$ = "SERIAL BUS DATA CHECKSUM E
RROR": RETURN
32644 SNAP\$ = "WRITE PROTECTED": RETURN
32645 SNAP\$ = "DISK/SCREEN MODE HANDLER E
RROR": RETURN
32646 SNAPS = "FUNCTION NOT IMPLEMENTED":
RETURN
32647 SNAPS = "GRAPHICS MODE NEEDS MORE M
EMORY": RETURN
32660 SNAP\$ = "DRIVE NUMBER ERROR" : RETUR
N
32661 SNAPS = "DISK FULL": RETURN
32662 SNAPS = "DISK FULL": RETURN
32663 SNAPS = "UNRECOVERABLE SYSTEM DATA

- I/O ERROR": RETURN
32664 SNAP\$ = "FILE NUMBER MISMATCH": RET
URN
32665 SNAPS = "FILENAME ERROR" : RETURN
32666 SNAP\$ = "POINT DATA LENGTH ERROR":
RETURN
32667 SNAPS = "FILE LOCKED": RETURN
32668 SNAPS = "INVALID COMMAND": RETURN
32669 SNAPS = "DIRECTORY FULL": RETURN
32670 SNAPS = "FILE NOT FOUND": RETURN
32671 SNAPS = "POINT INVALID": RETURN

```


Anderson Peripherals, Inc.

\author{
P.O. Box 629 \\ Richardson, Texas 75080 \\ 214-231-6866 \\ TMATARI is trademark of Atari Corp.
}

NEW
FOR
APPLE \(11^{\circ}\) COMPUTERS
201-939-3778 DEALER INQUIRES INVITED

DOUBLE DOS PLUS - 0013-16 A piggyback board that plugs into The disk controller card so that you can switch select between 13 and 16 sector disks. Works great with the language system eliminating the need in many cases, to boot the Basics disk. Eliminates the need to convert all of your disks to 3.3 format. . . . . . . . . . . . . . . . . ONLY \(\$ 39.00\)

Revilits applé oos rons FULL 90 DAY WARRANTY
THE APPLE CARD - A TWO SIDED 100 PERCENT PLASTIC \(8 \frac{1}{2} \times 11\) REFERENCE CARD FOR THE APPLE COHPUTER. LOADED WITH INFORMATION OF INTEREST TO EVERY APPLE OWNER DR USER. . . . ................... \(\$ 3.98\)
PARALLEL PRINTER CARD - PPC-100 A universal Centronics© type parallel printer board complete with cable and connector tor paraliel printer boarde computer. This unique board will alion you to turn on and off the high bit in software so that text and graphics can be mixed on many printers........ \(\$ 139.00\)

THE DOUBLE BOOTER ROM PLUGS INTO THE EMPTY DE SOCKET ON THE APPLE MOTHERBOARD OR INTEGER CARD. A SIMPLE CALL WILL PROVIDE A 13 SECTOR BOOT FROM ANY MACHINE WI TH 3.3 ROMS IN THE DISK CONTROLLER. THIS CHIP WILL NQI WORK IN APPLE PLUS MACHINES UNLESS THEY CONTAIN AN INTEGER CARD. THE OOUBLE BOOTER RCM MAY ALSO BE USED ON THE MOUNTAIN COMPUTER
ROM PLUS BOARD IN ANY OF THE SPARE ROM SOCKETS. ELIMINATES ROM PLUS BOARD IN ANY OF THE SPARE ROM SOCKETS. ELIMINATES THE NEED FOR USING THE BASICS DISK FOR 3.2 BCOIING.
ONLY ....................................... \(\$ 29.00\)
SOFTWARE FOR THE APPLE - SUPER SEA WAR - HIRES BATTLESHIP TYPE SIMULATION..... \(\$ 13.95 \nabla\) ULTIMATE IRANSFER - A TELEPHONE SOFTWARE TRANSFER, USES DC HAYES MICROMODEM...... \(\$ 25.00 \nabla\) ROAD RALLYE HIRES DRIVING GAME WITH 5 DIFFRENT FULL SCREEN FRACKS.... \(\$ 15.00\) GRAPH FII - HIRES BAR,PIE \& LINE GRAPHING SDFTWARE ....... \(\$ 25.00\) MISSILEE CHALLENGER - HIRES ARCADE TYPE GAME WHERE YOU DEFEND YOUR CITIES AGAINST FALLING MISSILES. WRITES NAME \& HI-SCORE TO DISK...............S19.95 SUPER-PIX HIRES SCREEN DUMP FOR THE EPSON MX-80 - OFFERS 2 ORIENTATIONS, NORMAL OR INVERSE, LARGER THAN FULL PAGE SIZES, SCRUNCH MODES. NEEDS TYMAC PPC-IOO PARALLEL PRINTER CARD OR WE WILL UPGRADE YOUR EPSON BOARD FOR \(\$ 25.00 . . . . . . . \$ 39 . .95\)
all of thi above prooucts are available from micro-ware distributing inc. po boxil3



\section*{**SPECIAL INTRODUCTORY OFFER**}

\section*{Programmable Character Generator Board}
\(\$ 89.95\)
You can use OSI's characters or you can make your own. Imagine you can now do true high resolution graphics \(512 \times 256\) dots in the \(64 \times 32\) screen format. And all under your control!

Other mods available - send for catalog.
SOFTWARE (with Documentation)

\section*{PC Chess V1.9}

Play Chess against your computer!
Hellcopter Pilot: ( 64 CHR Video Only)
An Excellent Graphics Program!

\section*{Golf Challenger} From 1 to 4 players. Play a round of golf on your 18 hole golf course. One of the best programs I have ever seen! You can even design your own course. Comes with full documentation (14 pages).

\section*{Two Very Intricate SImulations!}

Wild Weasel II: You operate a Sam Missile base during a Nuclear War. Not as easy as you think! You must operate in a three dimensional environment.
Fallsafe II: The shoe is on the other foot! Here you are in the attacking bomber and you must penetrate deep into enemy territory. Can you survive? An extremely complex electronic warfare simulation! SPECIAL: both for 19.95

Hardware: C1P VIdeo Mod: Makes your 600 Video every bit as good as the 4P and 8P. Gives 32/64 CHR/Line with guardbands 1 and 2 Mhz . CPU clock with 300, 600 and 1200 baud for Serial Port. Complete Plans \(\$ 19.95\)

KIT(Hardware and Software) \$39.95
Installed: 32CHR - \$79.95, 64CHR-\$89.95
Extra K of Video RAM for 64CHR not included! Set of 3 ROMs available \(\$ 75.00\)
C1P Sound Effects Board: Completely programmable!
\$14.95 For the discriminating hobbiest, the best board on the market for creating sound and music. Can be interrupt driven so that you can use it for gaming purposes. Has on board audio amp, 16 bit interval timer, 128 Bytes of RAM and two 8 bit parallel I/O Ports.
Assembled and tested \(\$ 89.95\)
Bare Board \$39.95 Both include Prog. Manual and Sample Software.

C1P HI Speod Cassette Kit: Gives a reliable 300, 600, and 1200 Baud. No symmetry adjustments - the ideal fix for OSI's cassette interface. Easily implemented in 30 minutes. Will save you time and money even the first night you use it!
\(\$ 12.95\)
Many, many more. Send for Catalog with free program (Hard Copy) and BASIC Memory Map. \$1.00. Two locations to serve you:

Progressive Computing
3336 Avondale Court, Windsor, Ontario
Canada, N9E 1X6
(519) 969-2500
or
3281 Countryside Circle, Pontiac TWP, MI 48057
(313) 373-0468

\section*{Introduction to OS-65D V3.3}

OS-65 V3.2 was an ultra sophisticated development-oriented operating system. However, several problems kept arising:
1. Output was difficult to format in BASIC.
2. There was no way to trap disk errors in BASIC.
3. Disk file operations were both slow and limited.
4. The nature of the OSI polled keyboard made the use of lower case alphabetics tedious.

OS-65D V3.3 has been designed to eliminate these problems in earlier releases of 65D. In addition, the 65D BASIC line editor has been added as a permanent feature of BASIC. The following describes all the changes that have been made in Vi3.3. Enjoy!

\section*{Compatability}

OS-65D V3.3 has the BASIC workspace moved to \$3A7E as opposed to \$327E on OS-65D V3.2. This change makes no difference whatsoever to the average BASIC programmer. In fact, enhancements to 65D V3.3 allow existing V3.2 files to be both upward and downward compatible to the new system. However, care must be taken when using V3.2 files that contain assembler language subroutines. The subroutines will be transferred, along with the program that contains them, but will be physically relocated in memory and will probably not execute properly, if at all.

\section*{Programmable Error Action}

In OS-65D V3.3 BASIC, the WAIT command has been replaced by the TRAP function which is used as an "ON ERROR GOTO" (but is easier to type). The TRAP function can be used either in the immediate mode or inside BASIC program and is effective whether a BASIC ERROR or DOS ERROR occurred. For example, consider the following program segment:
```

10 TRAP }100
20 DISK OPEN,6,'DATA'
30 TRAP 40
40 INPUT\#6,A:B = A/A
50 PRINT A:END
1000 ?"DISK ERROR":END

```

If a DISK ERROR occurred in line 20, control would be transferred to line 1000. Lines 30 and 40 are used to read the first non-zero number in the file. The TRAP function is disabled by the statement "TRAPO".

\section*{Keyboard Driver}

The standard OSI polled keyboard driver has been replaced in OS-65D V3.3 by an all new keyboard decoder. The SHIFT LOCK key now acts as a CAP LOCK key and the RUBOUT key actually does delete characters. However, three characters still cause problems. These are listed below along with their keystroke equivalents:
```

^-SHIFT N
[-SHIFT K
]-SHIFT M

```

Note: The SHIFT LOCK key must be depressed when these three characters are typed.

\section*{Random Files}

OS-65D V3.3 incorporates several improve ments in the random file capabilities in OS-65D. First, the DISK GET command has been altered to check which track is currently resident in RAM before actually reading a track. If the GET command determines that this is the tract that is needed, no reread is performed. Thus, the random file access time is up to 48 times faster than in 65D V3.2.

Secondly, a DISK FIND command has been added. The syntax is "DISK FIND,string" where string is any BASIC string variable or quoted literal. The search begins at the current file pointer and will continue through the file. If the string is not found, an ERR\#D will be reported (unless the TRAP command is used). If the string is found, the file pointer will be set to the beginning of the next field entry. For example:
```

10 DISK OPEN,6,"DATA"
20 DISK GET,10
30 PRINT\#6,''HELLO'':PRINT\#6,''THERE!"
40 DISK GET,0
50 DISK FIND, "HELLO"
60 INPUT\#6,A\$
70 PRINT A\$

```

This program will print out "HELLO!".
Note: The search rate for the FIND command is about \(8 \mathrm{~K} /\) second on 8 " systems and \(5 \mathrm{~K} /\) second on mini-floppies.

\section*{Printer Drivers}

The printer drivers in OS-65D V3.3 (devices 1 and 4) have a programmable paging feature which is enabled by the following:

PRINT\#LP,CHR\$(27);"C';'CHR\$(FL)
where LP is the printer device number and FL is the form length you want. Ten percent of the form length is always reserved for the top and bottom margins. For example,

PRINT\#1,CHR\$(27); ' \({ }^{\prime}\) "; CHR\$(66)
indicates form length of 66 where 60 lines are printed per page and six lines are reserved for the top and bottom margins. Immediately after the form length is set, a top of form is executed. At this time, position the paper in the printer as desired. To print a top of form to the next page, enter

\section*{PRINT\#LP,CHR\$(12):}

The printer drivers also have a screen dump utility which may be used if you have an EPSON MX-80 printer and a standard OSI 540 video system. To use this feature, enter

PRINT\#LP,CHR\$(27);"P';

\section*{OS-65D V3.3 Editor}

In OS-65D BASIC, the keyword NULL is replaced by the word EDIT. After the system is booted, immediately type a non-destructive forward and backspace to tell the editor what type of keyboard you are using, (CTRL-L and CTRL-P are the forward space and backspace, respectively, for the OSI keyboards.) The syntax for editing a line is given in table 1.

Table 1
\[
0=<L N<64000
\]

EDIT LN < CR > or ! LN < CR > Edit the statement with the line number LN.

EDIT! <CR> or !! <CR>

EDIT < CR > or! <CR >
Edit the same line that was just edited.

Edit the line im- mediately following the line that was just edited.

The line with its line number will be displayed following the <CR>. If the line number LN does not exist, the statement with the next line number will be displayed. (Typing EDITO or 10 will always give the first line of the program.) After the statement is displayed, the cursor will reside at the end of that line. The commands listed in table 2 are used for the actual line editing.

Table 2
\(\rightarrow\) /CTRL-UForward Space
\(\leftarrow /\) CTRL-H/CTRL-P/Backspace

RUBOUT/DELETEISHIFT-0
(a)/SHIFT-P

CTRL-R

CTRL-F

CTRL-I

CTRL-T
<CR > / < RETURN > / < ENTER > Enters the line as written or viewed. The line will look (to the BASIC interpreter) as if it were typed in by the user from scratch.

Character insertion and deletions can be accomplished anywhere by using the commands for non-destructive movement of the cursor. After the cursor is positioned, the user can type in insertions or delete unwanted characters. Note: Characters are inserted to the left of the character on which the cursor resided. The character on which the cursor resides is deleted until the end of the line is reached, and the characters to the left will be deleted if the cursor resides at the end of a line.

\section*{Video Driver}

The video driver for 65D has been rewritten in order to provide ( \(\mathrm{X}, \mathrm{Y}\) ) cursor addressing and more than a dozen screen editing commands. These commands are used by printing CHR\$(27), an ASCII ESC, followed by the desired command. For example,

\section*{PRINT CHR\$(27);CHR\$(28);}
clears the video screen and homes the cursor. The rest of the commands are given in table 3.

\section*{Table 3}

Code
CHR\$(1)

CHR\$(2);CHR\$(n);
CHR\$(m)

CHR\$(5)
Causes following data to be printed in the color yellow.

All screen positions marked by color \(n\) are changed to color \(m\).

Sends the current cursor address through the keyboard driver, i.e., PRINT CHR\$(27); CHR\$(5);:INPUT A\$

\section*{then,}
\[
\mathrm{A} \$=\operatorname{CHR} \$(65+X)
\]
\[
\mathrm{CHR} \$(65+Y)
\]

CHR\$(11)

CHR\$(12) Cursor moves up one

CHR\$(17);CHR\$(X): CHR\$(Y)
line.

Clears from the current cursor position to the end of line.

Moves cursor to screen
Cursor moves down one line. position ( \(X, Y\) ).
\[
0 \leq x<64
\]
\[
0 \leq Y<24
\]
\begin{tabular}{|c|c|}
\hline CHR\$(18) & Moves cursor to the home position, i.e., (0,0) - the upper left-hand corner. \\
\hline CHR\$(19) & Deletes the line the cursor is on. Lines below the cursor scroll up one line. \\
\hline CHR\$(24) & Clears from the current cursor position to the end of the screen. \\
\hline CHR\$(25) & Causes output to be printed in no color (black). \\
\hline CHR\$(26) & Inserts a line at the cursor position. Lines below the cursor scroll down one line. \\
\hline CHR\$(28) & Clears screen and homes cursor. \\
\hline CHR\$(29);CHR\$(n) & Clears all occurrences of color \(n\) on the screen. \\
\hline CHR\$(31); CHRW ( n ) & Causes the following data to be printed in the color n . \\
\hline CHR\$(33) & Sends the character at the cursor position through the keyboard driver, e.g., \\
\hline & Print CHR\$(27); CHR\$(33) INPUT A\$ \\
\hline
\end{tabular}

\section*{Indirect File Problems? Why Not Use a Diskette?}

In this section we describe a method for merging two BASIC files under the OS-65D operating system. The procedure uses the disk 1/O capabilities of 65D to make your diskette into an indirect file. The following step-by-step procedure can be used to merge two programs. We start with both programs, say PROG1 and PROG2, stored on a diskette.
PROG1 N1 = 1 TRACK
40 REM THIS IS PROG1
50
REM
60
70
70

PROG2 N2 \(=1\) TRACK
10 REM THIS IS PROG1
20 REM
30 REM
40 END
1. Load PROG 1 into the workspace

DISK!'"LOAD PROG1"
Enter
EXIT
The number of tracks necessary to hold PROG1 will be displayed, say N1 tracks. Return to BASIC by entering

> RE BA

Now do the same with PROG2, obtaining its size, N2 tracks.
2. Run the disk utility CREATE and create a file PROG3, N1 + N2 (N3) tracks long, to hold the merged programs. If PROG2 already has enough space, the merged program can be stored as PROG2.
3. The number, N1, of tracks necessary to store PROG1 was determined in step 1. Run CREATE again and make a file called "DATA" with three times N1 tracks for a five inch diskette, and four times N1 tracks for an eight inch diskette. Answer NO to the query about pages per track. Specify four pages per track.
4. Load PROG1 into the workspace

\section*{DISK!"LOAD PROG1"}
5. Enter the following POKEs to create a fourpage buffer and to disable the scrolling of the screen (the screen will hold the buffer).
\begin{tabular}{ll} 
POKE & 8998,0 \\
POKE & 8999,208 \\
POKE & 9000,0 \\
POKE & 9001,212 \\
POKE & 9770,0
\end{tabular}
6. Enter on a single line

DISK OPEN,6,"DATA':DISK!’'IO ,22'’:LIST
A listing of the workspace will appear on the screen while PROG1 is being stored in the file DATA.
7. When the listing is finished, reset the I/O pointers and close the file by entering

DISK!'‘IO 02,02' ':DISK CLOSE,6
8. Load PROG2 into the workspace by entering

\section*{DISK!'"LOAD PROG2"}
9. Reopen the file DATA and merge PROG1 into PROG2 by entering

DISK OPEN,6,"DATA':DISK!"IO 20""
10. Reset the \(I / O\) pointers, close the file, and enable scrolling by entering

\section*{DISK!IO 02,02' \(:\) DISK CLOSE,6 POKE 9770,64}
11. Store the merged file by entering

DISK!"PUT PROG3"
12. Clean house by rebooting the system.

If each of the programs has a line with the same number, the line in PROG1 will be the one that appears in the merged program.
MERGED PROGRAM PROG3 N3 = 1 TRACK
\(\mathrm{N} 1+\mathrm{N} 2\)
10 REM THIS IS PROG2
20 REM
30 REM
40
50
REM THIS IS PROG1
60
REM
70

Note: Line 40 of PROG2 was overwritten.
Finally, by changing the LIST specification in step 6 , you can merge any part of a program, or just break up large programs. The uses are unlimited.


A fantastic new game disk for OSI-C4P's running with DOS 3.2. Most of the games on this disk are single player such as a multiple level Othello game, Cavern Chase, and more. Other games are designed for single or multiple players such as Tank, and Crystalize. Over seven games and variations in all. (Note that many of these games are in machine code for enhanced play-ability and speed.)

To order send \$26 to:

\section*{Simulations \\ Programming \\ Rt. 2 Box 98 Burton, WA \\ 98013}

\section*{SOFTWARE FOR OSI}
is video games 1
.... \$15.
Three Games. Head-On is like the popular arcade game. Tank Battle is a tank game for two to four. Trap! is an enhanced blockade style game.

IT Three games Gremlin Hunt is an arcade-style game for one to
iz three. Gunfight is a duel of mobile artillery. Indy is a race game for one or two.
\& ADVENTURE: MAROONED IN SPACE ................ \(\$ 12\).
is An adventure that runs in 8 K! Save your ship and yourself from destruction.
ir dungeon Chase ...................................... \(\$ 10\).
If A real-time video game where you explore a twenty level dungeon.
iz board games 1
₹ Two games. Mini-gomoku is a machine language version of five stones gomoku. Cubic is a 3-D tic-tac-toe game. Both with graphics.
DISASSEMBLER
. \(\$ 12\).
Use this to look at the ROMs in your machine to see what makes BASIC tick. Reconstruct the assembler source code of machine language programs to understand how they work.
§ Our disassembler outputs unique suffixes which identify the addressing mode being used, no other program has this!
SUPER! BIORHYTHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 15\).
A sophisticated biorhythm program with many unique features.
C1 SHORTHAND
Use only two keys to enter any one of the BASIC commands or keywords. Saves much typing when entering programs. Written in machine language.
For all BASIC-in-ROM systems. Selected programs avatlable on disk Color and sound on video games
Send for FREE catalog
SOFTWARE ASSOC.
147 Main St. Ossining, NY 10562


Tired of searching for commands \& statements, peeks, error msgs, system limits? Need hints? Then send \(\$ 9\) for our \(12 / 80\) manual.

Want prompts for utility pgm inputs? File searching demo? pgm exits? round numbers to 3 decimals? more disk space with utility pgms? latest updating? Then send license copy and \(\$ 20\) for 8" Floppy. Specify video or serial.

Both for license copy and \(\$ 25\).
(Indiana residents add 4\% sales tax.)

\section*{OSI BASIC}

Summary Manual for 65U \& 65D 8' Disk - 65 U VI. 2 Utility Enhancements

Challenges

\author{
By Paul Geffen
}

\section*{The Superboard}

The OSI Model 600, better known as the Superboard, is one of the oldest of the single-board microcomputers. At \(\$ 299\) (list) it provides more computing power per dollar than almost any other system in its class. For the beginner this system is close to ideal, both affordable and accessible.

For \(\$ 299\) you get one board with these features: a typewriter-style keyboard, a 6502 microprocessor, 4 K of program RAM, 1 K of display RAM, video output circuitry, 8 K Microsoft BASIC-in-ROM and a 2 K ROM monitor. The board comes with a User's Manual to help the beginner find his way around. You will also need a power supply (five volts at two amps) and a video monitor or an RF modulator to connect the computer to a TV set. These may cost between fifty and two hundred dollars more.

Or you could buy the OSI ClP for \(\$ 429\), which is a Model 600 with an extra 4 K of program RAM in a case with a power supply. A good cassette recorder (not battery operated) is almost essential, and you would do well to arm yourself with additional reference materials which I will describe below.

Now you have a complete computer system which will allow you to write programs in BASIC and/or machine language. You can also run programs which others have written, as long as they were written for the OSI Superboard or C1P. Converting BASIC programs from other machines is sometimes easy, but sometimes almost impossible. For instance, tapes written for other micros probably won't load on the OSI.

\section*{Information Resources}

As they become more experienced, most beginners notice that there is a lot that can be done with the Superboard that isn't explained or even hinted at in the OSI documentation. Many of the apparent limitations of the board are really only deficiencies in the User's Manual. Of course this is what user's
groups are for. There are a few good books available which offer much useful information, both for the beginner and the experienced programmer.

Perhaps the best to start with is Ed Carlson's OSI BASIC in ROM. This book, now in its second edition, is written by a C2P/C4P user, but almost everything in the book applies to the Superboard because the same BASIC comes with both machines. Carlson describes the capabilities of BASIC in considerably more detail than the User's Manual and he includes a few things the manual leaves out, like the bugs. Carlson goes into detail on solutions to the infamous Garbage Collector bug (which OSI doesn't even mention). Then he explains how to write good, well-organized BASIC programs and he provides many useful utility programs for clearing the screen (fast), converting hex to decimal, writing monitor format tapes, and so on.

The material on the actual mechanics of the BASIC interpreter is very useful and informative, and gives the key to many clever and efficient ways of writing programs for this machine. Finally, this book has a comprehensive list of publications and vendors of software for the OSI. In short, this is the book every Superboard owner should have alongside his User's Manual.

The next book I recommend for the more experienced user, is Williams and Dorner's First Book of OSI, published by Aardvark Technical Services. (Do not confuse this with a book with almost the same title, by Clothier and Adams, published by ELCOMP.) Williams and Dorner provide much of the same information as Carlson, with less introductory material, and more technically sophisticated material. Williams and Dorner's book is not for the beginner, as Carlson's is, so this should be the second book to buy.

The User's Manual does have some good points, namely a good job of printing and production. Of the books I have mentioned, it has the best graphics table and the best hex-to-decimal conversion table. Carlson has the most complete map of BASIC ROM entry points. Williams and Dorner go into more detail on what the ROM routines do.

The First Book of Ohio Scientific and Second Book of Ohio Scientific by Clothier and Adams contain mostly promotional material reprinted from OSI newsletters and entries from the
"Small Systems Journal.' Most of the informative material here is also available, and better presented in Carlson's or Williams and Dorner's books.

Unfortunately, that about covers the available books written specifically for the OSI user. In addition to these books, two other sources of information exist: periodicals and plans for sale.

Two of the best periodicals were described last month, the OSIO Newsletter and PEEK(65). I also recommend the Aardvark Journal, which is now about six issues old. This is a bimonthly journal, published by a leading supplier of software for OSI systems. For more information write to: Aardvark Journal, 1690 Bolton, Walled Lake, Michigan 48088.

There is one other OSI-only publication, the Independent Newsletter, O. S. I. U. I. N. put out by Charles Curley at 6061 Lime Ave., \#2, Long Beach, California 90806. I have seen only one issue of this, and I don't feel it is enough to judge this relatively young newsletter.

MICRO publishes at least one OSIrelated article each month as well as this column. COMPUTE! has an "OSI Gazette' and Kilobaud Microcomputing runs about four or five OSIrelated articles per year.

All of these publications supply short programs and hardware projects of real utility as well as good introductory material.

Finally, it is possible to buy plans and/or kits for various modifications to the Superboard. Ads for these run in MICRO and other publications, and similar plans can be found in the abovementioned publications. For instance, Video Mods, to increase the number of characters displayed per line, are described in Aardvark \#5 (simple), and PEEK(65) \#11 (complex).

I plan to publish a more complete list of OSI information resources in a future column. I am sure that I have overlooked some newsletters and magazines. I am particularly interested in boards or kits or plans that will: expand the Superboard memory, expand the video display, increase the cassette speed, and provide RS 232 and modem support. Please send catalogs, etc. in care of this column, to ensure your product's inclusion in this list.

\section*{Complete AIM 65 Expansion}

For complete AIM 65 expansion, Forethought Products brings you the AIMMate Series, quality expansion products with price, performance and versatility that puts them in a class of their own.


AIM-Mate Series expansion, including RAM (to 48K), PROM, I/O, video and floppy disk interface, STD BUS interface, parity protection and more, lets you configure the kind of system you need.

The compact AIM-Mate case puts it all together in a sturdy, portable, desk top unit.

Write today for complete details on the AIM-Mate System- AIM 65 expansion products for the professional.

\section*{IFORETHOUGHT \\ PRODUCTS}

8707 C Dukhobar Road, Eugene, Oregon 97402 (503) 485-8575


The TINY Pascal System turns your APPLE II micro into a 16-bit P-machine. You too can learn the language that is slated to become the successor to BASIC. TINY Pascal offers the following:
- LINE EDITOR to create, modify and maintain source

CCIMPILER to produce P-code, the assembly langauage of the P-machine
- INTERPRETER to execute the complied P-code (has TRACE)

Structured programmed constructs: CASE-OF-ELSE, WHILE-DO, IF-THENELSE, REPEAT.UNTIL, FOR-TOIDOWNTO-DO, BEGIN-END, MEM, COAST, VAR ARRAY

Our new TINY Pascal PLUS + provides graphics and other builtin functions: GRAPHICS, PLOT, POINT, TEXT, INKEY, ABS AND SQR. The PET version supports double density plotting on 40 column screen giving \(80 \times 50\) plot positions. The APPLE II version supports LORES and for ROM APPLESOFT owners the HIRES graphics plus other features with: COLOR, HGRAPHICS, HCOLOR, HPLOT, PDL and TONE. For those who do not require graphics capabilities, you may still order our original Tiny Pascal package.

TINY Pascal PLUS + GRAPHICS VERSION
PET 32K NEW Rom cassette.
PET 32K NEW Rams diskette
APPLE II \(32 \mathrm{~K} / 48 \mathrm{~K}\) w/DOS 3.2 or 3.3 ..
TINY Pascal NON-GRAPHICS VERSIONS
PET \(16 \mathrm{~K} / 32 \mathrm{~K}\) NEW Poms cassette
PET \(16 \mathrm{~K} / 32 \mathrm{~K}\) NEW Rom diskette.
APPLE If w/ROM Applesoft 32 K w/DOS.
APPLE 11 w/RAM Applesoft 48 K wIDES.
USER's Manual (refundable with software order). 6502 Assembly Listing of INTERPRETER -graphics . . . . . . 6502:Assembly Listing of INTERPRETER-non graphics. \(\mathbf{\$ 2 0}\)
 topis via TME SCURCE. CLOBS2.


ABACUS SOFTWARE
P. O. Box 7211

Grand Rapids, Michigan 49510
- Over 100 MitRes colors!
- Drawing program includes automatic filling and user-definable "paintbrushes".
- The finest 3-D graphics available, capable of color and multiple figures with machine language speed.
- Create shape tables with paddles or keystrokes.
- Hit-Res text anywhere on the screen. Define your own fonts.
- Thorough, easy-to-use manual even shows how to use drawings and 100 color fill routine in your own programs.
\(\$ 5995\) on disk
\begin{tabular}{l} 
Dos 3.2 or 3.3 , requires \(\Lambda_{p p i e s o f t}\) \\
irmiwe or language system.
\end{tabular}

VISA and MasterCard accepted Dealer inquiries invited

Post Office Box 432 West Chicago, IL 60185 (312) \(231-0912\)

Apple il is a trademark of Apple Computer, Inc.
From AVANT-GARDE CREATIONS \(\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow\)
SENTENCE DIAGRAMMING PARTS OF SPEECH USAGE

\section*{Includes:}
- 3 Levels of Difficulty, 20 sentences per level
- Optional Record-Keeping on Data Disk
- Optional Printouts of Records
- Teacher-formatted Requirements for Advancing to the Next Level
- Teacher-formatted Options to Exclude Actual Sentence Diagramming
- Student Option for Record-Keeping


\title{
BASIC Program Converter Between SYM and KIM
}

\section*{This program allows a person to transfer BASIC programs from SYM to KIM or from KIM to SYM without having to spend hours typing in and debugging the programs.}

\section*{Lee Chapel}

2349 Wiggins
Springfield, Illinois 62704
Have you ever wanted to put somebody's SYM BASIC program on your KIM without spending hours typing the program in and debugging it? Or have you ever wanted to put somebody's KIM program on your SYM? This converter program allows you to easily transfer BASIC programs from SYM to KIM, or from KIM to SYM. It is especially useful for long, 8 to 12 K , programs. I used it to transfer a 14 K program I call "Monster Combat" from KIM to SYM in roughly half an hour.

\section*{Description of BASIC Format}

The BASIC format used in the SYM and KIM is as follows. The first two bytes of a program line point to the start of the next line (see diagram). The next two bytes are the line number, and the remaining bytes are BASIC tokens or data in ASCII. A token is one byte ( 80 to C5 hex) which represents a 2 to 6 letter BASIC word.

\section*{Tokens or Data in ASCII Code (Hex)}
\begin{tabular}{ll} 
LO HI & LO HI \\
Byte & Byte \\
Next line & Line number \\
pointer in hex & in hex
\end{tabular}

The tokens in both SYM and KIM (such as INPUT and PRINT) are the same hex value. For example, on both systems INPUT is 84 in hex, and PRINT is 97 in hex. An example of how a BASIC line is formed is shown in figure 1.

Figure 1


\section*{Comparison of SYM and KIM Systems}

KIM begins program storage at 4000 hex, SYM begins storage at 0200 hex. Since the data and the tokens are the same, only the line pointers and actual program location in memory need to be changed. The program can be relocated on SYM by use of the Block Move, " B ". On KIM the use of a supplementary monitor such as "XIM" can be used to relocate the program. It's also possible to relocate the program by using the tape load FF function and new address. The regular KIM tape record and playback are the same as the low speed SYM tape record and playback.

The only remaining difference between the two systems is the pointer values. They all need to be changed to reflect the new location in the other system. The BASIC converter program is written to convert all these pointer locations. The BASIC program takes only a few seconds to convert long programs, so speed is not a problem.

\section*{Converter Program Description}

In both program listings, \(A\) is the address where the low byte of the first pointer is located. B is the value found in the address A , and C is the value of the high byte of the pointer. \(D\) is set
equal to the first hex digit of C , and E is set equal to the other hex digit of C . \(D, E\), and \(B\) are then placed in an equation where F becomes the value of the address of the next line pointer. Since only the high byte needs to be changed, the address \(\mathrm{A}+1\) is POKEd with a new value. \(A\) is then set equal to \(F\) and the entire process continues with a new value of the line pointer until two zeros are found in adjacent addresses.

\section*{Program Examples}

The following is an example of a KIM to SYM conversion. First check addresses 7D and 7E. These are, respectively, the low and the high bytes of the end of the program being transferred. Make a record of these values and make a recording from 4000 hex to the address in those two memory locations at normal record speed. Next the tape is loaded into SYM at slow speed and placed in memory so that it starts at 4000. SYM BASIC is then entered with a J 0 and when Memory Size is asked for, a low value, such as 1500 , should be entered. Type in the converter program. Make sure there are no errors and then run the program. Once the program finishes, go back into the monitor, move the program at 4000 hex down to 0200 hex. Take the value in 7D that you noted and subtract 3E hex
from it, and place that number in 7D. Next take the value noted for 7 E and place it in 7E. Then set memory locatons 87 and 88 to the proper size of your BASIC program area.

Converting from SYM to KIM is similar. Again, check memories 7D and 7 E and make a note of them. Make a tape of the program in the SYM's low speed format. Load it into KIM and place it in memory so that it starts at 5000 hex. Then start KIM BASIC and when you are asked for Memory Size, give a low value such as 17000 . Type in the conversion program, make sure there are no errors, and run it. When the program finishes, go back to the monitor and move the converted program from 5000 to 4000 . Take the value noted for 7D and add 3E hex to it. Take the value noted for 7 E , and place it in 7E. Change memory locations 87 and 88 to the proper size of your BASIC program memory. After moving and testing, a final tape dump can be made.

\section*{Conclusion}

I have used both these conversion programs successfully on several BASIC programs. Any USRs or special

I/ Os will have to be modified. It should also work on AIM, assuming the tokens are the same. These programs have saved many hours of retyping programs between systems.

Lee Chapel has been working with KIM and SYM for about 3 years. He is majoring in Computer Science at the University of Wisconsin-Madison and has worked there as a programmer in the Agriculture Economics department
```

 Listing 1
 5 REM SYM TO KIM CONVERSION IN BASIC
10 A=20481
15 IFPEEK (A) =0ANDPEEK (A+1)=0THENEND
20 B=PEEK(A):C=PEEK (A+1)
25 D=INT(D/16):E=C-16*D
30 F=4096*D+256*E+B+19968
35 POKEA+1,C+62
40 A=F:GOTOl5
45 END
Listing 2
5 REM KIM TO SYM CONVERSION IN BASIC
10 A=16385
15 IFPEEK (A)=0AND PEEK (A+1)=0THENEND
20 B=PEEK (A):C=PEEK (A+1)
25 D=INT (C/16):E=C-D*16
30 F=4096*D+256*E+B
35 POKEA+1,C-62
40 A=F:GOTO15

```



FOR APPLE, TRS-80 KEYBOARD EXIDY, AND ALL OTHER 16K DYNAMIC SYSTEMS USING MK4116-3 OR EQUIVALENT DEVICES.
* 200 NSEC ACCESS, 375 NSEC CYCLE
* BURNED -IN AND FULLY TESTED
\(\star 1\) YR. PARTS REPLACEMENT GUARANTEE
\(\star\) QTY. DISCOUNTS AVAILABLE


Microbes
and Updates

Mike Rowe
Microbes \& Updates
P.O. Box 6502

Chelmsford, MA 01824
This month, we offer the following improvements, rather than corrections.

Les Cain, of Grand Junction, Colorado, sent this update to his article in the January issue (32:75): There is a problem with Control C in "Fun with OSI. " I apologize to the readers for the oversight in not replacing the Disk control C POKE with the proper ROM POKE. To correct the problem, change the following lines:

Line 760 POKE 530,1:K = 57088 Line 1710 POKE 530,0:END Line 1740 POKE 530,0:END

Charles F. Taylor, Jr. of Monterey, California, offers the following tip: "Business Dollars and Sense in Applesoft" by Barton M. Bauers, Jr. (MICRO 27:65] was most interesting and useful. Here are a couple of simple changes which will make the routine '"Mask' even more useful:
1. "Mask" produces output leftjustified in a variable-width field. While this is useful for some applications, it will not do for producing columns of figures. Ideally, the output should be right-justified in a predetermined field width (specified by the user). This can be accomplished by adding lines 16 and 15025 and by modifying line 15110 as shown below:
```

 16 FW = 12: REM SET FIELD
 WIDTH (5 = FW = 12)
 15025 BL\$ = " " ':REM 8 BLANKS
15110 XW\$ = XV\$ + LEFT$(BL$.
FW-4-LEN(XX$)) + XX$ +
XZ\$

```

Line 16 as shown, produces the maximum allowable field width and is sufficient to handle dollar amounts from \(\$-999,999.99\) to \(\$ 9,999,999.99\), which is the range handled by Mr. Bauers' original routine, and which should be adequate for most small applications. (It is certainly adequate for my personal checkbook.) The field width can be changed anywhere in the calling program by assigning the desired value to the variable "FW". Line 15110 as shown left-justifies the leading " \(\$\) ", but this is easily changed.
2. Because of the behavior of the function "INT" (described by Mr. Bauers in his article), the routine as it stands will round fractional cents incorrectly for negative amounts, e.g. -1.009 rounds to -1.00 instead of - 1.01. (Fractional cents occur most often when computing percentages.) Here is a simple fix to line 15 which solves the problem:
\[
\begin{aligned}
& 15 \text { DEF FN VL }(X)=\operatorname{INT}((X+ \\
& \left.\left.\operatorname{SGN}(X)^{\star} .0001\right)^{*} 100+.5\right)
\end{aligned}
\]

John P. Molineaux of Cheverly, Maryland, sent this enhancement: There is always a better way. On reading Frank Chipchase's excellent article on "Better Utilization of Apple Computer Renumber and Merge Pro\(\mathrm{gram}^{\prime \prime}\) in the August 1980 issue (27:17), I was struck by the awkwardness of the series of EXEC file POKEs required to configure the \(\mathrm{A} / \mathrm{S}-\mathrm{R} / \mathrm{N}-\mathrm{M}\) program. Machine language is far better than Applesoft at POKEs and it doesn't fill the screen with Applesoft prompt characters (]).

Recall that HIMEM:32352 is equivalent to POKE 115,0:POKE 116, 142. Hiding A/S-R/N-M and resetting the \&-pointer therefore translates to:
\begin{tabular}{ll} 
Assembly & Decimal \\
LDA 0 & 1690 \\
STA 115 & 133115 \\
STA 1014 & 141246,3 \\
LDA 142 & 169142 \\
STA 116 & 133116 \\
STA 1015 & 141247,3 \\
LDA 76 & 16976 \\
STA 1013 & 141245,3 \\
RTS & 96
\end{tabular}

If this short program is appended to the front of the \(A / S-R / N-M\) and the whole mess is BSAVEd as a unit under the name RENUM, then the loading and reconfiguration is quickly achieved by

\section*{BRUN RENUM}

Here's how:
1. RUN Apple's RENUMBER from the system disk.
2. POKE in the 20 bytes of the program as follows:

POKE 36332,169
POKE 36333,0
POKE 36334, 133
POKE 36335,115
POKE 36336,141
POKE 36337,246
POKE 36338,3
POKE 36339, 169
POKE 36340, 142
POKE 36341,133
POKE 36342,116
POKE 36343,141
POKE 36344,247
POKE 36345,3
POKE 36346, 169
POKE 36347,76
POKE 36348,141
POKE 36349,245
POKE 36350,3
POKE 36351,96

Of course, the monitor is zippier on this kind of task, if you want to enter the hex equivalents of the decimal POKEs in \$8DEC through \$8DFF.

\section*{3. BSAVE RENUM,A36332,L2068}

Notice that an additional 20 bytes spill over onto one more track in the RENUM data set.

This way of saving the program saves a second or two on each run and dispenses with the screenful of empty " \(]\) " lines that scoot your last display off the screen. After the BRUN RENUM, the 20-byte program is eventually destroyed the next time an Applesoft string is created.


Mike Rowe
P.O. Box 6502

Chelmsford, MA 01824

\section*{Software Catalog: XXX}
\begin{tabular}{ll} 
Name: & The DI-SECTOR Disk \\
System: & Apple II, Apple Plus \\
Memory: & 48K \\
Language: & ROM Applesoft, \\
& Assembly \\
Hardware: & \begin{tabular}{l} 
Disk Drive, optional \\
\\
\end{tabular} \begin{tabular}{l} 
printer, language card
\end{tabular}
\end{tabular}

Description: A set of seven disk utility programs to help 'DI-SECT' your disks. Now you can easily display and edit any sector of a disk, list sectors used by a file, create a new VTOC, display free and used sectors, create 'EXEC' files easily, print text files on the screen or a printer, and load the language card with the old ROM code.
Price: \(\quad \$ 20.00\) on disk postpaid. Includes both DOS 3.2 and 3.3 versions, and documentation.
Author:
Available: Mike Rowe Productions
P.O. Box 43504

Tucson, Arizona 85733
Name:
System:
Memory:
Language:
NDE-Package
CBM Commodore
32K
BASIC
Hardware: CBM 3032/
CBM 3040/CBM 3022
Description: It is a whole package for handling the results of X-Ray-Examinations and liquid dye examinations of welds, 6 languages (German, Italian, French, English, Spanish and Portuguese), aic implemented.
\begin{tabular}{ll} 
Copies: & Disk \\
Price: & \(\$ 800.00\) \\
Author: & M. Bauer \\
Available: & \begin{tabular}{l} 
M. Bauer \\
\\
\\
\\
\\
\\
\\
\\
Aindorferstr. 86 \\
D-8000 Muenchen 2A \\
West Germany
\end{tabular} \\
Name: & 0-1. Options \\
System: & PET \\
Memory: & 8K \\
Language: & BASIC \\
Hardware: & PET/CBM
\end{tabular}

Description: Options are evaluated. A unique measure of option value is computed and used to compare options for up to three expiration dates and three striking prices. Normal prices for puts or calls may be computed for any assumed situation and tables printed as a function of stock price.
Price:
Author:
Available:
\(\$ 15.00\) for cassette and documentation
Claud E. Cleeton
Claud E. Cleeton
122-109th Ave., S.E. Bellevue, Washington 98004

Name:
System:
Memory:
Language:
Hardware: One drive. Either 13 or 16 sector controller.
Description: Simply stated, the ULTIMATE ACTION GAME. If you're looking for fast Hi-Res action with color, sound and action to rival Atari's Galaxian game, then this is it. Make it past the first two levels and the third level will really kill you. Hundreds sold in the first week of sale.
Price: \(\quad \$ 24.95\)
Author: Nasir Gebelli
Available: Sirius Software
1537 Howe Ave., Suite 106
Sacramento, California 95825

Name: \(\quad\) Commodity File
System: Apple II, Apple Plus
Memory: 32 K with Applesoft ROM or 48 K with Applesoft RAM
Language: Applesoft II
Hardware: Disk II, 132 column printer [optional]
Description: Commodity File stores and retrieves virtually every commodity traded on all Future's exchanges. A self-prompting program allowing the user to enter short/long contracts. Computes gross and net profits/losses, and maintains a running cash balance. Takes into account any amending of cash balances such as new deposits or withdrawals from the account. Instantaneous readouts (CRT or printer) of contracts on file, cash balances, \(\mathrm{P} / \mathrm{L}\) statement. Includes color bar graphs depicting cumulative and individual transactions. Also includes routine to proofread contracts before filing.
Price: \(\$ 19.95\) plus \(\$ 2.00\) ( \(\mathrm{p} \& \mathrm{~h}\) ) first class mail.
Author: Mind Machine, Inc.

Available: Mind Machine, Inc.
31 Woodhollow Lane Huntington, New York 11743

Name: SEX-O-SCOPE \({ }^{\text {tm: }}\) THE PRIVATE-LIFE HOROSCOPE \({ }^{\text {tm }}\)
System: Apple II or TRS-80
Memory: 32 K for screen version, 48 K for printout version
Language: Apple II-Applesoft in ROM with DOS 3.2; TRS-80-Disk BASIC 2.3
Hardware: Apple II-1 disk with screen version, 2 disks with printout version. TRS-80-2 disks with both versions.
Description: Casts an accurate horoscope, then interprets it from a sexual viewpoint in 1500 words or more. Not just a paragraph about your sign, but rather a reading of all the planets, signs and houses in a horoscope that is unique to the individual. Text, by best-selling author of planets In Love and former editor of Sexology Today, outlines tastes, turnons and hang-ups in a tolerant, witty style. Computations are precise within a tenth of a degree for any date and time from 1880 to 2000.
Price: \(\quad \$ 30.00\)-screen version
\(\$ 200.00\)-printout version (includes license to reproduce textual material commercially)
Author: John Townley and AGS Software
Available: AGS Software
Box 28
Orleans, Massachusetts 02653

Name: \(\quad\) The Ultimate Catalog
System: Apple II/Apple II Plus
Memory: Min. 20K (ROM
Applesoft)
Language: Applesoft and Machine RWTS
Hardware: Apple II, Disk II, DOS 3.2 Description: Now you can format your directory to appear any way you wish. Block similar programs together; write
headers mid-directory; separate by sections. This 5 K , menu-driven utility is easy to use and performs the following functions: Alphabetize any portion or all of directory, move any file, exchange any two files, highlight or remove highlighting from any file name, insert blank line|s|, delete any file, lock or unlock all files, delete or restore all files.
Price: \(\quad \$ 6.50\) for listing/
instructions
Author: Larry Abrams
Available: ARIES SOFTWARE
P.O. Box 58

Los Altos, California
94022
Name: The Math Machine
System: Apple
Memory: \(\quad 32 \mathrm{~K}\)
Language: Applesoft in ROM
Hardware: Disk, optional printer Description: Kid-tested, effective instructional software to improve math skills. Covers pre-math through division with over 110 skill levels. Designed by educators and written by programmers for use by parents and teachers. Includes such features as: reinforcement system, management, record keeping, individualization, personalized lessons, performance objectives, and immediate feedback.
Price: \(\quad \$ 79.95\) includes original and back-up disk, teacher and parent manual, support.
Author: Larry Johnson
Available: SouthWest EdPsych Services
P.O. Box 1870 Phoenix, Arizona 85001

Name: \(\quad\) The Mailing Label and Filing System
System: Apple II
Memory: 48 K
Language: Applesoft
Hardware: Apple II, Disk II (one or two drives)
Description: Has loads of features: binary sorting; 1-3-second access of records by name or record number; user formatted; optional 9-digit zip code update; performs COUNT/SORTS which enables the user to display a certain type of population off the disk and/or make print-outs or mailing labels; reversible directory reading; special backup programs, insert programs, copy-by-record (for backup) programs; automatic formatting file and directory updating; edit; delete; write; count; read; print; customized mailing labels, quicksort utilization; much more.

Price:
Author: Available: Avant-Garde Creations Avant-Garde Creations P.O. Box 30161 MCC Eugene, Oregon 97403

Name:
System: Apple II or Apple II Plus Memory: 48K
Language: \(\quad C P / M\), (Machine Language)
Hardware: Disk II (DOS 3.2 or 3.3), Z-80 Softcard, Micromodem II or most other communications devices, 80 -column board or external terminal optional.
Description: Upload and download data files between the Apple and another computer. A number of "luxury' features are also provided. Commonly used systems can be put into a directory for auto-dialing, keyboard Macros allow you to define strings for output with simple keystrokes for fast log-ins to system, or to issue various commands within the system. Tabledriven prefix keys allow you to produce any character not already on the Apple keyboard without losing any other keys! Fully compatable with standard \(C P / M\) sequential text files, and can send files from disk of any size, and can receive up to 36 K of data at a time. Auto-save mode will send XOFF character to host, save file (with operator prompting) and then continue. Price: \(\quad \$ 79.95\), introductory (until May 1, 1981)
Author: Available: Southwestern Data Systems
P.O. Box 582-M

Santee, California 92071

Name: Display-it
System: OSI, C1P or Superboard
Memory: 4 K
Language: 8 K BASIC-in-ROM
Description: Displays messages from right to left in large letters made up of any graphics character. Messages can be up to 255 characters long.
Price: \(\quad \$ 5.95 \mathrm{ppd}\).
includes cassette and documentation
Author: \(\quad\) Brian and Craig Zupke
Available: - BC Software
9425 Victoria Drive
Upper Marlboro
Maryland 20870

Name: Small Business Accounting (SBA)
System: OSI C4P MF
Language: BASIC under OS65D
Hardware: Printer, 2 Disks (second optional)
Description: Provides double-entry journal system for cash flow analysis and reports. Automatic checking of distribution account totals at time of entry. User-defined fields in data base files; up to 99 expense and income accounts, 999 vendor/customer accounts, with names up to 72 characters. Six digit (XXXX.xx) capability in base module is expandable. Prints Income Statement, Trial Balance, Charts of Accounts and Vendor/ Customer lists. Summary financial information totalable by month, quarter, and YTD. Sorting is available on user specified fields. All records are MDMS compatible and code allows user system configuration.
Price: \(\quad \$ 100.00\) (3rd Class mail free, 1st Class add \(\$ 2.00\) ).
Includes: (1) program disk and (1) data disk with sample file. User manual and Accounting System Guide and sample source documents provided. Program listings only are available for \(\$ 20.00\) each.
Author: J.O. Rector
Available: Video Ventures
1708 Beechwood Avenue Fullerton, CA 92635

Name: GRAFPAK APPLE
System: Apple II
Memory: \(\quad 32 \mathrm{~K}\) minimum
Language: Either BASIC and 6502 ML
Hardware: Disk and graphic printer Description: GRAFPAK is a family of programs for reproducing the Hi-Res pages using grab-the-wire printer graphics. \(1 \times\) and \(2 \times\) scaling are standard, and \(3 x\) and \(5 x\) are available with some printers. Normal and inverse inking is selectable, and variable indent is provided. Features vary with make and model of printer. Packages available for IDS-440,445 and 460, Anadex DP-9xxx family, and Epson MX-70 and MX-80 with graphic PROMs.
Price:
\(\$ 24.95 \mid+1.65\) in Ohio) includes diskette and user's guide (specify DOS release and printer model). Available: SmartWare

2281 Cobble Stone Court Dayton, Ohio 45431

\section*{MR. RAINBOW} catalog (over 100 pages). He PROMPTS you to PEEK at the latest collection of software and hardware products for your APPLE II \({ }^{\text {TW }}\)


VERSAWRITER II
A drawing tablet, simply plugs into your game \(/ / O\) port. Trace, draw,
design, or color any type of graphic. Adds words to program provides accurate record keeping and report generation for bowling leagues of up to 40 teams with 6 bowlers per team Needs 80 -column printer, 32 K Applesoft Rom. Disk...\$79.95

SUPER SOUND
Musical rhythms, pictures Creates schematics. computes Distance/Area of any figure. New - fill any area on the screen in seconds with over 100 different and distinct colors. Needs 32 K ADplesoft ROM and disk drive A bargain at \$249.95 gunshots, sirens laser blasts explosions... add these and many more exciting sounds to your Apple. Use them in your programs, or create your own SUPER SOUNDS. Needs 16K Applesoft. Have a blast for only \$12.95...Tape \$16.95 ...Disk

ADD \(\$ 2.00\) U. \(\$\). \(\$ 10.00\) FOREIGN FOR SHIPPING
CALIFORNIA RESIDENTS ADD 6\% SALES TAX
Don't see what you want here, then write or call today for your free catalog. We're saving one just for you.

Visa/Mastercharge welcome.


GARDEN PLAZA SHOPPING CENTER 9719 RESEDA BOULEVARD DEPT. 1MI NORTHRIDGE, CALIFORNIA 91324
PHONE (213) 349-0300


\section*{Solar Energy For The Home}

We've taken five of our most popular programs and combined them into one tremendous package full of fun and excitement. This disk-based package now of fers you these great games:
Mimic-How good is your memory? Here's a chance to find out! Your Apple will display a sequence of figures on a \(3 \times 3\) grid. You must respond with the exact same sequence, within the time limit.

There are five different, increasingly difficult versions of the game, including one that will keep going indefinitely. Mimic is exciting, fast paced and challenging-fun for all!
Air Flight Simulntion-Your mission: Take off and land your aircraft without crashing. You're flying blind -on instruments only.
A full tank of fuel gives you a maximum range of about 50 miles. The computer will constantly display updates of your air speed, compass heading and altitude. Your most important instrument is the Angle of Ascent/Bank Indicator. It tells if the plane is climbing or descending, whether banking into a right or left turn.
After you've acquired a few hours of flying time, you can try flying a course against a map or doing aerobatic maneuvers. Get a little more flight time under your belt, the sky's the limit.
Colormaster-Test your powers of deduction as you try to guess the secret color code in this Mastermindtype game. There are two levels of difficulty, and three options of play to vary your games. Not only can you guess the computer's color code, but it will guess yours! It can also serve as referee in a game between two human opponents. Can you make and break the color code . . ?
Star Ship Attack-Your mission is to protect our orbiting food station satellites from destruction by an enemy star ship. You must capture, destroy or drive off the attacking, ship. If you fail, our planet is doomed. .
Trilogy-This contest has its origins in the simple game of tic-tac-toe. The object of the game is to place three of your colors, in a row, into the delta-like, mul-ti-level display. The rows may be horizontal, vertical, diagonal and wrapped around, through the "third dimension'. Your Apple will be trying to do the same. You can even have your Apple play against itself!
Minimum system requirements are an Apple II or Apple II Plus computer with 32 K of memory and one minidisk drive. Mimic requires Applesoft in ROM, all others run in RAM or ROM Applesoft.
Order No. 0161AD \$19.95


\section*{Paddle Fun}

This new Apple disk package requires a steady eye and a quick hand at the game paddles! It includes: Invaders-You must destroy an invading fleet of 55 flying saucers while dodging the carpet of bombs they drop. Your bomb shelters will help you-for a while. Our version of a well known arcade game! Requires Applesoft in ROM.
Howitzer-This is a one or two person game in which you must fire upon another howizer position. This program is written in HIGH-RESOLUTION graphics using different terrain and wind conditions each round to make this a demanding game. The difficulty level can be altered to suit the ability of the players. Requires Applesoft in ROM.
Space Wars-This program has three parts: (1) Two flying saucers meet in laser combat-for two players, (2) two saucers compete to see which can shoot out the most stars-for two players, and (3) one saucer shoots the stars in order to get a higher rank-for one player only. Requires Applesoft.
Golf-Whether you win or lose, you're bound to have fun on our 18 hole Apple golf course. Choose your club and your direction and hope to avoid the sandtraps. Losing too many strokes in the water hazards? You can always increase your handicap. Get off the tee and onto the green with Apple'Golf. Requires Applesoft.

The minimum system requirement for this package is an Apple II or Apple II Plus computer with \(\mathbf{3 2 K}\) of memory and one minidisk drive.
Order No. 0163AD \(\$ 19.95\)

\section*{Skybombers}

Two nations, seperated by The Big Green Mountain, are in mortal combat! Because of the terrain, their's is an aerial war-a war of SKYBOMBERS!

In this two-player game, you and your opponent command opposing fleets of fighter-bombers armed with bombs and missiles. Your orders? Fly over the mountain and bomb the enemy blockhouse into dust!
Flying a bombing mission over that innocent looking mountain is no milk run. The opposition's aircraft can fire missiles at you or you may even be destroyed by the bombs as they drop. Desperate pilots may even ram your plane or plunge into your blockhouse, suicidally.

Flight personnel are sometimes forced to parachute from badly damaged aircraft. As they float helplessly to earth, they become targets for enemy missiles.

The greater the damage you deal to your enemy, the higher your score, which is constantly updated at the bottom of the display screen.
The sounds of battle, from exploding bombs to the pathetic screarns from wounded parachutists, remind each micro-commander of his bounden duty. Press On, SKYBOMBERS-Press On!
Minimum system requirements: An Apple II or Apple II Plus, with 32 K RAM, one disk drive and game paddles.
Order No. 0271AD (disik-based version) \$19.95

* A trademark of Apple Computer Inc.

\title{
Apple* Software From Instant Software
}

\title{
Santa Paravia and Fiumaccio
}

\section*{Buon giorno, signore!}

Welcome to the province of Santa Paravia. As your steward, I hope you will enjoy your reign here. I feel sure that you will find it, shall we say, profitable.

Perhaps I should acquaint you with our little domain. It is not a wealthy area, signore, but riches and glory are possible for one who is aware of political realities. These realities include your serfs. They constantly request more food from your grain reserves, grain that could be sold instead for gold florins. And should your justice become a trifle harsh, they will flee to other lands.

Yet another concern is the weather. If it is good, so is the harvest. But the rats may eat much of our surplus and we have had years of drought when famine threatened our population.

Certainly, the administration of a growing city-state will require tax revenues. And where better to gather such funds than the local marketplaces and mills? You may find it necessary to increase custom duties or tax the incomes of the merchants and nobles. Whatever you do, there will be farreaching consequences. . . and, perhaps, an elevation of your noble title.

Your standing will surely be enhanced by building a new palace or a magnificent cattedrale. You will do well to increase your landholdings, if you also equip a few units of soldiers. There is, alas, no small need for soldiery here, for the unscrupulous Baron Peppone may invade you at any time.

To measure your progress, the official cartographer will draw you a mappa. From

it, you can see how much land you hold. how much of it is under the plow and how adequate your defenses are. We are unique in that here, the map IS the territory. I trust that I have been of help, signore. I look forward to the day when I may address you as His Royal Highness, King of Santa Paravia. Buona fortuna or, as you say, "Good luck". For the Apple 48K.
Order No. 0174A 99.95 (cassette version).
Order No. 0229AD \(\$ 19.95\) (disk version).

TO SEE YOUR LOCAL INSTANT SOFTWARE DEALER OR USE THE ORDER FORM BELOW ORDER


\section*{Apple Cassettes}


\section*{We Guarantee It!}


\title{
Apple][" Memory Management System
}

\section*{A LITTLE HISTORY}

Many years ago, when the Apple II first came out, it was possible to program a 48 K computer. At this time you were somewhat constrained to Integer BASIC and a cassette storage medium.

Shortly thereafter, APPLESOFT \({ }^{\text {IM }}\) appeared. The original (RAM) version improved upon the Apple's capabilities but reduced the programmer memory by about 12 K . You could now do more but had less memory to do it with.

The situation soon changed again when Apple introduced the APPLESOFT ROM card. For \$195 the programmer now had both Integer and APPLESOFT capabilities and 48 K available In keeping with tradition, Apple followed the ROM card with an even more classier act: the Disk drive. A majority of Apple owners now have a 48K Apple computer with Integer BASIC, APPLESOFT, and a Disk Operating System (DOS). But the 48K in the computer is no longer fully available to the programmer since DOS occupies 10.5 K of memory (actually 10752 bytes). A 48K Apple actually has 37.5 K of programmable memory if DOS is booted.

\section*{APPLE II PLUS OWNERS}

Owners of Apple II PLUS \({ }^{\text {TM }}\) computers can follow the same procedure with an INTEGER ROM card in slot 4.

The final configuration of your Apple will be the same as above

\section*{SINGLE LANGUAGE ALSO}

If you don't need dual language capabilities (PLUS owners who only program in APPLESOFT, for example), then MMS will still relocate DOS on the 16 K RAM card in slot 0 . A full 48 K will still be available to the programmer

\section*{WHAT IS REQUIRED}
* 48 K Apple II or Apple II PLUS
- 1 or more disk drives.
- 1 or 2 16K RAM EXPANSION BOARDS or APPLESOFT or INTEGER ROM CARD - MEMORY MANAGEMENT SYSTEM by C.D.S.

ONE TIME GOOD DEAL
\begin{tabular}{|c|c|}
\hline MMS diskette & \$ 39.95 \\
\hline ANDROMEDA 16K RAM BOARD & \$195.00 \\
\hline ANDROMEDA 16K RAM BOARD plus MMS diskette & \$215.00 \\
\hline 2 ANDROMEDA BOARDS plus MMS diskette & \$375.00 \\
\hline
\end{tabular}

\section*{A FEW PROGRAMMER NOTES}

DOS is somewhat altered with MMS. The command INIT is disabled, so you should INIT all your diskettes prior to starting up with MMS. In addition. MAXFILES automatically defaults to 2 but can be changed if desired.

The MMS program uses page 3 ( \(\$ 300 .-\$ 3 F F\) ) for interfacing and it is not available for programmer use.

Regardless of your Apple's configuration, approximately 2 K of memory is devoted to the internal operating system (monitor)

Special configurations of MMS are available upon request.

\section*{THE MEAT OF THIS AD}

MEMORY MANAGEMENT SYSTEM (MMS) \({ }^{\text {TM }}\) by C.D.S. is a unique, exciting new way to get back the 10.5 K of memory alloted to DOS. Here's how it operates:
(1) A 48 K Apple is configured with
a 16K RAM EXPANSION BOARD in slot 0. and an APPLESOFT card or another 16K RAM EXPANSION BOARD in slot 4.
(2) DOS is booted as you normally would, using a DOS 3.3 Systern Master diskette, or DOS 3.2 BASICS diskette followed by a DOS 3.2 System Master.
(3) BRUN the MMS program.

In a few seconds your Apple computer will recognize both Integer BASIC and APPLESOFT AND the DOS will be relocated on the 16K RAM EXPANSION BOARD!

With DOS now resident on the 16K RAM board, 10.5 K of memory is released for your programming use.


\section*{16K EXPANSION BOARDS}

Currently there are three 16K RAM boards available for the Apple computer.

Apple Language \(\mathrm{Card}^{\text {TM }}\) MICROSOFT RAMCard \({ }^{T M}\) ANDROMEDA BOARD \({ }^{T M}\)
(retail \(\$ 495.00\) )
(retail \(\$ 195.00\) )
(retail \$195.00)
ALL of these boards will work with MMS. How ever, since we market the ANDROMEDA 16 K RAM EXPANSION BOARD, we are able to make the following offer:

\section*{HOW TO ORDER}

MMS and the ANDROMEDA 16K RAM EXPANSION BOARD are available through your local computer store.
Or you can order direct by calling COMPUTER DATA SERVICES at (516) 360-0988. VISA, Master Card. and COD accepted. Credit card and check orders are shipped postage - paid. Shipping charges are:
\(\$ 1.50\) for MMS
\(\$ 3.00\) for ANDROMEDA 16 K RAM BOARD

MEMORY MANAGEMENT SYSTEM (MMS) is a trademark of Computer Data Services (C.D.S.)

Apple II, Apple II PLUS, APPLESOFT, Apple Language Card are trademarks of Apple Computer Company.

RAMCard is a trademark of Microsoft.
ANDROMEDA 16K RAM EXPANSION BOARD is a trademark of ANDROMEDA, Inc.


\section*{6502 Bibliography: Part XXXI}
890. The Cider Press (October, 1980)

Weiglin, Peter C., 'Formatting," pg. 5-6. Formatting and printing backwards on the Apple.
Bernheim, Phil, "Initialize New Files Automatically," pg. 6 . A handy tip for handling files kept on a periodic basis. For the Apple.
Bernhein, Phil, "Another Way to Find Hidden Characters," pg. 6. A fix for hidden characters in Apple programs.
Bernheim, Phil, "Dates," pg. 8.
An easy way to encode and decode dates.
Hertzfeld, Andy, "Delete the Flashing Cursor," pg. 8. A short monitor routine to silence the flashing cursor.
Bernheim, Phil, "Converting String Dates," pg. 11. Routine to convert string dates to datum of the form MMDDYY.
Wilson, Gene, "Je M'Apple' PASCAL." Several Pascal programs for the Apple.
891. The Apple Barrel 3, No. 7 (September/October, 1980)

Anon., "File Cabinet Partially Exposed," pg. 5-6. A tutorial on the use of this important Apple utility.
Winter, Kevin, "Using the Backspace as a Delete Key," pg. 7.
A technique to add special functions to the Apple.
McGee, Pat, 'Pascal Problems," pg. 9-13. A number of problems with Apple Pascal and the fixes.
Barber, Bruce, "Screen Create," pg. 13-19. A poor man's graphic tablet for the Apple.
Meador, Lee, "Disassembly of DOS 3.2," pg. 19-31. The fifth installment of this excellent series, on the Apple DOS 3.2.
892. Stems from Apple 3, Issue 10 (October, 1980)

Sittel, Randy, "Are You Overtaxing Your Computer?", pg. 3.
A table of the current requirements of various Apple peripherals.
Ward, Dennis, "Display and Dec/Hex Converter," pg. 5. Two short programs for the Apple.
Anon., "Kent's Puzzle Entries," pg. 8-11.
A series of 18 short programs for the Apple.
Todd, Allen W., "Blockedit," pg. 13-20.
An Apple Pascal disk utility, allowing examination and editing of any diskette block.
893. The Apple-Dillo (October, 1980)

Sethre, Tom, "Roots," pg. 3.
Another installment of this tutorial on Apple machine language, dealing with handling keyboard input.
Teas, George, "Pascal Primer," pg. 5.
A new column to help novice Pascal users with helpful programming hints.

Huffman, David, "Personalizing Your Catalog Heading," pg. 5.

An Apple DOS 3.2.1 tutorial.
Bartley, David, "Getting There Faster in Applesoft BASIC," pg. 6-7.

Speed up your Applesoft programs.
Sethre, Tom, "The Official Computer Game Player Cheater's Guide," pg. 7-8.
Sethre, Tom, "Memory Display," pg. 9.
A machine language routine for the Apple.
894. The G.R.A.P.E. Vine (September, 1980)

Sander-Cederlof, "One-Liner," pg. 1. A one-liner for the Apple.
Anon., "Hi-Res Plotting of Characters from Character Table," pg. 2.
A Hi-Res writing program.
Anon., "Faster Shell," pg. 8.
This Faster Shell Sort is approximately \(25 \%\) faster than the Hibbard Sort appearing in the last issue.
895. The Seed 2, No. 10 (October, 1980)

Anon., "Apple Pi Conventions," pg. 7. A listing to standardize title pages on donated pro-grams-for the Apple.
896. Applications 3, No. 2 (August, 1980)

Camiller, Derek, "GET vs. INPUT," pg. 12.
Simplify your input statements and responses.
Webster, Ian, "Telecom, Modems and Other Mysteries," pg. 14-17.

All about Modem use with the Apple in Australia.
Webster, Ian, "Relocation of Apple Machine Code," pg. 20-25.
This program will relocate machine code programs.
Haines, Ron, "Some Notes on the UCSD Assembler," pg. 26-27.

Additional comments to augment skimpy documentation of the Apple Pascal system.
Fields, Randy and Thompson, C., 'Shorten Disk Commands," pg. 28. Significantly shorten the Apple Disk Operating commands.
897. Radio Electronics 51, No. 10 (October, 1980)

Staff, "Buyer's Guide to Home Computers," pg. 45-84. Among others, covers Apple; PET, OSI and Atari micros, including peripherals and accessories.
898. Fort Worth Apple User Group Newsletter (FWAUG) 2, No. 2 (October, 1980)
McVay, Ray, "Ampersoft," pg. 2-4.
Three routines for machine language string manipulation to forestail garbage collection and quicken sorting.

Meador, Lee, "DOS 3.2 Disassembly-9," pg. 6-21.
This installment of this important series discusses the Output State Machine and the data area and tables of commands and error messages.
Matzinger, Bob, "Make a Hello a Binary File," pg. 23.
A tricky way to put the boot program in Binary, for the Apple.
899. Personal Computing 4, No. 10 (October, 1980)

Fischer, Mike, "Word Search," pg. 34-39.
An Apple program to solve those jumbled letter matrices with hidden words.
Lubar, David, "Problem Solving and Computers," pg. 49-50.

Use of the Apple in problem solving.
Gaylord, Sam, "Cash In On the Power of Pascal," pg. 52-53.

Pascal program on the "melt value" of silver coins.
Jones, Jeremy C., "A Computer Spelling Exercise," pg. 54-55.

An educational program for OSI computers.
Welsh, Dave, "Rating BORIS 2.5," pg. 78-90.
All about the 6502 -based computer programs called BORIS 2.5/Sargon 2.5.
900. MICRO No. 29 (October, 1980)

Berger, Thomas R., "An OSI Cheep Print," pg. 7-12. Hardware and.Software to interface OSI systems with a printer.
Morris, Gary A., "PRINT USING for Applesoft," pg. 14-17.

Program permitting user-defined formatting of the output of Applesoft.
Kolbe, Werner, "Define Your Own Function Key on
PET," pg. 19-20.
Prograrn routine to call a commonly used BASIC function from the keyboard.
DeJong, Marvin L., "An Improved Morse Code Receive Routine and Interface," pg. 23-26.

Hardware and Software for the AIM 65.
Borton, David, 'Undedicating A Dedicated Microcomputer," pg. 27-28.

Developing a time-shared process controller for the KIM-1.
MacDonald, R., "A 'Stop-On-Address' Routine for KIM." A routine to debug more efficiently through the use of a trap to stop on a specified address.
Schultz, Robert, "Tiny Pilot Complemental (Co-Pilot)." Modification to Tiny Pilot improving the 'Match' statement-for the SYM.
Boynton, G.R., "For Multiple File Tape Backups," pg. 36-38.
This PET utility takes the drudgery out of making multiple backup copies of cassette files.
Wright, Loren, "PET Vet," pg. 39.
Comments on PET documentation and literature references.
Burcher, P.E., "Biorythm: An AIM BASIC Programming Exercise," pg. 51-55:

Programs providing an interesting demonstration for using the AIM and its printer.
Moyer, LeRoy, "Hexadecimal Printer," pg. 57-58.
A simple Apple II program permitting the user to specify the limits within which he wants the disassembler to operate.

Mulligan, John P., "Programming with Pascal," pg. 59-63.
Tutorial and Sorting routine for Apple Pascal.
Ellis, Dawn E., "Cassette Label Program," pg. 65-67.
Let the computer do the dirty work printing labels for those tape cassettes. For the Apple.
Rowe, Mike (Staff), "The MICRO Software Catalog: XXV,'" pg. 73-75.

Sixteen new items of software for 6502 systems are reviewed.
Dial, Dr. William R., "6502 Bibliography: Part XXV," pg. 76-77.

Some 65 new references to the extensive 6502 literature.

\section*{901. PEEK(65) Vol. 10 (October, 1980)}

Williams, Jim, "Cold Start/System Crash Recovery," pg. 4-5.

Recovering from system crashes caused by errant POKE statements on OSI micros.
Lewton, Maurice P., 'C1P or Superboard II GET Routine," pg. 7.

A listing for OSI micros providing a 'GET' routine.
Criscione, J.R., Jr., M.D., "More on OS-65U Password
File Protection," pg. 11.
Comments and listing for program security.

\section*{902. Ham Radio 13, No. 10 (October, 1980)}

Skeen, W.S., "A CW Keyboard Using the Apple II Computer," pg. 60-62.

Program Listing and simple interface hardware for using the Apple II with your Amateur station.
903. The G.R.A.P.E. Vine (October, 1980)

Anon., "Automatic Free Space with Catalog," pg. 3. Short modified routine for the booting of your disks.
Anon., "DOS Changes on Disks," pg. 4.
How to personify your disks.
Anon., "What is Theomatics?", pg. 5-7.
Discussion and two listings related to biblical literature.
904. Creative Computing 6, No. 10 (October, 1980)

McClure, Jim, "The C2-4P Ohio Scientific Computer," pg. 17-23.

A review of a new micro.
Lubar, David, 'Sound Advice," pg. 26-29. DAC's and Music boards for 6502 machines.
Ahl, David H., "Easy Writer," pg. 34.
A review of a word processor for the Apple.
Platt, Charles, "Bargain-Basement Word Processing," pg. 54-55.
Review of the WP6502 word processor useful for OSI micros, Apple, PET, Atari, etc.
Carpenter, Chuck, "Apple-Cart," pg. 162-167.
How to avoid 'extra ignored' messages, saving strings on tape, listing for AC control routine, etc.
Yob, Gregory, "Personal Electronic Transactions," pg. 168-172.

How to get lower case letters on a PET, program providing automatic repeat of keys, PET machine language tutorial and examples, etc.
Blank, George, "Outpost: Atari," pg. 174-177.
String array demonstration, precautions for input/output, printer interface, programmer's aid, etc.

\section*{905. Apple/Sass (October, 1980)}

Burson, Dick, "Name that Tone!", pg. 9. Tone generating routines for the Apple.
Anon., "Math Drill II,' pg. 14.
An educational Apple program.
Golding, Val J., "Hidden REM Formatter." Two listings for the Apple.
906. Softalk 1 (October, 1980)

Wagner, Roger, "Assembly Lines," pg. 3-4. Everyone's machine language guide.
907. Dr. Dobb's Journal 5, Iss. 9, No. 49 (October, 1980) Gordon, H.T., "Opcode Design: 9 or 16 Bits?", pg. 22-23. Discussion of 6502 code and codes of other microprocessors.
908. The Harvest 2, No. 2 (October, 1980)

Peterson, Todd C., "A Free Remote Control for Your Apple."

Use a receiver, a transmitter, and a patch cord for a remote control set-up.
Anon., "Parallel vs. Serial Printer Boards," pg. 7. A discussion of the merits of these two options.
Anon., "Need to Get a Text File to a Printer in Pascal?", pg. 8.
A pascal starter routine for the Apple.
Holle, Dave, "Physical and Logical Sectors of DOS 3.3," pg. 9.

Some information on the new Apple DOS system.
Robbins, Mike, " 16 Sector Patch for Dan's Disk Utility," pg. 9.

Just two lines added to fix this one up for 16 sectors.
Alexander, Leon, "Leon's Bell," pg. 10.
A short machine program that toggles the bell upon an INPUT or GET statement on the Apple.
909. The Apple Shoppe 1, No. 7 (July/August, 1980)

Staff, "Pascal PEEK and POKE," pg. 7-8. A short tutorial for Apple Pascal.
Jeske, Mark, "General Purpose Plotter Program," pg. 11-13.

An educational plotting program for Apple.
Staff, "Programming the Graphics Tablet," pg. 14-18. A tutorial and a Hi-Res Labeling program for the Apple fitted with a Graphics Tablet.
Crouch, Bill, "Down to Business," pg. 18-20. A better formatting routine and hints on developing a business application for the Apple.
Staff, "Spinterm Hi-Res Dump in Assembly," pg. 21-27. An improved Apple program.
Hugard, James, "Printing in Pascal," pg. 27-29.
Some useful information for Pascal users.
910. O.S.I. Users Independent Newsletter No. 6 (October, 1980)

Curley, Charles, "65D," pg. 2-4.
Here starts a series of articles on the innards of 65D.
911. KB Microcomputing No. 46 (October, 1980)

Baker, Robert W., "PET-Pourri," pg. 12-14. Proganal is a useful PET utility. Several other items of PET software are reviewed.

Owens, James, "Computerized Estate Planning," pg. 31-35.
An OSI program to take the tedium out of this chore.
Perdue, William H., "PET Mini Monitor," pg. 88-91.
A short PET routine makes creating and saving machine language programs a snap.
Shawcross, William E., "OSI in the Sky," pg. 102-104.
A mail labeling program for the OSI family.
Carlson, Edward H., "Speed Up Your BASIC Programs," pg. 128-130.

Hints for better programs on the OSI C2-4P.
Phillips, Terry Edward, "Whoa, Apple," pg. 132-133.
Two machine language routines to tighten the reins on galloping video displays.
Greenberg, Gary, "Betting on Old POKEy,' pg. 180.
A PET program using the POKE command to enter graphics.
Bauers, Barton M., Jr., "A Roundoff Function in Applesoft," pg. 210.
Keep your numbers at a manageable length with this Apple function.

\section*{912. Byte 5, No. 10 (October, 1980)}

Zimmermann, Mark, "Floptran-IV: A Tiny Compiler," pg. 196-285.

A utility for the PET.
Harrod, Dennette A., "The 6502 Gets Microprogrammable Instructions," pg. 282-285.

A hardware approach to adding 64 user-defined instructions to the 6502.

\section*{913. SoftSide 3, No. 1 (October, 1980)}

Laurence, Matthew, "One Liner," pg. 4.
Short graphics program for the Apple.
Clark, Terry, "IMHOTEP,' pg. 18-21, 82-84.
A game for the Apple.
Pelczarski, Mark, "SoftSide Database-Part 2," pg. 22-23.
Program for Atari and Apple. Part 2 of a series.
Bohlke, David, "World Series," pg. 26-28.
A game for Atari.
Garon, James, "Octadraw,' pg. 41, 68.
A graphics utility for the Atari.
Ward, Dennis, "Interna-Maze," pg. 43, 64-65.
A maze game for the Apple. Footprints, aerial view and all.
Sandy, Herb, "Moonlanding," pg. 44-45.
A graphics program for Apple.
Bohlke, David, "Double Cannon," pg. 50. A game in Atari graphics.
Ohlund, Mark A., 'Strings and Things," pg. 60-61. An article dealing with Atari graphics and comparison with TRS-80 systems.
Bouchard, Rich and Garon, James, "Atari One-Liners," pg. 61 .

Two shsort programs for the Atari.
Truckenbrod, Joan, "Computer Graphics," pg. 66-67, 80. Two Apple graphics programs-easily translated to Atari.
Garon, James, 'Hidden Colors in Graphics 8,'' pg. 69, 74. A new Atari concept and sample programs.
914. Abacus II 2, Issue 10 (October, 1980)

Britto, Arthur, "No DOS INIT," pg. 2.
This program removes the DOS from a diskette to allow more room on the diskette. For Apple.

Anon, 'IAC Application Note: Pascal Long Integer Fix," pg. 3-4.
This program is designed to repair the library module LONG-INTEGER in Apple Pascal.
Anon., "Pascal Hi-Res LOAD/SAVE to Disk," pg. 4-5.
This Apple Demo creates a Hi-Res picture in Pascal, then saves it to disk. Then it is reloaded and displayed.
Anon., "IAC Application Note: Pascal Utility Program," pg. 8-9.

Program in Apple Pascal which reads from REMIN and writes to disk.
Anon., "IAC Application Note: Linefeed-Pascal Utility." Program to set or defeat Linefeeds, Apple Pascal.
Yee, David R., "Catalorganizer," pg. 12-13.
Organize the catalog on Apple diskettes in alphabetical order.
Anon., "IAC Application Note: COMCARD-Pascal Utility," pg. 13-14.

Program in Apple Pascal to set up COMCARD parameters.
Yee, David R., "Mass Lock and Unlock," pg. 14.
An Applesoft to lock or unlock all the files on an Apple diskette at once.
Anon., "IAC Application Note: Program Foreign-Pascal Utility,' \({ }^{\prime}\) pg. 15-18.

A major utility in Apple Pascal.
915. 73 Magazine No. 242 (November, 1980)

Erdei, Steven C., "PL Tones from a KIM-1," pg. 112.
A KIM program that will generate a square wave tone anywhere in the range of 191 Hz to 66 Hz .
916. Personal Computing 4, No. 11 (November, 1980)

Gillie, Michael D., "Printing Pictures from Your PET," pg. 52-54.
A PET program to gather the characters off of the PET screen and print them on the Commodore 2022 printer.
Lubar, David, 'Microbiocide,' pg. 79-80.
A discussion and hints for debugging programs on the Apple.
917. Byte 5, No. 11 (November, 1980)

Cesa, Louis, "Kinetic String Art for the Apple," pg. 62-63.

High resolution program for the Apple.
Sokol, Dan, "Three-Dimensional Graphics for the Apple II," pg. 148-154.
A novel program for Hi-Res Apple graphics.
Ramsdell, Robert E., "The Power of VisiCalc," pg. 190-192.

All about this interesting piece of business related software for the Apple.
918. The Paper (Summer, 1980)

Haluza, Doug, "Cross Referenced Memory Map," pg. 4-6.

Memory map comparing locations on old and new PET ROMs
Haluza, Doug, "Machine Language is Faster Than You Think," pg. 7.

Some examples for the PET.
Batcher, Bill, "The Evolution of a Puzzle," pg. 8-9.
A tutorial on handling strings on the PET.
Haluza, Doug, "Machine Language is Still Faster Than You Think," pg. 10-11.

A machine language sort with assembly language routine and a BASIC Demo for the PET.
Comito, JoAnn, "Stringing Your PET Along," pg. 12-15.
Two related discussions of Strings with examples, including an expression analyzing string routine for the PET.
Fowler, James, "Assembly Language Programming: Part
1, pg. 16-17.
Part One of a series for the PET programmer.
Eisner, Gerry, "POKE a Border," pg. 17-18.
A utility for the PET, with examples.
Bressler, Ralph, "Moving Around the Screen," pg. 19. A utility for the PET.
Comito, JoAnn, 'Not If's, And's or But's," pg. 20-22. A tutorial on the PET's If-Then statement.
Bressler, Ralph, "BASIC Does It Better,' pg. 23-25. Discussion of a number of details in PET BASIC.
Haluza, Doug, ''Trouble-Shooting Your PET,' pg. 26-28. Some hints for reviving the dead PET.
Bressler, Ralph, "Time Passes Quickly," pg. 28-29. A tutorial on the use of the PET timing routine.
Comito, JoAnn, "Writing That Good Educational Program,'" pg. 30-33.

Two related articles on writing PET educational programs, with examples.
Bressler, Ralph, "PET Files," pg. 36-39.
A tutorial for PET Tape Files and a sample listing.
Comito, JoAnn and Bressler, Ralph, "Merging
Programs," pg. 40-41.
All about the PET merge system.
Haluza, Doug, "An 80 by 50 Plotting Routine," pg. 42.
A PET listing for a plotting program.
Haluza, Doug, "PEEKing at BASIC," pg. 42-43.
A utility for PET.
Bressler, Ralph, 'PET's Round Off Problems,' \({ }^{\prime}\) pg. 43, 48.
919. The Harvest 2, No. 3 (November, 1980)

Lyle, Guy A., "Float, Float, Float Your Point," pg. 1-5.
A tutorial on floating point representation on the Apple.
920. Nibble No. 6 (November, 1980)

Connolly, Rick, "P.I.P. II: PIP Goes Disco," pg. 9-13.

A disk version of P.I.P. (Personal Inventory Program).
Litwin, Larry M., "A Simplified Way For a Tiger to Eat
Apple Pie," pg. 21-22.
An Apple graphics Pascal program outputting to a Paper Tiger.
Mottola, R.M., "Amper-Interpreter," pg. 27-44.
Add "Print-Using' to your Apple's Instruction Set.
Harvey, Mike, "Blocking Very Large Files," pg. 45-47.
A technique for file management on the Apple.
Figueras, John, 'Roundoff!", pg. 47.
Round off decimal values to a manageable format on the Apple.
Reynolds, William III, "Finding the Slot Number," pg. 48.

How to write programs addressing interface cards on the Apple.
Harrell, Keith, "Pascal Pointers and Principles," pg. 51-52.

A new column for Apple pascal programmers.

Rogan, J.A., ''Four-In-A-Row,'" pg. 55.
A Lo-Res graphics game for the Apple.
Crossman, Craig, "An Assembly Language Tutorial," pg. 57.

This installment discusses the Screen Clear, RDKEY, and COUT in the Apple monitor.
Crossman, Craig, "Apple Tricks," pg. 59.
More Apple tricks including Fast DOS, Special Characters, and Unstable programs.
921. Iridis 2 (November, 1980)

Staff, "Fontedit," pg. 2-22.
A program to allow the Atari user to design character sets. Listing and complete information on the design and use of the program.
Staff, 'Knotwork,'" pg. 22-36.
How to design a type of manuscript illumination in Atari programs. Listing and complete description.
Staff, "Hacker's Delight," pg. 36-46.
A compendium of useful memory locations for the Atari operating system.
Staff, "Loadfont," pg. 46-49.
A utility for use in writing programs on the Atari using private fonts.
922. KB Microcomputing No. 47 (November, 1980)

Smith, Wayne D., "A Mini Logic Monitor and SingleCycler for Hardware Debugging," pg. 59-66. Hardware for your KIM-1.
Bugg, Michael L., "Tinkering with Tiny BASIC," pg. 88-96.

Add four new and useful commands to Tiny BASIC as implemented on the KIM-1.
Brock, Thomas D., "Hard Copy for Apple Graphics," pg. 100-102.

Software for printing the high-resolution screen using a Diablo printer.
Bruey, Alfred J., "Microcomputer Hardware for the Handicapped,' pg. 173-174.

Single-key data entry for the PET.
923. Recreational Computing 9, No. 3, Issue 48 (November/December, 1980)
Berggren, Stephen R., 'DOZO in Pascal," pg. 32-36. A Japanese DOZO game in Apple Pascal.
924. Creative Computing 6, No. 11 (November, 1980)

Guerard, Michael P., "Another Slice of Pi," pg. 8. A way around a minor bug in arcsine and arccosine functions in Applesoft and TRS-80 Level II BASIC.
Piele, Donald T., "How To Solve It-With the Computer,' pg. 66-71.

Part 3 of this series discusses Apple graphics and FOR-NEXT statements.
Kielian, Greg, "Bombproof Data Entry," pg. 102-104. Unusual data entry methods for the Apple.
Lubar, David and Forsen, Richard, "Car Race: Anatomy of a Translation," pg. 118-119.

Translation for the Apple from a program written for a DEC PDP/11.
Yob, Gregory, "Personal Electric Transactions," pg. 164-169.

PET music programs, hardware for blinking lights with the PET, and a video car driver game.

Blank, George, "Outpost: Atari," pg. 170-171.
Atari Pascal is on the way, Atari Visicalc is available, also description of the PIA, ANTIC, CTIA, and POKEY chips for Atari.
Carpenter, Chuck, "Apple-Cart," pg. 172-180.
Absolute indexing, Indirect indexing, Interrupts, etc. on the Apple.

\section*{925. MICRO No. 30 (November, 1980)}

Williams, Richard, "How to Use the Hooks," pg. 7-9. Hooks allow the user to break the normal flow of control and redirect the Apple to his own routine.
Hart, John E., "An Ultra-Fast Tape Storage System," pg. 11-14.

A simple hardware modification to the OSI Superboard and a good home tape recorder yield data-transfer rates of up to 9600 baud.
Sebra, Randy, "SYM-Bell," pg. 17-24.
Use your SYM as a telephone memory dialer.
Morse, P. Kenneth, "Self-Modifying PET Programs," pg. 29-31.
A tutorial on writing a self-modifying program.
Needleman, Ted, "General Ledger for the Apple II," pg. 33-34.
The SBCS general ledger is a major business program for the Apple II. A review.
Froelich, Jerry W., M.D., "Microprocessors in Medicine: the 6502," pg. 36.

How the 6502 microprocessor is able to perform tasks in medical education nearly as well as large computer systems.
Morris, E.D., Jr. and Finkbeiner, Tim, "Ohio Scientific
Users: Stop Those S - Errors,' pg. 37-39.
Correct the BASIC error message output, put out messages of your own, etc.
Allen, David P., "A Versatile Hi-Res Function Plotter for
the Atari 400 and 800," pg. 47-50.
Discussion and listing of an Atari color graphics program.
Bridge, Theodore E., "John Conway's Game of Life Using Display Devices with Automatic Scrolling," pg. 53-58.

A KIM listing easily adapted to other 6502-based micros.
Peterson, Craig, "Step and Trace for the Apple II Plus," pg. 61-63.

Restore the Step and Trace functions of the original Apple II.
Flynn, Christopher J., "AIM 65 File Operations: Writing
Text Files with BASIC,' \({ }^{\prime \prime}\) pg. 65-70.
The value of AIM BASIC is greatly enhanced with this technique of writing text files.
Rowe, Mike (Staff), "The MICRO Software Catalog: XXVI," pg. 72.

Review of five new 6502 software items.
Dial, William R., "6502 Bibliography: Part XXVI," pg. 76-77.
. Some fifty-five new references to the 6502 literature.


16606 Schoenborn St., Sepulveda, CA 91343
(213) 894-9154, (800) 423-5630


INTER-STAT offers you a full range of interactive statistical analysis techniques, from averages and medians to binomial and poisson distributions. correlation coefficients and one- and two-way analysis of variance. \(\$ 169\).

ADVANCED MATH ROUTINES is the mathematical tool kit for common, yet complex numerical problems. Routines include: linear regression, matrix operations, numerical calculus, differential equations and data set recall for iterative calculations. \(\$ 169\).

Thoroughly tested, well documented and easy to master, each package includes a \(30+\) page self-teaching manual.
Serendipity's complete line of software solutions for business. education and professional applications are available at your local Computerland or Apple dealer.
For a free brochure, or to order direct contact Serendipity Systems, 225 Elmira Road, Ithaca, NY 14850.
Phone 607-277-4889. Visa and MC accepted.
TaApple Computer

\section*{SERENDIPTY SYSTEMS}

\section*{FINANCIAL MANAGEMENT SYSTEM II}

\section*{A FAST. EASY-TO-USE ACCOUHTING SYSTEM DESIGNED FOA}
home and busimess accountimg
OBJECTIVE Enter an entire month's checking. charge card, and cash accounts in just a few minutes using your own personalized macro lists. Instant error correction on all entries. Audit all files by Code and month. PERFECT FOR TAX ACCOUNTING. Powerful new BUDGET MANAGER for planning and comparing budget with audits. Printer routines for listing disk files, balance, reconcile, search, macro lists. audit and budget reports.
aLL the original features + mew budget mamager
- 1.3 KEYSTROKE ENTRYS
- automatic tax cooimg
- SIMgLE OR DUAL DISK DRIVE
* ACCOUNT MANAGER: A self-prompting, error avoiding entry system which includes disk files, balance, reconcile, edit, and sort. * BUDGET MANAGER: Plan, review, and balance your budget. Then generate complete reports with summation for any 1-12 month period.
* SYSTEM UTILITY: Enter your own Item and tax Code Macros, up to 100 each. Configure program to match almost any printer/disk system.
* SEARCH RECORDS: Search for any given data. Make specific and expanded searches using the Macro lists.
* ACCOUNT AUDITOR: Totals all files by tax Code and any 1-12 month period with year-to-date totals.
* 48 K APPLE with ROM APPLESOFT and disk required (printer optional)
PAICE: \(\mathbf{E 3 3 .}^{3 .} 55\)-- Check. VISA, or MASTER CHARGE accepted.
D R JaRVIS COMPUTING
1039 Cadiz Dr. SImi. CA 93085
Phone |805| 528-0151

Dealer Inquiries Invited

\section*{ADVERTISERS' INDEX}

April 1981
Advertiser's Name ..... Page
Aardvark Technical Services ..... 22
Abacus Software ..... 78
Aim Supportware ..... 36
Anderson Peripherals ..... 71
Andromeda, Inc. ..... 4
Applefest' 81. ..... 64
Aurora Software Associates ..... 62
Avant-Garde Creations. ..... 78
Beta Computer Devices ..... 80
The Book. ..... 54
Broderbund Software ..... 10
C \& J Supply ..... 76
Computer Data Service ..... 88
The Computerist, Inc. ..... 46
Computer Mail Order ..... 56
Connecticut Information Services ..... 40
Consumer Computers ..... 42
Continental Software ..... 50
Co-op Software ..... 78
Datasoft, Inc ..... 94
Decision Systems ..... 54
Dr. Daley ..... 49
Dr. Dobb's Journal .....  82
D.R. Jarvis Computing ..... 95
Eastern House Software ..... 76
Forethought Products ..... 78
Hayes Microcomputer Products, Inc ..... IFC
Instant Software ..... 86-87
Lazer Systems. ..... 11
LJK Enterprises. ..... 66
MICRO ..... IBC
MICRO Classifieds ..... 60, 61, 62
Micro Interface ..... 36
Microsoft Consumer Products ..... 67
MicroSoftware Systems ..... 54
Micro Technology Unlimited. ..... 2, 16
Micro Ware Distributing. ..... 71
Mittendorf Engineering ..... 63
Nibble. ..... 96
Nikrom Technical Products ..... 68
Ohio Scientific ..... BC
Ohio Scientific "Small Systems Journal" ..... 72-75
Orion Software Associates ..... 76
Perry Peripherals ..... 36
Powersoft, Inc. ..... 34
Printout ..... 12
Programma International. ..... 1, 41
Progressive Computing ..... 71
Rainbow Computing. ..... 85
Rosen Grandon Associates. ..... 68
Serendipity Systems, Inc. ..... 95
Simulations Programming. ..... 76
Softside Publications ..... 44
Softape ..... 35
Southeastern Software ..... 26
Southwestern Data Services ..... 21
Strategic Simulations, Inc. ..... 25
T.S.E. Hardside ..... 45
Versa Computing. ..... 68
Western Micro Data Enterprises ..... 40

\title{
"NIBBLE IS TERRIIIC" (For Your Apple)
}


NuBRE 18: The Reference for Apple computing!
IMBBEIE: One of the Fastest Growing new Magazines in the Personal Computing Field.

NBBRE 18: Providing Comprehensive, Useful and Instructive Programs for the Home, Small Business, and Entertainment.

Rebile 18: A Reference to Graphics, Games, Systems Programming Tips, Product News and Reviews, Hardware Construction Projects, and a host of other features.

NBBELE I8: A magazine suitable for both the Beginner and the Advanced Programmer.

Each issue of NIBBLE features significant new Programs of Commercial Quality. Here's what some of our Readers say:
- "Certainly the best magazine on the Apple II"
- "Programs remarkably easy to enter"
- "Stimulating and Informative; So much so that this is the first computer magazine I've subscribed to!"
- "Impressed with the quality and content."
- "NIBBLE IS TERRIFIC!"

In coming issues, look for:
\(\square\) Numeric Keypad Construction Lab \(\square\) Assembly Language Programming ColumnPascal Programming Column \(\square\) Data Base Programs for Home and BusinessPersonal Investment Analysis \(\square\) Electronic Secretary for Time ManagementThe GIZMO Business Simulation Game
And many many more!
NIBBLE is focused completely on the Apple Computer systems.
Buy NIBBLE through your local Apple Dealer or subscribe now with the coupon below.


\section*{\(\$ 24.95\) With diskette.}

\section*{The home computer you thought was} years away is here.


Ohio Scientific's top of the line personal computer, the C8P DF. This system incorporates the most advanced technology now available in standard configurations and add-on options The C8P DF has full capabilities as a personal computer, a small business computer, a home monitoring security system and an advanced process controller.

\section*{Personal Computer Features}

The C8P DF features ultra-fast program execution. The standard model is twice as fast as other personal computers such as the Apple II and PET. The computer system is available with a GT option which nearly doubles the speed again, making it comparable to high end mini-computer systems. High speed execution makes elaborate video animation possible as well as other I/O functions which until now, have not been possible. The C8P DF features Ohio Scientific's \(32 \times 64\) character display with graphics and gaming elements for an effective resolution of \(256 \times 512\) points and up to 16 colors. Other features for personal use include a programmable tone generator from 200 to 20 KHz and an 8 bit companding digital to analog converter for music and voice output, 2-8 axis joystick interfaces, and 2-10 key pad interfaces. Hundreds of personal applications, games and educational software packages are currently available for use with the C8P DF.

\section*{Business Applications}

The C8P DF utilizes full size 8" floppy disks and is compatible with Ohio Scientific's advanced small business operating system,

OS-65U and two types of information management systems, OS-MDMS and OS-DMS. The computer system comes standard with a high-speed printer interface and a modem interface. It features a full 53 -key ASCII keyboard as well as 2048 character display with upper and lower case for business and word processing applications.

\section*{Home Control}

The C8P DF has the most advanced home monitoring and control capabilities ever offered in a computer system. It incorporates a real time clock and a unique FOREGROUND/ BACKGROUND operating system which allows the computer to function with normal BASIC programs at the same time it is monitoring external devices. The C8P DF comes standard with an AC remote control interface which allows it to control a wide range of AC appliances and lights remotely without wiring and an interface for home security systems which monitors fire, intrusion, car theft, water levels and freezer temperature, all without messy wiring. In addition, the C8P DF can accept Ohio Scientific's Votrax voice I/O board and/or Ohio Scientific's new universal telephone interface (UTI). The telephone interface connects the computer to any touch-tone or rotary dial telephone line. The computer system is able to answer calls, initiate calls and communicate via touch-tone signals, voice output or 300 baud modem signals. It can accept and decode touch-tone signals, 300 baud modem signals and record incoming voice messages.

These features collectively give the C8P DF capabilities to monitor and control home functions with almost human-like capabilities.

\section*{Process Controller}

The C8P DF incorporates a real time clock, FOREGROUND/BACKGROUND operation and 16 parallel I/O lines. Additionally a universal accessory BUS connector is accessible at the back of the computer to plug in additional 48 lines of parallel l/O and/or a complete analog signal \(1 / O\) board with A/D and D/A and multiplexers.
Clearly, the C8P DF beats all existing small computers in conventional specifications plus it has capabilities far beyond any other computer system on the market today.
C8P DF is an 8 -slot mainframe class computer with 32 K static RAM, dual 8 " floppies, and several open slots for expansion.

\section*{Prices start at under \(\$ 3,000\).}

Computers come with keyboards and floppies where specified. Other equipment shown is optional.

\section*{For literature and the name of your local} dealer, CALL 1-800-321-6850 TOLL FREE.

\section*{OIIO SEIENTIFIG}```


[^0]:    Atar Enor Messages
    M＝MS＝AROH for AMM．65

[^1]:    Patrick J. Calebrese Math Dept. Chairman Millcreek Township School District Millcreek Middle School-J.S. Wilson 900 West 54th Street

    Erie, PA 16509

[^2]:    Lieutenant Colonel Pete Cook is a jet pilot instructor at Williams Air Force Base. He is assigned to the Air Force's Human Resources Laboratory, Operations Training Division, a large research facility for designing advanced aircraft simulations, and one of the largest computer complexes in Arizona.

    This is his third article for MICRO.

