

DISCSAVERS VINYL PROTECTIVE DISK SLEEVES

COLOR CODED: Multi-color DiscSavers? "' are designed for easy recognition of individual disks with your own color-keyed filing system. Ideal for office or home use.
PROTECTIVE: Custom grain vinyl provides added protection for magnetic disks by guarding against common handling hazards.
ATTRACTIVE: DiscSavers provide a handsome and professional method of single disk storage and enhance the look of your hardware while protecting your valuable software.

DURABLE: Rigid vinyl construction protects against constant handling to ensure long wear and tear. PORTABLE: DiscSavers are the only portabre vinyl disk sleeves for use with a single diskette that bear the RockRoy mark of quality.
Contact your Dealer or Distributor.
7721 E Gray Road Scottsoale, Arizona 85260
(602) 998-1577

Toll-Fiee 800-528-2361

10 2MHZ 6809 SYSTEMS

GIMIX offers you a variety to choose from!

38 MB WINCHESTER SYSTEM
$\star 2 \mathrm{MHz} 6809 \mathrm{CPU}$

* 512 KB Static RAM
$\star 8$ RS232C Serial Ports
* 2 Parallel Ports

SOFTWARE FEATURES:
\star OS-9 LEVEL TWO Multi-User $\quad \star$ OS-9 Text Editor Operating System $\quad \star$ OS-9 Assembler

* OS-9 Debugger

19 MB WINCHESTER SYSTEM
$\$ 8998.09$
HARDWARE FEATURES:
\star 128K Static Ram $\quad \star 4$ RS232C Serial Ports
$\star 2 \mathrm{MHz} 6809 \mathrm{CPU} \quad \star 1 \mathrm{MB} \mathrm{51/4}{ }^{\prime}$ " Floppy Disk Drive
$\star 19$ MB $51 / 4^{\prime \prime}$ Winchester DMA Subsystem \star DMA Double Density Floppy Disk Controller
SOFTWARE FEATURES:
\star OS-9 LEVEL TWO Multi-User \quad OS-9 Debugger
Operating System $\quad \star$ OS-9 Assembler
\star OS-9 Text Editor
128KB MULTI-USER SYSTEM . \$6997.39
HARDWARE FEATURES:

```
\(\star 2 \mathrm{MHz} 6809 \mathrm{CPU}\)
\(\star 2\) RS232C Serial Ports
* DMA Double Density Floppy Disk Controller * Dual 8" DSDD Floppy Disk System * 128KB Static Ram
```

SOFTWARE FEATURES: Your choice of either UniFLEX or OS-9 LEVEL TWO. Both are Unix-like Multi-User/Multi-Tasking Operating Systems.
56KB FLEX / OS-9 "'SWITCHING" SYSTEM
$\$ 4148.49$
HARDWARE FEATURES:
$\star 2 \mathrm{MHz} 6809 \mathrm{CPU}$

* 56 K Static Ram
$\star 2$ RS232C Serial Ports
\star DMA Double Density Floppy Disk Controller
* 2 Built-in $51 / 4$ " 40tr DSDD Disk Drives
(80 Track DSDD Drive Option . . add $\$ 400.00$)

SOFTWARE FEATURES:

\star GMXBUG monitor - FLEX Disk Operating System
\star OS-9 LEVEL ONE Multi-tasking operating system for up to 56 K of memory

WINCHESTER SUBSYSTEMS

Winchester packages are available for upgrading current GIMIX 6809 systems equipped with DMA controllers, at least one floppy disk drive, and running FLEX, OS-9 LEVEL ONE or OS-9 LEVEL TWO. The packages include one or two 19MB (unformatted) Winchester drives, DMA Hard Disk Interface, and the appropriate software drivers. The Interface can handle two $5 \frac{1}{4}{ }^{\prime \prime}$ Winchester Drives, providing Automatic Data Error Detection and Correction: up to 22 bit burst error detection and 11 bit burst error correction.

Dual drives can be used together to provide over 30 MBytes of on line storage -- or use one for back-up of the other. (More convenient and reliable than tape backup systems.
\#90 includes one 19 MB Drive, Interface, and Software
$\$ 4288.90$
\#91 includes two 19MB Drives, Interface, and Software.
$\$ 6688.91$
Contact GIMIX for systems customized to your needs or for more information.
50 HZ Export Versions Available
GIMIX Inc. reserves the right to change pricing and product
specifications at any time without further notice.

April Highlights

"communication (kə-my $\overline{0_{0}}$ 'nə-kā'shən) n... 1. The act of communicating; transmission.... 4. Plural. A means of communicating, especially: a. A system for sending and receiving messages, as by mail, telephone, or television."

The American Heritage Dictionary may want to amend this definition to read " ...by computer, mail, telephone, or television." Certainly communication by computer offers many possibilities, limited only by our imaginations. "Eight million computer terminals will be in use in American homes by the end of this decade, many linked by information networks to businesses and other data bases," according to J.S. Mayo of Bell Labs (see Bradley Coley's article, "At the Front: The Micro Communications Revolution" p. 26). These terminals will be used for fun and for profit. Subscribers to information banks such as The Source and CompuServe will be able to receive electronic mail, news, weather, and sports; they will be able to teleshop via electronic catalogues, and get up-to-the-minute reports on the stock market. Job hunting will become more selective, bartering may return as a form of salesmanship, formal education may revert from the classroom to the home. The possibilities are infinite. Anyone who has a telephone or TV will have access to a world of information through networking.

To learn more about communications and the microprocessor, read Bradley L. Coley's article mentioned above. He presents three theories for what will motivate the interactive and networking potential - home, office, and enterprise. Mr. Coley also discusses the home computer market, networking, and the field of "information for profit." In "Dialing the Networks," (pg. 38) Cliff Glennon maps out the essential steps needed for a MC6809based home computer to communicate with The Source and CompuServe. He includes a short assembly-language program that implements some basic disk functions, and interfacing and control codes for the MC6850 ACIA. Terry

Peterson describes how to turn the Commodore SuperPET into a smart terminal for a mainframe. See "A Not-SoDumb Terminal Program for the SuperPET"' (pg. 31) for a machine-language program that uses the 6551 ACIA serial port for RS-232 I/O.
"PET-to-PET Communications" by F. Arthur Cochrane (pg. 47) provides a machine-language program to transfer an array from one PET to another via the user port. And "A Home-Built Communications Interface" by John Steiner (pg. 44) describes how to construct a communications interface. In-

About the Cover

The original oil painting by Frank Wyman, Time in Space, creates an appropriate feeling of expansion and infinity - the feeling generated by today's communications field.

Photo and painting by: Frank Wyman Wyman Art Studio Lowell, MA 01852 (617) 459-7819
cluded is a simsple, reliable, and inexpensive design ior converting the interface to a telephone modem. "MultiMicroprocessed Tidbits" (pg. 50) shows you how to create a powerful device by running a 6502 and 6809 in the same computer simultaneously. Mike Rosing presents a general description of a specific task for which two processors were used, and discusses some of the problems you might encounter.

The communications section includes an article by our technical editor Phil Daley, who outlines a method MICRO is now using to communicate between the FOCUS, a 6809 -based microprocessor (produced by our sister company The Computerist ${ }^{\text {l }}$, and the Compugraphic Editwriter 7500. "InHouse Communications" (pg. 54) is an informative tutorial that shows you how we use the FOCUS as a text editor, sending material in its final format to the Compugraphic for output.

Business Applications

"Mutual Fund Charting for APPLE and

OSI," by Ralph H. Green (pg. 98) enables you to make, update, and print mutual fund files on both OSI and Apple computers. The programs are written mostly in BASIC (except for a few commands peculiar to OSI] and are easily transportable to other micros. "Analysis of Bond Quotations on the APPLE," by Donald C. Lewis (pg. 92) computes information about the performance of bonds. Data for these computations are available in the financial section of your newspaper. "LETTERMASK: A Check-Protecting Algorithm" (pg. 102) is an Applesoft BASIC routine by Barton M. Bauers. In addition to number masking, this routine gives your checks additional security by spelling out the amount.

Learning Center

Our new Learning Center opens the classroom door to discussions of momentum, number conversion, and programming concepts about flags and random numbers. "Conservation of Momentum for ATARI and COMMODORE' by Jerry Faughn (pg. 84) helps the beginning computerist examine the conservation law of momentum as applied to collision problems. "Is a Number a Number?"' by Phil Daley (pg. 86 | shows you how answers are affected by the base of the numbering system you use. "MASTER for VIC-20 and COMMODORE 64" by Loren Wright (pg. 70) is a simple guessing game for one or two players, based on the popular commercial game, and teaches you about flags and random numbers.
And...
Of particular interest this month is the Information Sheet (pg. 57), which includes a list of Bulletin Boards throughout the US and elsewhere. A note of interest here: We received this list from a California data bank via a telephone modem connected to the FOCUS.

We hope you find the April issue of MICRO informative. Read, learn, and communicate!

MCRO

Advancing Computer Knowledge

COMMUNICATIONS FEATURE

Communications:
The Growing Network.
Bradley L. Coley, Jr.

A Not-So-Dumb Terminal Program

for the SuperPET
Terry M. Peterson
Turn the SuperPET into a smart terminal for a mainframe

Dialing the Networks
Cliff Glennon
A MC6809 communicates with major networks
A Home-Built Communications Interface. . . John Steiner Circuitry and techniques for construction

PET-to-PET Communications
F. Arthur Cochrane

Transfer an array over the User Port

Multi-Microprocessor Tidbits.
Mike Rosing
Run a 6502 and 6809 on the same computer - simultaneously

In-House Communication
Phil Daley
A look at MICRO's use of computer communication

THE LEARNHNG CENTER

MASTER for VIC and COMMODORE 64 Loren Wright
A serious look at a simple guessing game

Conservation of Momentum

Is a Number a Number?
Phil Daley
Convert numbers from one base to another
A Beginner's Computer Glossary, Part 2

Entertainment, teleshopping, and home video banking are what the information revolution is all about.

Communications Feature starts on pg. 26.

HARDWARE

APPLE, Mountain, and Data Capture . . . H. Bruce Land, III An inexpensive and versatile communications method for the APPLE

Unleash the AIM "A" Block
Tom Lillevig
Recover memory space on your AIM 65

BUSINESS

Analysis of Bond Quotations
on the APPLE
David C. Lewis
Compute the performance of bonds
Mutual Fund Charting
98 for APPLE and OSI

Ralph H. Green
Two programs to make and print mutual fund files
LETTERMASK:
A Check-Protecting Algorithm....... Barton M. Bauers, Jr. A number-masking routine

COLUMNS

Apple Slices
Tim Osborn
A look at worksheet formulas

PET Vet
Loren Wright
New Commodore books and C64 information

From Here to Atari
Paul Swanson
Readers' hardware questions are answered

23

CoCo Bits
. John Steiner
The F board and CoCo operating systems
Interface Clinic
Ralph Tenny

DEPARTMENTS

2 April Highlights
7 Editorial
8 Letters/Updates/Microbes
57 Information Sheet
110 Reviews in Brief
116 Hardware Catalog
118 Software Catalog
1276809 Bibliography
128 Advertiser's Index

Fund Charting.pg. 98

Now experience adventuring in a brand new way. Attempt to win through on your own, or with up to 4 other decision-making characters playing at the same time! Either way, there's new involvement and enjoyment because you'll see all the magnificent characters on-screen as you travel and unravel the clues.

Your quest is to find the wizard's ring which has been missing for aeons. Many have searched for it . . . unsuccessfully. So, you know the hazards are many
-the traps are ingenious-and solving the puzzle takes great wit.
But take heed. For plotting your way through the mysterious.
magical rooms takes cleverness and a double dose of courage. And the more of you on the quest, the more intriguing and difficult the task becomes. The strong of heart can succeed where others failand win through to find the ancient missing ring. Are you the one?
The Missing Ring
$\$ 29.95$ for Apple II*

© DATAMOSTE

9748 Cozycroft Ave.,
Chatsworth, Ca 91311
(213) 709-1202.

[^0]
MICRO

 Editorial
MICRO's Learning Center

As you can see by flipping through this month's issue, MICRO is changing - not in content, but in style. We're adding more color, more pictures, and more graphics. The only change in content is the addition of The Learning Center, which you'll find beginning on page 67.

Why a new section?

We know the material we offer each month is what you need serious programming applications and techniques, and pertinent industry news - because you are a serious user. But we also know there are many new users who need tutoring and instruction. We've developed The Learning Center to help these computerists enhance their programming skills.

Many beginners purchase home computers such as the VIC-20, Commodore 64, Atari 400 or 800 , TRS-80 Color Computer; most of the articles we publish will run on several of these systems, along with the Apple. We will provide the necessary conversions for running the programs on each machine. For instance, last month "MICROCalc" was offered for all Commodore machines and the Apple.

What will be in The Learning Center?

We plan to offer uncomplicated programs, accompanied by informative
text, that will answer your questions about programming. Why were centain lines inserted where they were? What approach is best for writing particular types of programs? What machine offers what characteristics?

Who will read it?

The Learning Center is not an attempt to turn MICRO into a magazine that covers all levels of computing for all levels of users. Instead it allows MICRO to reach the scope of its intended audience: serious, sophisticated users of all levels.

Even advanced users had to start somewhere. Many didn't want to play games or use canned software; they wanted to learn how to develop their own material. We hope readers following The Learning Center will pick up techniques and hints that will advance their programming capabilities and talents.

Wed like to receive feedback from our readers on this new secion. Perhaps you have suggestions on topics or approaches. Maybe you could offer ideas on improvements. We would especially like to hear from those who feel they could contribute material to The Learning Center. Write to us soon; help us mold The Learning Center into a valuable and exciting part of MICRO.

Attache-style cases for carrying and profecting your complete computer setup. Accommodates equipment in a fully operational configuration, Never a need to remove equipment from case. Simply remove lid, connect power, and operate.
AP101. Apple II whin Single Drive $\$ 109$
AP102 Apple II with Two Disk:

A 103 Apple ing men monitor act 129 Ap 104 R Ole il, wo Dives \& 139 AP105 W Monthorwhthty SPIOE KTDEK Color Monitor 119

 Hunt ATAT Eomputerswit pron equronter 8 granth
 Pits

 ar n chatetinter 98 P48e x owner 2 Printer
 t8501 Mat Bet omatromputer x y 129 1F502
 MHM Divest 19

CHTG4 Cominudare Model 64.

 NSOM With Star vantage it 139 coat Hatching tache casern d 85 cess thant hg then case G/ 75 cog irking iseossory Case cost $525{ }^{\circ}$ alstretic case

5650 Indian Mound Court Counhus, Ohio 43213 . $(614) 8689464$
CALL TOLL FREE $801-848-7548$

MIRO"

DISTS

Maxell Box of $10.5 x^{\prime \prime}$,SS.DD $\$ 35.00$ Verbatim Box of $10.54^{\prime \prime}$ SS-DD 529.00

MONIMORS		
LE MONITORS	List	Our Price
9% Green	\$189.00	\$159.00
$12^{\prime \prime}$ Green	\$199.00	\$169.00
ZENITH		
12" Creen	\$179.00	\$129.00
Plus a full line o	MDEK	

PRTMYERS		
PAPER TIGER	Ust	Our Pice
4600	\$1,094.00	\$950.00
560 G	\$1,394.00	\$1,250.00
EPSON		
MX 70	\$449.00	5395.00
MX80FT	\$745.00	\$595.00
MX 100FT	\$945.00	5795.00
CALI FOR THIS MOMIHS SPECLIL		
$\begin{gathered} 1800835-2246 \text { EXT. } 211 \\ 702.4594114 \end{gathered}$		
5130 East Charleston Bhd.		

[^1]
IAICRO Letterbox

OSI Questions

Dear Editor:

I own an OSI C1P series II computer and a Radio Shack Lineprinter VII; this configuration introduces a second linefeed by the printer, therefore doublespacing each printed line.

Apparently Radio Shack computers have an interpreter that doesn't send a linefeed so the printer must provide one. I would appreciate it if your readers could offer some help. This printer performs well and I'd hate to exchange it because of this annoying problem.

> Ray Audette
> 46 Carre Provence
> Neufchatel P.Q.
> Canada G2B 3R3

Dear Editor:

I've had nothing but trouble with my OSI C4P since the day I bought it. The trouble has been diagnosed as faulty memory. I was wondering if there is a memory program that can check the entire memory and locate the chip that is giving trouble. Also, what do you put in to check existing memory? How can you control the cursor (back up to rewrite)?

I've sent two letters to OSI and never received a reply. I can't even trade it for a newer one; even the dealer I bought it from won't take it on trade! Can any of your readers help me with this problem? (And, does anyone want to buy a C4P?].

Jeff Guernsey
112 Overhill
Salina, KS 67401

Readers Help Out

Dear Editor:
A few months ago you published my letter to tell your readers that I was interested in compiling a book of listed programs for use in microcomputer applications in medicine. I received let-
ters from all parts of America, Canada, South America, Europe, Israel, South Africa, and even a letter from China. There were early morning phone calls, picture postcards, packets of discs, bundles of listings; it was a trememdous response.

The outcome is that the book is now published by medical Software Co., Box 874, Center Moriches, New York 11934, price $\$ 80.00$. The volume contains medical application programs for patient scheduling, record retrieval, simple billing, utilization of equipment, simple statistics; standard deviation calculations and curve fitting routines.

Programs are still coming in and are being reviewed for the second volume which should be ready in April 1983. I want to thank everyone again for the tremendous response.

Derek Enlander, M.D.
University Hospital
New York, NY

Updates and Microbes

Spell 'N Fix

There have been some changes in the configuration that affect my review (Spell 'N Fix 55:102). The disk version has been optimized; disk and tape versions are no longer convertible. The new version is slightly faster and is compatible to Color Scripsit disk files. Filespecs are now checked before disk access, so you can recover from accidentally mistyping a filename. Lastly, the disk version is available on protected disk, making backups a little more difficult.

John Steiner Riverside, ND

Data Sheet Bug

Apparently there is a bug in the BASIC decimal to hex number conversion program in the MICRO Data Sheet
(Continued on page 10)

AICRO
\square Yes! Enter my subscription to MICRO, and send me the next 12 issues for just $\$ 24.00$. I save $\$ 6.00$ off the newsstand price!
\qquad
Address
City
State \qquad Zip \qquad
I'm paying by \square Check $\quad \square$ MO $\quad \square$ VISA $\quad \square$ MasterCard

Card \# \qquad Exp.Date \qquad
Signature \qquad

A Feast Of Domputing deas...

Order These Books From AICRO

Reader

 Service...For More Information

On The Advertisers In This Issue!

/ARCROReader Service Card

The numbers below correspond to the numbers imprinted on the advertisements in this issue of MICRO. This card valid for 90 days only.
Mail information to:
Name

Address

City
\qquad
\qquad State \qquad Zip

1	2	3	4	5	6	7	8	9	10	11	12	13
14	15	16	17	18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52
53	54	55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76	77	78
79	80	81	82	83	84	85	86	87	88	89	90	91
92	93	94	95	96	97	98	99	100	101	102	103	104

Please rush the MICRO Books l've checked above to:
Name
Address
City State \qquad Zip
(Allow 6-8 weeks for delivery)

```
I'm paying by: © Check \squareMO
    \square V I S A ~ \square M C
'm paying by: ■Check \(\square\) MO
\(\square \mathrm{VISA} \square \mathrm{MC}\)
```


Total Enclosed: \$

(Add $\$ 2.00 \mathrm{sin}$ per book. MA res. add 5% tax)
Visa/MC \# \qquad
Exp. Date:

Sayi 20%

I OWN A:

\square Commodore $64 \quad \square$ VIC-20
\square Apple \square PET
\square Atari $400 \square$ Atari 800
\square Other:
For Faster Service Call:
1-800-345-8112
(In PA: 1-800.662-2444
VISA or MasterCard Only

NEW for VIC-20 Users!
Mastering Your VIC-20 With 8 BASIC Projects
A book that makes learning to program your VIC-20 fun! Contains 8 projects and programs. Games, utiilities - even a VIC-20 version of "VisiCalc." All 8 programs on cassette to help you learn faster.
\square Mastering the VIC-20@\$23.95

NEW for OSI Users! MICRO on the OSI

Includes Machine-Language enhancements and BASIC Aids, hardware modifications for enhanced/reversed video, programs for control code and upper/lower case entry. A valuable programming tool.
\square Micro on the OSI @ \$19.95

Best Sellers for APPLE Users! MICRO on the APPLE

Programming aids, utilities, games, enhancements. Together Volumes 1,2 , and 3 contain over 100 programs on diskette. Fully documented and explained. \square 3-Volume Gift-Boxed @ $\$ 59.95$ \square Vol. $1 \square$ Vol. $2 \square$ Vol. 3 \$24.95 ea.
\qquad

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE
INICRO
34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824

Subscribe to MICRO

Use This Postage Paid Card to Order the Next 12 Issues of MICRO and SAVE $\$ 6.00$ Off Newsstand Price!

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE
INICRO
34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824

A Feast Of
 Computing Ideas...
 Order These Books From

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

34 Chelmsford Street
P.O. Box 6502

Chelmsford, MA 01824

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
Reader Service...

AICRO Information On The Advertisers In This Issue!

INVESTMENT TAX ANALYST Apple ${ }^{\text {II }}$ Version

Developed by Advanced Investment Strategies, Inc.
Tax planning made simple.
Take the number crunching out of investment strategy, with this easy-to-use tax analyst. Used as a template for $\mathrm{VisiCalc}^{\oplus}$, it lets you instantly project the profitability of any investment (even series of investments) for any period up to six years. Calculates "before and after" tax liability and savings. analyzes the impact of tax credits and interest limitations... and calculates net cost, present value, and internal rate of return. For the Apple ${ }^{\otimes} \mathrm{II}, 64 \mathrm{~K}$ memory using VisiCalc. One $51 / 4^{\prime \prime}$ disk with documentation. $\$ 150.00$

USING VISICALC ${ }^{\circledR}$
 Getting Down To Business Book/Disk Set

Developed by Carol Klitzner \& Mạthew Plociak, Jr.
You don't have to be a computer wiz to get all the computing power your VisiCalc was designed to deliver. Now you can exploit every time-saving feature and management function built into VisiCalc. This unique book/software package explains all its functions and commands, and gives you ready-to-run layouts for financial planning and forecasting, cash flow analysis, inventory management financial ratios, break-even analysis, and a host of other applications. 288-page book and one $51 / 4^{\prime \prime}$ disk for the Apple II, 48 K memory using VisiCalc. $\$ 56.90$

SCHEDULER/CALENDAR
 Apple ${ }^{\text {® }}$ II Version

Developed by Ellen Montrose Cohen
Turn your Apple into a tireless, efficient electronic secretary.
A must for every busy professional. Simple, dependable, and easy-to-use, this total time management system lets you enter, find, display, delete, add to, and print an appointment or entire day's schedule in seconds... move appointments when there's a cancellation....interface with other files (such as phone numbers or addresses)... annotate your schedule... even print labels, "reminder" cards, and simple bills. One $5^{1 / 4} 4^{\prime \prime}$ disk with documentation for the Apple II, 48 K memory. Available in May. $\$ 65.00$

Run with Wiley Professional Software

MULTIGRAPH
 Apple ${ }^{\Phi}$ II Version
 Developed by Robert Abey

A powerful, versatile, extremely friendly computer graphics package.
Need to display financial or other numerical data clearly, quickly, and conveniently? Just select the type of graph you want-bar or line, pie charts or scatter diagrams-input the values, and MULTIGRAPH does the rest. Change the values, the graphs change automatically. You can even change from one type of graph to another. . and print at the touch of a button. One $51 / 4^{\prime \prime}$ disk with documentation for the Apple II, 48 K memory. Available in May. $\$ 85.00$

GOLDEN DELICIOUS GAMES FOR THE APPLE ${ }^{\oplus}$ COMPUTER Book/Disk Set

Howard M. Franklin. Joanne Koltnow. LeRoy Finkel Mind-challenging fun for the Apple ${ }^{\otimes}$ II. Ready-to-run game programs, plus techniques and subroutines more experienced programmers can use to plug into existing games or build new ones. 150 -page book plus two $5^{1 / 4} \mathbf{4}^{\prime \prime}$ disks for the Apple II, 32 K memory. $\$ 47.90$

APPLE ${ }^{\oplus}$ BASIC

Data File Programming

 Book/Disk SetLeRoy Finkel and Jerald Brown
How to create and maintain your own data files for billings, inventories, mailing lists, numerical and statistical data, and moreplus ready-to-run file programs. 303-page book plus one $51 / 4^{\prime \prime}$ disk for the Apple II. 48K memory. \$34.90

Ask for Wiley Professional Software at your local computer store. Or order directly from us with this coupon--and use any program free for 15 days.

WILEY PROFESSIONAL SOFTWARE

a division of John Wiley \& Sons, Inc.

605 Third Avenue
New York, N.Y. 10158
Appless is a registered trademark of Appie Computer, Inc VisiCalc is a registered trademark of VisiCorp.

For faster service CALL TOLL FREE:
800-526-5368. In New Jersey, call collect: (201) 797-7809. Order Code 3-9887 VISA, MasterCard, American Express accepted on phone orders

Mail to: Wiley Professional Software
 P.O. Box 092
 Somerset, N.J. 08873

Please send me the software indicated to use free for 15 days. If not completely satisfied, I may return any software within the trial period and owe nothing. (Restricted to continental U.S. and Canada.)
\square Payment enclosed plus sales tax.
Wiley pays normal bookrate postage/ handling. We normally ship within 10
days. If shipment cannot be made within
90 days, payment will be refunded
\square Bill me. Bill my company.
$\square(1-88953-9)$ AIS
TAX ANALYST . $\$ 150.00$
\square (1-89004-9) Klitzner
VISICALC . . . $\$ 56.90$
$\square(1-87459-0)$ Cohen CALENDAR . $\$ 65.00$
$\square(1-87460-4)$ Abey MULTIGRAPH. $\$ 85.00$
\square (1-89842-2) Franklin GAMES $\$ 47.90$
\square (1-89843-0) Finkel APPLE BASIC . $\$ 34.90$

Please Print
NAME \qquad
FIRM \qquad
ADDRESS
CITY
STATE/ZIP
SIGN HERE
CREDIT CARD ORDERS: To charge your order plus local sales tax and shipping/ handling, fill in the information below If you are not satisfied with the book/software set, return it within 15 days for a full credit to your account.
\square VISA \square MASTERCARD
CARD NO \qquad

Expiration date

Signature
(Offer valid through Dec. 31, 1983.)
Prices subject to change without notice

Updates \& Microbes (continued)

\#5 published in the September 1982 issue of MICRO.

As written, the program, run in either Applesoft BASIC or Commodore 4.0 BASIC, returns an @ instead of the initial nine for decimals in the range 36865 ($\$ 9001$) to 40959 (\$9FFF). In fact, the program returns @@@9 for decimal 39321 (\$9999).

The following new lines (in place of the existing lines) will correct the bug:

50 IF $X>=10$ THEN PRINT
CHR\$ $(X+55)$;
60 IF $X<=10$ THEN PRINT
CHR\$(X + 48);
See listings 1 and 2 for both the original and corrected programs.

Wilmon B. Chipman Bridgewater, MA

Listing 1
5 REM PUBLIBHED VERSION
10 REM $x<65536$
20 INPUT x
$30 x=X / 4096$
40 FOR J = 1 TO 4
50 IF $x>9$ THEN PRINT CHR $(x+55)$,
60 IF $x<-9$ THEN PRINT CHR $(x+48)$;
$70 x=(x-I N T(x)) * 16$
80 NEXT J
Listing 2
5 REM CDRRECTED VERSION
10 REM $x<65536$
20 INPUT X 4096
40 FOR J = 1 TO 4
So IF x) 10 THEN PRINT CHR $(x+55)$:
to IF $X<10$ THEN PRINT CHR $(X+48)$)
$70 x=(x-$ INT $(x))$ 16
BO NEXT J

Apple Slices Sliced
Two lines in the December Apple Slices column (page 66) were left out. Insert:
$1799568659 B 179$ ADC LOWTR
180 956A 85 9B 180 STA LOWTR

Tim Osborn
Manchester, NH

Oops!

In "Print Control for Apple Printers" $\{58: 24\}$, the "\#" signs were left off of the following lines of the program.

9309	A9	94	36	PRNTCTRL	LDA	04		5 PARAMS (10 TO 4). COUNT THEM
930C	C9	2C	41		CMP	©COHFA	*	next chr alss comma
031 D	A ${ }^{\text {a }}$	26	59	CONDOS	LDY	-123	\%	What is output device address?
0328	A1	98	56		LDY	*		The address itself.
0335	A9	4D	62		LDA	H6OK	-	FINALLY POINT DOS' CShl. Address
9335	C9	日	79	PRINTI	Crip	acr	-	got a carriage return?
0379	A9	ฮ\|	97	PABETEST	LDA	*		COHE HERE AFTER CARR.RETURN
0388	A9	¢	105	BTEPDVER	LDA	-	d	Skip lines to get to next page
63 AC	A9	C9	129		LDA	- title		get lbyte of title
13 B 3	A9	9	125		LDA	- 6		HIGH bYTE OF PAGE (SO MAX=255

MCRO"

NEW FROM D \& N MICRO PRODUCTS, INC.

MICRO-80 COMPUTER

Z80A CPU with 4MHz clock and CP/M 2.2 operating system. 64 K of low power static RAM. Calendar real time clock. Centronics type parallel printer interface. Serial interface for terminal communications, dip switch baud rates of 150 to $9600.4^{\text {" }}$ cooling fan with air intake on back of computer and discharge through ventilation in the bottom. No holes on computer top or side for entry of foreign object. Two $8^{\prime \prime}$ single or double sided floppy disk drives. IBM single density 3740 format for 243 K of storage on each drive. Using double density with 1 K sectors 608 K of storage is available on a single sided drive or 1.2 meg on a double sided drive. Satin finish extruded
aluminum with vinyl woodgrain decorative finish. 8 slot backplane for expansion. 48 pin buss is compatible with most OSI boards. Uses all standard IBM format CP/M software.

Model 80-1200 \$2995
28^{n} single sided drives, 1.2 meg of storage
Model 80-2400 \$3495
$28^{\prime \prime}$ double sided drives, 2.4 meg of storage
Option 001 \$ 95
Serial printer port, dip switch baud rate settings

Software available in IBM single density $8^{\prime \prime}$ format.

Microsoft		Digital Research	
Basic-80	$\$ 289$	PL1-80	
BasicCompiler	$\$ 329$	Mac	$\$ 459$
Fortran-80	$\$ 410$	Sid	$\$ 85$
Cobol-80	$\$ 574$	Z-Sid	$\$ 78$
Macro-80	$\$ 175$	CBasic-2	$\$ 95$
Edit-80	$\$ 105$	Tex	$\$ 110$
MuSimp/Mu Math	$\$ 224$	DeSpool	$\$ 90$
Mu Lisp-80	$\$ 174$	Ashton-Tate	$\$ 50$
		dBasell	
			$\$ 595$

Micropro	
Wordstar	$\$ 299$
Mail-Merge	$\$ 109$
Spellstar	$\$ 175$
Super Sorti	$\$ 195$
Pascal	
Pascal/MT +	$\$ 429$
PascalZ	$\$ 349$
Pascal M	$\$ 355$

Convert almost any static memory OSI machine to CP/M ${ }^{\text {® }}$ with the D \& N-80 CPU Board.

Z80A CPU with 4MHz clock. 2716 EPROM with monitor and bootstrap loader. RS-232 serial interface for terminal communications or use as a serial printer interface in a VIDEO system. Disk controller is an Intel 8272 chip to provide single or double density disk format. 243 K single density or 608 K double density of disk storage on a single sided $8^{\prime \prime}$ drive. A double sided drive provides 1.2 meg of storage. DMA used with disk controller to unload CPU during block transfers from the disk drives. Optional Centronics type parallel printer port com-
plete with 10 ft . cable. Optional Real Time Calendar Clock may be set or read using 'CALL' function in high level languages. Power requirements are only 5 volts at 1.4 amps. Avallable with WORDSTAR for serial terminal systems.
INCLUDES CPM 2.2
$\begin{array}{ll}\text { D \& N-80 serial } & \$ 695 \\ \text { D \& N-80 serial w/Wordstar } & \$ 870 \\ \text { D \& N-80 video } & \$ 695 \\ \text { Option001 } & \$ 80\end{array}$
parallel printer and real time calendar clock

D \& N-80 CPU BOARD

OTHER OSI COMPATIBLE HARDWARE

IO-CA10X Serial Printer Port
Compatible with OS-65U and OS-65D ware
IO-CA9 Paraliel Printer Port $\$ 175$
Centronics standard parallel printer interface with 10 ft . flat cable
BP-580 8 Slot Backplane
\$ 47
Assembled 8 slot backplane for OSI 48 pin buss
24MEM-CM9 $\$ 380$ 24MEM-CM9F $\$ 530$
16MEM-CM9 $\$ 300$ 16MEM-CM9F $\$ 450$ 8MEM-CM9 \$210 8MEM-CM9F \$360 BMEM.CM9F \$ 50 FL470 $\$ 180$ 24K memory/floppy controller card supports up to 24 K of 2114 memory chips and an OSI type floppy disk controller. Available fully assembled and tested with 8,16 , or 24 K of memory, with floppy controller (F). Controller supports 2 drives. Needs separated clock and data inputs. Available Bare (BMEM-CM9F) or controller only (FL-470). Ideal way to upgrade cassette based system

C1P-EXP Expansion Interface
$\$ 65$ Expansion for C1P 600 or 610 board to the OSI 48 pin buss. Requires one slot in backplane. Use with BP- 580 backplane BIO-1600 Bare IO card $\$ 50$ Supports 8 K of memory, 216 bit parallel ports may be used as printer Interfaces. 5 RS-232 serial ports, with manual and Molex connectors
DSK-SW Disk Swltch
\$ 29 Extends life of drive and media. Shuts off minifloppy spindle motor when system is not accessing the drive. Complete KIT and manual
D \& N Micro Products, Inc.
Fort Wayne, Ind. 46808
(219) 485-6414

TERMS $\mathbf{\$ 2 . 5 0}$ shipping, Foreign orders add 15%. Indlana residents add 4\% sales tax.

Disk Drives and Cables

8^{n} Shugart SA801 single sided $\quad \$ 395$
$8{ }^{\text {n }}$ Shugart SA851 double sided $\$ 585$
FLC-66ft. cable from D \& N or OSI \$ 69 controller to $8^{\prime \prime}$ disk drive
$51 / 4^{\prime \prime}$ MPI B51 with cable, power $\$ 450$ supply and cabinet
FLC-5 $1 / 48 \mathrm{ft}$. cable for connection $\$ 75$ to $51 / 4$ drive and D \& N or OSI
controller, with data separator and disk switch
Okidata Microline Printers
ML82A Dot Matrix Printer $\$ 534$
120 CPS, $80 / 120$ columns, 9.5^{n} paper width, friction or pin feed
ML 83A Same as 82A except 5895
16^{n} paper width, $132 / 232$ columns with tractor feed
ML 84 Same as 82 A except 200 CPS, $\$ 1152$ 16 " paper width, $132 / 232$ columns, 2 K buffer, dot addressable graphics, with tractor feed

Tim Osborn

This month's program, FORMULATE, lets VisiCalc users see the formulas that make up a worksheet all at once rather than one at a time on the edit line. If you do not use VisiCalc, you may still be interested in FORMULATE because it contains a general purpose BASIC subroutine to access individual DISK II sectoirs (lines 1140-1520).

FORMULATE will take any VisiCalc worksheet file and process it so that all values are stripped out and just the headings and formulas remain. The formulas are translated into headings so they will appear upon loading the file. The data is then saved under the original worksheet's name with ".FORMULAS" appended to the end of the name. The original worksheet file is unchanged, which preserves the data. When the .FORMULAS version of the worksheet is loaded (using the /SL command of VisiCalcl, the formulas that make up the worksheet can be viewed all at once along with any headings contained in the worksheet. The ''.FORMULAS'" version of the worksheet can then be printed using the / P command.

When FORMULATE is run it will display each text file residing on the diskette in the last accessed disk drive one at a time. The user is asked to respond " Y " if the file displayed is the desired file and ' N " ' if it is not. Once the file is selected, FORMULATE will perform its function, notifying the user when the function is completed.

The Program

Lines 5-110 perform an initialization function to get the program ready for operation. Line 120 calls the sector read/write subroutine and reads the VTOC (sector 0, track 17). The subroutine at lines 1210 through 1230 initialize two machine-language subrou-
tines. Line 1430 is a machine-language program to locate the current DOS Input/Output Block (IOB) and place a pointer to the IOB in locations $\$ 00$ through $\$ 01$ so that the parameters can be updated by BASIC. Line 1440 is a subroutine that locates the IOB and calls RWTS to perform the operations specified in the IOB.

Line 1235 CALLs the locate-IOB subroutine. Lines 1240-1250 compute the modulo- 256 of the buffer address and update the IOB to point to the desired buffer. Lines 1300 through 1390 form a subroutine that takes the desired track (TRK\%) and sector (SEC\%) and performs the operation specified by OP\% (where $1=$ Read, 2 $=$ Write). Lines 140-320 read the cata\log sectors searching for TEXT files.

Once the user selects a text file to FORMULATE, the program dislays a message "PLEASE WAIT" and begins the main process of the program at line number 450 . Line 450 opens the chosen file. Line 460 attempts to delete any .FORMULAS version that may already exist. If the delete function fails because the file does not exist yet then an error-code 6 will be produced ("FILE NOT FOUND"). This condition will be trapped by the ONERR GOTO 880 statement in line 440 . Lines 880 through 990 form a general purpose error-handling routine. Error codes 5 and 6 are normal for this program and are handled by the error routine. For error code 6 , processing picks back up at line 470. Error code 5 signals an end to the input file so the files are closed and a 'FUNCTION COMPLETE'" message is displayed.

Line 470 opens the .FORMULAS version. Lines 480 through 870 form the input/output loop where the worksheet is read in, analyzed, and the .FORMULAS file is written out. Lines 500 to 540 replace the normal Applesoft INPUT statement. This is used to avoid the all too familiar "EXTRA IGNORED' problem.

Lines 560 through 750 form a loop, which is used to parse the input record one byte at a time. This loop is an example of finite state automation. It is used here to analyze the worksheet file in order to recognize which records are labels, commands, formulas, and input files that are not worksheet files at all (see line 790).

Lines 760 through 790 check to see in which node (state) the program emerges from the loop. If it emerges in node 6, then the input record was a value (not a computed value or formula). Since FORMULATE strips these from the .FORMULAS version, the program continues to read the next input record without writing anything to the .FORMULAS file.

Line 770 checks for a node 10 or 4 , which means that the input record was a label. Since these are written as is, processing continues at the output line number 850 . Line 780 checks for a node 8 , which means the input record was the VisiCalc Global Column width command (/GC). Since FORMULATE outputs one of these records to the .FORMULAS version at the end of processing (see line 920) to set the columns to the width of the widest formula +1 , this record is skipped by jumping to line 480 to get the next input record.

Line 790 checks for a node $<>11$, which indicates that the file is not a VisiCalc worksheet; a proper message is displayed and processing is discontinued.

Lines 800 through 840 handle node $=9$ (the input record is a formulal. These lines simply split the formula into two pieces and place a quote /CHR\$ (34)) into the proper position to make the formula a label. Lines 850 through 870 write the record out and jump back to 480 to get the next input record.
(Listing begins on page 14)

Versa Computing Products are available at your local computer products store.

Micron Distributing Toronto, Canada Program Spektrum Bromma, Sweden Micro Products Sales Group Lynn, Mass.

VersaWriter is also available with software designed for Atari \& IBM PC.

Distributed by:

Lanclan

Educational Media Washington, Penn. ESD Laboratories Tokyo, Japan
Blue Ridge Computers Capetown, South Africa
$1 \mathrm{BF}=32744: \mathrm{OP}$ \％$=1$
5 HM $=$ PEEK（115）＋PEEK（116）＊ 256：REM SAVE HIMEM
10 HIMEM： $\mathrm{BF}-1: \mathrm{HI}=8$ ：REM SET himem and longest formula
20 DIM FL\＄（105）：REM TEXT FILE N AME ARRAY
$3 \varnothing$ GOSUE 1ø9ø：REM ESTABLISH ONE RR FIX
4 REM $* *$
$5 \emptyset$ REM＊＊FT\％，FL／AND FS§ ARE＊＊
60 REM＊＊OFFSETS INTO THE＊＊
$7 \varnothing$ REM＊＊CATALOG BUFFER＊＊
8 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
90 FT\％＝13：REM FILE TYPE OFFSET
$10 \emptyset$ FL\％$=14$ ：REM FILE NAME OFFSET
110 FS\％＝11：REM FILE STATUS OFFSET
$12 \varnothing$ TRK\％$=17:$ SEC $=\varnothing$ ： $\operatorname{GOSUB} 121$ Ø：GOSUB 13øø：REM INIT SECT OR R／W ROUTINE AND READ VTOC
130 HOME ：HTAB 5：VTAB 5：PRINT ＂PLEASE WAIT－READING CATAL OG．．．．．．．．＂；
140 FOR $J=1$ TO 15：REM NUMBER of CATALOG SECTORS
$15 \varnothing$ TRK $=$ PEEK $(\mathrm{BF}+1):$ SEC $=$ PEEK（BF＋2）：GOSUG 1360：REM read catalog sector into buffer
160 FOR $K=B F T O B F+210 S T E P$ 35：REM 7 FILE DESCRIPTORS； 35 BYTES EACH
17Ø FS＝PEEK（K＋FS\％）：REM SE f FILE STATUS CODE
$18 \emptyset$ IF FS $=\emptyset$ THEN $J=15: K=B F$ ＋210：COTO 31才：REM END LOOP
190 IF FS $=255$ GOTO 310：REM SK IP DELETED FILE
$2 \varnothing \varnothing \mathrm{FT}=$ PEEK（ $\mathrm{K}+\mathrm{FT} \%$ ）
$21 \varnothing$ IF NOT（FT $=\emptyset \mathrm{OR} \mathrm{FT}=128$ ） GOTO 310：REM SKIP NON－TEXT FILES
$220 \mathrm{NF}=\mathrm{NF}+1:$ REM COUNT OF TE XT FILES
$23 \varnothing$ FL\＄$=" \mathrm{n}: \mathrm{SP} \%=\varnothing:$ REM INITIA LIZE FILE NAME AND TRAILING SPACES COUNT
240 FOR $L=K+F L \%$ TO K + FL $\%+29$
250 NW\＄$=$ CHR \＄（ PEEK（L））
260 IF NH\＄＝CHR\＄（16』）THEN SP $\$=S P \%+1:$ GOTO $28 \varnothing$
$27 \varnothing$ SP\％＝$\varnothing:$ REM RESET TRAILING S paces count
$28 \varnothing$ FL\＄$=$ FL\＄＋NH\＄：REM ADD NEW Character to name
290 NEXT ：REM L
$30 \varnothing$ FL\＄（NF）$=$ LEFT\＄（FL\＄，30－SP 8）：REM DROP TRAILING SPACE S AND SAVE IN FILE NAME ARRAY
310 NEXT ：REM K
$32 \varnothing$ NEXT ：REM J
330 IF NF $=$ THEN HOME ：PRINT ＂THERE ARE NO TEXT FILES ON VOLUME＂；：HIMEM：HM：END
$340 \mathrm{FOR} \mathrm{J}=1 \mathrm{TO} \mathrm{NF}$
350 HOME ：HTAB 5：VTAB 5：PRINT ＂IS＂；FL\＄（J）；＂THE FILE＂
360 HTAB 5：VTAB 7：PRINT＂YOU D ESIRE ？ENTER Y（ES）OR N（O） ；：GET A\＄
37Ø IF A\＄＝＂Y＂THEN FL\＄＝FL\＄（J ）： $\mathrm{J}=\mathrm{NF}: \operatorname{GOTO} 390$
380 IF A\＄＜＞＂N＂GOTO 340
390 NEXT ：REM J
$4 \varnothing$ IF A\＄＜＞＂Y＂THEN HOME ：HTAB 5：VTAB 5：PRINT＂NO MORE TE XT FILES ON VOLUNE＂：HIMEM： HM：END
$410 \mathrm{CDF}=$ CHR\＄（4）
420 HTAB 5：VTAB 9：PRINT＂PLEAS E WAIT．．．．．．．．．．＂
430 POKE 34，10：REM SET TOP OF T EXT HINDOW
440 ONERR GOTO $88 \varnothing$
450 PRINT CD\＄＂OPEN＂；FL\＄

46Ø PRINT CD\＄＂DELETE＂；FL\＄；＂．FOR MULAS＂
$47 \varnothing$ PRINT CD\＄＂OPEN＂；FL\＄；＂．FORMJAS＂
48ø PRINT CD\＄：PRINT CD\＄＂READ＂；FL\＄
$490 \mathrm{D} \$=" \mathrm{l}$
$5 \varnothing \varnothing$ FOR J＝ 1 TO $2 \emptyset \emptyset$
510 GET A\＄
$52 \varnothing$ IF A\＄$=$ CHR（13）THEN $\mathrm{LN}=$ $J-1: J=20 \varnothing:$ СоT0 540
$530 \mathrm{D} \$=\mathrm{D} \$+\mathrm{A} \$$
540 NEXT
$550 \mathrm{NODE}=1$
560 FOR J＝ 1 TO LN
$570 \mathrm{MD} \$=\mathrm{MID}$（ $\mathrm{D} \$, \mathrm{~J}, 1$ ）
580 IF MDS $=">{ }^{\prime \prime}$ AND NODE $=1 \mathrm{THEN}$ NODE $=2:$ GOTO $75 \varnothing$
590 IF NODE $=1$ AND MD $\$=" / 1$ THEN NODE＝5：GOTO 75め
60 IF NODE $=1$ THEN NODE $=11: \mathrm{J}$ ＝LN：GOTO 75
610 IF NODE $=2$ AND MD $=": "$ THEN
$\mathrm{K}=\mathrm{J}:$ NODE $=3:$ GOTO 75 0
$62 \varnothing$ IF NODE $=2$ GOTO 75 \varnothing
630 IF NODE $=3$ AND $\operatorname{HD\$ }=$ CHR $\$$
（34）THEN $J=L N: N O D E=10:$ GOTO 75ø
640 IF NODE $=3$ AND MD\＄$=7 / 1$ THEN NODE $=4:$ GOTO 75 0
65ø IF NODE $=3$ THEN NODE $=6$ ：GOTO 750
660 IF NODE $=4$ AND MD $=$＂F＂THEN NODE $=6: \mathrm{J}=\mathrm{J}+1: \mathrm{K}=\mathrm{J}:$ GOTO 750
67б IF NODE $=4$ THEN $\mathrm{J}=\mathrm{LN}:$ NODE ＝10：GOTO $75 \varnothing$
68 I IF NODE $=5$ AND MD\＄$=$＂G＂THEN NODE＝7：GOTO 750
69才 IF NODE $=5$ THEN J＝LN：NODE ＝10：GOTO 750
700 IF NODE $=6$ AND MD\＄$>$＂e＂AND MD\＄＜CHR\＄（91）THEN $\mathrm{J}=\mathrm{LN}$ ：NODE＝9：GOTO 750
710 IF NODE $=6$ AND MD\＄$=$ CHR\＄ （34）THEN $J=L N:$ NODE $=10$ ：GOTO $75 \varnothing$
$72 \emptyset$ IF NODE $=6$ COTO 750
730 IF NODE $=7$ AND MD $=$＂C＂THEN NODE $=8: \mathrm{J}=\mathrm{LN}:$ COTO 75ø
740 IF NODE $=7$ THEN $\mathrm{J}=\mathrm{LN}:$ NODE $=1 \varnothing$
$75 \emptyset$ NEXT ：REM J
760 IF NODE $=6$ THEN GOTO 480：REM SKIP RECORD
777 IF NODE $=16$ OR NODE $=4$ THEN GOTO 85ه：REM WRITE AS IS
$78 \emptyset$ IF NODE $=8$ THEN GOTO 480：REM SKIP＂／GC＂－PROGRAM PRODUC ES ITS＇OWN
$79 \varnothing$ IF NODE $=11$ THEN POKE 34，\varnothing ：PRINT CD\＄：HOME ：PRINT＂T hIS DOES NOT APPEAR TO BE A WORKSHEET＂；：PRINT CDS：PRINT CD\＄＂CLOSE＂：PRINT CD\＄＂DELETE ＂；FLW；＂．FORMULAS＂：HIMEM：H M：END
$8 \emptyset \emptyset$ REM NODE $=9$ PASSES HERE
81б L＝LN $-K$
82\％IF L＞HI THEN HI＝L：REM SAVE LENGTH OF LONGEST FORMULA
830 LT\＄＝LEFT\＄（D\＄，K）：RT\＄＝RIGHT\＄ （ $\mathrm{D} \$, \mathrm{~L}$ ）
$840 \mathrm{D} \$=\mathrm{LT} \$+\mathrm{CHR} \$(34)+\mathrm{RT} \$$
85Ø PRINT CD\＄：PRINT CD\＄；＂WRITE＂ ；FL\＄；＂．FORMULAS＂
860 PRTNT D\＄
870 GOTO 480
880 CALL 768：REM ONERR FIX
$890 \mathrm{ER}=$ PEEK（222）：REM SET ERR OR CODE
90日 IF ER $=6$ THEN PRINT CD\＄：GOTO 47ø：REM NO FORMULAS FILE TO DELETE（CONTINUE）
910 POKE 34，Ø：REM RESET TEXT WI NDOW
920 IF ER $=5$ THEN PRINT CD\＄：PRINT CD\＄＂WRITE＂；FL\＄；＂．FORMULS＂：
PRINT＂／GC＂；STR\＄（HI＋1）： PRINT CD\＄：GOTO 1øøø

930 IF ER $=4$ THEN PRINT＂WRITE PROTECTED＂：GOTO 104ø
950 IF ER $=10$ THEN PRINT＂FILE LOCKED＂：GOTO 164ø
960 HOME ：PRINT＂ERROR CODE＝ ＂；ER
$97 \varnothing$ PRINT＂IN LINE NUMBER＂；PEEK （218）+ PEEK（219）＊ 256
980 IF ER >15 OR ER $=\varnothing$ THEN PRINT ＂SEE PAGE 81 OF THE APPLESOF T＂：PRINT＂BASIC PROGRAMMING reference manual＂：GOTO 104ø
$99 \varnothing$ PRINT＂SEE PAGES 114 － 1150 F THE DOS MANUAL＂：GOTO 1040
1Øбб HOME ：HTAB 5：VTAB 5
1610 PRINT＂FUNCTION COMPLETED＂
1ø2Ø hTAB 5：VTAB 7：PRINT＂FILE ＂；FL\＄；＂．FORMULAS＂
1030 HTAB 5：VTAB 9：PRINT＂IS N OU SAVED ON DISK＂
1040 POKE 216，\varnothing ：REM TURN OFF ONERR COTO INCASE OF TROUBLE W／CLOSE（AVOIDS POSSIBLE LO OP）
105才 PRINT CD\＄：PRINT CD\＄＂CLOSE＂ $166 \varnothing$ HIMEM： HM ：END ：REM RESET HIMEM AND END

1870 REM

1 1б8 REM＊＊＊＊＊ONERR FIX＊＊＊＊＊
1096 FOR $J=768$ TO 777：READ K： POKE J，K：NEXT ：RETURN
1160 DATA 164，168，184，166，223，1 54，72，152，72，96
111 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
$115 \emptyset$ REM＊＊READ TRACK－SECTOR＊＊
1160 REM＊＊SUBROUTINE＊＊
$117 \varnothing$ REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
1180 REM SEC\％＝SECTOR TO READ
1190 REM BF＝BUFFER ADDRESS
12σ REM TRK $=$＝TRACK TO READ
1210 FOR J＝330øø TO 33614
122σ READ I\％：POKE J，I\％
1230 NEXT
1235 CALL 33øø日：REM LOCATE THE IOB
$1240 \mathrm{BH}=\mathrm{INT}(\mathrm{BF} / 256)$
1242 BL\％$=$ INT（ $(\mathrm{BF} / 256-\mathrm{INT}$ $(\mathrm{BF} / 256)) * 256+.05) * \mathrm{SGN}$ （ $\mathrm{BF} / 256$ ）
1244 PTR $=$ PEEK（ 0 ）+ PEEK（1）＊ 256
1250 POKE PTR＋8，BL\％：POKE PTR＋
9，BH\％：REM SET BUFFER ADDRESS
1260 RETURN
$127 \emptyset$ REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
1286 REM＊PTR＝BEGIN．OF IOB＊
1290 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
13σ POKE PTA＋4，TRK\％
1310 POKE PTR＋5，SEC\％
1356 POKE PTR＋12，OP\％：REM OPER ATION $1=$ READ $2=$ WRITE
1360 POKE PTR＋3， 0 ：REM UILDCARD VOL
1370 CALL 33Ø日8：REM CALL LOCIOB＋RWTS
1380 POKE 72，\varnothing ：REM RESET PREG
1396 RETURN

1430 DATA $32,227, \varnothing 3,132, \varnothing \varnothing, 133, \varnothing 1,96$
1440 DATA $32,227,03,32,217,03,96$
1450 REM $* * * * * * * * * * * * * * * * * * *$
1460 REM＊1ST DATA STMENT＊
$147 \varnothing$ REM＊MACH．LANG．TO＊
$\begin{array}{lll}1480 & \text { REM } & * \text { LOCATE THE IOB } \\ 1490 & \text { REM }\end{array}$
$15 \not 16$ REM＊LOCATE THE IOB＊
1510 REM＊AND CALL RUTS＊
1520 REM
1520 REM ******************
＞H1б：ESTM（B1б．．．G1б）
$>$ G10：＋G8－G9
$>$ F10：+ F8－F9
$>$ E10：＋E8－E9
$>$ D18：＋D8－D9
$>\mathrm{C1} \mathrm{\sigma}:+\mathrm{C8}-\mathrm{C9}$
$>$ B1б：＋B8－89
＞A16：＂NET
$>$ H9： $\operatorname{ESUM}(B 9 .$. ．G9）
＞A9：＂TAXES
$>$ H8： $\operatorname{\text {SSuM（B8．．．．68）}}$
$>$ G8： ： 66 － 67
$>$ F8：$+\mathrm{F} 6-\mathrm{F} 7$
$>$ E8：＋E6－E7
$>$ D8：＋D6－D7
$>\mathrm{CB}:+\mathrm{C} 6-\mathrm{C} 7$
$>B 8:+\mathrm{B6}-\mathrm{B7}$
$>$ A8：＂GROSS
$>$ H7： $\operatorname{eSum}($ B7．．．G7）
＞A7：＂EXPENSES
$>$ H6：${ }^{\text {SUMM }}$（B6．．．G6）
＞G6：ESUM（G2．．．G5）
＞F6：ESUM（F2．．．F5）
＞E6： $\operatorname{eSUM}(E 2 \ldots$ ．． 5 ）
＞D6：ESTM（D2．．．D5）
＞C6：еSUM（C2．．．C5）
＞B6：ESUM（B2．．．B5）
$>$ A6：＂TTL SALES
$>$ H5： $\mathrm{ESUM}(\mathrm{B5} . . \mathrm{G5}$ ）
＞A5：＂MISC
$>\mathrm{H} 4: \mathrm{QSUM}(\mathrm{B4} . . . \mathrm{G4})$
＞A4：＂LABOR
$>$ H3： $\operatorname{\text {SSUM}}$（B3．．．．G3）
$>$ A3：＂TIRES
$>$ H2： $\mathrm{eSUM}(\mathrm{B} 2 \ldots \mathrm{G} 2)$
＞A2：＂BIKES
＞H1：＂GRAND TTL
＞G1：＂JNNE
＞F1：＂MAY
＞E1：＂APRIL
＞D1：＂MAR
$>$ C1：＂FEB
＞B1：＂JAN
＞H10：＂esum（B10．．．G10）
＞G10：＂＋G8－G9
$>$ F10：＂＋F8－F9
＞E10：＂＋E8－E9
＞D18：＂＋D8－D9
$>\mathrm{C10}: "+\mathrm{CB}-\mathrm{C9}$
$>$ B10：＂＋B8－B9
＞A1d：＂NET
＞H9：＂eSUM（B9．．．G9）
$>$ A9：＂TAXES
$>$ H8：＂eSUM（B8．．．．G8）
＞G8：＂＋G6－G7
$>$ F8：＂＋F6－F7
$>$ E8：＂＋E6－E7
＞D8：＂＋D6－D7
$>$ C8：＂＋C6－C7
＞B8：＂＋ $\mathrm{B6}$－ $\mathrm{B7}$
＞AB：＂GROSS
＞H7：＂QSUM（B7．．．G7）
＞A7：＂EXPENSES
$>$ H6：＂eSUM（B6．．．66）
＞G6：＂ESUM（G2．．．G5）
＞F6：＂eSUM（F2．．．F5）
＞E6：＂ESUM（E2．．．E5）
＞D6：＂ESUM（D2．．．D5）
$>C 6: " \operatorname{ESUM}(C 2 \ldots C 5)$
＞B6：＂ESUM（B2．．．B5）
＞A6：＂TTL SALES
＞H5：＂ESUM（B5．．．G5）
＞A5：＂MISC
$>$ H4：＂eSUM（B4．．．G4）
＞A4：＂LABOR
$>$ H3：＂ $\operatorname{ESUM}(\mathrm{B} 3 . . . \mathrm{G3}$ ）
＞A3：＂TIRES
＞H2：＂ESUM（B2．．．G2）
＞A2：＂BIKES
＞H1：＂GRAND TTL
＞G1：＂JUNE
＞F1：＂MAY
＞E1：＂APRIL
＞D1：＂MAR
＞C1：＂FEB
$>$ B1：＂JAN
／GC16

COPYRIGHT © 1981 - PATENTS PENDING 566 Irelan, Buellton, CA 93427
(805) 688-2047 8:00 TO 5:00 CALIFORNIA TIME

SUPER FAN III ${ }^{\text {m }}$

FOR YOUR APPLE II * COMPUTER

- INCREASED RELIABILITY - SAVES DOWN TIME AND REPAIR CHARGES
- LOW NOISE DUE TO DRAWING EFFECT OF AIR THROUGH YOUR COMPUTER AND SPECIAL FAN AND MOTOR DESIGN
- TWO EXTRA 120V OUTLETS FOR MONITOR AND ACCESSORIES TURN ON WHEN YOU TURN ON YOUR FAN (NOT AVAILABLE ON 240 V MODEL)

SUPER FAN II $^{\text {™ }}$ WITH ZENER RAY OPTION $\$ 109.00$

 ZENER RAY ${ }^{\text {TM }}$ TRANSIENT VOLTAGE SUPPRESSOROUR BUILT IN ADVANCED DESIGN UNIT GIVES
DRAMATIC COST SAVINGS - STOPS ANNOYING DOWN TIME
INSURANCE FROM VOLTAGE SPIKES - GLITCHES
DANGEROUS VOLTAGE SPIKES CAN JEOPARDIZE YOUR COMPUTER SYSTEMS
PROTECT COMPUTER - DISK DRIVE - PRINTER AND MONITOR
NO CUTTING WIRES • WON'T VOID WARRANTY, JUST PLUG IN SUPERFAN II WITH ZENER RAY

OTHER PRODUCTS BY
 ${ }^{R}$ H ELECTRONICS, INC.

SUPER RAM II ${ }^{\text {TM }} 16 \mathrm{~K}$ RAM CARD FOR YOUR APPLEII. 2 YEAR WARRANTY $\$ 125$
GUARDIAN ANGEL ${ }^{\text {MM }}$ an uninterruptable power source $\$ 595$
12 VOLT TRANSVERTER 12 VOLT - RUNS YOUR APPLE II COMPUTER AND AND $51 / 4^{n}$ DRIVE FROM YOUR CIGARETTE LIGHTER $\$ 149$

[^2]DEALER INQUIRIES INVITED

\checkmark Full Screen Editing

\checkmark Copy-Move sentences, paragraphs
\checkmark Insert-Delete letters, sentences
\checkmark Form letters-User defined data
\checkmark Shorthand-words, phrases
\checkmark Centering-Justification-Tabs
\checkmark Headers-Footers-set page size
\checkmark Automatic Page Numbering
\checkmark Double columns-set margin, line size
\checkmark Printer graphics-send hex codes
\checkmark Set up to support most printers
\checkmark Disk file concatenation
\checkmark Program update support provided

THE NEXT LOGICAL STEP IN THE EVOLUTION of WORD PROCESSING
 COPY-WRITER

Copy-Writer is a full featured professional quality word processor. It offers all the capabilities required for high performance and efficiency. In addition advanced features such as double columns, multiple disk files, printer hex control, etc. Copy-Writer is written in FORTH, a unique language that runs nearly as fast as machine code but actually occupies ess memory. This allows more room in memory for lines of text. More than otherwise possible.
Copy-Writer updates will be distributed on request to all registered users for just the update cost. Even when a more powerful version is introduced

AVAILABLE FOR 40XX/8032/C64 only $\$ 145.00$

SEE YOUR DEALER OR
P.O. Box 102

Langhorne, Pa. 19047 215-757-0284
DEALER INQUIRIES INVITED

Commodore Gets Smart

"Having a modem and a good terminal software package like this can really open up a new world of applications for your Commodore system." - Robert W. Baker

- MICROCOMPUTING
\checkmark record to disk/transmit from disk
\checkmark output to Commodore/ASCII printer
\checkmark XON/XOFF control capability
\checkmark translates files ASCII/BASIC/W-PRO
\checkmark system status line-clock with alarm
\checkmark user table allows encoded data
\checkmark user access to routines-teiemetry
The most sophisticated terminal package available. Gives you all the features needed now and for the future. Available Commodore 40 XX, 8032 with 4040, 8050, PEDISK II

Available from cgrs MICROTECH,
P.O. Box 102, Langhorne, PA 19047 215-757-0284
$\$ 129.00$ dealer inquiries invited

> with Intelligent Terminal Communications Package

PET Vet

Loren Wright

New Commodore-oriented Books

Without much fanfare the new edition of the PET/CBM Personal Computer Guide has arrived from Osborne/ McGraw-Hill. The new edition, by Adam Osborne, Jim Strasma, and Ellen Strasma, has been published in two versions, called PET Personal Computer Guide and CBM Professional Computer Guide. The emphasis in the PET Guide is on the PET series of computers, the 4022 printer, and the 4040 Guide is on the PET series of computers, the 4022 printer, and the 4040 and 2031 disk drives. The CBM Guide concentrates on the 8032 and the 2001-B, with some mention of the SuperPET and the 8096. Peripherals covered include the 8050 and 8250 disk drives, and the 8024, 8023P, and 8300P printers. Both versions cover the 8010 modem and the 4010 voice synthesizer.

Listings in the PET Guide are presented in upper case/graphics, while the CBM Guide uses mixed case for its listings. More detail is given in the PET Guide on graphics programming, while the CBM pays more attention to numerical calculations and data formatting.

In general, the two books are very similar. They both have the same overall organization, and most of the material is duplicated. Much attention has been paid to updating, correcting, and clarifying material that appeared in the previous edition. One area in particular that received a lot of attention is the section on the CBM relative record system. The second edition of the PET/ CBM Guide covered this topic very poorly, including errors and misleading information.

There is also much new material in the new book, including expanded memory maps and detailed information on fixes and upgrades for the various operating systems. In addition to the new material, more program examples are included. Author Jim Strasma offers, at an extra cost, a 'Help' disk, which includes longer demonstration
and utility programs. (It also includes "Bennett's Mail List," the subject of Strasma's six-part series in MICRO.]

The two books can serve both as tutorial texts for newcomers and as valuable references for more experienced programmers. I did notice a large number of typographical errors. The Strasmas have published errata lists in The Midnite Paper, and the next printing of the guides will correct them. With no comprehensive guide available yet for the Commodore 64, the PET Guide should do very well as a standin, since the C64's BASIC is the same as PET BASIC 2. It is too bad that Commodore no longer includes a comprehensive guide with its computers. This is one that every PET or CBM user should have.

Although it is published in the US by COMPUTE!, Programming the PET/CBM by Raeto Collin West deserves mention here. It is probably the most comprehensive and detailed description of the PET/CBM operating system available. Particular attention is given to how the system works on a machine-language level. Every BASIC command is explained in detail, with examples. Programs are provided to add extensions, such as TRACE and PRINT USING. There is also an extensive, well explained list of ROM routines. This book is not for the newcomer to programming, but I have found it an essential reference-a good companion to one of the Osborne/McGraw-Hill books.

New Commodore 64 Software

C64 software is beginning to arrive so fast that I can't keep up with it. In my June column, I plan to cover word processors, including Script 64 (Richvale Telecommunications, 10610 Bayview Av., Richmond Hill, Ontario L4C 3N8, Canada), WordPro 3 (Professional Software, 51 Fremont St., Needham, MA 02194), and Paper Clip (Batteries Included, 71 McCaul St., Toronto, Ontario M5T 2X1, Canada).

Also received was a C64 version of KMMM Pascal. Author Willi Kusche
(Continued on page 18)

sibisumpions.

NEW COMMODORE PRODUCTS	
CBM P500.	\$ 695
CBM B500	695
CBM B700	2990
CBM 1520 Plotter.	259
CBM 1701 Color Monitor	279

SOFTWARE FOR CBM 64 E

Word Processing (WordPro 3*) \$ 69
Word-Pac (tape).
The Assistant Series
Writer's Assistant (easy and fiexible). . . 99
File Assistant (databose with merge). . . 99
Spreadsheet Assistant 99
Pers. Finance Assist.(great reports) . . . 45
Busicaic (Spreadsheet) 62
Coco ll (build your own games easily). . . 45
Home Accounting Package. 39
General Ledger, AR A AP
(with check witing) 00.175
CBM EasyFinance 50
CBM EasyScript . 80
CBM EasyFile. 80
Data Manager . 70
Stock(investment analysis) 80
Pet Emulator (emulates 4.0 basic) 30
Sprito-Magic (use joystick
to design sprites). 19
Assembler Package (cassette or disk,
compiled, includes editor, loader,
disassembler) 39
Spacabelt. 20
Retroboll . 34

INTERFACES A ACCESSORIES

80 Column Exponder. $\$ 159$
VIC 1600 Modem 95
VIC 1650 (auto answer, auto dial). ... 150
VIC 1525 Graphic Printer 329
VIC 1530 Datasette Recorder 65
VIC 1541 Disk Drive 329
VIC Switch (connect 8 64's or Vics
to printer, dd).
149
IEEE Interface (64) 85
PET-IEEE cable. 33
IEEE-IEEE cable (2m). 39
Parallel Interlace (Epson, Okidata,
IDS, NEC)
RS-232 Printer Interfoce (Okidata
Diablo, etc.).
80

60
Programmers Reference Guide 18
Verbatim Diskettes (10 per box). 26
Victree (Programmers Utility). 75
VIC PRODUCTS \& ACCESSORIES
8K RAM Memory Expansion Cartridge . . . \$ 40
16K RAM.
70
24K RAM. 105
VIC IEEE Interlace. 75
VIC 3 Slot Exponder 27
VIC 6 Slot Expander 70
RS-232 Printer Interioce 65
Cassette Interlacs 27
Home Finance Package (6 tapes) 47
Gort (64 also) 30
Omega Race 30
ricade Joystick - Heowy duty w/2 firing buttons! Great for the VIC or 64 25
MONITORS - GREATRESOLUTION (84 OR VIC)
Amdek Color I. \$ 319
Amdek II or III call
Panasonic CT160 295
Comrex 6500-13" Color 299
Transtor 20 (High Resolution
Green Phosphor) 129
Video/Audio Cable 15
PRINTERS - LETTER QUALITY
CBM 8300, 40 cps $\$ 1450$
Diablo 620, 25 cps 995
ComRiter, 17 cps 899
ranstar 130, 16 cps (outo load. wp features!). 769
NEC 7700 series 2350
NEC 3500 series 1600
PRINTERS - DOT MATRIXCBM 8023, 150 cps/graphics 589
Epson FX Printer, 160 cps 529
Okidata 82A, 120 cps (serial
and paralle) . 429
Okidata 92
Star Gemini, 10 429469
Stor Gemini, 15 529

COMMODORE BUSINESS SERIES

SuperPot (5 languages,
2 processors).$\$ 1409$
BM 8032 Computer, 80 column 1029
CBM Memory Expansion, 64K. 359
CBM 8050, 1 mg . Dual Drive. 1259
CBM 8250, 2 mg Dual Drive. 1500
CBM D9060, 5 mg. Hard Disk. 2240
CBM 09090, 7.5 mg Hard Disk 2600
CBM 2031, 170K Single Drive (New) 489BUSINESS SOFTWARE
WordPro 4^{+}or 5^{*} \$ 309
Administrator 489
VisiCalc (expanded) 199
The Manager (database) 199
BPI AR, G/L, Job Cost, Inventory,Paytoll.0.325

MasterCard, Visa, Money Order, Bank Check

 COO (odd \$5) occepted.Add 3\% surcharge for credit cords. In stock items shipped within 48 hours, F.O.B, Dallas, Texas All products shipped with manufacturer's warranty

Prices are subject to change without notice.
TO ORDER
CALL TOLL FREE 800-527-4893 800-442-1048 (Within Texas)

Business Hours
Mon. Fri. 8 to 6, Sot. 10-2
Write for tree cotalog.

SJB DISTRIBUTORS INC.
10520 Plano Road, Suite 206 Dallas, Texas 75238
(214) 343-1328

C64 FORTH for the Commodore 64

Fig.-Forth implementation including:

- Full feature screen editor and assembler
- Forth 79 Standard Commands with extensions
- High resolution 320×200 pixel, 16 color graphics
- Sprite graphics for control of 32 sprites
- Three voice tone and music synthesizer
- Detalled manual with examples and BASIC-FORTH conversions
- Trace feature for Debugging
$\$ 99.95$ - Dlsk Version
(Specify CBM 1540 or CBM 1541 Disk)
$\$ 99.95$ - Cassette Version
(CBM \& Commodore 64 are
Trademarks of Commodore)
PERFORMANCE MICRO PRODUCTS 770 Dedham Street
Canton, MA 02021
(617) 828-1209

PET VET (continued)

has modified the program so that it dispenses with the BASIC ROMs, thereby making 10 K extra available for programs. In addition, errors have been corrected, restrictions removed, and new string handling functions added. The programs operate with the C64's serial bus or with the CIE IEEE-488 interface (but apparently not completely with the C64-Link cartridge). As far as I know, it is the only Pascal available that can generate executable machine code. KMMM Pascal is available from AB Computers (252 Bethlehem Pike, Colmar, PA 18915) for $\$ 85$.

Support for the Commodore 64

Commodore seems to be doing better at supporting the C64 than it has with previous machines. The Programmer's Reference Guide (described in my December column) arrived at dealers at the end of December. Many of the programs I mentioned then, including the sprite editor, character editor, and simple PET emulator, have been placed in the public domain by Commodore, so you should be able to obtain them from a dealer or users' group.

Commodore's New Machines

As you may remember from a few months back, Commodore announced three new computers. These were the P, B, and BX series. It seems now that the P is the only one of these we're likely to see very soon. It is now called the Commodore 128 , and I assume it will have the same 128 K , expanded keyboard, and color-and-sound features originally announced. At the Consumer Electronics Show in January, Commodore was saying it would appear in 90 to 120 days.

Commodore showed off some other new products at that show in Las Vegas, but their arrival dates are even less certain. One product was a portable 64 K machine, compatible with the Commodore 64. This '64 Series' computer will be available in three configurations: 1) with built-in single disk drive and built-in black-and-white monitor, 2] with single dirve and color monitor, and 3) with dual drive and color monitor.

Commodore will soon be selling its own high-resolution color monitor, designed especially for the Commodore

64 and VIC-20, for $\$ 299$. Other products shown in prototype versions were a hand-held computer. a piano keyboard for the C64, a voice synthesizer cartridge with interchangeable 'voices' and vocabularies, and a touchscreen panel.

Look for my article in next month's "New Wave of Computers" where I will cover the technical details of the Commodore 64, the Commodore 128, and, I hope, the 64 series portable computers.

TPUG Conference--May 14-15

The Toronto PET User Group (TPUG) is holding a large conference at the Castle Loma campus of George Brown College in Toronto the weekend of May 14-15. I have accepted an invitation to join Jim Butterfield, Steve Punter, Jim Strasma, and a number of other PET experts as a speaker. The presentations will cover a wide variety of topics and experience levels. In addition to the presentations, there will be a major copy session of the TPUG library, which now exceeds 100 disks. Finally, there will be commercial displays, including those from all the stores in the local Toronto area. For more information, write TPUG, c/o Chris Bennett, 381 Lawrence Avenue W., Toronto, Ontario M5M 1B9, Canada.

Lincoln College Summer Computer Seminar

Lincoln College in Lincoln, IL is running a week-long seminar June 19-26. Faculty will include Jim and Ellen Strasma, Jim Butterfield, Len Lindsay, Keith Peterson, and a number of other experts on Commodore equipment. The cost, including room, board, and tuition, is $\$ 350$. If you don't have a Commodore computer you can bring, a limited number of rentals will be available for an additional fee. You will also be able to purchase a VIC for use in the seminar. For more information, write Jim Strasma at 1280 Richland Avenue, Lincoln, IL 62656.

Lyco Computer Marketing \& Consultants

 TO ORDERCALL US
TOLL FREE 800-233-8760
In PA 1-717-398-4079

FREE
 DUST COVER with Purchase of
 ATARI 800 48K $\$ 489.00$ ATARI 400 64K $\$ 349.00$

 810 DISK DRIVE.......\$419.00 ATARI 1200 64K RAM. . . \$ CALL \$

A Warner Communications Company

ATARI HARDWARE

810 DISK DRIVE.................. . $\$ 419.00$ 410 RECORDER $\$ 75.00$ 1010 RECORDER $\$ 75.00$ 850 INTERFACE. $\$ 164.00$

PACKAGES
CX482 EDUCATOR.
CX 483 PROGRAMMER
...\$219.00
CX419 BOOKEEPER $\$ 189.00$
KX7104 ENTERTAINER $\$ 69.00$

NEW RELEASES

400 KEYBOARD................... $\$ 99.00$
MINER 2049er....................... $\$ 32.75$
FROGGER............................. $\$ 25.75$
PREPPIE $\$ 19.75$
SEA DRAGON $\$ 24.75$
STRATOS $\$ 24.75$
DISKY $\$ 39.95$
MONKEY WRENCH 2. . $\$ 52.75$

MONITORS

NEC JB1260	\$125.00
NEC JB1201	\$155.00
NEC TC1201	\$315.00
AMDEK 300G	\$159.00
AMDEK COLOR	\$329.00

MODEMS

ANCHOR MARK I	. \$79.00
ANCHOR MARK II.	\$79.00
HAYES SMART	. \$239.00
HAYES MICRO II	. . $\$ 309.00$
CAT	. . \$144.00
J-CAT	\$ CALL \$

PERCOM DISK DRIVES

SINGLE DRIVE AT88 $\$ 389.00$
ADD ON............................ $\$ 289.00$
SINGLE DRIVE 40S1 $\$ 529.00$
ADD ON............................. $\$ 329.00$
DUAL DRIVE 40S2 $\$ 845.00$
DUAL HEAD SINGLE DRIVE 44S1 ... $\$ 649.00$
DUAL HEAD DUAL DRIVE 44S2 $\$ 789.00$

SAVE $=$ PRINTERS
PROWRITER
NEC 8023A $\$ 375.00$

SMITH CORONA TP1 ... \$569.00

DISKETTES : In Stock	
BASF	\$19.00
ELEPHANT.	.. \$21.00
MAXELL MDI	\$34.00
MAXELL MDII	\$44.

bUSINESS SOFTWARE

STARWRITER $\$ 1475.00$
PRINTMASTER $\$ 1675.00$

PRINTER CABLES
for Atari
CITOH $\$ 35.00$
EPSON $\$ 35.00$
NEC $\$ 35.00$
OKIDATA $\$ 35.00$
SMITH CORONA $\$ 35.00$

OKIDATA 82A	\$419.00
OKIDATA 83A	\$639.00
OKIDATA 84	\$1029.00
OKIDATA TRAC	\$63

POLICY

 DURING APRILIn-Stock items shipped within 24 hours of order. Personal checks require four weeks clearance before shipping. No deposit for COD orders. PA residents add sales tax. All products subject to availability and price change. Advertised prices show 4\% discount offered for cash. Add 4\% for Mastercard and Visa.
rO ORDER CALL TOLL FREE 800-233-8760 In PA 1-717-398-4079 or send order to Lyco Computer P.O. Box 5088 Jersey Shore. PA 17740

From Here To Atari

Paul S. Swanson

Clearing Up the Rumors

Many rumors are circulating about new products from Atari. I have seen the $1200-$ it is not just a rumor. There are also indications that another computer will be announced sometime this summer. But the rumors concerning a 48 K Atari 600 no longer look credible since Atari is more likely to bring out a more advanced product; a computer that is between the 400 and 800 is not a step forward. Any statements not officially announced by Atari are probably inaccurate. I'll keep you up to date on significant official announcements.

Missing the Right Cartridge Slot?

I have received a few letters from Atari 400 owners concerned about the right cartridge slot on the Atari 800. Since the Atari's newest computer, the 1200, has no right cartridge slot, and there is very little existing software that requires it, it is not likely that much future software will require it.

Another popular topic in letters is assembly language on the Atari. The Atari uses 6502 assembly language, the same used by Apple, Commodore, and others, so general 6502 books will be useful. A few topics concerning assembly language are specific to the Atari, so if your concerns deal with them, write a letter to me describing the specific application.

For example, one reader asked about creating a cassette bootable program. If you hold down the START button while you power up the computer, it will attempt to load and run a program from tape. The program on tape must be in machine language, which is where assemblers become important. Cassettes are a little more difficult to deal with than disks, primarily because there is no cassette operating system comparable to the disk operating time.

To create a cassette bootable program, you must under stand what the computer does when it reads such a file. The steps that the computer executes in reading the file are:

1. The first record loads into the cassette buffer and the computer stores the first six bytes and saves them in various places. The first byte is not used. The second byte contains the number of records to load. Bytes 3 and 4 contain the address to start saving the program. The last two bytes are the initialization address.
2. The first record (apparently including the first six bytes) is moved from the cassette buffer into the indicated start address, then the rest of the records are read and placed in sequential memory locations following the first record.
3. The computer JSRs to the address of the byte immediately following the first six bytes (starting address plus six). You can use this to load more records into memory if you wish. Return by using an RTS command after clearing the carry (if there was no error), or setting the carry to indicate that there was an error during this routine.
4. The computer next JSRs to your initialization address (indirectly through bytes 5 and 6). In this routine, do whatever initialization you want, then place your actual starting address in DOSVEC (at \$000A). Use another RTS to end this routine.
5. Finally, the computer JMPs indirectly through DOSVEC to begin your application. At any time during the execution of your application, SYSTEM RESET is pressed and steps 4 and 5 are repeated.
There is a small bug in Atari's cassette boot routine. At the end of the routine that starts at the start address plus six (step 3), you must stop the cassette motor.

Back to Graphics

Last month I promised some information on using IR modes 4 and 5 , which are the character graphics modes that will be available as OS modes 12 and 13 on the Atari 1200. You can, on the 400 and 800 , use these two modes if you define your own display list and a custom character set. For hints on how to create a character set, refer to my article in the October 1982 (53:87) issue of MICRO.

There is an important difference in forming each of the characters. You must locate the set on a 1 K boundary the same way I describe in the article. However, the formats for each character will be interpreted differently for IR modes 4 and 5. In these modes, the bytes in the set are interpreted as bit pairs, which refer to color registers. Zero refers to the background register, one refers to register zero, two to register one, and three to either register two or register three. In all, you can have up to five colors on the screen with up to four in each character. The reference to registers two or three depends on whether the character is printed in normal or inverse video.

Both of these modes support 40 -character lines. Mode 4 uses one scan line per line of format, so it is easily implemented from an IR mode 2 (operating system mode 0) screen, allowing you to access it as if it were a text screen. Mode 5 uses two scan lines per line of format, making it equivalent in resolution to an OS mode 7 map mode screen. You can also modify a text screen for this one, too, but you have only half of the characters available on a full screen, so you must take this into account.

Mixing some IR mode 2 text lines with mode 5 is relatively easy. If you alter the display list to make some of the lines mode 5 and leave others in mode 2 , you can

PRINT to the screen as if it were the standard OS mode 0 screen using BASIC. The drawback is that the text lines will use register 2 for the background color and the luminance of register 1 for the letters, so the screen will either have stripes where the text lines go or, if you set register 2 to black, the graphics will have only four colors instead of five, and only three can be used in each graphics character.

Some experimentation with these two modes will explain quite a bit about how they work. I have included a listing at the end of this column that should get you started.

Hardware

If you have a printer that works off the 850 interface, I have one note that may interest you, particularly if you write rather large programs. If the 850 is on when you start up the Atari, some memory is set aside to handle device R : If you are not using the interface for anything except the printer, you do not need this device, nor do you need to have that extra memory subtracted from your program area. If the 850 is turned on only after the computer is turned on (i.e., the 850 is off when you turn the computer on), this memory is not set aside and device R : will not be available. Device P: is always enabled at power-up, so the printer will be available any time you have both the 850 and the printer turned on.

Reference Books

In a recent column (56:19), I reviewed some reference books that you may want next to your Atari to help with your programming. Since then I learned that Educational Software, Inc. 14565 Cherryvale Avenue, Soquel, CA 95073) publishes references for beginners or experts on the Atari computers, as well as software that will help your programming. Their Master Memory Map, for example, is a good roadmap of the hardware and shadow registers in the Atari.

A Closing Note on Character Graphics

When you are finished experimenting with modes 4 and 5 , set up a standard text screen and POKE 64, 128, or 192 into location 623. This causes the character set to be interpreted in four-bit groups, effectively implementing a character graphics screen equivalent to OS modes 9,10 , and 11. Note that these are the GTIA modes, so this won't work on the older Atari computers that have CTIA chips instead of the GTIA chips.

Send your letters to Mr. Swanson at 97 lackson Street, Cambridge, MA 02140.

NaME $\underset{\text { BRAND }}{\text { Bulk }}$ SUPER SALE

Bulk Diskettes* with envelopes

*Now Get High Quality at a Low Price Manufactured by a Major Disc Company For MDS Without Their Name on Diskettes. *Minimum order 20 diskettes with Tyvek envelope and storage shipping box. *Quantity Discounts - 100 deduct 3%,

1000 deduct $5 \%, 10,000$ deduct $10 \% .100 \%$ Certified 1 Year Warranty.

PRINTERS

All EPSONS available \$call GEMINI 10 by Star Micronics $\$ 399.00$ GEMINI 15 by Star Micronics $\$ 349.00$ Okidata Microline 80 $\$$ scall Okidata Microline 82 $\$ 469.00$ Okidata Microline 83A \$call Okidata Microline 84 \$call

SUPPLIES

aVERY TABULABLES
(Prices F.O.B.S.P.)
$5,0003-1 / 2 \times 15 / 16$
$\$ 15.95$
17×11 18b. White $3,000 \mathrm{ct} \$ 29.55$
14-7/8 11 18ib. White $3,000 \mathrm{ct} . \$ 39.95$ $\star \star$ THIS MONTH'S SPECIALS $\star \star$
Flip 'n' File \& 1 box of Paragon Golds
$\$ 49.95$
Head cleaning kit \& 1 box of Paragon Gold

TANDON DISK DRIVE ENCLOSURES

Complete with Chassis \& Power Supply: Fully assembled silver or beige chassis with external card edge connector for easy cable installation for $51 / 4$ " drives. With MDS 120 days warranty \qquad $\$ 59.00$

BARE DRIVES

TM100-1 40 Trk	
TM100-2 40/40 Trk	\$269.00
TM100-4 80/80 Trk	\$339.00
SIEMANS FDD100-8 SS/DD 8 in	0
TM50 SS/DD 40 Trk Thinline	\$199.00
TM84B-1 SS/DD 8" 77 Trk Thinline	\$369.00
$D D$	

Add $\$ 59.00$ For Complete $5 \frac{1}{4}$ " Drive System

HEAD CLEANING

 KIT $5^{1 / 4 "}$Clean the heads in just 30 seconds and save on costly service calls and data drop-outs

MICRO DATA SUPPLIES
$22295^{\circ} E L C L D$ AVE. EUCLD. OHIO 44117

Circle No. 16

32K CMOS STATIC RAM BOARD for SYM／AIM

Models MB－132／32K，\＄299
／16K \＄241，／8K \＄197
Features：
－200ns Low Power CMOS，STATIC RAM
－Extends your expansion connector
－Plug compatible with 2716 EPROMS
－First 8 K are jumper selectable
－Entire board may be bank－switched
－G－10 Glass epoxy．Full solder mask，Gold fingers
－Full 1－year limited warranty
I／O EXPANSION BOARD for the SYM／AIM
and other microcomputers that use 6522 VIAs for I／o \quad I／OX－122 $\$ 60$
and do not provide full address decoding on board
$1 / 0 \times-222 \$ 72$ This board has physical space for four additional 6522 16 devices Conectors tor all decoding for a total of 6 devices Connectors or all O lines．and further expansion are included．All 6522 functions are functions of the orignal VIA Two wersions of this board are available．The $1 / O X-122$ mounis above and directly plugs into an on－board 6522 socket and relocates the original VIA to the expansion board Where there are space limitations，the I／OX－222 uses a dip header and an $8^{\prime \prime}$ cable for remore installation．

REAL－TIME CLOCK／CALENDAR $\$ 60$ Write for Info． P．O．Box 1019 • Whittier，CA 90609 •（213）941－1383

RAM

For ATAR
 64K RAM BOARD FOR THE 400 with Lifetime Warranty

－Highest quality available
－Reduces power consumption
－Reduces heat
64K Board（400）
48K Board（400）\＄115 32K Board
（400／800）
FREE SHIPPING ANYWHERE IN U．S．A．
Intec
Peripherals Corp
906 E．Highland Ave．
San Bernardino，CA 92404

ATARI，400， 800 are Trademarks of ATARI，Inc

Here to Atari Listing

10 REM ．．．．Character Graphics．．．．．
20 REM ．．．．Using IR mode 4．．．．．．．．．．
30 REM ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
40 REM ．．．．．Paul S．Swanson．．．．．．．．．．
50 REM ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

70 REM＊＊Place character set on＊＊＊
日O REM＊＊a 1 K boundary＊＊\＃\＃\＃＊＊＊＊＊＊＊＊
90 REM $\# *$
100 DIM $x \$(1): A=A D R(x \$): E=I N T(A / 1024+1)$
＊1024：DIM F $\$(\mathrm{~B}-\mathrm{A}-1)$ ，CSET $\$(1024)$
110 CSET $\$=$＂e＂
120 CSET $(1024)=$＂${ }^{2}$＂
130 CSET $\$(2)=$ CSET $\$$
140 REM $\mathrm{H}_{\mathrm{H}} \mathrm{H} *$
150 REM＊＊Use CTRL characters for＊＊
160 REM＊＊the Fedefined characters＊
170 REM $\# *$
180 RESTORE 1000
$190 \mathrm{C}=513$
200 READ N
210 IF $N=256$ THEN 300
220 CSET $\$(C, C)=\operatorname{CHR} \(N)
$230 \mathrm{C}=\mathrm{C}+1$
240 GOTO 200
250 REM $\mathrm{H}^{*} \mathrm{H}_{\mathrm{*} * ~}^{*}$
260 REM＊＊Declare a GR． 0 screen，＊＊＊
270 REM＊＊then redefine its＊＊＊＊＊＊＊＊
280 REM＊＊display list．＊＊＊＊＊＊＊＊＊＊＊＊
290 REM $* *$
300 GRAPHICS 0
$310 \mathrm{DL}=$ PEEK (560)＋PEEK $(561) * 256$
320 POKE DL＋3，68
$330 \mathrm{I}=\mathrm{DL}+6$
$340 \mathrm{~N}=\mathrm{PEEK}$（I）
350 IF N＝65 THEN 430
360 FIKE I， 4
ड70 I $=\mathrm{I}+1$
380 GOTO 340
390 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
400 REM＊＊Use standard PRINTs＊＊＊＊＊＊
410 REM＊＊to display characters．＊＊＊
420 REM $\# *$
430 FOR I＝ 0 TO 26
440 PRINT CHR\＄（I）；
450 NEXT I
469 REM $* *$
470 REM＊＊PRINT the inverse＊＊＊＊＊＊＊＊

490 PRINT ：PRINT
500 FOR I＝0 TO 26
510 FRINT CHR $\$(\mathrm{I}+128$ ）；
520 NEXT I
530 REM $* *$
540 REM＊＊Tell the Atari where to＊＊
550 REM＊ifind the new characters＊＊
S60 REM \＃\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
570 POKE 756，B／256
580 GOTO 580

970 REM＊＊The custom characters＊＊＊＊
980 REM＊＊Dne DATA per character＊＊＊

1000 DATA $5,5,5,5,5,5,5,5$
1010 DATA $90,90,90,90,90,90,90,90$
1020 DATA $175,175,175,175,175,175,175,175$
1030 DATA $250,250,250,250,250,250,250,250$
1040 DATA 165，165，165，165，165，165，165，165
1050 DATA $80,80,80,80,80,80,80,80$
1060 DATA $0,0,0,0,1,5,21,85$
1070 DATA $0,0,0,1,5,21,85,86$
1080 DATA $0,0,1,5,21,85,86,90$
1090 DATA $0,1,5,21,85,86,90,106$
1100 DATA $1,5,21,85,86,90,106,170$
1110 DATA 5，21，85，86，90，106，170，171
1120 DATA $21,85,86,90,106,170,171,175$
1130 DATA $95,66,90,106,170,171,175,191$
1140 DATA $86,90,106,170,171,175,191,255$
1150 DATA $90,106,170,171,175,191,255,252$
1160 DATA $106,170,171,175,191,255,252,240$
1170 DATA $170,171,175,191,255,252,240,192$
$11 日 0$ DATA $171,175,191,255,252,240,192,64$
1190 DATA $175,191,255,252,240,192,64,0$
1200 DATA $191,255,252,240,192,64,0,0$
1210 DATA 255，252，240，192，64，0，0，0
1220 DATA 252，240，192，64，0，0，0，0
9999 DATA 25は

IIICRO CoCo Bits

John Steiner

Updates

In the December 1982 issue, I presented a short program on a single disk copy routine. A few people have written about a problem with the program crashing in line 200 with a filename error. Other people may run into this problem too, so I will pass along what might be the correction. In program line 130 the routine uses an IF...THEN construct to check for a valid file. If the file does exist and has not been killed, the extension is appended to the filename. A slashbar is also placed in the line as a delimiter; however, an extra space seems to have found its way into the listing. The line should read as follows:

```
130 IF LEFT\$ \((\mathrm{N} \$(\mathrm{~N}), 1)<>\mathrm{CHR} \$\)
    (0) AND LEFT\$ (N\$(N),1)
    CHR\$ (255) THEN FI\$(K) \(=\mathrm{N} \$(\mathrm{~N})+\)
    '")' \(+\operatorname{EX} \$(N): K=K \$ 1\)
```

The slashbar should be the only character within the quotation marks. The "/" could be replaced with CHR $\$(47)$ if you wish. The program would crash in line 200 because the extra space would cause the filename to be one character too long.

I received a letter from Walter Oller of Rapid City, SD, asking about the availability of software capable of handling bowling league team and individual record keeping. If you have software, or are aware of its existence, please let me know.

The "F'" Board

Last month I commented on the fact that the TDP System 100 has a slightly different circuit board from the standard CoCo. That statement is no longer true. Since December, Radio Shack has been delivering the computers with this new " F " board. Though the board has no " F " designation on it, it is replacing " E " board computers. If you have a late model

Color Computer, you can tell which board you have by lifting the door on the ROM port and looking inside. Computers with an " E " board or earlier have a shield around the processor and memory chips. The shield is almost the only thing visible in the earlier models. " F " board models shield only the RAM chips themselves, so when you look into the port, you can see components all the way through to the other side of the cabinet. The RAM shield is visible to the left of the port as you are looking in.

As I said last month, the computer will probably be offered as a 64 K machine. Rumors abound as I am writing this that OS-9 will be available soon in a format licensed to Tandy Radio Shack.

CoCos with 16 K are easily converted to 64 K . You just have to remove several capacitors, replace the 4116's with 4164's, and move the jumpers from 16 K to 64 K positions. An additional jumper must be added to the points near the 6821 PIA.

If you have a 32 K " F " board, call map type 1, the all RAM mode. The hand-wired modifications required on the earlier boards are no longer necessary.

CoCo Operating Systems

The Radio Shack disk operating system is adequate for BASIC programming and contains many powerful features. There is much to be desired for the machine-language programmer, however. This is partially due to the fact that the system is not well documented. Only a few ROM calls are provided, and sophisticated applications require disassembly of the ROM just to locate and access the routines.

One solution to this can be found in a disk resident DOS. Some commercial programs use the technique, including Radio Shack's own Disk Scripsit. If you can write your own DOS, you will have no problem; but if you are like me, that would be a major hurdle. However, you can purchase disk resident operating
systems for the Color Computer. These systems and their utilities give the assembly-language programmer much more power than when using the standard DOS.

I was looking for a disk operating system for quite another reason, however. With many operating systems, files can be read or written by computers using the same DOS, even though they may be different brands. I would be able to send disks along with my articles that contain the text. The editor would then be able to read the file into the text editor for editing and eventual typesetting. The FLEX operating system is one of the more powerful systems available today. In addition, it is implemented on nearly all 6800 series processors. There are several versions of FLEX available, and at least two are implemented on CoCo. I have just purchased Frank Hogg's version and am learning how to use it to full advantage. See November (MICRO 54:23) for a more complete discussion of Frank Hogg's FLEX.

I wish I could say that this month's column was submitted in FLEX format. Unfortunately, a few hours after receiving and loading FLEX, my TDP-100 broke down. But I have already formed some strong impressions on the system in the first few hours.

FLEX is definitely best implemented on at least a two-drive system. I am waiting for a second drive unit, but it has not arrived yet. Working with the system and creating the first backup was enough to convince me that another drive is needed.

One feature of this version of FLEX is DBASIC, a $\$ 40.00$ program that allows you to use and convert Radio Shack software to FLEX format. The only feature of R / S disk BASIC that is not implemented is random access file capacity. This is not a limitation of FLEX, but of DBASIC. Another appealing feature is a way to call BASIC without accessing Extended BASIC. If you can live without extended BASIC routines, you can use the extra memory
[over 39 K) for your program.
If you have a monitor, you can use FLEX in a 64×32-line format. There are six choices of character and screen dimensions, starting with the standard 32×16 format. FLEX is initialized in a 51×24 format. A setup program can change that, plus many other power up standards.

There are many people who would like to have the versatilitiy of a DOS but don't have the 64 K capacity FLEX requires (or maybe they just don't feel like paying an additional one hundred dollars on a DOS|. A viable alternative is Peter Stark's Star-DOS. Star-DOS will run on a 16 K CoCo , and requires no modification of the computer. Many of the standad DOS features are implemented, and the user has an opportunity to get the feel of using and pro-
gramming a disk operating system without spending a lot of money. StarDOS is priced at $\$ 49.95$. Unlike FLEX, Star-DOS reads and writes standard Radio Shack format disk files. In addition, a 55 -page manual provides all the documentation needed to implement serious disk system applications in assembly language.

Both memory resident and disk resident commands are supported and, like FLEX, it is possible to improve on the DOS by writing your own command routines. If you would like to experiment with a DOS, you might be interested in Star-DOS.

More information is available on these programs from their authors:

Color Computer FLEX
Frank Hogg Laboratories

The Regency Tower
770 James St.
Syracuse, NY 13203
Star-DOS
Star-Kits
P.O. Box 209

Mt. Kisco, NY 10549
Other disk operating systems are available for the Color Computer from Exatron Corporation and Cer-Comp, among others. I am not familiar with either of these systems. If you have experience with them and would like to pass it along, drop me a line. Next month I will take a closer look at some of the features of a typical DOS.

You may contact Mr. Steiner at 508 Fourth Avenue NW, Riverside, ND 58078.

Тесн Вдітаг

FOR INTERNATIONAL MICROCOMPUTER MAGAZINE

If you have the following qualifications, contact us now!

* Excellent writing and editing skills
\star Knowledge of assembly language
* Experience with Atari or TRS-80 Color Computer
* Familiarity with Pascal or FORTH (optional)

Join an enthusiastic editorial staff covering the exciting microcomputer field. Friendly environment, new offices in southern New Hampshire. Send your resume to John Grow, Publisher, MICRO, P.O. Box 6502, Chelmsford, MA 01824.

It Pays to Write for MICRO

Get paid for your ideas: write for MICRO! Thousands of people read MICRO every month. MICRO is sold in computer stores and on newsstands worldwide. Send for a copy of our Writer's Guide now. Our author payment rate is competitive with the leading magazines in the industry.

We welcome articles on any aspect of $6502 /$ 6809/68000 hardware and software for the Apple, Atari, CBM/PET, TRS-80 Color Computer, VIC, OSI, 6809, or 68000.

1983 Features:
May - Wave of New Computers
June - Operating Systems
July - Hardware
August - Word Processing
September - Education
October - Programming Techniques
November - Games
December - New Microprocessors
Send material to Editor, MICRO, P.O. Box 6502, Chelmsford, MA 01824.

MAROONED!
 And you're the quarry for the Questers!

You're marooned in a derelict space station trapped between the stars. Waiting for rescue.

But. you may never make it. The deadly space Questers have located you and are ready to attack. Your first line of defense is to close the space ports on A Deck before youre overrun. then use the Teleportation chamber to head them off on the other decks.

As you navigate the lonely corridors . . . turning here, hiding there. attacking or retreating, the swarms of Questers get faster and smarter!

There's no other game like Spectre. Deck after deck, you'll find the most challenging and original 3-D maze action ever!

Get SPECTRE now. only $\$ 29.95$ for the Apple II* at your computer store. or

8943 Fullbright Ave.
Chatsworth. CA 91311 (213) 709-1202

Industry analysts, like their counterparts in economics, have to eat their predictions.

The market for most home computers fell so short of 3-year-old forecasts that, until recently, they called the "home" computer a misnomer, some concluding that there is no market for home computers.

Caught between the "video game gold rush" and the yet-to-come "home banking and teleshopping revolutions," what are we to think about the information society and the micro-on-everydesk predictions? What has become of the visionaries who a few years ago predicted that the eighties would usher in a truly participatory democracy where every home would be plugged into not only Pac Man and the boob tube, but the World Brain, as well?

Electronic lobbying, on-line community organizing, horizontal management, and "People's" data bases were supposed to be up and running by 1983. Technologically, the potential is here, the Utopians insist, but the leadership is not.

Separating fact from wish fulfillment, the predictions may be right about the hardware part of the revolution at least. However 'unplugged" we may be as networkers intellectually and politically, the tools of social change are finally proliferating. Estimates for under- $\$ 500$ home computers show that in 1983 the market is exploding; it should be over $\$ 1$ billion this year.
"Eight million computer terminals will be in use in American homes by the end of this decade, many linked by information networks to businesses and other data bases," according to J.S. Mayo of Bell Labs. 'The nature and location of work and education will thus be dramatically transformed. Eventually, the home/work/study center may replace the classroom and the office for a great many people."

Perhaps, but currently less than 5% of all personal computers sold are connected into any type of network, according to market research surveys. This backs up the industry assumption that current micro users could hardly care less about the personal improvement issues of electronic togetherness; they're into games. What, then, will drive the interactive and networking potential?

Theory One

The Home
The answer can be found by looking
at the national investment, all corporate, in what is called "videotex." If you have a TV set or monitor, a telephone, and a connecting micro (better it be a black box with a few buttons saying YES, NO, BUY IT, CHARGE IT], that is called videotex. Major investors in videotex, such as WarnerAmex, Time Inc., CBS, Knight Ridder, have based their development on the assumption that the public will be interested only in "consumer' uses of information. They are convinced that now only entertainment (video games) and, later, teleshopping and home video banking are what the information revolution is all about.

According to one think tank, International Resource Development of Norwalk, Connecticut, one in four U.S. households will have installed in-

However

"unplugged" we may be as networkers intellectually and politically, the tools of social change are finally proliferating.
tegrated video terminals and micros capable of accessing outside information by 1990. However, the information will consist simply of news, entertainment and transaction services. Modem-connected terminals, capable as they are of electronic mail and interpersonal networking, will be used primarily for consumption of advertising, news, and teleshopping, according to IRD and their clients, AT\&T, GTE, etc., who are "racing to complete trials of new interactive home information."

Just how interactive is this revolutionary technology brought to us by Ma Bell and the corporate providers? It will enable \{and I quote IRD) " the customer to use his TV screen as an 'electronic catalogue' on which he can view products and then place his order for them." So much for Ma Bell.

Theory Two

The Office

It's not the home users that will drive the network information marketplace; it's the serious users of information and computer-mediated communications. This school of thought is backed by billions of dollars of vendor advertising and editorials in countless journals. Whether your office is downtown, on campus, or at home, that's the place for plugging into information power.

A recent article in Personal Computing entitled ''Networking: A Powerful Tool for Personal Communication" catches the eye as you browse the newsstand. Pulse rising, you grab the magazine and read the subtitle: "It may be the most important trend on the horizon of personal computing." On the first page you read: "No longer will an individual computer be limited to its own data resources and computing power; information can be shared quickly, amplified, and amended at will by computer users who might otherwise have to wait for a weekly or a monthly meeting to make the same exchange."

Right on. At last it's being spelled out in print. But wait, the very next sentence says: "A local area network is what makes the power of personal computing for businesses and professionals seem real and practical."

For those who don't know what a local area network is, it means the latest in office automation efficiencies; machines "talking' to other machines, no matter how incompatible. But the incompatibility lies not in the machines themselves; technological advances are taking care of that problem rapidly. Senior executives simply see no compelling reason to have micros on their desks. Whether or not they are cyberphobe lafraid of computers) or technophobe (can't wait, can't typel, the tried and true ways to communicate are safer and more artistic, suiting the style of upper management - impulsive and unstructured.

For years, office automation professionals have been trying to woo senior management generalists in large organizations, public and private, to their way of thinking. In the seventies, these professionals hyped Management Information Systems, but they flopped strictly for the technical, DP types. Resurfacing as proponents of Decision Sipport or IRM (Information Resource Management), they have had no less trouble. Cybernetic missionaries in a pagan land. their ways of improving ex-

Communications

ecutive productivity fell on deaf ears.
Yet, the tide seems to be turning. According to Ed Robertson, office automation consultant to the major multinational corporations, "We finally have the technologies... that fit their decision-making style. Number crunching, however graphic and analytical, is not the grabber. Sophisticated ways to communicate with a wider Old Boys Network, beyond what they're used to trusting, is what will get them in the water." He adds a caveat: "Only a handful of corporations are managing information at the top less crudely. It will take a few years. In the meanwhile, please don't use the word 'workstation' for CEO offices. At least not to their faces."

Theory 3

Entexprise

If it is not the enlightened home or the liberated office that will be the first to drive the network information marketplace in the next generation (two to three years), then what will?

Although we can see where the obstacles are at the top and the bottom of the power structure, we have only to look at the new wave of micro users to see from where the leadership is coming; the information hungry, the networkers who know they have to unite. Revolutionaries? Utopian Socialists? Hardly.

The Third Wave in networking comes once again from the entrepreneurial 'middle" society. The same spirit that pioneered the opening of the West is motivating the opportunity seekers of today. We can see them surfacing in small business, law, accounting, education, medicine, and scientific research. They are people working within corporate structures.

Information for Profit

"On-line entrepreneurs of the world, unite!" may be the rallying cry in a world that is rapidly becoming peopled with opportunity seekers working on their own to market and distribute a wide variety of products and services through self-created networks.

Take the example of two consultants from Arthur D. Little Management Consultant Firm in Boston who were advising clients on electronic publishing and the data base business. These consultants saw a way to make a profit by putting together electronically two groups of people who badly needed each other: hi-tech corporations and
techically oriented professionals. Until now, the inefficient job market used classified advertising as its medium for reaching people.

Robert Kvall and George Sacerdote decided to apply their knowledge to this one obvious area of interactive recruiting, using an on-line service over Telenet and Timenet. Last Fall they started Connexions, a Cambridge, Massachusetts, company offering online help-wanted advertising. Job seekers can create a customized resume and send it electronically to the key person in the firm in which they are interested. On the other end, a company can tailor an advertisement by asking certain questions that will further screen the applicants. Only the corporations that the applicant selects get a chance to look at the information.

"Only a handful

 of corporations are managing information at the top less crudely. It will take a few years."Most of the major corporations in New England are advertising largely for DP, computer science, or electronic engineers through newspaper ads. Previously, there was no more efficient way. Connexions now makes it possible for both advertisers and subscribers to find each other and pay mutually for the service at each end - with anonymity and confidentiality.

Another successful, on-line, profitable venture is an existing private national association that helps small businesses. The Small Business Science Bureau (SBSB) in Worcester, Massachusetts, has recently established an international computer network in conjunction with the CompuServe Information Service that allows small businesses to send and receive information, electronic mail, software, and data.

A "For Profit" Association
Members benefit from a wide variety of services: volume purchase discounts for products, supplies and health programs, management assistance, and new venture start-up assistance.

Based on a DEC 20 in Worcester, and linked to a gateway to the CompuServe network, a user can send mail to the other 35,000 sucbscribers. SBSB has made available discounted TRS-80s, which include a communications package that acts as both a dumb terminal and also allows one-key transmission of electronic mail and simple transmission of word processing text.

According to Harley Goodwin, VP for Computer Services at SBSB, members will find |and, indeed have already found) ingenious ways to make and save money through the network. Selling the network through cable TV franchises is one; transmitting direct mail lists is another. "We are collectively putting technology to work for small business and the opportunities are endless."

Business Opportunities Network

Another computerized network creating business leads and bringing opportunities together is International Business Opportunities of Woodland Valley, California. IBO collects, screens, and evaluates businesses that are for sale nationally and services would-be investors and buyers. Through their own network of 25 brokers in key cities, potential matchups are referred based on various criteria. For example, if a member broker in New England uses IBO to find a new business in Florida for a buyer, and a member broker in Florida finds a business that fits the bill, both share the commision and pass along a slice to IBO. The company not only maintains the data base by means of continuous search through collective referrals, but it provides full service consulting to both parties, including venture financing.

Many entrepreneurs use The Source Telecomputing Corp. (Source of Silver Springs, MD) and CompuServe Consumer Information Service for communication among close user groups and for fun and profit. These networks continuosly update information of broad public appeal, which can be accessed by any communications micro \{dumb or videotex terminal) through local telephone calls. Along with other "information utility" networks, such as Dow Jones or Dialcom, they provide
electronic mail and private storage for a fee. Data bases are accessed by subscribers on a time charge basis. The Source now refers to these closed groups as Private Sectors, and openly solicits sponsors or information providers and groups to set up on-line DBS and electronic mail for publishing activities. The Source will pay royalties for the time your people spend on line. Compuserve calls them SIGs [Special Interests Groups! and publicizes them to attract other entrepreneurial group organizers.

These entrepreneurs are harbingers of things to come. Like the 1890 's Gold Rush, the 1980's Information Mine is making money for the lease-holders (providers), the miners (vendors), and those who provide services for the life style that results.

One entrepreneur who does all three is Alan Carr, whose company, Information Inc., is making a profit via electronic mail and data base management in a unique way. His company's clients are Fortune 1000 companies and major industry associations that pay him $\$ 64$ a month per mail box account in return for his building and maintaining an information bank that can be easily accessed through The Source from anywhere. His clients feed him information, internally collected, and he gathers information they specify, externally, whereever he can find it. He's both an information broker and an electronic clipping service.

The end-products include interrogative data bases consisting of personalized material, public opinion, news features, survey highlights, etc. A popular service is the Issues Management file, the latest industry or corporate positions on various issues that management believes affects their organization. In its first year of operation, Information Inc. already has clients spending $\$ 5,000-\$ 10,000$ a month for the service, depending on the number of subscribers the organization supports.

Information Brokers

Would-be information brokers, on behalf of their clients, can access the Dow Jones News Retrieval Service \{a subset of which can be accesssed on The Source and CompuServe). This service has 60,000 subscribers paying $\$ 1.20$ per prime minute compared to The Source's 30,000 at $\$.35$ and CompuServe's 40,000 at $\$.38$.

Two recent entries into horizontal on-line information services are The Knowledge Index (from Dialogue) and

After Dark (from BRS). Between 6:00 p.m. and midnight, for as little as $\$ 6$ per hour, any personal computer operator with a modem and a password (for a $\$ 50$ registration fee) can access BRS and get the same in-depth, wide-ranging data files used by BRS Search Service subscribers (Fortune 500 corporations and reference librarians). These include technical and scientific abstracts, medical journals, government studies, business indexes, and general wire service and daily news. A home computer newsletter, electronic mail, shop at home service, and an instant software delivery service all come with the package.

The knowledge Index, from 6:00 p.m. to 5:00 a.m. and weekends, is able to scan more than four million entries from over 10,00 journals and other publications, many updated daily. Compu-
> ...for as little as \$6 per hour, any personal computer operator with a modem and a password can access the same data files used by Fortune 500 corporations.
ters, electronics, engineering, law, medicine, agriculture, business, psychology, education, and a wide range of information from newspapers, magazines, and government publications are included. You don't get the full articles, only an abstract or summary. The Knowledge Index will take, on line, orders for printed copies of the full text of the articles. Any combination of key words plus any other words, phrases, or numbers that appear in titles, abstracts, author listings, etc., can be used for searching. This raises the search capability of finding specific information beyond that of the conventional information utilities. Connecting words (AND, OR, NOT) enable you to zero in on a topic and find the abstracts of articles dealing with the effects of coffee, sailing in the Straights of

Georgia, wind power as an investment, and the effects of stress on managers.

Videotex and Teletex

In addition to the major networking services, there are videotex and teletex companies offering information over the phone lines and through cable TV. This information is thin news and shopping information and has the advertiser in mind, not the consumer. Teletex offers strictly one-way communication transmitted into the TV set. In some instances you can call up a page and it appears on the TV screen. But you can't go back and find additional information beyond what's in the system. On the other hand, videotex is interactive; you can request information and it is searched and produced.

With ever more valuable, searchable, and specific information services coming on line, the market for them is growing rapidly. Yet it comprises less than a third of personal computer owners and a tiny fraction of the potential population. As this changes, new opportunities are springing up almost daily for those who are discovering that properly mined, refined, and packaged information is money.

Theory E says that enterprise is what will stimulate the network information marketplace in the eighties.

Are you ready?

How do you get an information network started? First find a large, active group that needs to communicate reg. ularly. They may now have a newsletter, publish a calendar or bulletin board, or have an organization that acts as a clearing house for information. Each person should probably have a private network on a dial-up system. Members can have confidential electronic mail and develop data bases, and they can have a window to the outside world and access the popular data bases as well. The network bills the members and will either send you a royalty or you can charge for the content.

Communications Strategies in New York is developing a cooperative startup venture firm to help launch such enterprises. Dial them at \{212) 684-0534. Another source for advice is IncNet. Started by Inc. Magazine for mediumsize business owners, the network is currently operating on The Source and Dialcom. So far, it's been an electronic cocktail party because of the lack of leadership. But it could become a hotbed of entreprenenuial activity if it gets organized. IncNet operates on a new L
computer conferencing software called PARTICIPATE from Participation Systems Inc. (PSI) of Winchester, MA.

Beyond Electronic Mail

PSI's founder, Chandler Harrison Stevens, is associated with the Center for Information Systems Research at MIT. Stevens has long been an advocate of Many-to-Many Communications, his term for the key difference between computer conferencing (CC) and other forms of electronic mail (Telex, facsimile, computer-based messaging, voice store, and forward). What's the difference?

Electronic mail simply provides electronic delivery of fairly ordinary memos that are typed in at one end and come out at the other, or are placed in queue behind other preceding messages. CC allows complex interactions among a group of people by storing the communications on a system, in one place. Any part of the "discussion" can be retrieved at will. You can reconstruct an ongoing "meeting" or correspondence at any time and make comments about specific parts. Many conferences can be held simultaneously, each serving a different purpose, each stored in its own place on the system.
"The single file, lock-step delivery of electronic mail doesn't permit this kind of multi-layered group communication," explains Tom Cross of Cross Communications in Boulder, Colorado. "For the first time, we can begin to really track the progress of a project from inception to completion, allowing software management, new staff, or observers to participate at any point along the way."

Only a small number of corporations, government agencies, and nonprofit organizations are using computer conferencing. For instance, the nation's electric utilities and nuclear equipment suppliers use CC to share experiences and update one another on proposed regulations flowing out of Washington since the Three Mile Island incident.

Ron Simard of the Electric Power Research Institute in Palo Alto, California, has organized CC for the International Nuclear Power Organization (INPO). He claims his is the largest CC in the world: over five hundred people globally. "Subject matter ranges from operating plant experiences and problems, their implications and what to do about them immediately, to government regulation and how to respond," says Simard.

Electronic Jungle Drums

The Bechtel Corportation is using CC to help manage several massive construction projects around the world. One is in the deepest jungles of New Guinea where the largest gold mine in the world was found, along with copper and other valuable minerals. According to Susan Winterstein, coordinator of the project, "The communications between jungle, the managing office in Australia, and our headquarters here in San Francisco would have been a nightmare without computer conferencing. In addition, new people coming on to the project can be quickly updated by retrieving previous entries," she said.

Patricia Pfifer of United Technologies, and ex-telecommunications specialist for AT\&T, refers to the research on cost-effectiveness of teleconfer-

> PROPHET, a large timesharing service, is the central software link that makes possible several joint medical projects now going on at different locations.
encing: "Our studies show that one dollar of teleconferencing equals four dollars of face-to-face meetings and travel." Citing the fact that whitecollar workers are the least watched in industry in terms of productivity, the AT\&T study concluded that 50% of all business conducted could be through teleconferencing. "It should be, too," Pfifer adds. She cites these advatages:

1. Computer conferencing saves time, not just money $\{35 \%$ reduction in time to achieve the same results).
2. It's convenient. Everyone can follow up on meetings, receive new policies, facts, and product information simulataneously; new people may be added to the conference as needed without briefing; colleagues who would not normally attend the meeting can participate later.
3. It forces discipline (better listening, preparedness, priortizing). The study showed that CC enhances information exchange, briefings, decisionmaking, problem-solving, and settling differences of opinion. More human than paper, CC makes possible personal support at many levels of the organization.

Scientists Collaborate

Computers are changing the way scientists communicate. PROPHET, a large timesharing service sponsored by NIH (Biotechnology Resources Program) is the central software link that makes possible several joint medical projects now going on at different locations. Maintained by Bolt, Branek, and Newman (BBN) of Cambridge, Massachusetts, PROPHET allows the researchers to transmit results to investigators elsewhere via ARPANET, the research and development network sponsored by the government's Advanced Research Projects Agency. In addition to instant dissemination, it allows the researcher to produce threedimensional models of molecules and run statistical analyses.

In the Crystal Ball

What's ahead for the micro revolution? To date, what's happening in the home and the office (Pac Man, Visi(alc) is hardly going to change our lives; it's what going to happen that will. Theory 3 (or E for Enterprise) will drive the PC home market as much as all the other incentives ןbesides entertainment) put together, if the current trend accelerates apace. Electronic cottage industries, as well as electronic publishing by national and regional associations, are springing up so fast that venture capitalists are swamped with investment opportunities.

On the office front, local area networks and electronic mail are coming into use and will change the way executives communicate. Whether this will contribute to the Information Society or the Misinformation Society is up to the executives, not the technology.

[^3]
A Not-So-Dumb Terminal

Program for the SuperPET

by Terry M. Peterson

Probably the PET's most endearing feature is its convenient screen editor. After I became familiar with this editor, I found ordinary line-oriented text editors all but impossible to use. I felt especially frustrated when using the PET as a dumb terminal to a timeshared computer. Obviously the screen editor is still in there - but how do you use it? Before the advent of the SuperPET I made several attempts to tap this resource in programs designed to work with IEEE RS-232 interfaces, but the results were never satisfying. When I saw the built-in RS-232 port of the SuperPET that uses the 6551 ACIA, I knew the marriage of the PET screen editor and my time-share system was at hand.

This article describes a 6502 RS-232 terminal program that sends edited lines to a host computer using the PET screen editor and the SuperPET's 6551 ACIA. SMARTERM handles conversion of PET-ASCII to true ASCII, as well as control and BREAK characters. The program has an optional character-by-character mode for use with remote screen editors and for other cases when line-by-line mode is undesirable. I've tied the program into the PET's 60 Hz iiffy IRQ interrupt for the input of characters from the host computer, so unexpected input isn't lost. This IRQ
patch also allows you to enter from the keyboard, the 8032 special screen formatting characters and send control and BREAK characters. The program does not buffer characters input from the RS-232 port; such buffering is unnecessary for operation up to (at least) 2400 baud as long as the host computer can be made to send several nulls after each carriage return. At 300 baud even the nulls are unnecessary.

The 6551 ACIA makes the programmer's job very easy. This chip takes care of trapping characters at the serial port and decoding them into an 8 -bit parallel buffer called the received-data register. The programmer only has to establish such things as the baud rate, parity, and duplexing - and to fetch the bytes from the received-data register before they are overwritten by the next character. Sending characters is even easier - merely POKE the data into the transmit-data register and wait for the 6551 to signal that it has finished sending.

To the 6502 or 6809 in the SuperPET, the 6551 appears as the four memory registers \$EFF0 through \$EFF3. \$EFFO acts as the receive- or transmitdata register depending on whether it is PEEKed or POKEd. \$EFFl is the status register. It indicates the following: status of the receive and transmit
registers; occurrence of parity, framing, and over-run errors; and the status of the RS-232 control lines $D C D$ and DSR. It also contains an IRQ flag (bit 7). If $\$ E F F 1$ is POKEd with anything the 6551 is reset (i.e., turned off). \$EFF2 is called the command register. Most of its bits determine the mode of operation of the 6551 with respect to the microprocessor, but some are used to set the RS-232 parity option. \$EFF3, the control register, is used to set the 6551 's RS-232 operation with respect to baud rate, word length, and number of stop bits. Table 1 shows the bit settings for the various modes determined by the control and command registers, as well as the bit arrangement of the status register. For further information on the 6551, I recommend the data sheets found in the Synertek 1981-1982 Data Catalog.

Listing 1 shows the assembler source for the terminal program. I have provided extensive comments in the listing, so I will give only a rough outline of the program operation here. (The names in parentheses give the label on the source code line that begins the section described.) The first part of the program (START) is a subroutine that revectors the IRQ through the received-character detect code, sets the necessary 6551 registers, and enables the 6551 IRQ internupt. If desired, the RTS at the end of this part may be omitted in order to fall directly into the main program loop instead of returning to the calling routine (BASIC).

Next is the main program loop (INLOOP) that handles characters from the keyboard. After the main loop follows (QUIT), the code that restores the $\mathbb{R Q}$ vector and resets the 6551. Next is (CHARIN), the subroutine to

Communications

fetch characters from the keyboard. Note that this subroutine alerts the user of char-by-char operation by a nonflashing cursor. The complication in the code here is setting/clearing control mode for char-by-char output.) Then comes (TSTIRQ), the IRQ vector patch code to trap 6551 IRQ's followed by (INCHR), the code to convert incoming characters to PET-ASCII and, optionally, to display control codes as reversed-field letters. Next is
(CTRLTB), a table of the PET-ASCII equivalents for ASCII control codes. Finally there is (KEYTST], the postjiffy interrupt code that examines each keystroke to test for special screen formatting, control (reverse), and BREAK (STOP) keys. Notice that BREAK is always "live" - that is, even in line-by-line mode the BREAK character is sent while the 'STOP' key is held down.

Listing 2 shows a sample BASIC

Command Register (\$EFF2)

Bit(s)	Function
0	Data Terminal Ready $(1=$ DTR true $\&$ rcvr enabled $)$
1	Receiver IRQ Enable ($0=$ enabled $)$
$2-3$	Transmitter Control
	$00=$ IRQ disabled, RTS false, Xmitter off
	$01=$ IRQ enabled, RTS true, Xmitter on
	$10=$ IRQ disabled, RTS true, Xmitter on
	$11=$ IRQ disabled, RTS true, Xmit BREAK
4	Echo mode $(1=$ echo received chars.)
$5-7$	Parity Control
	XX0 = ignore parity
	$001=$ odd parity
	$011=$ even parity
	$101=$ xmit '1' parity bit, ignore on received data
	$111=$ xmit ' 0^{\prime} parity bit, ignore on received data

Control Register(\$EFF3)

Bit(s) Function

BAUD rate

$0000=$ use external generator (not impl. on SuperPET)

Status Register (\$EFF1)

Bit(s)	Function	
0	Parity error	$(1=$ error $)$
1	Framing error	$(1=$ error $)$
2	Overrun error	$(1=$ error)
3	Received data	$(1=$ true $)$
4	Transmitted data $\quad(1=$ true $)$	
5	(not)DCD (echos pin level, usu. inv. of RS232)	
6	(not)DSR (as DCD)	
7	IRQ (1=interrupt requested)	

calling program. Note that this program could be modified to send a log-in sequence between the two SYSs.

If you have machine-language experience and the inclination you could easily extend the terminal program. For example, to add a disk log of your terminal session, take the following steps: 1. Add two JSR \$FFD2's to the machine language jone just after the line labeled INLOOP and the other between CHA100 and JMP \$E202), 2. OPEN a disk file in the BASIC calling program, and 3. CMD the disk file just before the final SYS into SMARTERM. (This procedure will work even at high baud rates!) To up-load disk files to the mainframe, OPEN the disk file, perform the first SYS, and then GET\# bytes from the file, POKE them into 61424, WAIT 61425,16 , and loop. Of course this looping could be speeded up if it were implemented in machine language: add an ST check to the main loop and SYS to the sequence LDX \#lfn/JSR \$FFC6/JMP INLOOP after OPENing the disk file \#lfn in BASIC.

Terry Peterson performs photovoltaic cell research at Chevron Research Company. He first used PETs at work to control and collect data from various laboratory experiments. Now addicted, he writes utility-type software and articles about the PET, CBM, SuperPET, VIC, C64, etc. He may be contacted at 8628 Edgehill Ct., El Cerrito, CA 94530.

SMARTERM Listing（continued）
SMARTERM Listing（continued）
LOC CODE LINE

殅	䳪
山	${ }_{5}^{604}$
号囬	奇易品

只吴 只

＋ $\begin{array}{lll} \\ \text { STAFT } 1 & \text { EIT } & \text { CHMODE } \\ & \text { EFL } & \text { INLOOF } \\ & \text { JSR } & \text { CRSFLP }\end{array}$ ；to 6551
The following delay loop inserts
some dead time between characters ；some dead time between characters
；on output．It appears necessary，
；at least on the multiplexed timeshare
；system I use．

；Fall through to here to restore IRQ and quit
GUIT STA $\$ 96 \quad$ ；set ST（ $32=105 \mathrm{c}$ carrier）

$\begin{array}{cc}\text { STA \＄91 } \\ \text { STA \＄EFF1 } & \text { ；stop 6S51 IRQ＇s } \\ \text { CLI } & \text { ；back to EASIC } \\ \text { RTS Character fetch routirie }\end{array}$

；Main input loop：Uses PET＊s screen－edited input after＂RETUFN＂if CHMODEく12B．Dtherwise，\＄FFE4
；is called to send character－by－character． －char－by－char？
$\begin{array}{ll}\text { JSR CRSFLP } & \text { ino } \\ \text { JNLQOF JSR CHARIN } & \text { iturn on cursor }\end{array}$ ；is it quote？ ；no，Print

；make ASCII 1．c． strip shift bit
to 6551 ； ；estore normal IRQ ；restore normal
∞
$山$

以
が品が品がひ
留界是留呆留员胃首

SMARTERM Listing
g

世 ${ }_{\text {世 }}$	
	m
	$\stackrel{\text { a }}{\text { d }}$
吴只只员只只只只只	

Why word processors?
Word processors allow the user to quickly and easily create letters, memos, notes, reports, term papers, manuals, poetry and any other written information using the memory of the computer as a pencil and paper. The computer display or terminal acts as a window through which the user views the information as it is entered. The outstanding advantage of using BUSIWRITER is that it acts not only as a pencil and paper but as a perfect eraser and automatic typewriter.

For Commodore CBM-64

Commodore 1515, 1525, Epson, C. Itoh, Qume, Diablo, NEC Spinwriter, Starwriter, Prowriter, Okidata, Microline, Gemini-10

And many more printers
BUSIWRITER The Queen Bee of Word Processors
BUSIWRITER allows the user to quickly and easily make any number of alterations to the text. BUSIWRITER will instantly reformat your text and show you exactly and continuously how the final output will appear. BUSIWRITER has more functions than any other known microcomputer word processor. With BUSIWRITER assisting in the entry of text, providing a 20 page memory and performing an enormous number of editing/ composing functions, the preparation of written data is far faster and outstandingly more accurate than if it were prepared by hand.

BUSIWRITER With the Sting Removed from the Prices

BUSIWRITER 64 only $\$ 99.00$ for the CBM 64

California, Canada, Alaska and Hawaii please call (415) 965-1735

Skyles Electric Works
231G South Whisman Road
Mountain View, CA 94041 ；Now fix screen editor pointers to ignore
；input from R52s2 port． $\begin{array}{ll}\text { LDA } \$ \text { C6 } & \text { ；bump begin．ptr．} \\ \text { STA \＄A4 } \\ \text { LDA \＄DB } & \text { ；adj．row ptr．} \\ \text { STA \＄A3 } & \end{array}$
 ；Table of FET－control code correspondences
；Zero entry $=$ ignore Étrlte beyte o，o，o，0

 ；print translat．on CRT
；Treat CF special
；cr－sr up
；（undo auto LF） Mow do CR ：contral rode？
ino

 ；（RVS） ；（DFF）
；（DFF）
；get FET equiv．
；none，never mind
；do it
；\＃／symbol？
；yes，leave
；uper case？
；yes
；＇del？
；ignore
；ymbol？
；yes
；must be lower case

\qquad
\square

只只

枵吉㽞志

7DAE	AD	F1 EF	tstird	LDA	＊EFF1	；65S1 IRQ？
$7 \mathrm{DE1}$	10	07		BPL	tstbo	；no
7093	AE	Fo EF		LDX	\＄EFFO	；get char／clr IRQ
7DB6	29	08		AND	\＃ 8	；char waiting？
7DBg	D0	16		BNE	inchr	；yes
7DBA	2 C	13 EB	TST60	EIT	\＄E813	；jiffy IRQ？
7 DED	10	5D		BPL	IRadon	；no，ignare
7 DEF		12 Eg		EIT	\＄E812	；cir IRQE
$7 \mathrm{DC2}$	58			CLI		；enable IRQ in case of RCV
$7 \mathrm{DC3}$	A9	7E		LDA	\＃＊EYTST	；point to key test
7 DCS	48			FHA		；before
7DC6	A9	3F		LDA	\＃ KEYYTST	；doing
7DCs	48			FHA		； 60 Hz IRQ
$7 \mathrm{DC9}$	08			PHP		； 35 a
7DCA	48			FHA		；subroutine
7 DCE	4 B			FHA		
7DCC	48			PHA		

Supports these interface boards

Apple Communications Card Apple Paraliel Printer Apple Serial Intertace Apple Super Serial Card Bit 3 Dual-Comm Plus ${ }^{\text {™ }}$ CCS 7710,7720, 7728 Hayes Micromodem II ${ }^{\text {m }}$ Hayes Smartmodem ${ }^{\text {mM }} \mathbf{3 0 0}$ \& 1200 Intra Computer PS10 Mountain Computer CPS Card ${ }^{\text {TM }}$ Novation Apple-Cat II ${ }^{m} 300$ \& 1200 Orange Micro Grappler ${ }^{\text {u }}$
Prometheus VERSAcard ${ }^{\text {m }}$ SSM ASIO, APIO, AIO, AIO $1 I^{\mathrm{mm}}$

Supports your 80-column hardware.
ALS Smarterm ${ }^{\text {TM }}$ Bh 3 Full-Vlew $80^{\text {m }}$ Computer Stop Omnivision ${ }^{\text {TM }}$ M\& A Sup'R'Terminal ${ }^{\text {m }}$ STB Systems STB-80 ${ }^{\text {m }}$ Videx Videoterm ${ }^{\text {TM }}$

Your host computer

 won't know the difference!Softerm provides an exact terminal emulation for a wide range of CRT terminals which interface to a variety of host computer systems. Special function keys, sophisticated editing features, even local printer capabilities of the terminals emulated by Softerm are fully supported. Softerm operates with even the most discriminating host computer applications including video editors.
And at speeds up to 9600 baud using either a direct connection or any standard modem.

Unmatched file transfer capability

Softerm offers file transfer methods flexible enough to match any host computer requirement. These include character protocol with userdefinable terminator and acknowledge strings, block size, and character echo wait, and the intelligent Softrans ${ }^{\text {m }}$ protocol which provides reliable error-free transmission and reception of data. The character protocol provides maximum flexibility for text file transfers. Any type file may be transferred using the Softrans protocol which provides automatic binary encoding and decoding, block checking with error recovery, and data compression to enhance line utilization. A FORTRAN 77 source program is supplied with Softerm which is easily adaptable to any host computer to allow communications with Softerm
using the Softrans protocol.
Softerm file transfer utilizes an easy to use command language which allows simple definition of even complex multiple-file transfers with handshaking. Twenty-three high-level commands include DIAL, CATALOG, SEND, RECEIVE, ONERR, HANGUP, MONITOR and others which may be executed in immediate command mode interactively or from a file transfer macro command file which has been previously entered and saved on disk.

Built-in utilities

Softerm disk utilities allow DOS commands such as CATALOG, INIT, RENAME, and DELETE to be executed allowing convenient file maintenance. Local file transfers allow files to be displayed, printed, or even copied to another file without exiting the Softerm program. Numerous editing options such as tab expansion and space compression are provided to allow easy reformatting of data to accommodate the variations in data formats used by host computers. Softerm supports automatic dialing in both terminal and file transfer modes. Dial utilities allow a phone book of frequently used numbers to be defined which are accessed by a user-assigned name and specify
the serial interface parameters to be used.
Online Update Service
The Softronics Online Update Service is provided as an additional support service at no additional cost to Softerm users. Its purpose is to allow fast turnaround of Sotterm program fixes for user-reported problems using the automatic patch facility included in Softerm as well as a convenient distribution method for additional terminal emulations and I/O drivers which become available. User correspondence can be electronically mailed to Softronics, and user-contributed keyboard macros, file transfer macros, and host adaptations of the Softrans FORTRAN 77 program are available on-line.

Most advanced communications software available

Just check Softerm's 300 page user manual. You simply can't buy a more sophisticated package or one that's easier to use. Available now for only $\$ 150$ from your local dealer or Softronics, Inc.
SOITRONICS
6626 Prince Edward, Memphis, TN 38119. 901.755-5006 CIrcle No. 18

[^4]SMARTERM Listing (continued)

. BYTE 20,0,0,0
. BYTE O,O,O,O
. EYTE O,O,O,O
. BYTE O,O,O,O

Dialing the Networks

by Cliff Glennon

Essential steps for a MC6809-based home computer to communicate with the two major computer networks.

Have you ever come home without a newspaper and wished you had something to read? Are you tired of paying high prices for slow mail delivery? Subscribers to THE SOURCE and COMPUSERVE can get news, instant electronic mail, and a host of other valuable services delivered right to their home computers.

There are so many services offered by COMPUSERVE that a magazine is published to provide a convenient index to them. THE SOURCE sends out an executive manual that covers its services. I had the spelling in this article checked by THE SOURCE, and COMPUSERVE can give me the prices of stereo equipment.

I have heard it said that by the next decade a literate person will have to know computers to be able to communicate. This communication most likely will be over the telephone lines through computer services such as THE SOURCE or COMPUSERVE. If you want a taste of what it will be like to work at home and communicate to a large central computer system, it's all here. If you have a program that will not fit in your memory, you have access to all the memory and disk operating systems you can handle over your telephone.

The Modem

Modem is a contraction for modulator-demodulator. Although I don't have one, the Originate-Answer type of modem is probably best. This

[^5]
Table 1: Summary of the MC6850 ACIA Command Register

bits 0-1] 000000bb
Divides the system clock to provide output baud rates.
00 - Divide by 1
01 - Divide by 16
10 - Divide by 64
11 - Reset the ACIA
The SWTPC MP-S2 is set up to use a divide by 16 when 300 baud is selected on the interface jumpers.
bits 2-4] 000bbb00
Word Length, Parity, Stop Bit Selections
000-7-bit word, even parity, 2 stop bits
001-7-bit word, odd parity, 2 stop bits
010-7-bit word, even parity, 1 stop bit
011-7-bit word, odd parity, 1 stop bit
100-8-bit word, no parity, 2 stop bits
101-8-bit word, no parity, 1 stop bit
110-8-bit word, even parity, 1 stop bit
111-8-bit word, odd parity, 1 stop bit
I access both COMPUSERVE and THE SOURCE with a 7-bit word, even parity, 1 stop bit, $\% 00001000$ or 010 .
bits 5-61 Obb00000
Controls RTS output (pin 5), Break Transmission, Transmitter Interrupts
$00-$ RTS $=0$, inhibits transmitter interrupt
$01-$ RTS $=0$, enables transmitter interrupt
$10-$ RTS $=1$, inhibits transmitter interrupt
$11-$ RTS $=0$, inhibits transmitter interrupt, transmits Break I do not use these features.
bit 71 b0000000
Controls Interrupts to the 6809 Processor
1 - enables interrupts when a letter is received
0 - disables interrupts when a letter is received
I have used this feature in the past, but my Disk Operating System uses the interrupt vector and I hesitate to share that vector when I am using disk reads and writes. Also I found that using interrupts prevents control characters from being sent to the Services (e.g., a break or Control-P) by assigning a priority to incoming letters.
means that you can be the one to initiate the call (Originate) or that your computer can be called by another computer (Answer). I have an Origi-nate-only modem, and this is sufficient to connect to the computer services.

My modem is a direct-connect, which means there is no acoustic coupler to add problems to the communications channel. I see no need to convert the electronic signals from the computer to sound, and convert the sound back to electronic signals to send over the phone lines. In addition, acoustic couplers are made for round phone speakers, and my phone handset is square. The phone company installed the USOC RJ-11C jack required by the
modem. This jack, as it turns out, is also required by my telephone answering machine and enables me to plug or unplug phone equipment easily.

The two Services require at least a 300-baud rate:
baud $=($ approx. $) 10 *$ characters/second
but also provide 1200 -baud service. The future undoubtedly will be with the faster baud rates and a modem that could operate at such speeds would be an advantage.

The Cable

If you construct your own modemcomputer connector, you must trans-

Table 2: The MC6850 ACIA Status Register

bit 0) 0000000b
0 - Receiver Data Register empty
1 - Receiver Data Register full
A character has been received and can be read from the Data Register
bit 1) 000000b0
0 - Transmitter Data Register full
** Note opposite meanings from bit 0
1 - Transmitter Data Register empty A character can now be sent
bit $2!$ 00000b00
0 - Data Carrier Detect is present
1 - Loss of Data Carrier If this line is connected
bit 3) 0000b000
0 - Clear to Send signal is detected
1 - No Clear to Send
**** Note: this line must be connected for the 6850 to operate. If this line is high ($\$ 08$ in the Status Register), no data can be transmitted.
This is pin 20 on the MP-S2 connector
bit 4! 000b0000
0 - No Framing Error
1 - Framing Error
Faulty character synchronization
bit 5) 00b00000
0 - No Overrun
1 - Overrun
More than one character was received before one was read
bit 6) 0b000000
0 - No Parity Error
1-Parity in the received character is incorrect
bit $71 \quad$ b0000000
0 - Any interrupts enabled in the Control register
1 - Can also be read as output in this bit
late the modem manufacturer's terms to the computer manufacturer's terms. The name RS-232 is code for a loose agreement "standard" for connectors that original equipment manufacturers (OEMs) can use to attach their devices to a variety of computers. As long as a device follows the RS-232 standard, I can attach it to my SWTPC S09 computer. Here are the modem-tocomputer conversions:
$\left.\begin{array}{lll}\begin{array}{ll}\text { Modem } \\ \text { Pin }\end{array} & \text { Line Description } & \begin{array}{l}\text { Computer } \\ \text { (SWTPC }\end{array} \\ & & \text { MP-S2|Pin }\end{array}\right\}$

The first thing to notice in the list is that lines 2 and 3 are reversed in the two machines. This is a standard configuration and should be found in all modem-computer connections. The Data Carrier Detector line does not have to be connected for the MP-S2 interface to work. A very careful reading of the SWTPC documentation discloses that pin 20, the Clear-to-Send pin, should be connected to "the buffer full or data terminal ready line." All in all, only five lines need to be implemented.

The cheapest cable is ribbon cable. But a major disadvantage is that the signals on this cable radiate to interfere with any television sets in your house. If you live in an apartment, ribbon cable is out; you should have a cable custom made with the lines twisted and mylar shielded. Another alternative is to adapt an unused shielded cable.

DB- 25 is the name for the 25 pin connectors used with RS-232 interfaces. They are male and female to indicate whether they are plugs or sockets. If you order the cable made, be sure you understand how the manufacturer wants the gender of the DB- 25 connector specified. Serial interfaces usually require male DB-25 connectors; parallel interfaces need female connectors. Cable and connectors can be purchased from computer stores or hobby mail-order houses.

Attaching wires to the connectors is easy. A low-wattage soldering iron and $60 / 40$ rosin-core solder is all that is necessary. A short length of heat-

Communications

shrinkable tubing is slipped over the wire before soldering. After the solder connection is made, this tubing is pulled down over the connection and shrunk to a tight fit by heat from the iron; or you can use plastic electrical tape if you prefer. A VOM can be used to check if there are any invisible breaks in the wire, if the right pin is connected, or if there is a short between wires. An inexpensive VOM is sufficient, because only resistance measurements are needed.

The next step is to write the program that allows the computer to talk on the telephone. A preliminary procedure is to study the device used in the computer interface to find out the commands it needs to operate. The device in my system is the Motorola MC6850 ACIA, or Asynchronous Communications Interface Adapter (I am curious to see what the spelling checker does with that!!. To send a command to the 6850, a value (such as $\$ 03$) is placed in the Control Register. For example:

LDA \$03 Load accumulator A with the 6850 Reset value
STA \$E040 Control/Status Register address in my system

The commands are coded to fit into an 8 -bit byte (see table 1). If table 1 seems complicated, remember that all you have to do is select one option in each of the categories to fit your needs and the 6850 does the rest! Thus, COMPUSERVE asks for a 7 -bit ASCII word, even parity, one start, and one stop bit. All this is done with a $\$ 09$ or $\% 00001001$. After sending this command to the 6850 , all data sent out by the computer to the modem conforms to this requirement, and data received is checked to see if it matches as well. Characters are transmitted and received simultaneously.

THE SOURCE looks for an 8-bit ASCII word, no parity, one stop bit. This is obtained with a $\$ 15$ or $\% 00010101$. I am able to connect on my SWTPC 6800 system using this command; but my 6809 system balks at this code and talks only on the $\$ 09$ code. Customer service at THE SOURCE told me that a 7 -bit word could be used to communicate, but that an 8 -bit word is required in their "local mode," which, I guess, is dialing from Washington D.C. My motto in this case is "what works, works," but I am sure I will have to find the source of the trouble someday.

Both services require full-duplex
operation, which means the service will echo a character sent by your equipment back to you. Note that you do not have to echo a character back to the service. Full-duplex operation is assumed in the attached program.

The computer processor is processing data at a megahertz-cycle clip, and the ACIA modem is running at only 300 baud, so a means must be provided to see if the slow pair is ready for another letter. This is provided by the status register, which tells us whether or not a letter has come in, or what some of the problems in the reception are. On my system, this register is read by an

LDA \$E040 Reads the ACIA Status Register

The status register is summarized in table 2.

It is necessary only to check bits 0 and 1 for normal communications. If a parity option has been selected such as a \$05: 7-bit word; odd parity; and divide by 16 , and the parity status register bit number 6 is not checked by a statement such as

LDA \$E040 Read status
BITA $\$ 40$ Check parity bit
then you are sending characters out with a parity bit set, but your own system is ignoring any parity bits received.

The final piece of information is how to read and write to the ACIA. The required statement is:

LDA \$E041 Read Data Register

 STA \$E041 Write to Data Register
The Program

After loading the progam, it prompts for a letter to begin initializing the ACIA. Enter any letter to start. Dial the computer service at this time and follow the sign-on procedures detailed in their instructions. To record any information, type a ' ${ }^{\prime}$ ' or $\$ 7 \mathrm{E}$. To stop recording, enter another ' \sim ' or $\$ 7 \mathrm{E}$. To transmit a text file, type a '\{' or \$7B. Do not be alarmed if the characters echoed back by the service during the transmission of a text file do not agree with the characters that are being sent. More than likely, when you review the file in the service's memory, it will agree with what you intended to send. But (and there must always be a "but")
a poor telephone line or static on the telephone line may garble the best transmissions. You must not touch the keyboard during transmission because this will end the transmission. Use this method to end the transmission, however, if the service sends out trouble messages such as
> illegal command
If the file TODAY.TXT is inadvertently closed, you can exit and restart the MODEM program without losing the telephone connection. Exit from the program by typing a ' $\}$ ' or $\$ 7 \mathrm{D}$.

Problems

To locate a problem you must first isolate it by eliminating any areas of the connection that are not (or should not bel involved. Generally I assume anything that I have done is wrong, even though I know that I am right beyond a shadow of a doubt. This attitude has solved most of my problems quickly. Any manufactured and tested part is probably not the source of the problem.

Of course, I hope you do not have any problems with the program as it is printed here. It is designed for exchanging text messages. Binary transmissions, such as machine-language program exchanges, would require that parity and framing errors be detected. Error-correcting codes would also have to be employed to achieve 100% accuracy.

To paraphrase Professor James Burke in his CONNECTIONS series: The inventions that will probably be the most important are the ones that will improve communications.
P.S. The SPELL program caught my "propriatary", and pointed out the correct "proprietary." "Asynchronous" passed by "synchronization" was unknown. The SPELL program also listed all the text formatter commands that are imbedded in the text (such as centering, etc.) as unknown words.
THE SOURCE is a servicemark of Source Telecomputing Corp., 1616 Anderson Road, McLean, VA 22102. MICRONET and COMPUSERVE are trademarks of Compuserve Inc., 5000 Arlington, Centre Blvd., Columbus, OH 43220. SWTPC, CT-82, MP.S2, S09 are trademarks of Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216. FLEX, FLEX9, TSC are trademarks of Technical Systems Consultants, Inc., P.O. Box 2574, West Lafayette, IN 47906. MC6850 and MC6809 are trademarks of Motorola Inc., Integrated Circuit Division, 3501 Ed Bluestein Blvd., Austin, TX 78721.

[^6]
HUDSON DIGITAL ELECTRONICS INC.

THE TASK* MASTERS

HDE supports the *TIM, AIM, SYM and KIM (TASK) with a growing line of computer programs and peripheral components. All HDE component boards are state-of-the-art $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$, with on board regulation of all required voltages, fully compatible with the KIM-4 bus.

OMNIDISK 65/8 and 65/5

Single and dual drive $8^{\prime \prime}$ and $51 / 4$ " disk systems. Complete, ready to plug in, bootstrap and run. Include HDE's proprietary operating system, FODS(File Oriented Disk System).

DM816-M8A

An 8K static RAM board tested for a minimum of 100 hours and warranted for a full 6 months.

DM816-UB1

A prototyping card with on-board 5 V regulator and address selection. You add the application.

DM816-P8

A 4/8K EPROM card for 2708 or 2716 circuits. On board regulation of all required voltages. Supplied without EPROMS.

DM816-CC15

A 15 position motherboard mounted in a 19" RETMA standard card cage, with power supply. KIM, AIM and SYM versions.

DISK PROGRAM LIBRARY

Offers exchange of user contributed routines and programs for HDE Disk Systems. Contact Progressive Computer Software, Inc. for details.

HDE DISK BASIC

A full range disk BASIC for KIM based systems. Includes PRINT USING, IF . . . THEN . . . ELSE. Sequential and random file access and much more. \$175.00

HDE ADVANCED INTERACTIVE DISASSEMBLER (AID)

Two pass disassembler assigns labels and constructs source files for any object program. Saves multiple files to disk. TIM, AIM, SYM, KIM versions. $\$ 95.00$

HDE ASSEMBLER

Advanced, two pass assembler with standard mnemonics. KIM, TIM, SYM and KIM cassette versions. $\$ 75.00$ ($\$ 80.00$ cassette)

HDE TEXT OUTPUT PROCESSING SYSTEM (TOPS)

A comprehensive text processor with over 30 commands to format and output letters, documents, manuscripts. KIM, TIM and KIM cassette versions. $\$ 135.00$ ($\$ 142.50$ cassette)

HDE DYNAMIC DEBUGGING TOOL (DDT) Built in assembler/disassembler with program controlled single step and dynamic breakpoint entry/deletion. TIM, AIM, SYM, KIM AND KIM cassette versions. $\$ 65.00$ ($\$ 68.50$ cassette)

hDE COMPREHENSIVE MEMORY TEST (CMT)

Eight separate diagnostic routines for both static and dynamic memory. TIM, AIM, SYM, KIM and KIM cassette versions. $\$ 65.00$ ($\$ 68.50$ cassette)

AVAILABLE DIRECT OR FROM THESE FINE DEALERS:

Progressive Computer Software 405 Corbin Road York PA 17403 (717) 845-4954

- INPUT A LETTER FROM THE MODEM.

0070 F6 E0 40 0073 C5 01 007527 BF 0077 B6 E0 41

PORT	LDE CNTRL	DID ANYTHING
	BITB \#1	COME IN?
	BEQ TERM	NO. GO CHECK TERMINAL.
	LDA DATA	GET LETtER

- THE FOLLOWING SCREEN IS NECESSARY TO - prevent a stray misread character from - ACTIVATING ANY OF THE 150 FUNCTIONS ON - THE SWTPC CT-82

- TRANSMIT A DISK FILE

- read each character from the file

- ELIMINATE MORE THAN ONE CARRIAGE RETURN - TO PREVENT RETURNING TO COMMAND MODE IN - THE SOURCE.

OODF	8100	\bullet	CMPA \#\$OD	CARRIAGE RETURN?
00E1	26	0 C		BNE NOT CR

Glennon Listing (continued)

016 F	A6 01	- must be deleteo.		
0171	8103		CMPA \#3	FILE EXISTS?
0173	26 OA		BNE ERR66	NO. REAL TROUBLE
0175	86 OC		LDA \#12	delete file
0177	A7 84		STA 0, X	
0179	BD D4 06		JSR FMS	
017C	16 FE 81		BRA START	AND TRY AGAIN
017 F	BD CD 3F	ERR66	JSR RPTERR	REPORT ERROR
0182	BD D4 03		JSR FMSCLS	CLOSE ALL FILES
0185	730271		COM FLAG	CLEAR WRITE FLAG
0188	16 FE AB		BRA TERM	Continue to receive
0188	52454144	READMSG	/READY/	
0190	OA 000000		FCB $\$ 0 \mathrm{~A}, \$ 00,0,0,0,4$	
0196	54595045	PROMPT	/TYPE ANY LETTER TO START/	
01AE	OA 000000		\$OA, \$00, 0,0,0,4	
0184	45 4E 5445	TRANSMSG	/ENTER FILE SPECIFICATION FOR FILE tO Be transmitted./	
01 E 8	OA OD 0000		FCB \$0A, 500,0,	0,0,4
O1EE	49 4E 5445	TRANSINT	FCC /INTERRUP	received FROM TERMINAL./
020F	OA 000000		\$0A, \$00 , 0, 0, 0,4	
0215	5452414 L	TRANSCOMP	FCC /TRANSMISSION FILE IS CLOSED./	
0231	OA 000000		\$0A, \$00, 0, 0, 0, 4	
0237	20202028	MSGON	FCC / ++++ R	RECORDING ON ++++/
0250	2020202 A	OFFMSG	FCC / **** R	RECORDING OFF ****/
026A	OA OD 0000		\$0A, \$00, 0, 0, 0,4	
0270		CRFLAG	RMB	CARRIAGE RETURN FLAG
0271		FLAG	1	
0272	02000000	FILSPEC	2,0,0,0, "TOOAY", 0,0,0, "TXT", 0,0,0	
0284		FCB	RMB 320	RECORD FILE
$03 \mathrm{C4}$		FCB2	320 TRANSMIT FILE	
0000			START	

NCRO"

PET / CBM ${ }^{\text {TM }}$
 SOFTWARE SELECT!
 8032
 OR
 4032 DISPLAY

FROM THE KEYBOARD OR PROGRAM NOW RUN WORD PRO 3 OR WORD PRO 4

FROM THE SAME MACHINE
Available for either 4000 or 8000 Series

For 2001/3000 Series Computers
Operate these Models in a Full 8032 Like Display For Word Pro 4*
and all other 80 Column Software
All installation instructions included.

EXECOM CORP.

1901 Polaris Ave.

Racine, WI 53404
Ph. 414-632-1004
PET/CBM a trademark of Commodore Business Machines *trademark of Professional Software, Inc.

Circle No. 53

A Home-Built

Communications Interface

by John Steiner

Circuitry and techniques to construct a communications interface. With modifications could be converted to a telephone modem. Simple, reliable, and inexpensive design.

Communication between computers is rapidly becoming a common-place occurrence. More and more people are involved with electronic mail, time sharing, and data base activities. Mechanical radio teletype systems are being replaced by modern computer technology, and the Baudot code is being supplanted by ASCII. This article describes the construction and connection of a radio teletype modem. Techniques found here can be applied to any digital data communications application.

The modem can act as an interface with any serial RS-232-C device, but this article describes the process used to connect it specifically to the TRS-80 Color Computer. In this case the equipment being interfaced is an amateur radio transceiver; with some changes it would be possible to convert this device to a telephone-type modem.

The TRS-80 Color Computer has
proven to be an excellent communications terminal. It is inexpensive, easily programmed, and includes an RS-232 output connection. CoCo is well shielded from external sources of radio frequency interference and causes little of its own. After reading several articles in various periodicals and books, Ken Christiansen (WOCZ) and I decided we would like to experiment with radio teletype (RTTY). We selected a basic demodulator design from the National Semiconductor Data Book. The modulator is modified from a basic circuit by Rodney Colton (WA1SXW) in an article in QST magazine, September 1981.

In our research, we found several interesting articles and books. The bibliography lists those that were especially helpful to us in learning about RTTY. Ken and I were interested in communicating via two meters, so frequency offsets were designed around the VHF
convention of 170 Hz frequency shift. The mark frequency is 2125 Hz and space is 2295 Hz . Also included is a voltage-regulator circuit that ensures stability of operation of the PLL circuits. The modems have been used occasionally on the high-frequency bands, but a lack of filtering hampers their performance. One of these units has been used with excellent results with audio filtering preceding the demodulator.

Total cost for all components, if purchased new, should be $\$ 25$ to $\$ 35$, depending on final configuration and cabinet. The modem is designed to be powered from a 14 -volt or higher DC source. A simple supply can be built for under $\$ 20$, if one is not available. I use an inexpensive CB radio-power supply

Demodulator Circuit

The simple FSK demodulator uses a 565 phase-lock loop IC and is a modified circuit originally found in the NS data book. The circuit has excellent stability and has worked flawlessly for several months now. IC 1 (see figure 1) is the PLL. The circuit is adjusted with R5 and R6 to be between the high (mark) and low (space) frequencies.

Figure 1

Mark and space audio tones input to C2 cause the PLL output (pin 7) to be higher or lower than a reference voltage (pin 6). IC2, a comparator, compares the voltages and responds with a logic zero or logic one at the output (pin 2).

A few features have been added to the circuit to make it more versatile. R5 is mounted on the front panel and is a fine-frequency adjustment used to tune the PLL precisely to the input frequency. LED1 allows a visual indication of the data input. In practice, R5 is adjusted until the LED blinks with the changing data. Once the LED is blinking, you merely adjust for intelligible data on the CRT. Incorrect adjustment of R5 causes the LED to remain either on or off. Q1 is an inverter that reverses the state of the output logic, ensuring compatibility with any transmission standard. J2 is provided to connect an external speaker, making it easy to use the earphone jack on the transceiver and allowing you to monitor the incoming signal. SWl can turn off the speaker once communication is established.

To adjust the demodulator, place a 2210 Hz signal on the input. Set R5 to midrange, then adjust R6 until the LED
changes state as you turn the potentiometer back and forth. Check to see that the LED changes state as you bring the audio frequency between mark and space frequencies. If you cannot adjust the output within range, you may have to change R15 slightly.

Modulator Circuit

The modulator circuit uses a 566 PLL IC as a frequency generator. The input to the modulator is serial binary data from the computer. A high causes the mark frequency to be sent, and a low causes the space frequency to be sent. Ql is an inverter that allows the logic to be inverted. If you have software that can complement the output data, these associated components can be removed. Q2 is a switch that is used to change output frequency. When the modulator is receiving a high, this switch is on. Frequency is determined by the specific adjustments of R7 and R8 and the voltage divider of R9 through R12. When the input goes low, Q2 shuts off, switching R7 and R8 out of the circuit. During space, R10 and the associated divider resistors determine the output frequency.

To adjust the circuit, ground the input. This switches R7 and R8 out of the
circuit. Adjust R10 for the space frequency at the output as measured on a frequency counter. Put +5 volts on the input and adjust R8 to midrange and tune R7 until the output is at the mark frequency. Ground the input again and recheck space frequency. You will notice some interaction between the mark and space controls. Only slight adjustments will be required. As with the demodulator, you may have to change the value of R9 slightly if you cannot get the potentiometers within range. The entire process of adjusting the modem takes much less time to do than it does to describe!

SW2, a tone on/off switch, has been included to kill the tone without actually powering down the modem. As the unit warms up, it drifts very slightly. Let it run for a few minutes before making adjustments. Any drift in the demodulator is taken care of easily with the front panel control. Once warm, it is completely stable. We have had no long-term drift problems with the circuit.

Power Supply Regulator

The modem has a regulator circuit that helps stabilize the PLL circuits.

Communications

The heart of the circuit is a threeterminal IC - an LM 317 adjustable positive regulator. The circuit must have at least two volts more at the input than required at the output to retain regulation. The IC should be heatsinked if you apply a very high input voltage. My regulator circuit gets its power from a 15 -volt supply and does not run warm even without a heat sink. A power switch is included so that the main power supply can be left on for other purposes.

To adjust the circuit, connect a voltmeter to the output and adjust R1 until the meter reads 12 volts. Be sure to adjust the power supply output voltage before attempting to adjust the modem.

Construction

None of the circuits are critical, and they can be wired on printed circuit or perf board as desired. We have had three units constructed using the same basic circuit; even though the layouts have been totally different, each has worked without any problems for several months. You should use a metal cabinet if you plan to run the unit in high RF fields. We have not noticd any particular RFI problems with our units. Jacks and cable connectors that match the appropriate connectors on the transmitting device are required.

Interfacing the Modem

The connection between the Color Computer and modem is through the RS-232 jack marked SERIAL I/O on the rear panel of the computer. The easiest way to obtain the required four-pin DIN plug is to order the Radio Shack printer cable. If you cut it exactly in two, you will have two four-pin cables that can be used as I/O connections. The cable has color-coded conductors that are connected as follows:
Red to ground of modem
Green to output of demodulator

White to input of modulator Yellow to positive voltage

Connection to the transmitter is via the audio output or external speaker jack. This connection goes between ground and the demodulator input. The modulator output connects between ground and the microphone or auxiliary input jack on the transceiver. In my particular installation, I ordered an extemal microphone for the handi-talkie, and installed a mini-stereo jack in it since I didn't want to drill into the case. As an added convenience, I connected the extra conductor in the stereo jack to the PTT line inside the microphone. This line is controlled by a switch on the modem marked XMIT, and allows me to remain in transmit without holding in the PTT switch.

When Ken and I completed the construction of the two modems, the only available software we knew about was Radio Shack's VIDEOTEX terminal program. This machine-language program operates at 300 baud ASCII with even parity protocol. Ken and I were assured of private transmissions as we were the only RTTY stations in the area with 300 -baud capability. The modem operates at this speed with no problems, under normal two-meter reception conditions.

One evening I heard from a friend who spends much time on RTTY. He had just finished a contact with a station that was using a TRS-80C on 60 WPM Baudot, the standard used mostly on HF. Bill (WOLHS) told me that a radio ham was communicating with several individuals, all with color computers. He told of sending programs back and forth between terminals and informed me that the software they were using was called RTTYCW, written by K6AEP. Coincidentally Ken had just sent for a RTTY program he read about. His order to Clay Abrams Software was the same program RTTYCW. It is capable of $60,75,100$, and 110 WPM Baudot, as well as 50,

Figure 3

$75,100,150$, and 300 baud ASCII. The program will also send and receive morse code at 1 to 99 words per minute.

There are four message buffers and 12 K transmit and receive buffers in a 32 K CoCo . If you have a 16 K machine, you are limited to a buffer size of about 4 K . The transmit buffers can be loaded via tape, and all buffers can be saved to tape for loading at start-up time.

By loading a program saved in ASCII format into the transmit buffer, you can transmit that program to a receiver where it can be saved to tape. Then you can load the tape into the computer at a later time and resave it in standard format. If you want a hard copy of the text, all buffers can be sent to the printer. In short, I cannot say enough about the quality and capability of this software. It has all of the features I wanted when I thought of writing my own program.

The Color Computer is easy to interface, and the simple modem circuit has provided me with many hours of fun and education. The easy-to-adjust circuit can be built in just a few hours at little expense. If you have any questions or problems with construction, you may contact me at the address below, or on the Color Computer NET. This net meets at 2000 hours UTC Sundays on 14.343 Mhz , and I try to check in regularly. If you write, please enclose a stamped, self-addressed envelope for a reply.

Bibliography

1. ARPL Staff, "Radio Amateurs Handbook," American Radio Relay League, 1982.
2. Carr, Joseph J., 'The UART,'" Computers and Programming, September 1981.
3. Colton, Rondey, "A PLL Demodulator and Modulator," QST Magazine, September 1981.
4. DeJong, Marvin L., "Morse Code Send/Receive Program," Best of MICRO, Volume 3.
5. Henry, George W., Ir., "ASCII Baudot and Radio Amateur," QST Magazine, September 1980.
6. Rouleau and Hodgson, Packet Radio, Tab Books, 1981.

You may contact John Steiner at ARS WBONFX, 508 Fourth Ave. NW, Riverside, ND 58078.

PET-to-PET Communications

by F. Arthur Cochrane

Abstract

This article describes a machine-language program to transfer an array from one PET to another over the User Port.

I have developed a method to communicate data between two Commodore PETs. Two PETs (PET A and PET B) are needed for on-line data collection and simultaneous graphic display and real-time monitoring of a chemical separations process. The tasks for PET A are instrument set-up, data collection, and data storage on disk. Tasks for PET B are graphic display, and reading and storing information on disk. The data for each transfer between PETs are limited to 14 floating-point values. For this application communication was necessary in only one direction - from PET A to PET B.

The Method

I employed the user port on the PET to transfer 8 -bit data. Table 1 describes the user port signals. The CB2 and CA1 lines are used for handshaking the data. The sender sets the 8 -bit port for output mode and the receiver for input mode.
Table 1: User Port Signals

PET Connections	Signal
A	Ground
B	CA1 - Input Handshake
C	Line
	Most Significant Data
Line PA7	
E	Data Line PA6
F	Data Line PA5
H	Data Line PA4
J	Data Line PA3 PA2
K	Data Line PA1
L	Least Significant Data
M	Line PA0
	CB2 - Output
N	Groundshake Line

The CB2 line from the sender is connected to the CA1 line of the receiver and acts as a Data Ready signal. The CB2 line from the reciever is connected to the CA1 line of the sender and acts as a Data Accepted signal. The wiring hookup is shown in figure 1.

I could have transferred the data from the BASIC program with PEEKs and POKEs. But for this application, I wrote a simple machine-lanugage program that transfers data much faster and allows the PETs to spend most of their time collecting data and doing numeric calculations, and very little time with the PET-to-PET communication.

The data sent are the first 14 elements of the first dimensioned real array. This puts the restriction on the BASIC program that the first dimensioned array in the program is the one to be sent or received.

The set-up code for the sender (a SYS 637 command in the program listed) sets CB2 high, sets the data direction register for input, and clears CA1. When the sender wishes to send data, a SYS 634 is initiated in the sender code.

The set-up code for the receiver (a SYS 640 command in the program listed) sets CB2 high, sets the data direction register for input, and clears CA1. Also, the machine code changes the IRQ vector on the reciever to point to the machine-language routine that checks for a Data Ready signal from the sender.

The data are received in the receiver during the $60-\mathrm{Hz}$ keyboard-scan routine, independent of action by the BASIC program. This is done by checking for a Data Ready from the sender each scan. If data are not ready, the normal keyboard scan functions as normal. If data are ready, the receiver code is executed, after which the keyboardscan code continues. Because the data are received independently of the

BASIC program, the receiver program must be able to determine whether or not new data have been sent. This is done by using the zero element of the array as a flag. The receiver sets the zero element to zero, and the sender
Figure 1. PET to PET Connection

sets it to minus one. These numbers are chosen because PET BASIC takes a value of zero in decisions to be false and a minus one to be true. In an IF statement the receiver PET can check the zero element. If it is minus one, new data have been sent and can be copied to a safe location and the zero element flag can be reset to zero.

Limitations

Although the sender PET can send information faster than the receiver PET needs it, in this application the sender spends most of its time collecting data and the receiver can plot them very quickly. This is not a problem if only the latest data are needed. If a future problem arises, additional coding in the program can be used to solve it. The additional machine code could check the zero element to see if it

Communications

is still minus one from the previous communication, in which case the receiver would not do the communication until it becomes zero.

The current program can be expanded only to send forty-nine elements of an array because the Y register of the 6502 microprocessor is used as a counter. This problem can be overcome by placing a two-byte counter in memory.

Description of Programs

The first three instructions in lines 1090 to 1110 of the machine code (listing l) form a jump table. The next group of instructions in lines 1130 to 1170 set up the PET as a sender. After that, lines 1190 to 1250 set up the PET as a receiver. The PET IRQ routine for the receiver starts in line 1280 . Lines 1270 to 1320 look for the first Data Ready from the sender by checking the CA1 interrupt flag. The macro in line

1350 loops for the number of bytes to receive. The receiver code waits for a Data Ready, gets the data, and sends a Data Accepted. Line 1420 is the macro that loops for the number of bytes to send. The sender code writes the data, sends a Data Ready, and waits for a Data Accepted. Lines 1500 to 1550 detects a Data Ready or Data Accepted. Data are read or written in lines 1730 to 1820 , using the array pointer.

This machine code is for BASIC 2.0 and loads into Cassette Buffer 1. To use the code with BASIC 4.0, the keyboard scan address must be changed from \$E62E to \$E455 and the return to BASIC READY from \$C389 to \$B3FF.

The sample BASIC listing consists of two programs. Lines 100 to 260 form a sender program, and lines 270 to 380 form a receiver program. After the machine code has been loaded into both PETs, the BASIC program (listing 2) is
run by the sequence given in the remarks in lines 120 to 160 of the program.

Conclusion

This program shows how easy it is to expand the firmware of the Commodore PET to implement new functions. EPROMs can be added to the hardware for these expanded firmware programs. This program also shows how machine language can improve the speed of the PET, and have a program function independently of a BASIC program.

Acknowledgements

The information contained in this article was developed during the course of work under Contract No. DE-AC0976SR00001 with the U.S. Department of Energy

You may contact Mr. Cochrane at E.I. du Pont de Nemours \& Co., Savannah River Laboratory, Aiken, SC 29808.

Listing 1
0010 ;THE SENDER PET SENDS THE FIRST FIFTEEN (0-14) ELEMENTS OF
0020 ; THE FIRST DIMENSIONED ARRAY
0030
0040 ;THE RECEIVER PET RECEIVES DATA ALSO IN THE FIRST ARRAY 0050
0060 ; SYS 634 - SEND DATA
0070
0080 ; SYS 637 - SET UP SENDER PET
0090
0100 ; SYS 640 - SET UP RECEIVER PET
0110
0120 ;THE RECEIVER PET GETS DATA DURING THE KEYBOARD SCAN. 0130 ;THE RECEIVER PET CAN DETECT IF NEN DATA HAS BEEN RECEIVED 0140 ; by checking the zero element of the array. if nev data 0150 ; HAS BEEN RECEIVED THEN MOVE IT AND RESET THE 0160 ; ZERO ELEMENT.
0170
0180 ; IF the pet hangs UP and the stop key does not function 0190 ; USE THE KEY TO RETURN TO READY.
0200

Listing 1 (Continued)
1130 BEGIN.S SET.BIT ($\$ 11100000$ PCREG) ;SET CB2 HIGH
0283- A9 EO
0285- OD 4C E8
0288-8D 4C E8

028B- A9 FF
028D-8D 43 E8

1150

0290- A9 1C
0292-49 FF
0294-2D 4BE8
0297-8D 4B E8

O29A- AD 41 E8	1160	
029D- 60	1170	
		1180
		1190 EEGIN.R

029E- A9 EO
02AO- OD 4 C E8
02A3- 8D 4 C E8
1200 SET.DIR ($\$ 00000000$) ;SET FOR INPUT
02A6- A9 00
02A8-8D 43 E8
1210
CLR.BIT (\% 00011100 AUXREG) ;DISABLE SHIFT REGIS
02AB-A9 1C
02AD- 49 FF
02AF- 2D 4B E8
02B2-8D 4B E8
02B5-AD 41 E8 1220

02B8- A9 01
02EA- OD 4B E8
02BD- 8D 4B E8

02C0-78
02C1- A9 CE
02C3- 8590
02C5- A9 02
02C7-85 91
02C9- 58

02CA- 60	1250	RTS	
	1260		
02CB- 4C 2E E6	1270 PETROUT	JMP PET.IRQ	;TO PET IRQ ROUTINE
O2CE- A9 02	1280 LOOK	LDA \#\$00000010	
02D0-2C 4D E8	1290	BIT IFREG	
02D3- F0 F6	1300	BEQ PETROUT	;CA1 NOT SET SO NO DATA PE
02D5-20 DB 02	1310	JSR REC.MAIN	
02D8-4C CB 02	1320	JMP PETROUT	;FINISH UP PET IRQ ROUTINE
	1330		
	1340 ;MAIN RECEIVER ROUTINE		
	1350 REC.MAIN	LOOP (WAIT.CA1	E SEND.CB2)

02DB- 78
O2DC- AO 51
02DE- 20 FD 02
02E1-20 2703
02E4-20 OA 03
02E7-88
02E8- 10 F4
02EA- 58
02EB- 60

> 1360
> 1370 ;1. WAIT FOR DATA READY
> 1380 ;2. GET DATA \& CLEAR CA1
> 1390 ;3. SEND DATA ACCEPTED
> 1400
> 1410 ;MAIN SENDER ROUTINE
> 1420 SEND.MAIN LOOP (SENDER SEND.CB2 WAIT.CA1)

02EC- 78
02ED- AO 51
02EF-20 1F 03
02F2- 20 OA 03
02F5-20 FD 02
02F8- 88
02F9-10 F4

Listing 1 (Continued)
02Fs- 58
02FC- 60

--- LABEL FILE: ---

AUXREG E84B	BEGIN.R O29E	BEGIN.S 0283
COUNTER 0051	DATA E84F	DDR E843
ESCAPE 032D	EXPAND 0001	hDATA E841
IFFEG E84D	IRQ 0090	LISTIT 0001
LOOK O2CE	L00P 02FF	OBJ 0000
PCREG E84C	PET.IRQ E62E	PETROUT 02CB
PIAK E812	POINTER OO2C	READY C389
REC.MAIN O2DB	RECEIVE 0327	SEND.CB2 030A
SEND.MAIN 02EC	SENDER 031F	TOGGLE.CB2 0316
WAIT.CA1 O2FD $1 / 0000,0331,0331$		

Listing 2

1 EQ REM FET TO FET TEST FFOGRAH
116 REM SENDEF FFOGEAM

136 FRINT"BTRUGCOHTIII":STOF'
140 EIM X X (E):FEM DEFINE FFEFF'T TO SENE

TO SEHOT
$16 \mathrm{E}^{2}$ ST'S E34:REM SEHEI LIATH
176 EHDI
1 BE LIATA -1.1.2.3.4.5.6
$19 \overline{\mathrm{a}} \mathrm{FEM}$
200 REM RECEIVEF FROGREM
21 G ETGE4日: FEM SET UF FOR RECEIUING
220 FRIHT"MTHIUCOHTTID":STOF

256 FFINT"马ENCLIFRENT AFPR'r' ELEMEHTSE"
260 FORI=1 TO G:PFINTXCI : NEXT
2TG IF RGQ THEH FRIHT"J":FGF I=1 TG E:FRIHTCSI:
: HE KT: PREIHT"R

296 GOTO276

Multi-Microprocessor Tidbits

by Mike Rosing

Running a 6502 and 6809 in the same computer simultaneously creates a powerful device. This article describes problems you might encounter and a general description of a specific task for which two processors were used.

Watching two 300 -baud lines simultaneously and recalling each record that comes over those lines is easy with a multiprocessing system. By using two Asynchronous Communication Interface Adaptors (ACIAs) connected to an Apple's Interrupt Request Line (IRQ) and a Stellation Two 6809 board, the data collection is done in background and the data display is done in foreground.

Some problems running two micros simultaneously include waking up, communication, and debugging. The major problem is finding a 6809 assembler for the Apple. At the time I purchased the Stellation Two board there was no software. Now you can get a very nice assembler and debugger from Stellation Two for about $\$ 150$.

I bought the assembler package that runs under the UCSD p-System from Softech Microsystems. It works on the Apple Pascal system but is difficult to transfer from the 8 -inch floppy (with no paper work to tell how to read the disk) to the Apple $5 \frac{1}{4}$-inch floppy. The assembler also has several bugs. For $\$ 12,000$ Softech will release the source listing but they won't fix the bugs for you!

The hardware consists of an Apple II with a 16 K board in slot zero. The board was modified by breaking a tie and soldering a circle on the Apple 16 K board to allow use of 2716 EPROMs. When the Apple is turned on the 2716 holds the reset vector enabling the Apple to become a dedicated machine.

The Stellation Two 6809 board has an EPROM slot built in so no modification of that board is necessary. The ACIAs are mounted on an Apple prototype board along with a few chips for buffers and logic for chip selection.

Each 300 -baud line is terminated in a line receiver chip. The receiver outputs go to two Synertek ACIAs. After building the board with two crystals I learned that four ACIAs could be run with one crystal by using the clock outputs on the chips and programming the ACIAs correctly. It is possible to talk and listen to four serial lines using the multiprocessing system described here.

The wake-up routine for each computer is different. When Reset is pressed the 6502 is on and the 6809 is off. The 6502 executes the following code to turn the 6809 on (note that all interrupt lines are high before the 6809 is turned on):

[^7]STA IRQ02 ;6502 interrupt goes out invert gate LDA \#80 raise STA FIRQ STA IRQ STA NMI STA SWAP

STA ROM STA HALT STA RESET
;all 6809
interrupt
;lines
;tells 6809 bd that A15 isn't flipped
;both CPU s view RAM the same way ; 80 - ROM slot used, $00 \cdot$ not used 6809 on and
;going through reset procedure

When the 6502 reaches the last instruction the 6809 is on and running. The 6502 goes at about $1 / 5$ th its normal pace and the 6809 goes at full speed.

The 6809 wake-up routine is simple. As shown below, the 6809 defines its stacks, turns on the ACIAs and then unmasks its $\mathbb{R Q}$ line.

WAKEUP ORCC \#5OH	;mask interrupts
LDU \#USRSTK	;set up
LDS \#SYSSTK	;stack pointers
CLR STATUS	;set up
CLR STATUS +4 ACIAs with	
LDA \#16H	;1 stop, 8 data bits
STA CNTRL	;300 baud
STA CNTRL+4 + ;no parity	
LDA \#1	;receiver interrupt
STA CMD	;enabled
STA CMD + 4	;transmitter disabled
CLRA	;set direct page
TFR A,DP	;same as Apple's zeropg
ANDCC \#OEFH	;enable IRO

The addresses used depend on the logic used to get to each ACIA. These can be set using equates at the beginning of the code file.

The background task of collecting data from two serial lines is accomplished using interrupts from the ACIAs to the 6502 and the IRQ line from the 6502 to the 6809. This allows the operator to view call data from two hours ago at the same time new calls are coming in.

Once eight bits have been collected, either ACIA pulls the IRQ low to the 6502. The 6502 vectors to the interrupt handler and checks each ACIA to see which one is requesting service. If both ACIAs are requesting service, then IRQ will not clear and the 6502 will vector to the interrupt handler again. At 300 baud there is no loss of data for an interrupt handler that takes less than 30
milliseconds. When the 6809 is the master computer, the 6502 runs at about $1 / 5$ th normal speed. An average instruction takes four clock cycles on the 6502. Taking $5 * 1 \mathrm{E}-6$ seconds as a clock cycle and $4 * 5 \mathrm{E}-6$ seconds as an instruction (on average), the total number of instructions before loss of data is $3 \mathrm{E}-2 / 2 \mathrm{E}-5=1.5 \mathrm{E}+3$. The interrupt handler in my system uses only 50 instructions. This allows plenty of time for foreground.

The beginning of the interrupt handler for the 6502 is shown below. After saving the registers, each ACIA must be polled to find which one is requesting service. Reading the status register of the 6551 ACIA clears the interrupt. The most significant bit tells the 6502 if the interrupt came from the device polled.

INTRPT	PHA	;save
	TYA	;all
	PHA	;registers
	TXA	
	PHA	
	BIT PISTUS	;port 1 status checked
	BMI BOX1	;if N bit set then ACIA 1 gave interrupt
	BIT PTSTUS + 4	;port 2 status checked
	BMI BOX2	;if N bit set then ACIA 2 gave interrupt
	LDA ERMSG	;if neither set then there
		was an error
	JMP PRNTMSG	;so tell operator and

After saving the byte into the buffer and incrementing the buffer pointer, the 6502 pulls all registers from the stack and executes RTI. The error message at the end is for debugging purposes. The IRQ from the 6809 to the 6502 goes through an inverting gate; this caused some problems before discovery.

At the end of each serial line the computer sends a start of text (STX) and end of text (ETX) for each message. The 6502 reads an entire message from STX to ETX and saves this to an input buffer. Upon receiving an ETX, it saves the line number in a common location
and pulls the 6809 IRQ. The 6809 checks which line has sent a completed message and then processes that buffer. There are many choices for the 6809, so its interrupt handler is over 250 instructions. Since the 6809 is the master CPU it takes about the same time as 50 instructions on the 6502 . The 6809 also has more foreground tasks to do than the 6502. Both programs fit in 2 K EPROMs. The rest of memory is used for record storage.

The beginning of the 6809 interrupt handler is shown below. A mailbox system is used to tell the 6809 which buffer to take care of. Since the IRQ is masked on vectoring to the interrupt, levels of interrupt are not allowed without unmasking. Because the operation of two 300-baud lines is slow, no attempt was made to make this system that complex.

INTRPT	LDA $\# 80 \mathrm{H}$;raise
	STA IRQ	;6809 IRQ line
	LDA IJOB	;box 1 or 2?
	STA TJOB	;save in case another
		interrupt is coming in fast
	BNE BOX2	;non zero for box 2 , zero for box 1
	LDD B1IB	; X reg is
	BRA GTBUF	;input buffer
BOX2 GTBUF	LDD B21B	;pointer
	EXG A,B	;swap byte sex (this is important!)
	TFR D, X	;now have input buffer ptr
	NEGB	;go back to first char
	LDA B,X	;get first char in buffer

The location IJOB is the mailbox. TJOB is a temporary storage location in case another interrupt is attempted from the other box. B1IB (Box 1 Input
alone, it is easy to step through the input buffer. When B is zero, the end of the buffer has been reached.

The memory is organized with two 256-byte buffers for the input messages. Above those are two 1 K buffers for "live calls." These are 32 slots (one for each phone line), which are 32 bytes each. When a call is finished, the slot corresponding to that line is packed in BCD format into the top of memory. This region is actually a ring buffer that holds about 2400 calls. As more calls come in, old calls are lost.

The operator can examine either live calls or past calls by using menu commands. The 6502 constantly polls the keyboard in foreground and when a key is pressed the processor compares the key to the acceptable commands. The 6502 then jumps to the routine that gathers the data the 6809 foreground program needs. For example, searching past records for all calls to area code 307 requires the 6502 to put the message "AREACODE?" on the screen. The 6502 then reads the keyboard for the area code and saves it to a common zero-page location. The 6809 is constantly checking a common location known as a mailbox. As long as the mailbox is zero the 6809 foreground has little to do. Once the 6502 gets the area code into a common buffer it puts a job number into the mailbox. The 6502 then goes to an input routine that controls the paging of records |since only 24 lines are visible on the screen at a timel.
> "When the 6809 is the master computer, the 6502 runs at about $1 / 5$ th normal speed."

Buffer) and B2IB are 6502 zero-page pointers that tell the 6502 where to put the next input character. The 6809 uses these as pointers to the input buffers as well as for the length of the message in the buffer. By incrementing the B register and leaving the X register

The foreground codes for the 6502 and 6809 are similar. The 6502 scans the keyboard location to see if any key has been pressed. The 6809 scans a mailbox to see if any jobs have been requested. In the meantime the background is running via interrupts. The

OHIO SCIENTIFIC

NEW PROGRAMS!

SCOUT - Full color, machine language, fast action and graphics! After a year of development, comes the all machine language SCOUT. Patrol the planet surface protecting and saving the human population from abductors. Turn your OSI into a real arcade!
\$24.95 C4PMF, C8PDF.
Send for our FREE catalog. We have what you want for less: S-FORTH \$39, FULL SCREEN EDITOR \$19, ADVENTURE \$19, SKYHAWK \$8, TOUCH TYPING \$19, INTELLIGENT TERMINAL $\$ 24$, THE WIZARD'S CITY \$12, UTILITIES, and much more for the C1P to the C8PDF.

(312) 259-3150

AURORA SOFTWARE 37 S. Mitchell Arlington Heights, Illinois 60005 Circle No. 19

CARDBOARD 6

 \$87.95An expansion interface for the VIC-20. Allows expansion to 40 K or accepts up to six games. May be daisy chained for more versatility.

> CARDBOARD 3 \$39.95
> Economy expansion interface for the vIC-20
> CARD "?" CARD/PRINT $\$ 79.95$

Universal Centronics Parallel Printer Interface for the VIC-20 or CBM-64. Use an Epson MX-80 or OKIDATA or TANDY or just about any other.

CARDETTE $\$ 39.95$
Use any standard cassette player/recorder with your VIC-20 or CBM-64 LIGHT PEN \$29.95
A light pen with six good programs to use with your VIC-20 or CBM-64

Prices subject to change.	
TO ORDER:	P. O. BOX 18765
	WICHITA, KS 67218
	(316) 263-1095
Personal Checks Accepted (Allow 3 Weeks)	
or C.O.D (Add $\$ 2$)	Handing Charges $\$ 2.00$

Prices subject to change.
TO ORDER: P. O. BOX 18765
WICHITA, KS 67218 (316) 263-1095
or C.O.D (Add \$2) Handling Charges $\$ 2$
Clircle No. 21

6809 foreground code is shown in the next code listing. Once the 6502 has collected all the data from the operator, it sends the 6809 a job number via a JOBBOX. The 6809 continuously scans the JOBBOX until a non-zero value appears via the 6502. It uses this job number as an index into a pointer table, and the job is executed as a subroutine. The code is written as relocatable, which really is not necessary for the job at hand. (This is only one of many ways to communicate between the two computers.)

JOBBOX	EQU 4	;zero pg for both 6502 and 6809
Start	LDA JOBBOX	;any jobs?
	BEQ START	;loop till there is
	ASLA	;convert job number to offset
	LEAX JMPVEC, PCR	;get tbl address into
	LDX A, X	$\mathrm{X} \text { reg }$
		into code

RAMWRT RAMRD	EQU C089 EQU C08B	;write enable RAM cd ;read enable RAM cd
TRONST	LDA \#OFF	;will bè zero
	BEQ TRON2X	;on warm start
	LDA RAMWRT	;write enable
	LDA RAMWRT	;RAM cd while getting code from EPROM
	LDA \#0	;clear index counter
	TAY	
	STA O	;set zero pg ptr to start of ROM
	LDA \#OF8	;which is F800
	STA 1	;up to FFFF
\$1	LDA @0, ${ }^{\text {O }}$;get a byte from ROM
	STA @ O,Y	;copy into RAM!
	INY	;bump counter
	BNE \$1	; bump
	INC 1	;zero-page counter
	BNE \$1	;until past FFFF
	LDA \#0	;set RAM for warm reset
	STA TRONST + 1	;because we don't
TRON2X	lda ramrd	;read/write
	LDA RAMRD	;enable RAM
	; at this point the	EPROM is not used
	; but its code is ru	unning in RAM on the
	; 16 K board. On a	a warm reset the
	; above code is by	ypassed since the
		unchanged but the

Debugging the above system required putting out messages on the screen to state how far into its program each computer had gotten. When I put 6502 messages at the top of the screen and 6809 messages at the bottom, the problem point was found easily. Usually the problems I had were byte-sex related or mailboxes not at the same address. By clearly separating the tasks of the two processors, mistakes and bugs can be found relatively quickly.

The specific examples used above work. They are not necessarily the only way to do multiprocessing in a dedicated environment. If you spend time deciding what each computer should do, the power of multiprocessing will become apparent.

[^8]SOFTWARE

ARTSCI

Magicalc......
Magic Window
DBase (Apple)
BRODERBUND
Payroll
Choplifter
Arcade Machin
Serpentine
Home Accoun
Home Accoun
DATAMOST
Snackattack
Snackattack
Swashbuckier
Zork I, II, or III
starcross
Format II
System Saver \& Fan
Multiplan

ON LINE

Mystery House	\$ 24.95	19.95
Cranston Mannor	34.95	24.95
Frogger	34.95	24.95
Screen Writer II	129.95	99.95
Memory Management II	49.95	39.95

PEACHTREE

GL, AR, AP,
Inventory, Payroll ea. $\$ 400.00$ ea. $\$ 295.00$ Micro Buffer II

SENSIBLE SOFTWARE
Super Disk Copy III
\$ 29.95 \$ 22.95

SERIUS SOFTWARE

Bandits	\$ 34.95	\$ 26.95
Epoch	34.95	26.95
Fly Wars	29.95	22.95
Gorgon	39.95	29.95
Sneakers	29.95	22.95
Joy Port	74.95	59.95
Wizardry	49.95	34.95
Night of Diamonds	34.95	26.95
Star Maze	34.95	26.95
PFS	125.00	89.95
PFS Report	95.00	69.95
PFS Graph	125.00	89.95
Data Capture 4.0	64.95	49.95
Merlin/Assembly Lines	119.95	89.95
Meriin	64.95	49.95
ASCII Express Pro	129.95	99.95
Transend II	149.00	119.00
Transend I	89.00	65.00
DB Master	229.00	165.00
DB Utility Pack	99.00	79.00
STRATIGIC SIMULATION		
All Sottware	\$ 59.95	\$ 39.95
All Software	39.95	27.95
SYNERGISTIC SOFTWARE		
Wilderness \& Dungeon	\$ 32.50	\$ 24.95
GPLE	64.95	49.95
TG Joystick	59.95	45.00
Select-A-Port	59.95	45.00
Wordstar		325.00
Spellistar		175,00
SuperCalc		175.00
VisiCalc		179.00

SPECIAL AND NEW

FRANKLIN ACE 1000 COMPUTER
 Hardware and Software compatible with Apple II
 $\$ 950$
 FRANKLIN ACE 1000 COMPUTER plus
 DISK DRIVE, CONTROLLER, and MAGICALC \$1,250

EXPAND-A-RAM ${ }^{(\mathbb{W})}$ PLUS MAGICALC ${ }^{\top \mathbb{N}}$
Everything that Visicalcter can do and much more - plus additional memory. Fully compatible with Visicalc. Includes DOS, CP/M, Pascal Disk Emulator. No preboot or Apple modification required.
64K EXPAND-A-RAM plus
MAGICALC
$\$ 375$
128K EXPAND-A-RAM plus
MAGICALC
\$449
APPLEsurance II ${ }^{\text {(iw) }}$
Diagnostic Disk Controller and System
Assurance Package. Standard disk controller plus automatic check of system hardware
$\$ 99$

51/4’' DISK DRIVE
Use with either standard Apple II disk
drive or APPLEsurance II
\$249

GRAPHITTI CARD

Prints HIRES page 1 or 2 from onboard firmware. Features: True 1:1 aspect ratio, prints emphasized mode, reverse mode, rotates 90 degrees . . plus more. Compare all this with the Grappler. We think you'll agree that this is the best graphics card on the market. Specify for use with EPSON, NEC8023, C-ITOH Prowriter, or Okidata.
(List: \$125)
\$89

PARALLEL PRINTERS

NEC 8023 or C-ITOH 8510
(Virtually identical) Specifications: - 100 CPS dot matrix printer -80 column print- 136 characters per line - Tractor/friction feed - 7 different print fonts included - 2 K printer buffer - Proportional spacing • Bit image graphics and graphic symbols.
NEC 8023 or C-ITOH
\$475
NEC 8023 or C-ITOH 8510 with
Parallel Interface and Cable
$\$ 550$
EPSON 100 with Parallel Interface and Cable
BROTHER Daisywheel Printer \$895

VERSACard FROM PROMETHEUS

Four cards on one! With true simultaneous operation. Includes: (1) Serial Input/Output Interface, (2) Parallel Output Interface, (3) Precision Clock/ Calendar, and (4) BSR Control. All on one card Fully compatible with CP/M* and Apple Pascal*
(List: \$249)
\$169

WORD PROCESSING SPECIAL
WITH WORDSTAR AND SUPERCALC!
Do professional word processing on your APPLE. All necessary hardware and software included. Complete 80 column video display, enhanced character set, 16 K memory board, Z-Card with CP/M' software, Wordstar and word processing software and SupercALC.
(List: $\$ 1,228$) . . . Special at $\$ 795$

2-80 CARDS	List	SGC
Microsoft Softcard Z-80	\$399.00	\$289.00
ALS Synergizer	749.00	595.00
U-Z-80 Processor Board		125.00
Microsoft+Premium Syst.		595.00
80-COLUMN CARDS		
Smarterm 80-Col Display	\$345.00	\$225.00
Smarterm Expanded		
Character Set		40.00
Combination Smarterm		
\& Exp. Char. Set		260.00
Videx Videoterm		275.00
Videx Enhanacer II	149.00	125.00
Videx VisiCalc Preboot	49.95	45.00

MODEMS FOR YOUR APPLE II		
Hayes Smartmodem 300		\$229.00
Hayes Smartmodem 1200	699.00	550.00
Micromodem II		279.00
Hayes 100 Baud		Call
Apple Cat II.	389.00	299.00
D Cat Modem	199.00	175.00

MONITORS

Amdek 300G Green $\quad \$ 159.00$
Color-Taxam RGB
395.00

PARALLEL INTERFACE
Centronics Compat. PRT-1
\$ 69.00
JOYSTICK Replaces two
Apple Paddle Controllers . \$ 59.00 \$ 39.00
FUNCTION STRIP \$ 79.00 \$ 65.00
MEMORY EXPANSION
Prometheus 16K RAM Module
complete
$\$ 169.00$
\$65.00
51/4" FLOPPY DISKS
Box of 10 with hub rings
With other purchase
\$ 19.95
Without other purchase

All equipment shipped factory fresh. Manufacturers' warranties included. California customers add $6 \% \%$ tax. Include payment by personal check, money order, or cashier's check with order and SGC will pay shipping charge. Call for amount of shipping charge when paying by credit card
All items are normally in stock

And we'll be here to help after you receive your order. Feel free to call the SGC Technical Staff for assistance

In-House Communication

by Phil Daley

MICRO has always been in the forefront of disseminating information useful to computerists of many types of systems. This necessitates our having different kinds of hardware, disks, and tape formats. In addition, the staff must know many different languages and dialects. To help overcome this drawback, we have established a centralized system that other computers can "talk" to and, eventually, receive from.

At MICRO, we have set up a system that utilizes a 6809 computer, the FOCUS, as the end source of all our files, and a word-processing system called TYPE + , written by Bob Tripp. An interface to a Compugraphic Editwriter allows us to transfer text files to the phototypesetter without human intervention, and to typeset those files without further editing. This is made possible by preprocessing the text files with the TYPE + program.

Author-submitted and in-house ar-s ticles and programs are written on whatever computer is available and appropriate to the task at hand. Then they are sent to the FOCUS using the Stylograph text editor, entry mode. This program takes the text or listing in from the serial port and stores it line by line in the 6809 RAM (see listing 1), then the file is saved to disk. The Stylograph
text editor imposes two restrictions on the listings: the first character on a line cannot be a "\#', and the input buffer on the Flex operating system must not exceed 128 characters, including the carriage return. A line that is too long results in a carriage return being unaccepted, and the remainder of the file continuing to overflow the buffer. Although you will have quite a mess on the screen, you need only delete the current line to enable a normal SAVE operation.

The TYPE + program includes a word processor that has the several Editwriter keyboards encoded to special keys on the FOCUS, enabling screen display of all the special Editwriter functions. In addition to the preprocessing function, we use the FOCUS as an additional Compugraphic terminal for normal typesetting input.

Since the Editwriter uses different ASCII codes for display than a standard computer, and has several dozen extra keys and codes, it is necessary to convert many of the standard codes in the text file to the non-standard Editwriter format. In addition, the display uses standard ASCII whenever possible, so the normal keys have to be converted from standard display to Editwriter display when transferring the file.

The standard file includes special Editwriter information so that the Compugraphic will understand what to do with the file when it arrives. Such things as font number and type size have to be specified at the beginning of the file and whenever any of the parameters have to be changed. A SEARCH and REPLACE function substitutes the required Editwriter codes for each regular character that has to be changed. For instance, the Editwriter will not accept the double quote ("). Each occurrence of the " is replaced by lower
precedent $0 \mid \stackrel{P}{\wedge} \downarrow 0)$. This ensures that the quote will appear as the proper code when the transfer takes place.

The most complicated change involves the 0 . The SUN-MOON listing in January (MICRO 56:36) used the variable O extensively throughout the listing. When I proofread the listing, I couldn't see any difference in the O and the 0 (although the production people could). I thought that anyone trying to key in the program would be unable to notice the distinction.

I learned that the Compugraphic has a command called "Flash Only," which means that the character is printed but the paper is not advanced. This allows over-striking: the / is printed without advancing and then the 0 is printed on top of it. Simple in theory, unfortunately it turns out that this causes the slash to appear too low in the 0 to look natural. However, another command on the Compugraphic allows a character to be raised or lowered any number of points (plus or minus a point of lead $\stackrel{+P}{+D}-\mathrm{P})$. With this command, you can raise the slash in the zero to the center. The final substitution becomes: replace 0 : with minus a point of lead, flash only, /, plus a point of lead, 0 .

After adjusting the non-allowable characters to Compugraphic character codes, and the line lengths to the proper size for publication, a short program called TRANSFER is invoked to LIST the program to the Editwriter where it is entered as a file. The interface to the FOCUS has the Editwriter thinking that someone is typing the file into the keyboard instead of being sent through the serial port. The received file is then rejustified and saved to disk to be output in the normal manner when needed.

We are currently working on a program that will take a previously defined glossary and make all the necessary changes to the text file automatically. This will increase our productivity and, at the same time, decrease our typographical errors (when the bugs are out|.

The Bulletin Board

The MICRO Bulletin Board System is working well and we have many regular callers. The BBS runs on our Apple II, but may be called by anyone with a modem. It normally runs four days a week, Monday through Thursday from 5:00 p.m. to 8:00 a.m. We are moving our offices and do not have the new phone number yet, but will let you know in our May issue. Anyone may call the system, but only subscribers are issued passwords for writing on the system. There are several useful programs that users may download onto their own systems, and we hope to have a selection for different machines before too long. If anyone has a program (personal or public domain) they would like to see get wider distribution, send it to us (via the BBS) and we will put it on-line.

Articles also can be received through this system and we have online capabilities with COMPUSERVE and THE SOURCE. An author can download to them and we can retrieve the file. |We received part of Clifford Glennon's communication article this way.) There are a few bugs to be worked out to make this a viable alternative; the lower-to-upper-case conversion and maximum file-length restriction are two.

You may contact Phil at MICRO, P.O. Box 6502, Chelmsford, MA 01824.

KEYBOARD/ACIA INPUT DRIVER $1-14-83$ TSC ASSEMBLER

Products for Commodore, Atari, Apple, and others!

THE MONKEY WRENCH II A PROGRAMMERS AID FOR ATARI 800 NEW AND IMPROVED - 18 COMMANDS pLugs into right cartridge slot

If you are a person who likes to monkey around with the ATARI 800, then THE MONKEY WRENCH II is for you!! Make your programming tasks easier, less time-consuming and more fun. Why spend extra hours working on a BASIC program when the MONKEY WRENCH can do it for you in seconds. It can also make backup copies of boot type cassette programs. Plugs into the right slot and works with ATARI BASIC cartridge.
The MONKEY WRENCH provides 18 direct mode commands. They are: AUTO LINE NUMBERING - Provides new line numbers when entering BASIC program lines. RENUMBER - Renumbers BASIC's line numbers inctuding internal references. DELETE LINE NUMBERS

$\$ 59.95$ - Removes a range BASIC line numbers.

VARIABLES - Display all BASIC variables and their current value. Scrolling - Use the START \& SELECT keys to display BASIC lines automatically. Scroll up or down BASIC program. FIND STRING - Find every occurrence of a string, XCHANGE STRING - Find every occurrence of a string and replace it with another string. MOVE LINES - Move lines from one part of program to another part of program. COPY LINES - Copy lines from one part of program to another part of program. FORMATTED LIST - Print BASIC program in special line format and automatic page numbering. DISK DIRECTORY - Display Disk Directory. CHANGE MARGINS - Provides the capability to easily change the screen margins. MEMORY TEST - Provides the capability to test RAM memory. CURSOR EXCHANGE - Allows usage of the cursor keys without holding down the CTRL key. UPPER CASE LOCK - Keeps the computer in the upper case character set. HEX CONVERSION - Converts a hexadecimal number to a decimal number. DECIMAL CONVERSION - Converts a decimal number to a hexadecimal number. MONITOR - Enter the machine language monitor.
In addition to the BASIC commands, the Monkey Wrench also contains a machine language monitor with 16 commands used to interact with the powerful features of the 6502 microprocessor.

VIC RABBIT CARTRIDGE AND CBM 64 RABBIT CARTRIDGE

"High-Speed

Cassette Load and Save!'

$\$ 39.95$
(includes Cartridge and Manual)

Expansion Connector on the VIC Cartridge

"Don't waste your Life away waiting to LOAD and SAVE programs on Cassete Deck."
Load or Save 8 K in approximately 30 seconds! Try it - your Un-Rabbitized VIC takes almost 3 minutes. It's not only Fast but VERY RELIABLE.
Almost as fast as VIC Disk Drive! Don't be foolish Why buy the disk when you can get the VIC Rabbit for much, much less!
Easy to install - it just plugs in.
Expansion Connector on rear.
Works with or without Expansion Memory. Works with VIC Cassette Deck.
12 Commands provide other neat features.
Also Available for 2001, 4001, and 8032

Standard Terminal Communications Package
-PFO• 100 OOA CP $<$ DI>D2 BELL $=12: 30: 00$ 10:14:36
Don't settle for non-standard Communications Protocol! Access Micro Net, Source, Bulletin Boards, Local Maintrame, etc.

- Complete Package - Includes RS232 Inter face Board and software (does not include modem)
- Communicates in Industry Standard ASCII
- Upload/Downioad to/trom Disk
- Automatic File Translation
- Can be controlled from keyboard or user supplied basic or machine language program
Specity 3.0 of 4.0 ROMS or 8032 Commodore Computer 4040 ò 8050 or PEDISK II Disk or CBME4 on 1541.

Price: $\$ 129.95$

ATARI AND PET EPROM PROGRAMMER

Programs 2716 and 2532 EPROMs. Includes hardware and software. PET $=\$ 75.00-$ ATARI (includes sophisticated machine language monitor) $=$ $\$ 119.95$

Prownter Printer - Excellent dot matrix print. Parallel $=\mathbf{S 4 8 9} 00$ Serial $=\$ 600.00$ IEEE $=\$ 589.00$

PET BASIC SCROLL PROGRAM

Scroll thru Basic Programs using cursor up/down keys. Specify computer. $\$ 6.00$ on cassette, $\$ 9.00$ on diskette.

65C02 MAE

Same as our MAE but enhanced for the new 65 C 02 Opcodes. Turns your computer into a development system for the new ROCKWELL 65C02 Microprocessor. $\$ 200.00$ - Specify Computer.

6800 CROSS ASSEMBLER

A Cross Assembler based on the MAE that runs on the PET, Apple, or Atari but assembles opcodes for the Motorola 6800 microprocessor. Turns your computer into a development system for the Motorola 6800 Microprocessor. $\$ 200.00$ - Specify Computer.

ATARI and VIC Cartridges

EHS can supply large quantities of ATARI and VIC Cartridges for software developers. If you need cartridges, call for pricing.

TRAP65 TRAP 65

 TRAP 65 is a hardware device that plugs inito your 5 502's's socket. Prevents execurtion of unimplemented opcodes and provices capability to extend the machines instiverion set.For PETAPPLESYM Reduced from $\$ 149.95$ to $\$ 69.95$

5\%/4 INCH SOFT SECTORED DISKETIES

Highest quality. We use them on Our PETs, APPLEs, ATARIs, and other computers. $\$ 22.5010$ or $\$ 44.50120$
EPROMS $2716=\$ 4.502532=\$.50$
Over 40 Commodore Programs by Baker (on 4040) $=\$ 25.00$

BULLETIN BOARD

ABBS ABACUS LI, Toledo, OH .
ABBS AGS, Atlanta GA.
ABBS Akron Digital Group, Akron, H
ABBS Apple Bin Washington.
ABBS Apple Crate I, Seartle, WA.
ABBS Apple Crate D, Seattle, WA
ABBS Apple-Med, lowa City, IA.
ABBS Apple-Mate, New York, NY
ABBS Apple-Mate, New York, NY.........
ABBS Baton Rouge, LA.
ABBS Baton Rouge, LA............
ABBS Byte Shop, Miami, FL.
ABBS Byte Shop, Miami, FL..................
ABBS CCNJ, Pompton Plains, NJ.
ABBS Century Next Computers, St. Louis, MO
ABBS Century Next Cor
ABBS CODE, Glen Eliyn iL.
ABBS CoIortron Computer, WI
ABBS Compumart, Ottawa, Ontario, Canada.
ABBS Computerland, Fremont, CA.
ABBS Computer Comer, Amarillo, TX
ABBS Computer Conspiracy, Santa Monica, CA
ABBS Computer Crossroads, Columbia, MD.
ABBS Computer Lab, Memphis, TN
ABBS Computer Room, Kalamazoo, MI
ABBS Computer Store, Toledo, OH.
ABBS Dallas Info Board.
ABBS Denver, CO.
ABBS Derroit, MI.
ABBS Electro-Mart, Spokane, WA
ABBS Fort Walton Beach, Destin, FL
ABBS Gamemaster, Chicago, IL.
ABBS Hayward, CA.
ABBS Illini Microcomputer Naperville, iL.
ABBS Jonathan's Mariton, N\}
ABBS Ketchikan, AK.
ABBS Livingston, N
ABBS Long Island, NY
ABBS Louisville, $K Y$
ABBS Madam Bokeatha Society, Houston, TX
ABBS Michigan Apple-Fone, Southfield, MI.
ABBS New port Beach, CA.
ABBS Omaha, NE
ABBS PCnet, San Francisco, CA
ABBS Pacific Palasades, Los Angeles, CA ABBS Peoria, IL.
ABBS Philadelphia, PA
ABBS Phoenix, AZ.
ABBS Pirates Cove, Long Island, NY
ABBS Rogers Park, Chicago, IL
ABBS Software Sorcery, Herndon, VA
ABBS South of Market, San Francisco, CA
ABBS St. Louis, MO.
ABBS Teledunjon I, Dallas, TX
ABBS Teledunjon II, Dallas, TX
ABBS The Moon, Dallas, TX.
ABBS Tumersville, NJ.
ABBS Vancouver, B.C.
ABBS Vermont, Essex Junction, VT
ABBS West Palm Beach, FL.
ABBS Rob Roy Computer, Yakima, WA ABBS Youngs Elect Svc., College Station, TX ABBS \#X, Atlanta, GA.

A-C-C-E-S-S Annapolis, MD
A-C-C-E-S-S Olympia, WA
A-C-C-E-S-S Phoenix, AZ.
A-C.C-E-S-S Phoenix, AZ
A-C-C-E-S-S Phoenix, AZ
A-C-C-E-S-S Wyckotf,' N .
AMIS A.R.C.A.D.E. Sterling Heights, MI AMIS Chicago, IL
AMIS APOGEE Miami FL
AMIS GRAFEX Cupertino, CA
AMIS G.R.A.S.S. Grand Rapids, MI.
AMIS IBBBS San Jose, CA.
AMIS Magic Lantern, Madison, WI. AMIS SB-12 Boston, MA.
AMIS Space Seattle, WA.
AMIS Starbase 12 Philadelphia, PA.
AMIS T.A.B.B.S. Sunnyvale, CA. .
ARMU FLEGLG New York, NY
ARMU GREKLCOM Oklahoma City, OK
ARMU PACE Pittsburg, PA.
ARM UDIC Washington, DC
ARM UDIC Computer Age, Baltimore, MD
BBS IBM Hostcomm Atlanta, GA.
BBS IBM Hostcomm Claremont
BBS IBM Hostcomm Fairfax, VA.
BBS IBM Hostcomm Springfield, VA
BBS IBM Hostcomm Houston, TX.
BBS IBM Hostcomm Toronto, Ontario, CN.
BBS IBM PC Atlanta, GA.
BBS IBM PC Atlanta, GA.
BBS IBM PC Beltsvilie, MD
BBS IBM PC Billings, MT
BBS IBM PC California Users Group
${ }_{\text {BBS IBM PC Dale City, VA. }}$
(419) 8651594
(404) 7333461 21677457855 206) 9370444 206 9359119
206) 2445438

3191 3536528
2018645345
504 2911360
${ }^{1504} 291862983$
3054862983
6121410252
61214710252
21484426502
70413645254
1312) 5377063
414) 6379990
1613) 7252243

14157949314
1806 3555610
(213) 8291140
(301 7300922
(9016 7614743
(616) 3820101
. (419) 5313845
(303) 7592625

31314774471
(509) 5342419
(904) 2431257
(312) 4754884
415) 8815662
(312) 4207995
. (609) 9835970
(907) 2256789
(201) 9949620
(212) 4486576
502) 4262975
(713) 4559502
.313) 3571422
402) 3397809

4023397809
(213) 4596403
(309) 6926502
(215 6283134
(602) 89838981
(516) 6984008

(3121 9732227 70314710610 .4154698111 | 314 | 8387784 |
| :--- | :--- | :--- | (817) 4691626 (214) 5300858 214) 9607654

(214) 9313437
609) 2281149
[604| 4377001
(802) 8794981
305) 8483802
509) 5757704
(713) 6933462
|301| 2677666 .|206| 8669043
1 (602) 9969709
2 60219574428
$602 \mid 2745964$
$602 \mid 9989411$
(313) 9788087

305) 238-1231

6162411971

$1616 \mid$
4081
298
1930

11 3131868 2064
6082518538
6171 8764885
$206 \mid 2261117$
21518768854
$1215 \mid 9768854$
140826975
(212) 5980719
412) 6553046
$11(202) 2768342$
(301| 5872132
$1 / 404) 2524146$
$!(714) 6241767$
! 71446241767 (703) 9789592 !(703) 9780921 ! 70315915120 !(703) 4259452 !(703) 4257229 ! 71318900310
$!|404| 2946879$
!(404) 2529438
!|301| 9374339
3014600538
40669624
(805) 9874127
! 170316805220

```
*24
```


MD. BBS IBM PC Madison, WI BBS IBM PC New York, NY BBS IBM PC Rockville, MD BBS IBM PC Vienna, VA
BBS IBM PCmodem Chicago, IL
BULLET-80 Boston, MA
BULLET-80 Chesterland, OH BULLET-80 Clarks Summit, PA
BULLET-80 Danbury, CT. BULLET-80 Fayetteville, GA BULLET-80 Holstein, IA BULLET-80 Holstein, IA. BULLET-80 Houston, TX.
BULLET-80 Laguna Hills, CA
BULLET- 80 Langhorne, PA
BULLET-80 Littlefield, TX.
BULLET-80 Orange County, Anaheim, CA.
BULLET-80 San Jose, CA.
BULLET-80 Seymour CT
BULLET-80 Springfield,
BULLET-80 Waterford, M
CBBS AMRAD, Washington, DC.
CBBS Atlanta, GA
CBBS Baton Rouge,
CBBS Boston, MA
CBBS Cedar Rapids, IA
CBBS Chicago, II.
CBBS Corpus Christi, TX................
CBBS CP/M Long Island, NY
CBBS Lambda, Berkeley, CA
CBBS Lawrence General Hospital, Boston, MA
CBBS LICA LIMBS, Long Island, NY
CBBS London, England. (European standard)..
CBBS MAUDE M, NY
CBBS MAUDE Miwaukee, WI.
CBBS MicroStar, Worcest
CBBS PACC Pittsburgh PA
CBBS PACC, Pittsburgh, PA.
CBBS Proxima, Berkeley, CA.
CBBS Proxima, Berkeley, CA.
CBBS RAMSf, Rochest
CBBS Strictly Software, Honolulu, H1.

COMNET-80 Akron, OH
COMNET-80 Las Vegas, NV
COMNET-80 Mt. Clemens, ML.
COMNET-80 North Wales, PA
COMNET-80 Riverside, CA
COMNET-80 Riverside, CA
COMNET-80 Wichita Falls, TX
CONNECTION-80 Centereach, NY
CONNECTION-80 Denver, CO
CONNECTION-80 Escondído, CA
CONNECTION-80 Fremont, CA.
CONNECTION-80 Gaithersburg, MD.
CONNECTION-80 Great Neck, NY
CONNECTION 80 Lansing, MI.
CONNECTION-80 Laval BELE, Laval, Quebec, CN
CONNECTION-80 Little Rock, AS
CONNECTION-80 Lincroft, NJ.
CONNECTION-80 Manhattan, NY.
CONNECTION-80 North York, Ontario.
CONNECTION-80 Orlando, FL.
CONNECTION-80 PAUG, Portland, OR
CONNECTION-80 Peterborou
CONNECTION- 80 Tulsa, OK.
CONNECTION-80 W. Mich. Micro Group, MI
CONNECTION-80 Willowdale, Ontario
CONNECTION-80 Wilowdale, Ontario
CONNECTION-80 Winter Garden, FI.
CONNECTION-80 Tampa, FL
CONFERENCE-TREE \#3, Hayward, CA
CONFERENCE-TREE \#4, Santa Monica, CA
CONFERENCE-TREE Anchorage, AK
CONFERENCE-TREE Computerland, Honolulu, HI
CONFERENCE-TREE Flagship, Denville, NT
CONFERENCE-TREE Kelp Bed, Los Angeles, CA
CONFERENCE-TREE Minneapolis, MN.
CONFERENCE-TREE ? New Jersey
CONFERENCE-TREE Victoria, TX.
DIAL-YOUR-MATCH \#1.
DIAL-YOUR-MATCH 3
DIAL-YOUR-MATCH \#4.
DIAL-YOUR-MATCH \#9
DIAL-YOUR-MATCH \#11
DLAL-YOUR-MATCH \#12, Houston, TX
DLAL-YOUR-MATCH \#14
DIAL-YOUR-MATCH \#16
DLAL-YOUR-MATCH $\$ 17$
DIAL-YOUR-MATCH $\$ 18$
DLAL-YOUR-MATCH 18
DIAL-YOUR-MATCH
DIAL-YOUR-MATCH 20.
DIAL-YOUR-MATCH \#23, Omaha, NE
DIAL-YOUR-MATCH \#24, Houston, TX
DIAL-YOUR-MATCH $\# 26$, Clovis, CA.
!(303) 7732699
30112516293 ! 600812624939 $!(20116786670$
$!30119498848$! (301) 9498848
$!(703) 5607803$
!(312) 2598086
2(617) 2667789 (216) 7292769 i(203 7842112
(203) 7444644
$(404) 4619686$
$\begin{array}{r}1404) \\ 2619686 \\ 214 \\ \hline\end{array}$

| 214 | 7693036 |
| :--- | :--- | :--- |
| 712 | 3682651 |

$712)$
$1713) 3312551$
2599
$(713) 3312599$
61415326920

| 614 | 5326920 |
| :--- | :--- | :--- |
| 714 | 7705052 |

714	7705052	
215	364	2180

$1215) 3642180$
$1806) 3856843$
$1806 \mid 3856843$
$1212 \mid 7405680$

| $1212 \mid$ | 9522110 |
| ---: | ---: | ---: |
| 714 | 2580 |

408
4
4410769
(203) 8887952
. 21715291113
(313) 6835076
(1703) 7341387
. $\begin{aligned} & 404) \\ & 504 \\ & 504 \\ & 273 \\ & 272 \\ & 3120\end{aligned}$
(504) 2733116
(812) 3342522

6176463610
. 319) 3640811
1 (312) 5458086
(1512) 8551512
(301) 9485717
(516) 6988619
$415 \mid 6582919$
617) 6832119
. 544615616590
(044) 13992136
(516) 3343134
$414 \mid 2418364$
$(614) 2418364$
$(5527284$
(617) 7527284

503$)$	
412	8227176

$1412 \mid 8227176$
$604 \mid 5629515$
$604) 5629515$
$(415) 3571130$
(716) 2449531
$1716) 2449531$
$(612) 4235016$
(612) 4235016
$(808) 9440562$
$808) 9440562$
60217463956
\& (216) 6450827
\& (702) 8709986
\& 1313) 4659531
. 215) 8553809
$8 \mid 714) 3593189$
$8 \mid 714) 8772253$
.$(817) 7675847$
(516| 5885836
(303) 6904566
(619) 7466265
(415) 6514147
(301) 8408588
(516) 4828491
.$\left\{\begin{array}{lll}517 \\ 514 & 3393367 \\ 522 & 1274\end{array}\right.$
5146221274
(501) 3720576
(201) 8427644
$(212) 9911664$
$\begin{array}{llll}(212) & 991 & 1664 \\ 416) & 6679981\end{array}$

$416 \mid$
6679981
30548327

| 1305$)$ | |
| :--- | :--- | :--- |
| 5034 | 8327 |
| 50317653 | |

| 503 | 2817653 |
| :---: | :---: | :---: |
| 60347920 | |

(603) 9247920
$1918) 7471310$
.$(918) 7471310$
.$(616) 4571840$
(616) 4571840
$(41612269260$
$1416) 2269260$
$(305) 8941886$
$3 \in 5) 8941886$
$(212) 4413755$
(813) 9770989
. 41515383580
(213) 3941505 907) 3445251

80814872001

201	6275151
213	3724800

(213) 3724800
(612) 8549691 (201) 6275151

APPLE, Mountain, and Data Capture

by H. Bruce Land, III

The CPS Multifunction Card from Mountain Computer ($\$ 180$ to $\$ 240$) and Data Capture 4.0/80, CPS Version (\$90) from Southeastern Software, can provide your Apple Computer with a complete RS-232 I/O port with five true handshake lines, a parallel printer output port, clock and calendar, and battery backup. You can have a smart terminal, hardware, and software by using only one of the Apple's few slots and some of its limited power supply all for as little as $\$ 270$.

The Hardware

The Mountain Computer card ROM contains a system configuration program that allows you to determine how the card will function. From a menu you can set baud rate, parity, number of data bits, and number of stop bits. You can even use a 5-bit ASCII; and you can set the appropriate functions for the parallel port.

By choosing items from the menu, you can select which slot the Apple "thinks" the card is in, regardless of its actual location. For example, you can place the card in Slot 2 but address the printer as Slot 1, the modem as Slot 3, and the clock as Slot 4. These assignments can be reset by software so that other real cards can reside in these slots.

The serial output can automatically change lower case to upper case if you don't have a lower-case adapter for your Apple, and it can echo characters back to the sender. The serial output also can define a control character to function as an escape character, set or clear the high-order bit, supply auto-line feeds, set line length, do automatic paging for pages of any size, and add a carriage-return delay.

Once you configure the system, the parameters are stored in the permanent CMOS memory and you can ignore them until you want to make changes.

Additional high-level software supplied with the unit allows you to turn the Apple monitor into an analog clock complete with sweep second hand. The CPS Lister program allows you to make formatted Applesoft program listings, properly spaced, with the date and time printed at the top of each page, page numbers, and with no printing over the perforations on continuous paper. If you often forget which is your most recent listing, then these dated and timed listings are for you.

The Software

When you use Applesoft with a normal serial I/O card and type data to a modem, every time you hit RETURN Applesoft says 'SYNTAX ERROR' because it thinks you're erroneously entering a BASIC statement. Install the Mountain CPS card, enter a couple of controi codes, and your Apple will function as a dumb terminal. You can talk to another computer through your keyboard, and it can display messages on your CRT. Although you can communicate, at this level of operation you can't send a message to the printer, store it in memory, or save it on disk.

Enter Data Capture 4.0, 40/80 column, CPS version. This combination is not the only one available, but it's the only one I've found that does the whole job. With the CPS card and Data Capture, your Apple can be a computer one moment and a smart terminal the next. You can compose your message off-line and then burst it over the line at up to 1200 baud to another computer, a time-sharing system, or even to a mainframe computer. You can
hold a received message in memory, edit it, save it to disk or cassette, and print it at your leisure.

Run Data Capture and press ESC. You will see the following menu:

C)atalog	disk
D)elete	text
I)nsert	text
L/ist	text
M) rge	from file
P\|rint	text
Q\|uit	program
Slend	text
T)oggle:	
	A)lternative drive [1/2)
	Blaud rate
	C)apture (on/off)
	D)uplex (full/half)
	L)ocal carrier (on/off)
	S pecial characters (on/off)

W|rite to file
Any of these functions can be selected and executed while you are off-line. When you are on-line you can send a signal to place the other computer on "hold," select and execute commands from the menu, and then resume communication on the other computer. While the computers are talking to each other, status lines display the operating mode and tell you how many lines of text have passed through your Apple.

If the capture mode is off, nothing is saved; if it is on, both sides of the transmission are saved as a text file in a RAM buffer. At any time you can write the text to a disk file for later use; and at any time the buffer can be partially or fully cleared (deleted), relisted, saved, or printed. Additional text can be merged from disk to buffer and then sent to the other computer. You can send and receive text, numerical data,
and program listings, and you can transfer programs directly to another Apple. |Note: Data Capture does not work in auto-dial or auto-answer mode with the CPS card.)

Some mainframes require special key codes that the Apple normally cannot generate without Data Capture |for example, the UNIX system I've been using requires a true delete code and an underline). The Apple keyboard generates a backspace and the hardware interprets this as a backspace/delete. Data Capture allows you to redefine portions of the Apple keyboard to generate any ASCII code you may need, including any of the control codes.

Both the CPS card and Data Capture come with more documentation than you'll ever read, but it is comforting to know that it's there in case you want to do something different. My printer is a Selectric typewriter and my modem is homemade, so I needed the extra documentation.

You may wonder why Data Capture is so expensive. The task it must perform is tricky. The Apple cannot talk to two I/O devices at the same time. It
cannot send data from the keyboard to both the modem and the display at the same time. Data Capture has so much to do in so short a period of time that it uses machine code for an intricate routine that 1 . looks at the keyboard; 2. if data is available there, checks to see whether or not the data is a control character; 3 . if not, stores the data in a RAM buffer; 4. sends it to the display; and 5 . sends it to the modem. While this is happening, Data Capture must, in effect, look over its shoulder and check the modem to see if it is sending a character to the Apple, decide whether or not this is a control character, and if not, store the character in the buffer and send it to the display.

Meanwhile Data Capture must format each character into the proper word length, control stop bits, baud rate, etc. - all on data moving at speeds up to 1200 baud.

Unlike the high-speed software that handles the bits and the bytes, the software that services the menu is in Applesoft, and you can modify it without difficulty. To get the attention
of a big system running under UNIX, I had to change the length of the BREAK command and make it repeat twice. This was easy to do in BASIC.

Data Capture is not copy protected, so if you want to talk to several different systems with different requirements, you can prepare a disk for each, and avoid frequent software modifications.

To sum up, the Apple and the CPS card and Data Capture make a fine team. Together, they can handle anything at 1200 baud or less, and they do it in a friendly fashion.

Note: You can buy the CPS Multifunction Card from Mountain Computer, Inc., 300 El Pueblo Road, Scotts Valley, CA 95066, (408) 438-6650. Data Capture 4.0/80, CPS Version, can be obtained from Southeastern Software, 6414 Derbyshire Drive, New Orleans, LA 70126, (504) 246-8438.

You may contact the author at 6916 Park Place, Baltimore, MD 21227.

MCRO"
Circle No. 26

CSE means OSI

Software and Hardware Introducing 5 new disk programs

From DMP Systems:

Universe $\$ 14.95$
Edit-all. $\$ 19.95$
De-bug...................... . . $\$ 12.95$
From Dwo Quong Fok Lok Sow:
WP-6502 Word processor. Available in three versions.

5" disk $\$ 200.00$
8" disk $\$ 234.95$
Cassette $\$ 39.95$
Training Manual . $\$ 20.00$
CSE's Rom Source Code Listing 100 Pages! . . $\$ 15.95$
NEW! NEW! NEW!
ANCHOR SIGNALMAN MODEMS
. $\$ 89.50$
Please write for more info on new disk programs or send $\$ 2.00$ for catalog. Please include $\$ 2.00$ shipping ($\$ 3.00$ for modems).

Box 50 - 291 Huntington Ave. Boston 02115 617-423-9501

The price-performance leader. Includes Z80A, 1 or 2 full $8^{\prime \prime}$ drives (double density, double sided), 3 serial and 1 parallel port, and winchester port. Prices start at less than $\$ 2000$. DEALER and OEM inquiries invited.

SPECIALS ON INTREGATED CIRCUITS

| 6502 | 7.45 | $10 / 6.95$ | $50 / 6.55$ | $100 / 6.15$ |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}6502 A & 6512 A & 8.40 & 10 / 7.95 & 50 / 7.35 & 100 / 6.90\end{array}$

6520 PIA $\begin{array}{lllll}5.15 & 10 / 4.90 & 50 / 4.45 & 100 / 4.15 \\ 6.45 & 10.6 .10 & 50 / 575 & 100 / 5.45\end{array}$ $\begin{array}{llllll}6522 \text { VIA } & 6.45 & 10 / 6.10 & 50 / 5.75 & 100 / 5.45\end{array}$ $6532 \quad \begin{array}{lllll} & 7.90 & 10 / 7.40 & 50 / 7.00 & 100 / 6.60\end{array}$ 2114-L200 2.45 25/2.30 100/2.15 $\begin{array}{llll}2716 \text { EPROM } & 4.90 & 5 / 4.50 & 10 / 4.00\end{array}$ $\begin{array}{llll}2532 \text { EPROM } & 7.90 & 5 / 7.45 & 10 / 6.90\end{array}$ $\begin{array}{llll}61162 K \times 8 \text { CMOS RAM } & 7.90 & 5 / 7.45 & 10 / 6.90 \\ 4116 \text { RAM } & & 8 \text { for } 14\end{array}$ Zero Insertion Force 24 pin Socket (Scanbe) 2.00
Hewlett Packard
Write or call for prices.

Anchor Automation Signalman Modems FREE SOURCE MENBERSHIP WITH SIGNALMAN All Signalman Modems are Direct Connect, and inctude cables to connect to your computer and to the telephone. Signalman Modems provide the best price-periormance values, and start at less than $\$ 100$. Deaser and OEW Inquines ievited Mark I RS232
Mark II for Atari 850
Mark IV for CBM/PET with software
Mark V for Osborne (software available)
Mark VI for IBM Personal Computer
Mark VII Auto Dia//Auto Answer
Mark VIII Bell 212 Auto Dial/Answer

DC HAYES Smartmodam	229
DC Hayes Smartmodem 1200	545

We carry Apple II+ from Bell \& Howell

16K RAM Card for Apple	65
Solid Oak 2 Level Stand Ior Apple	29
Apple LOGO	150
Video Recorder interace	545
Super Serial Card	149
Thunderclock Plus	119
280 Sottcard and CP/M (Microsoff)	235
Paralue Printer Intertace/Cable	80
Grappler Interface.	139
TG Products Jaystick ler Apple	48
TG Paddes	32
DC Hayes Micromodem II	299
videx 80 Column Card	239
Hayden Sottuare for Apple 20\% OfF	
Apple PASCAL Language	195
Apple FORTRAN	160
We stock EDUWARE Sotware	
GENIS I Courseware Development System	90
Unicom Grade Reporting or School Inventory	250
Executive Briefing System with fonts	225
Apple Oumpling (Wicrotek) Printer Interiace	115
Apple Dumpling with 16K Buffer	160
PIE Writer Word Processor	120

Gcommodore

See us for Personal, Business,
and Educational requirements.
Educational Discounts available.
PETSCAN
$\$ 245$ hase price
Allows you to connect up to $35 \mathrm{CBM} / \mathrm{PET}$ Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.

Commodore COMMUNICATES!

COMPACK
$\$ 115$
Intelligent Terminal Packafe includes:
ACIA hardware based interface; DB25 Cable and STCP Software with remote telemetry, transter to/from disk, printer output, XON-XOFF control, user program control, and status line.

VE-2 IEEE to Parallel Interface 110
Includes case, power supply, full 8-bit transmission, and switch selectable character conversion to ASCII.

VIC 20 Praducts

VIC Sargon II Chess
Backup V1.0
20
VIC RAM Cards in stock
VIC SuperExpander 53
VIC 16K RAM 95
Thera EIMI Sethure
HES Softwant
VIC Omega Race
Spiders of Mars (UMD) 32 Programmers Reference 15
Programmers Aid 45 VIC Adventure Series VICTORY Software lor YIC and C64
Street Sweepers
12 Maze in 3-D
Night Rider 11 Cosmic Debris
Treasures of Bat Cave 12 Grave Robbers Advent 11
Games Pack I 12 Games Pack II 12
Victory Casino 8 Adventure Pack I 12
Adventure Pack II
12 Trek
Commodore 64 Programmers Reference Guide Compute!'s First Book of PET/CBM
POWER ROM Utilities for PET/CBM
32

WordPro 3+ - 32K CBM, disk, printer
WordPro 3+/64
WordPro 4t-8032, disk, printer
SPELLMASTER spelling checker Ior WordPro
VISICALC for PET, ATARI, or Apple
PETTAXX PET to Espon Grphicz Setture
SM-KIT enhanced PET/CBM ROM Uilitiles
Programmers Toolkit - PET ROM Utilities
PET Spacemaker II ROM Switch
2 Meter PET to IEEE or IEEE to IEEE Cable
Dust Cover for PET, CBM, 4040 , or 8050
VIC or C64 Parallel Printer Interiace
CmC IEEE-RS232 Printer Intertace - PET
SADI Intelligent IEEE-RS232 or parallel
ZRAM - CBM 64K RAM, Z80, CP/M
Programming the PET/CBM (Cemputen) — R. West
Computel First Book of VIC
Whele PET Catalan (Midnight Gazette)
Color Chart Video Board for PET
PET Fun and Games (Cursor) \qquad
Flexfile for PET CBM, C64 \$110
Database, Report Writer with Calculations, Mailing Lists
FORTH fer PET full FIG model - Cargill/Riley $\$ 50$
Melacompller fer FORTH for independent object code 30
KMMM PASCAL for PET/CBM/C64 85
EARL for PET/CRM Disk-based ASSEMELER 65
Super Graphies - BASIC Langage Exercises 45
Fast machine language graphics routines for PET/CBM
RAM/ROM for PET/CBM 4K \$75 8K \$90

DISK SPECIALS

\circ

Scotch (3M) 5" ss/dd $10 / 2.25 \quad 50 / 2.10 \quad 100 / 2.05$ Scotch (3M) $5^{\prime \prime}$ ds/dd Scotch (3M) $8^{\prime \prime} 5 s / \mathrm{sd}^{0}$ Scotch (3M) 8" ss/dd $\quad 10 / 2.95 \quad 50 / 2.70100 / 2.65$ $\begin{array}{lll}10 / 3.15 & 50 / 2.90 & 100 / 2.85 \\ 10 / 240 & 50 / 220 & 100 / 215\end{array}$

We stock VERBATIM DISKS

Write for Dealer and OEM prices.

BASF 5" or $8^{\prime \prime}$
$\begin{array}{llllllllll}10 / 2.00 & 20 / 95 & 100 / 1.85\end{array}$
NEW BASF Qualimetric Disks also in stock
Wabash 5"ss/sd $\quad 10 / 1.8050 / 1.75100 / 1.70$
Wabash $5^{\prime \prime}$ ss/dd $\quad 10 / 2.00 \quad 50 / 1.95100 / 1.90$ Wabash 8 " $55 /$ sd $\quad 10 / 2.0050 / 1.95100 / 1.90$

We stock MAXELL DISKS

Write for dealer and OEM prices.
Disk Storage Pages 10 tor $\$ 5$ Hub Rings 50 for $\$ 6$ Disk Library Cases $8 "-3.00 \quad 5 "-2.25$ Head Cleaning Kits \qquad
CASSETTES-AGFA PE-611 PREMIUM
High output, low noise, 5 screw housings.

$\mathrm{C}-10$	$10 / .61$	$50 / .58$	$100 / .50$
$\mathrm{C}-30$	$10 / .85$	$50 / .82$	$100 / .70$

SPECIALS

Zenith ZVM-121 Green Phosphor Monitor
VOICE BOX Speech Synthesizer (Apple or Atari)
Many printers available (Star, Brother, OKI, etc.)
We Stack AMDEK Menitors
Watanabe Intelligent Plotter $990 \quad 6$-pen 1290
ISO日AR 4 Outhet Surge Suprossor/Moise Filiter 49
We stock Electrotorne Monitors
dBASE II 390
Panasonic TR-120M1P 12" Monitor (20 MHz) 149
Panasonic CT-160 Dual Mode Color Monitor
Franklin Computers - special systern price
Hewlett Packard Calculators available
USI Yideo Moniters-Green or AMBER 20 WHz hirces. Dealer and DEM inquiries invited
ALL BOOK and SOFTWARE PRICES DISCOUNTED

A P Products

15\% OFF
Synertek SYM-1 Microcomputer SALE 189
KTM-2/80 Synertek Video and Keyboard 349

229 Terminal (VT100, VT-52, ADM3A, Haz1500 compatible) 680
ZT-1 Intelligent Communications Terminal 479
2100 16-bit/8-bit System
CALL
We stock entire Zenith line.

Unleash the AIM "A" Block

by Tom Lillevig

Memory is a valuable commodity on the AIM 65. This article shows how to recover some memory space and provides suggestions for uses.

Your first look at the address map for the AIM 65 reveals a 36 K block of space available for those helpful additions every computer user needs. If, however, you add a couple of 16 K RAM boards and a video interface, you soon discover that 36 K isn't as much space as you thought.

If you take a closer look at the address map you will see a design that saved Rockwell some money in manufacturing, but cost you the use of valuable memory space. Four interface devices, which require a total of less than 256 bytes of memory, have been allotted an entire 4 K block! I refer, of course, to the PIA, RIOT, and VIAs that inhabit the " A " block. This article discusses a simple method to unleash much of the " A " block and several applications for the available space.

The reason that the four devices in the " A " block take up so much memory is that the enable signals are produced by loose decoding. The AIM 65 schematic shows that the enables come from decoder Z19 and are derived from CSA and address lines A10 and All. This method of decoding allocates 1 K of memory space to each device. A better method, first proposed by Larry

Figure 1: AIM-65 modification.

Figure 2: Adding 2114 RAM to "A" block.

Westergren in the computer club newsletter Interchange, squeezes each device into a space of 256 bytes, thus freeing up 3 K of usable memory. Larry's method requires the addition of one IC, so I decided to see if the decoding could be done using spare gates on the AIM.

See figure 1 for my update of Larry's idea. The NAND gate and inverters are all spare devices, and no circuit cuts are required. The connection to Z19-1 deactivates the existing " A " block enables to the I/O devices, except when both A8 and A9 are at zero. This
modification makes address blocks \$A100-\$A3FF, \$A500-\$A7FF, \$A900\$ABFF, and \$AD00-\$AFFF available.

Now that these blocks are free, what can be installed? Since each slot is only 768 bytes wide, RAM addition does not appear to be a good choice. If, however, you can live with four separate blocks of 512 bytes, then you can wire four 2114 's to provide 2 K of memory with no waste or overlap (see figure 2|. The RAM blocks occupy addresses \$A200-\$A3FF, \$A600-\$A7FF, $\$$ AA $00-\$ A B F F$, and $\$$ AE $00-\$ A F F F$. As shown in figure 3, a 6116 RAM or 2716

Figure 3: Adding 6116 RAM or 2716 EPROM to "A" block.

ADDRESSES: A200-A3FF,
A600-A7FF, AAOO-ABFF, AE00-AFFF
U1: 7485
U2: 74LS245
U3: 74LS00
U4: 6116 RAM OR 2716 EPROM

EPROM could be installed instead of the 2114's.

The rest of the available space can be decoded further to provide enable lines for a variety of devices. The circuit in figure 4 illustrates a simple method for deriving eight enables from the remaining blocks. The enables may be used for any chips that require 128 bytes of memory space, or less. PIAs, VIAs, and real-time clocks are just a few example of devices that will fit nicely.

Tom Lillevig is a Senior Training
Representative at Rockwell-Collins. He is also secretary of the Cedar Valley Computer Association, an organization that includes nearly 500 AIM 65 owners.
You may contact Mr. Lillevig at 130
Carnaby Dr. NE, Cedar Rapids, IA 52402.
NORO

Figure 4: Decoding for spare enable lines.

Plug yourself into a new world of possibilities for you and your APPLE.

Have you ever wished that your APPLE computer could do just one more thing?

To somehow perform that one task that would just exactly fit your particular need.

You may have found that a hardware limitation prevents you from accomplishing your goal and that there are no interfaces or expansion modules designed for your particular application. Are you frustrated? Not any more!

THE CUSTOM APPLE \& OTHER MYSTERIES, volume one in IJG'S APPLE Information Series, provides you with the information, specifications and
references you need to do it yourself, whether a novice or expert, and includes the basic information required for hardware enhancements that are common to many projects.

Guide to APPLE Hardware and software modification.

THE CUSTOM APPLE \& OTHER MYSTERIES includes a number of data acquisition and control projects with printed circuit layouts like an 8-Bit D/A and A/D Converter, a 6522 application interface board, a sound and noise generator board, an EPROM Burner board, an APPLE Slot

YELIA GONAPATHELITY OHAFT
MORE COMPATIBILITY INTERFACES DUE SOON
CHECK FACTO

COMPUTER	MONITORS							PLOTTER	3" MICRODISC DRIVE	NOTES
	VIDEO-300	VIDEO-310	COLOR-	COLOR-II	COLOR-IIA	COLOR-II	COLOR-IV			
IBM-PC	-	\bullet	\bullet	-	*	-	*	\bullet	-	* Special Cabling Required
APPLE III	-			*	*	*	*	-		* Special Cabling or Converter Required
APPLE II	-		\bullet	*	*	*	*	-		* DVM Board Required
ATARI 800	*		*							* Opt. Atari Cable Required
VIC-20			*							* Opt. VIC Cable Required
TRS-80	*									* Opt. TRS Cable Required
Osborne	*									* Opt. Interface Required
T1-99			*							* Opt. TI Cable Required
Commodore-64	*		*							* Opt. Commodore Cable Req.

innovative computing:

Amdek Corp. is dedicated to marketing quality computer peripheral equipment to enhance the use of popular personal computers. Our research \& development staff keeps abreast of progress in computer techology and equipment and strives to offer you state-of-the-art advances in peripheral equipment.

Amdek products are distributed nationwide and in Canada through major distributors. And, we have factorytrained manufacturer's representatives ready to serve you in every major marketing area. Amdek offices are located in Chicago. Los Angeles \& Dallas
Just circle the reader service number, or contact us to receive complete technical specifications on these Amdek products.

IF YOU DON'T SEE WHAT YOU NEED, GIVE US A CALL AND WE'LL TRY TO GET IT FOR YOU:

We accept VISAMASTERCARD, Personal checks (allow 10 days to clear) or COD (2.00 charge). Please include 3\% for shipping (2.00 min .) or 5% for blue label (3.00 min.). Calif. residents add 6\% sales tax. All

Atari 800

Texas Instrument

Features:

- MASTER for VIC and COMMODORE 64
by Loren Wright
A guessing game involving concealed letter patterns.
- Conservation of Momemtum for Atari and Commodore
by Terry Faughn
A tutorial appropriate for an introductơry physics class.

- is a Number a Number?
by Phil Daley
An easy way to convert from one base to another.

PUT THE FULL POWER OF YOUR VO-20 AT YOUR COMMAND!

 Order your copy of MICRO's newest book... MASTERING YOUR VIC-20 with eight BASIC projectsYou\#l
Receiver

2 MASTER. a guessing game thit forcties programming with randon nimeses

- VIC Clock. to taich you on cosup tuption and character graphics:

 4hthe denoistiniters
\qquad

STAMP OUT HIGH PRICES!

On Apple ${ }^{\circledR}$ Software \& Accessories...

Abstract

... without sacrificing on prompt delivery or quality service. Micro Mountain sells everything at prices substantially less than the manufacturer's list. Since we maintain such a large inventory (1000's of items in stock) most orders can be filled and shipped within 24 hours after you order. And, because Micro Mountain is one of the largest retail distributors of Apple Software in the world, we will be here should you need service at anytime after you receive your order.

So, if you're interested in- Low Prices, Prompt Delivery AND Quality Service, SHOP AT . .

mountain
vow we FRANKLIN COMPUTERS

CALL FOR THE

 BEST PRICES!OMEGA
Locksmith
TAXAN - 12" AMBER
Monitor
EASTSIDE SOFTWARE
Wild Card
\$10950
MICRO LAB
Tax Manager
$\$ 14750$
KENSINGTON MICROWARE Visicalc 3.3 \$18750

VISTA

'Solo' Disk Drive \$27950

SPINNAKER

Rhymes \& Riddles . $\$ 233^{50}$ KENSINGTON MICROWARE System Saver -ASK FOR FREE CATALOG-
 of 3 or more programs entitles you to your choice of Original Adventure Game or Applesoft©

Tutorial on disk FREE!

PHONE IN YOUR ORDER -TOLL FREE(800) 854-5649

Washington State residents see phone numbers in Order Blank at Right. ORDER PHONE HOURS:
Mon.-Fri. 9 to 6 (PST) Sat. \& Sun. 10 to 2 (PST)
SILICON VALLEY List Handler $\$ 6450$
STRATEGIC SIMULATIONS Bomb Alley $\$ 4750$
HAYES
Micro Modem II $\$ 277^{50}$
DOW JONES Market Analyzer \$27550
EDU-WARE
Alegebra IV $\$ 2650$
vista 16K Ram Card $\$ 5950$
SIIICON VALLEY SYSTEMS Word Handler $\$ 13950$
MICROSOFT
Multi Pian \$21950

MASTER for VIC-20 and COMMODORE 64

by Loren Wrigh

Apple Listing appears on page 82

MASTER is a simple guessing game for one or two players. The commercial version of this game involves colored pegs. One player constructs a pattern of four colored pegs behind a screen, and it is up to the other player to guess the concealed pattern. The first player provides the second player with clues, telling him how many pegs have been guessed in the right position, and how many pegs are the right color but in the wrong position. The second player continues to guess until he has discovered the colors and correct positions of all four pegs. The number of guesses is the score, and the player with the lower score wins. The computer uses letters instead of pegs, but the rules are the same. In fact, the MASTER program offers you a choice of three different game versions, and you can modify the program to play even more games.

Running the Program

Position the tape to load the program MASTER. Hold down the shift key and press RUN/STOP. When the program is loaded, the screen will clear and the message ' 1 OR 2 PLAYERS?' will be displayed at the top. For the moment, select ' 1 '. The two-player game is described later. Next you are offered a menu of game difficulty levels. Press ' 1 ', ' 2 ', or ' 3 ' to select a game. (You can change your choice for the next game, if you want.] The rules appropriate to the game you have selected are then displayed. The rules are printed here for reference.

In the EASY game, only A, B, C, and D are allowed, and no letter may be repeated in the secret pattern. Your guesses may include repeated letters, though. In the MID game, only A, B, C, and D are allowed, but these letters may be repeated in the pattern. In the HARD game, A, B, C, D, E, and F are allowed, and letters may be repeated.

Press any key (except RUN/STOP) to continue. The computer now generates, at random, a secret pattern. The screen will clear and appear as below:

SELECT LETTER ON OFF

$>$ ■
The flashing-square cursor appears right after the ' $>$ '. Only ' $?$ ', ' \leftarrow ', and the letters allowed in the game will be accepted from the keyboard. (The RUN/STOP key does work, though!) Acceptable characters will be printed on the screen; unacceptable ones will have no effect. As soon as you enter the fourth letter in your guess pattern, the program will process it. Until you enter that fourth character, though, you may change your mind. Press ' \leftarrow ' to restart your guess. If at any time you want to give up, the '?' key will print the secret pattern and let you start over with a new game and pattern.

When you enter the fourth item in your guess pattern, the computer matches it against the secret pattern. In the 'ON' column is the number of letters guessed correctly, and in the right position; in the 'OFF' column is the number guessed right, but in the wrong position. Understanding the matching process will help you learn to play the game better. For instance, if you guessed 'D C C A', and the secret pattern is 'D B A^{\prime} ', the computer will return a ' 1 ' in the ' ON ' column and a ' 2 ' in the 'OFF' column.

The ' D ' is in the correct position (indicated by the shading), but the ' C ' and the ' A ' |matches indicated with arrows), while they do exist in the
secret pattern, were guessed in the wrong position. Only one of the C's in the guess is counted, since there is only one C in the secret pattern. If the secret pattern were 'C B A C' instead, the program would return ' 0 ' in the ' ON ' column and ' 3 ' in the 'OFF' column. Both C 's in the guess are now counted.

When you have guessed the secret pattern correctly, you will be congratulated and told the number of guesses you took. Then the program is restarted with selection of the game level.

As you play more and more games, you will begin to develop systems to help you guess the pattern as quickly as possible. One technique that is sometimes useful is substituting one character at a time.

Two-person Game

The two-person option allows a second player to input a secret pattern instead of having the computer come up with one. The player who will be guessing should look away from the screen while the other player inputs a pattern. The program tests for the letters allowed but it does not check for repetitions. Be sure to follow the repetition rule in effect. To go back to the oneperson version press RUN/STOP, type RUN and press RETURN. This time answer ' 1 ' for the number of players.

Programming Techniques in MASTER

Random Numbers

In the one-player version of MASTER, the program is able to come up with a different secret pattern of letters each time the game is played. How is this done? The secret is in random numbers. BASIC is able to generate random numbers using the RND function.

A random number is one that is obtained without any predictability or repeatability. Rolling a die, flipping a coin, and spinning a roulette wheel are all means of obtaining random numbers in the real world.

Many programming applications require a source of random numbers. For statistics programs they can provide sample data to test a model, and
in physics they can be used for applications such as demonstrating the behavior of gas particles.

Many game programs require random numbers. These may be used in the form of playing cards, dice, or locations of hidden treasures. In the 1-player version of MASTER, random numbers are used to generate the secret pattern of letters.

The BASIC function RND generates pseudorandom numbers in the range between 0 and 1 . Pseudo-random means each succeeding number depends to some extent on the previous one. As a result, after many thousands of numbers, the sequence will start over. This makes statistics involving very large samples sometimes difficult, but it usually causes no problem in games, which use considerably fewer numbers.

The only problem we must avoid is generating the same sequence of random numbers every time the program is run. The technique used in MASTER is to be sure the RND function has a different starting number or 'seed' each time. This is accomplished with the statement ' $\mathrm{I}=\mathrm{RND}(\mathrm{-TI})$ ' in line 8040 as part of the initialization sequence. Using a negative number as the argument for RND causes a function of the argument to be used as the seed to start the sequence of random numbers. TI is the value of an internal clock that starts at zero when the computer is turned on and increments every sixtieth of a second. Since you are very unlikely to start the program at exactly the same moment each time, you are practically assured of getting a different seed each time. If you use a negative constant instead of -TI in line 8040, you will generate the same sequence of random numbers each time. Run the program this way and you will be able to astound your friends with your psychic powers!

Now that we have a sequence of random numbers, how do we turn this sequence into the letter patterns for MASTER? Line 1020 does it all in one BASIC expression: $\mathrm{RN}=\mathrm{INT}$ ($\mathrm{RND}(1) * \mathrm{~N}+1$), where N is number of letters allowed in the game. See figure 3 for a graphic illustration of how four random numbers are converted into the four letters of a secret MASTER pattern. RND(1) produces numbers in the range of 0 to 1 , but this does not include either 0 or 1 themselves. First we multiply the number by the number of letters allowed in the game. If we allow four letters ($\mathrm{N}=4$), then we multiply the random numbers by four to get numbers in the range 0 to 3.999.... Next we add 1 to make it 1 to 4.999.... Then we use the BASIC INT function to remove whatever is to the right of the decimal point, leaving us with $1,2,3$, or 4 . These numbers are never actually converted to letters. Instead, the letters the player types for a guess are converted to numbers.

The same technique can be used to get random numbers over any range. For dice, multiply by six, take the integer, and add 1 . For playing cards, multiply by 52 , take the integer, and add 1. (Converting 1 to 52 into suits and ranks is another problem!

Flags and Logic

One of the most powerful features of a computer is its ability to make decisions. MASTER uses the computer's decision-making ability throughout its program.

Every decision boils down to deciding whether an expression is true or false. The BASIC IF...THEN construction decides whether an expression is true or false. If the expression after the IF is true, then whatever appears on the line after the THEN is executed. If the expression is false, then the rest of the line is skipped and execution continues with the next line.

BASIC doesn't actually handle the words 'true' and 'false.' Instead, it assigns -1 to represent 'true' and 0 to represent 'false'. When evaluating expressions, any non-zero result is considered 'true'. To see this in action try the following example:

10 INPUT " $A=$ "; A
20 INPUT " $B=$ "; B
30 IF A = B THEN PRINT "TRUE": GOTO 50
40 PRINT "FALSE"
50 PRINT A = B
60 GOTO 10
Run this program. Type in a value for A, press RETURN, type in a value for B, and press RETURN. If the number you entered for A equals the number you typed for B, then 'TRUE' will be printed, followed by -1 . Otherwise 'FALSE' is printed, followed by 0 . The number -1 or 0 is the value BASIC assigned to the expression ' $\mathrm{A}=\mathrm{B}$ '. Line 180 in MASTER checks to see if the number of correct position matches (PM) is equal to the number of letters (NN) in the pattern. If so, the player has correctly guessed the pattern and the
congratulation routine 6000 is executed before starting a new game by returning to line 100 .

Now enter the following program example that demonstrates the use of a flag.

10 INPUT A
20 IF A THEN PRINT "TRUE": GOTO 40
30 PRINT "FALSE"
40 GOTO 10
Try a few numbers. Every number except 0 will result in 'TRUE' being printed. Entering 0 will produce a ' FALSE '. The ' A ' in line 20 is evaluated just like any other expression. If it is non-zero then it is considered true.

A flag is a convenient device in a program. It can be either set (true or -1) or clear (false or 0). BASIC doesn't have a special variable type for flags, but either integer of floating point variables may be used that way. MASTER uses several variables as flags: RP, RQ, and the arrays PF() and PG()$. \mathrm{RP}$ is set or cleared in the game selection routine (in line 7100, 7200 , or 7300), depending or the game chosen. In line 1030, if RP is set $|=-1|$ then lines 1040-1080, which prevent duplicate letters in the pattern, are skipped. RQ stays cleared unless a duplicate letter is found. If the flag is set, then the program returns to 1020 to determine a new number. Each element of the secret pattern has an element in the flag array $\mathrm{PF}($) , and each element in the guessed pattern has an element in the flag array $\mathrm{PG}($). See the discussion under "Processing a Guess" for details of how these flags are used.

Another interesting use of a flag is in the display of the congratulation message (6080-6150). A FOR...NEXT loop is used to alternate the variable I between - 1 and 0 . The flag I is tested in lines 6090 and 6120 . If the flag is set, then the reverse-field character is printed. When the flag is clear, the following message is printed in normal characters. This produces the alternating reversefield effect.

The program has to make decisions in a number of other places, evaluating an expression
to determine what to do next. The IF...THEN statement is used most commonly for decision making, but ON...GOSUB and ON...GOTO are also used. ON...GOSUB is used in line 110 to decide whether to generate a random pattern in a 1-player game, or to let a player input a pattern.

Processing a Guess

As explained earlier, the match count is determined by first checking for exact position matches and then going through to check for out-of-position matches. No element in either the secret or guess pattern may be used more than once in a match.

To avoid re-using pattern elements in matches, we need to program a way to "cross off" pattern elements that have been used in a match. In addition to the two arrays of the elements themselves, two corresponding flag arrays are used.

At the beginning of the matching process, all the flags are cleared, or set to zero (3010-3030). As each match is detected, the flags corresponding to the matched elements are set (in lines 3050 and 3550). The flags are checked in lines 3520 and 3540. If the flag is set, then the matching process is skipped and the next element is checked. In addition, when a match is found in line 3550 , the higher numbered elements in the guess pattern are skipped by setting the loop index J to its maximum value, NN. The NEXT J statement in line 3560 sees J equal to its maximum value and is fooled into thinking it's through with the specified repetitions. Control passes to the NEXT I statement in line 3570.

This process is graphically demonstrated in figure 4. I is the index into the secret pattern, while J is the index into the guess pattern. The boxes indicate the two elements currently being compared, PM is the number of position matches,
and OM is the number of out-of-position matches. A shaded box indicates a match and a diagonal line through an element indicates that it has been used in a match already. First, the position matches are checked. The result is 1 , with the D 's in the first position crossed off. In the program, the flags $\mathrm{PF}(1)$ and $P G[1]$ are set to -1 .

Next, the out-of-position matches are checked. Since the first elements in each pattern have already been used, the comparison begins with the second elements. No match is found for the B, so the search continues with the third element of the secret pattern and the second element of the guess pattern. When the match is found with the fourth guess element, these two are crossed off, and the out-of-position match counter OM is incremented. A match is found immediately for the fourth secret pattern element, so the remaining two elements are skipped, and the counter incremented again. One position match and two out-of-position matches are reported to the player.

If you are still confused about how this works, try a different pattern and construct a table similar to figure 4 . You might also try running through the program lines with an example.

Customizing your MASTER Game

Adding an EXPERT Level

Because of the way MASTER is written it is easy to add your own version to the game. As an example of how to do this, let's add an EXPERT game to the three choices we have already. Add or substitute the following lines to the program supplied.

```
2100 PRINT'`[RVS]''CHR$(T + 64)'[OFF]';
7050 PRINT"[CD][2 CR][RVS]1[OFF] EXPERT"'
```


$7070 \mathrm{~T}=\mathrm{VAL}(\mathrm{T} \$):$ IFT <1 ORT > 4THEN7060
7080 ONTGOSUB7100,7200,7300,7600
$7600 \mathrm{~N}=8: R \mathrm{RP}=-1: G(1)=8: G(2)=12: G(3)=16:$
$G(4)=20: G(5)=25$
7610 PRINT'‘[CLR]EXPERT GAME:"
7620 GOSUB7400
7630 PRINT'[CD][2 CR]MORE THAN ONCE'" 7640 RETURN

This version of the game allows the first eight letters of the alphabet. The operation of the game itself is controlled by the values of N and RP in line 7600 . The rest of the program changes involve adding the game to the menu and displaying the rules. The value of N determines the number of letters allowed in the game. RP is a flag, which, if set, allows repeats of letters in the pattern (see the "Flags" section above). The array G() holds the cut-off numbers of guesses for each congratulation message. Adjust these values and program the appropriate messages, as in the example above, and you will be able to add your own game version.

Congratulation Messages

As part of the initialization routine, six congratulation messages are defined in lines 8060 and 8070. You can change these messages, as well as the cut-off values $\mathrm{G}($) defined in lines 7100 , 7200 , and 7300.

Number of Elements in Pattern

The number of elements is four for all versions of the game described so far. This number can be changed to practically any number, the only limitations being the width of the display and the amount of memory in your VIC-20. The number of elements in the pattern is determined by the value of NN in line 8050 of the initialization routine. Change line 8050 to read: $8050 \mathrm{NN}=3$. Now run the program. Notice that everything works as before, except only three letters are generated in the secret pattern, and only three are expected in each guess.

To program more elements in the pattern, two additional changes must be made, both in line 8040:

$$
\begin{aligned}
& 8040 \text { FD } \$=\text { " }[B L K][S P C] ’: B K \$=\text { ' }[C L]] \\
& : C R \$=C H R \$(13): C F=204
\end{aligned}
$$

With this change, five or six elements can be accommodated without disturbing the rest of the display. Substitute for line 8050, as above: 8050 $\mathrm{NN}=5$ or $8050 \mathrm{NN}=6$. One solution for longer patterns is to print the clues on the next line:

180 PRINTTAB(34)'‘[BLK][SPC]'PM;OM

Another solution is to further compress the letters in the guess:

```
8040 FD \(\$=\) " \([B L K] ’: B K \$ " '>: C R \$=C H R \$(13)\)
    \(: C F=204\)
```

Patterns of 11 or more elements require a DIM statement in the initialization routine. For example,
$8050 \mathrm{NN}=11: \operatorname{DIMR}(\mathrm{NN}), \mathrm{GU}(\mathrm{NN}), \mathrm{PF}(\mathrm{NN}), \mathrm{PG}(\mathrm{NN})$
along with one of the display adjustments above, sets up the game for 11 elements.

Program Description

Initialization (10): Subroutine 8000 sets up a number of constants, and subroutine 7500 gets the number of players.

Program mainline (100-200): Subroutine 7000 gets the skill level for the game and displays the instructions for the game. Subroutine 5000 waits for a key to be pressed before continuing with the main program.

Line 110 uses the ON...GOSUB structure to determine whether to call subroutine 1000 , which generates a random pattern, or subroutine 4000 , which allows one player to input a pattern. NP can have only two values, 1 or 2 . On 1 , subroutine 1000 is called; on 2 , subroutine 4000 is called.

GN is used to count the number of guesses. Line 130 calls subroutine 2000, which prints the header on the screen and receives the first guess. The second and subsequent guesses return to line 140 where the same subroutine is called at 2020, to avoid having the header reprinted for each guess.

A '?' indicates that the player has given up. A call is made to subroutine 9000 , which prints out the secret pattern. GOTO 100 starts the player out with a new game.

Next the guess must be processed. Before each call to the processing routines, the match counters PM and OM are zeroed. Subroutine 3000 processes the guess, first checking for position matches and then for out-of-position matches. If PM (the number of position matches) equals NN (the number of elements in the pattern), then the player has guessed the pattern. Subroutine 6000 is the congratulations routine.

Line 190 prints out the results of the matching, with the position matches under the heading ' ON^{\prime} and the out-of-position matches under the heading 'OFF'. When the TAB(12) expression is

DON'T ASK PROVIDES THE MISSING LINKS

oos the link between your modem and the outside world. For hassle-free communications, phone right in with TELETARI, The Friendly Terminal.

Your Atari has never had such easy access to the whole world of telecommunications - bulletin boards, news reports, large timesharing computers, the works. Now it's a snap to tap into all these, and it's just as easy to transfer your program or text files to and from a remote computer. Meet TELETARI, The Friendly Terminal. It's just what your modem needs: a powerful, adaptable telecommunications package that's a cinch to use. With TELETARI, you simply choose the desired communications function from a menu. Commonly used terminal parameters are included in the program, but you can change them to suit your needs with a couple of keystrokes, using another handy menu, and store the ones you plan to use again. TELETARI's generous buffer stores up to 20K, so you can review, print, or save received information long after you've hung up the phone. You never knew using a modem could be so convenient. Because it's very flexible, TELETARI is compatible with most modems and a wide variety of computers. And because it works through the RS 232 port, TELETARI is not limited to modem/telephone uses. Put it to work in any RS232 application your imagination can devise - even operating a laser disk!

$$
\text { - buffer of up to 20K e menu-driven • highly adaptable e supports all } 850 \text { options }
$$

- compatible with 1200 baud modems and BiT 3 Full-view 80" board suitable for any RS232 application
$\$ 39.95$ Requires Basic, 32K RAM, disk, 850 Interface
\rightarrow the link between BASIC and arcade-style graphics. Draw and animate pictures for your own BASIC games and other programs with pm ANIMATOR. Create running men, flying rockets, moving figures of all kinds.

BASIC programmers, pm ANIMATOR puts the power of Player-Missile Graphics at your fingertips.
\$34.95
Requires 32K RAM, BASIC, disk.

O- \rightarrow the link between tast game action and verbal learning:

Kids and adults, increase your vocabulary while you compete in this exciting word game.

Disk version:
3 levels of play - Beginner, Regular, Challenge
Pequires 32 K RAM, disk, BASIC. $\$ 24.95$ Cassette version:

2 levels of play - Beginner, Intermediate

$$
\text { Requires 16K RAM, cassette, BASIC } \$ 19.95
$$

Requires 16K RAM, cassette, BASIC. $\$ 19.95$
O-a turn WORDRACE into a history game or a famous athletes game, and get more Vocabulary WORTS DERBY 3 nemDACE accessory disk:CLAIM IO FAMESPORTS DERBY. 3 new games in all.
Disk
Disk only. Requires WORORACE disk \$19.95

o-ot the link between you and what your Atari is

the insult-exchange program. Have you cursed out your computer? Now it can understand you and answer back! it can understand you and answer back Release your aggressions! Inflict ABUSE on anyone who's got it coming!

DON'T ASK
OOS the link between technical excellence and the fun of computing. Why do we give you so much? Don't Ask.

2265 Westwood BI., Ste. B-150
Los Angeles, CA 90064
(213) 477-4514 or 397-8811
encountered in a PRINT statement the cursor moves to the twelfth character position on the screen.

The guess counter GN is incremented and the program loops back to 140 for another guess.

Generate Random Numbers (1000-1110): This routine is called at the beginning of each oneplayer game to generate the secret pattern. In the supplied version of the game NN is always 4, so four numbers are generated. Line 1020 returns in RN an integer between 1 and the number of letters allowed in the game (N). If RP is non-zero, then repeats are allowed in the pattern. Lines 1040-1080 are skipped and RN is copied into $\mathrm{R}(\mathrm{I})$, the current element of the pattern. If repeats are not allowed ($R P=0$), then each $R N$ must be checked against the previous elements in the pattern R (). In line 1040 RQ is set to 0 to indicate that no element has been found so far to match RN . If $\mathrm{I}=1$ then there aren't any numbers in the pattern and we can skip to 1090 and accept this RN. The FOR...NEXT loop on J (lines 1050-1070) goes from 1 to the previous element ($\mathrm{I}-1$). If RN is found to match an existing element $(\mathrm{RN}=\mathrm{R}(\mathrm{J}))$ then RQ is set to -1 to indicate a match has been found and J is set to $\mathrm{I}-1$ to terminate the FOR...NEXT loop. If no match is found, then the loop continues through all the previously assigned elements. RQ is tested in line 1080: if it is non-zero, then another RN must be calculated (return to 1020); if it is still zero, then we can accept the RN and install it in the current element $\mathrm{R}\{\mathrm{I}\}$ of the pattern. The outside FOR...NEXT loop (1010 to 1100) continues until all of the elements required in the pattern have been calculated.

Process Guess (2000-2130): As discussed above under the program mainline, this routine is usually called at 2020, but the first time the call is made to 2000 to print the heading 'SELECT LETTER ON OFF'.

The routine consists of a big FOR...NEXT loop, where I starts with a value of 1 and ends with the value NN , the number of elements in the pattern. Within this loop, characters from the keyboard are accepted or rejected. The GET function returns with a character from the keyboard. If no key has been pressed, then the string $\mathrm{T} \$$ is assigned a null value. As long as $\mathrm{T} \$$ continues to be a null string, the program will keep looping on line 2060. As soon as a key is pressed, the program continues at line 2070. Normally, when the GET function is used, the cursor does not flash. POKEing a 0 into CF (a constant set to 204 in the initialization) starts the cursor flashing; POKEing a 1 turns it off. It must be turned off between GETs to avoid depositing cursor characters in unwanted places.

Two special characters ' \leftarrow ' and '?' are tested. On
$' \leftarrow$ ', the loop is terminated by setting I to NN anı executing a NEXT statement. The GOTO 2030 starts the loop over again. If we had failed to terminate the loop (by omitting the $I=N N$ and NEXT statements) the user would be able to crasł the program by repeatedly hitting the ' \leftarrow ' key. BASIC keeps track of each FOR...NEXT loop in al area of memory called the stack. If we don't terminate a loop, that information continues to occupy space on the stack. Repeated calls to 2030 with the ' \leftarrow ' key will continue to build up new FOR...NEXT information on the stack until there is no room left. At this point the program crashes with an ?OUT OF MEMORY ERROR. The '?' character is dealt with similarly. The FOR...NEX] loop is terminated and a RETURN is made to the program mainline.

Other characters are converted in line 2100 to their numeric codes with the ASC function. The code for the letter A is 65 , so subtracting 64 converts letters into numbers beginning with 1 . If T is less than 1 or greater than the number of letters allowed in the pattern, then BK\$ (a constant defined as two [CL] characters) is printed and the program branches to 2050 to GET another character. If the character is accepted, then the appropriate colored letter block $\mathrm{OB} \$(\mathrm{~T})$ is printed and the number T is stored in the current element of the guess pattern $G U(I)$. RETURN takes the flow back to the mainline.

Matching Routines (3000-3580): These routines are described in more detail in the main text unde the section ''The Matching Process.''

3010-3030 clear the flag arrays $P G()$ and $P F()$ by setting them to zero. 3050-3070 advance, position by position, through the secret pattern R() and guess pattern GU() arrays checking for matches. If a match is found, the position match counter PM is incremented and the corresponding flags are set to -1 .

Line 3500-3580 check all the other possibilities for matches. The flags are used to cross off elements as they are matched. Some economy is achieved by skipping over crossed-off elements (lines 3520 and 3540) and by terminating the inside loop as soon as a match is found ($\mathrm{J}=\mathrm{NN}$ at the end of line 3550).

Input Pattern with Two Players (4000-4160): After the instructions are displayed, this routine accepts letters one-by-one until the pattern is filled. It is similar to the guess-processing routine (2000-2130). Instead of filling the guess array, the secret pattern array $R()$ is filled. See the description above for details.

ANY KEY WHEN READY (5000-5020): The string $\mathrm{CN} \$$ is a constant defined in the initialization routine. The result is to print the

Now YOU can write professional quality interactive Computer-Assisted Instruction materials and simulations

EnBASIC ${ }^{\text {ru }}$ can help YOU

For the Apple II plus* and $/ / e^{*}$, with at least 48k of memory and 3.3 DOS.

Authors Paul Tenczar, Stanley Smith, and Allen Avner have produced CAl and similar user-oriented software for more than 20 years. Here are routines and authoring aids critical to preparation of high-quality, user-friendly materials.
EnBASIC adds to Applesoft* BASIC. All features of BASIC are still present.

A flexible display design allows for:

- Proportional spacing, superscripts, subscripts, underlining, and automatically backspaced diacritic marks in text
- Double or standard size characters displayed anywhere on the High Res screen
- Lower-case characters on the Apple II plus*

Advanced input handling affords you:

- State-of-the-art answer-judging
- Automatic indication of spelling and typing errors
- Character-by-character error feedback for missing, extra, or wrong letters, inverted letter order, errors in accenting, capitalization, sub- or superscripting
- Synonym lists allowed as part of expected responses You get all these features simply by specifying a correct response and including an EnBASIC command that implements spelling checks with feedback.

The Package

A 94-page manual containing a tutorial on use of EnBASIC with examples, implementation hints, and technical details (available separately for $\$ 20.00$ which may be applied to the full purchase price of $\$ 150.00$).
A pocket guide to EnBASIC commands
A master and back up diskettes containing: the EnBASIC augmentation program, six ready-made character sets, four sizes of English letters plus Cyrillic and Greek together with editors which allow you to design your own character sets and redefine key set functions.
A sample program diskette

[^9]EnBASIC Package $\$ \mathbf{1 5 0 . 0 0}$

To order or receive our catalog, call or write today!
message 'ANY KEY WHEN READY' at the bottom of the screen. The one-line GET loop must receive a key before a RETURN

Congratulation Routine (6000-6190): 6010-6060 use the number of guesses GN to determine the congratulation message. The array $\mathrm{G}($) is set up for each version of the game in 7100, 7200, or 7300. The messages MS $\$$ () are set up as constant strings during initialization. By comparing GN to each cutoff value G |) with the $<=$ (less than or equal to) operation, the subscript MS for the array MS\$() is determined.

Lines 6070-6180 display the congratulation screen, alternating the message and the number of guesses between reversed and normal characters. The use of I as a flag is discussed above under "Flags." If $I=-1$ then the [RVS] character is printed. Its value alternates between -1 and 0 .

The string functions STR\$ and MID\$ applied to GN in line 6130 make the display of the number of guesses more attractive. The STR\$ function converts the number GN to a string of characters. Positive numbers leave a space in front of the numeric characters that normally would be occupied by the ' - ' character. To get just the numeric part of the string the MID\$ is used in a special way to get all the characters from the second position on. Normally the items included in the parentheses after MID\$ are the name of the string, the character position to start, and the number of characters to extract. If just the first two items are included, then the remainder of the string is the result. Specifying 2 for the second parameter converts the string of the number of guesses to the same string without the leading space.

Line 6140 is a FOR...NEXT loop that does nothing between the FOR and the NEXT! By adjusting the number after the TO, you can achieve a delay in the program of nearly any desired time. Here it controls the rate of the flashing.

The GET function is used in line 6170 in a way opposite to its use in 2050, 4090,5000, and 7060 . As long as no key is pressed (T\$ does not equal "' 'l, the message continues to flash. When a key is pressed, the RETURN instruction is executed.

Select Game and Display Instructions (7000-7440): 7010-7040 display a menu listing the different games available. Line 7060 awaits a key, which is converted to a number and tested against the range of the menu in line 7070 . If the key is out of range, then the program branches back to 7060 for another key. The ON...GOSUB instruction in line 7080 calls 7100 if T is 1,7200 if T is 2 , or 7300 if T is 3 .

Each of these set-up-and-display routines establishes N (the number of letters allowed in the
game), RP (the flag determining whether or not repeats are allowed), and G() (the array of guess number cutoff values for the congratulation messages). Then the name of the game is displayed. Next subroutine 7400 , which displays parts of the instructions common to all games, is called. Finally, the rule regarding repeats is printed in the proper place.

Subroutine 7400 first prints the colored letter blocks corresponding to the number of letters allowed (N). If the number allowed is four, the first four letter blocks are printed. Then the portion of the directions common to all versions of the game is printed.

Get Number of Players (7500-7520): This subroutine is called once when the program is first run. It uses subroutine 5010 (5000 without the ANY KEY WHEN READY message) to GET a key. Only 1 or 2 is accepted and the value is returned in NP.

Initialization (8000-8080): Sets up constants used in the program. See variable usage table for descriptions of the variables.

Print Pattern on Give-up (9000-9040): The secret pattern is printed out in the appropriate colored letter blocks, using the secret pattern array R(). Subroutine 5000 is used to wait for a key before starting a new game.

SOUTHWESTERN DATA SYSTEMS

PROUDLY INTRODUCES ONE OF THE TASTIEST MACHINE LANGUAGE DEVELOPMENT SYSTEMS AVAILABLE. .

"THE S•D.S COMBO!"

2Satemiert cubriosso?

 Yornaitontssenthy LMESME BRORMOS in eed freceived ofical arnatit asthe best tursild on mochine languge progicming ovollable.
zumpleprograms inciog paodias sound dist hes and ircter all presented wht He novice. programine minine the beot alswitudeson excelentreferenceseationhshig each mochile Thguoge sommand cind d sanple uting Hishonng is wost common usep in ackelsoufce isting.
SUGGESTED REAAL PRICE: $\$ 1295$

 Mmergors the complefemeren pagkige or truil 42mus

 Whetcet toit condition are met hius raition

 commented sorice kitiog of Applesot Basici

SUGGESTED REIALI PRICE: $\$ 49.95$

SPECIAL COMBINATION PRICE $\$ 119.95$

iv: Please osk your locol Apple deder tor nore detois, orwite SDS for a scapple ist of
MERLN's cominends and a complete product guide of over 20 ofherioustoniding piogranst

southuestern cetp sustems

P.O. BOX 582-M - SANTEE, CALIFORNA 92071 - TELEPHONE: 0191562.3221

```
MASTER Llsting (continued)
1030 IF FF
    THEN 16GE
1日40 FQ=5:
            IF I=1
            THEH 1090
1056, FOR J=1 TO I-1
1060 IF FH=RCT%
            THEH FQ=-1:
                J=I-1
10%G NE&T J
1080}\mathrm{ IF RL
            THEH 1020
            F<I)=Rt-
11EE HEKT I
111E FETURN
zGu\overline{u}}\mathrm{ REM FRIHT HEAGER
2ब1あ FRIHT "[CLR][RUS][PUR]SELECT LETTER
        [OFF] OH OFF[E[I]"
2G2U REM FRUCESS GUESS
201301 FOR I=1 TO HHN
2044 PRINT FOC:
2050}\mathrm{ FOKE EF,0
zaga GET T*&
            IF T午=""
            THEH 20EE
2070 FOKE CF.1
```



```
            THEN FRIHT [RF事"[CU] [CUI]"
                I=NH:
            HE%T :
            GGTO 2030
2090 IF T$="?"
    THEN I= FHH:
            HE&TT :
            GigTa 2146
2106 T=ASC<T$)-64:
    IF T<1 OR T`N
    THEN FRINT EK\%::
                GOTO za44
Z116 FF:INT UE%CT`;
2120 GU<I)=T
21:36 NEXT I
2140 RETURH
3unu REM CLEFR FLGGS
341@ FOR I=1 TO HN
30゙我 FFGI)=区:
            FG<I)=0
30:30 HE<T I
344G REM CHEGK FOR FUSITIUN MATCHES
3ESG FOR I=1 TO HNN
366E IF FCI)=EUGI)
            THEH FF<I)=-1:
            FGCI)=-1:
            FM=FM+1
34FE NEST I
3564 REM EHECK FOR OTHER MATCHES
3510 FOR I=1 TO HHN
350 IF PGCI;
            THEH S5:%
    E:301 FGRE T=1 TO HN
3546 IF FF(J)
                    THEN 3560
    Esg IF RCI\=GU心I%
                    THEH OMM=OM+1:
                        FF(T)=-1:
                        FG(I)=-1:
                    J=NH
3560 HEMT J
357E NEXT I
3580 RETURH
40日e REM IHFUT PATTERN
4010 FRIHT "[CLRJOHE FLA'TER EHTERS"
402G FRINT " FHTTERH"
40]`0] FRINT "WHILE OTHER FLA'TER"
4ब4E FRINT "LDOKS FWA'T"
4054 FRINT "[C[I]ENTER PATTERH4:"
4064 FOR I=1 TO HNH

\section*{MASTER Llsting（continued）}
```

4MFE FFEINT F[IF:

```
4MFE FFEINT F[IF:
4GBE FUKE CF,G
4GBE FUKE CF,G
    GET Tま:
    GET Tま:
    IF T丰=""
    IF T丰=""
    THEN 4EGE
    THEN 4EGE
4160 FGKE C:F.1
4160 FGKE C:F.1
4110 IF T旁="4"
4110 IF T旁="4"
        THEN PRINT EKF:
        THEN PRINT EKF:
            I= HN:
            I= HN:
        HEMT :
        HEMT :
        GNTO 46E0
        GNTO 46E0
4120 T=ASE¢T$-64:
4120 T=ASE¢T$-64:
    IF T<1 OF T\N
    IF T<1 OF T\N
    THEH 408E
    THEH 408E
4136 FRIHT DE=(T);
4136 FRIHT DE=(T);
4140 RCI\=T
4140 RCI\=T
4156 HE%T
4156 HE%T
4160 FEETIRFH
4160 FEETIRFH
S6006 FRIHT CHFF
S6006 FRIHT CHFF
56716 GET T#:
56716 GET T#:
    IF T末=""
    IF T末=""
    THEH 5010
    THEH 5010
5026 RETURH
5026 RETURH
EQEG REM COHGRHTLILATIOHS
EQEG REM COHGRHTLILATIOHS
6010 IF ETH=1
6010 IF ETH=1
    THEN MS=1:
    THEN MS=1:
        GMTO EGTE
        GMTO EGTE
6020
6020
    THEH MS=z:
    THEH MS=z:
        GOTO EdTE
        GOTO EdTE
6436 IF EHC=EC2%
6436 IF EHC=EC2%
    THEH MS=3:
    THEH MS=3:
        goTO 6017E
        goTO 6017E
6040 IF CH+C=BC3)
6040 IF CH+C=BC3)
    THEH MS=4:
    THEH MS=4:
        GOTO GETE 
        GOTO GETE 
6456 IF GN4=544;
6456 IF GN4=544;
    THEH MS=5:
    THEH MS=5:
        GiOTO EbTe
        GiOTO EbTe
6064 MS=6
6064 MS=6
G670 FRIHT "[ELE]";
G670 FRIHT "[ELE]";
6086 FOR I=-1 TO !
6086 FOR I=-1 TO !
6090 IF I
6090 IF I
        THEH FRINT "[E'vS]";
```

```
        THEH FRINT "[E'vS]";
```

```


```

```
E11E FEIHT "[C[I][FINR'T'OUS TOOK [C'TH]";
```

```
E11E FEIHT "[C[I][FINR'T'OUS TOOK [C'TH]";
G12G IF I
G12G IF I
        THEH FRIHT "[R'4G]";
```

```
        THEH FRIHT "[R'4G]";
```

```


```

```
                                    [FUR] TE:IES:"
```

```
                                    [FUR] TE:IES:"
E140 FOF: T=1 TE 206:
E140 FOF: T=1 TE 206:
        HE\T T
```

```
        HE\T T
```

```


```

```
6164 FREIHIT EH$
```

```
6164 FREIHIT EH$
E17.0 GET T言:
E17.0 GET T言:
    IF T全曲
    IF T全曲
    THEHA RETURH
    THEHA RETURH
6180 GOTO GEG0
6180 GOTO GEG0
T0016 REM FROCESS IHITIAL COHCIITIOHS
T0016 REM FROCESS IHITIAL COHCIITIOHS
PE1E FRIHT "[CLR]SELECT GHME:"
PE1E FRIHT "[CLR]SELECT GHME:"
TGEG FEINT "[CG][CR][CR][RUS]I[OFF] EFSY"
TGEG FEINT "[CG][CR][CR][RUS]I[OFF] EFSY"
FGBU FRIHT "[GG][IR][OR][R'S]Z[GFF] MI[|"
FGBU FRIHT "[GG][IR][OR][R'S]Z[GFF] MI[|"
FE4E FRIHT "[GQ][CR][CR][R"G]S[OFF] HARQ"
FE4E FRIHT "[GQ][CR][CR][R"G]S[OFF] HARQ"
FEGETGET T&:
FEGETGET T&:
        IF T界=""
        IF T界=""
        THEH PGEE4
        THEH PGEE4
70%E T=%FL<T&):
70%E T=%FL<T&):
    IF T<1 DF T>S
    IF T<1 DF T>S
    THEH P06E
    THEH P06E
T0BE1 OHT T
T0BE1 OHT T
    G01UE P100.72061.7300
    G01UE P100.72061.7300
PEGG RETURH
PEGG RETURH
71046 N=4:RF=615(1)=3:G<2)=5:643)=7:
71046 N=4:RF=615(1)=3:G<2)=5:643)=7:
        G(4)=16:0<5)=15
        G(4)=16:0<5)=15
711E FRINT "[ELR]EFS''GRIME:"
711E FRINT "[ELR]EFS''GRIME:"
712E GuBUE F4GE
```

```
712E GuBUE F4GE
```

```


```

MASTER Llstlng (continued)
F1GE FRIHT "[GQ][ER][ER]OHL'r OHEE"
714G RETUR:N
P20E H=4:RF=-1:G<1)=4:G<2)=6:G<3)=8:
G}(4)=12:G<5)=1
Fこ!区 FRIHT "[ELFEMIG GAME:"
F220 GOSLIB P4EG
T2SG FRIHT "[G[I][GR][CR]MORE THAN GNEE"
アこ401 RETLM:+
FB64 H=E:RF=-1:G(1)=5:G(2)=?:GC3)=10:
G(4)=15:GC5)=20
PG1G FFEIMT "[ILE]HAFEI GAME:"
F32E GOSUE TAEM
73GE FEIHT "[G[I][GR][ER]MORE THANH OHICE"
7340 RETSRH
P4EG FRIHT "[E[I][SR][GR]":=
FOE: I=1 TO H:
FRIHT OB㐁汸" ":
HENT :
FREIHT " ALLUHEED"
T419 FRINT "[E[I][CR][ER]EFCH MATN EE USE[I"
74こG FFIHT "[E CDI[EVS]\&[OFF] TO CLEAR GUESS"
743\mp@code{FFIHT "[GG][FWGJ%[OFF] TO GIWE UF[HOME]}
[c[1][c[1][c[1][%[I]"
T44B EETUFH
PSula PRIHT "[CLR][RYS]1[OFF] OR [RVS]2
[OFF] PLA'ERS?"
PE1E GOEUE EG1G:
IF Tकぐ!" 昨T$っ"こ"
 THEH アE10
75E6 HF=YHLくT$):

```

\section*{MASTER LIsting（continued）}

Batak REM SET－LIP GIF EOHSTHNTS
 OB本（2）＝＂［R4S］［FE［1］B［GFF］＂：
GB事（3）＝＂［F゙VS］［CTN］C［UFF］＂

OBF（5）＝＂［RVG］［GRN］E［OFF］＂：


WHEN RERO＇T＂
Sa48 NH＝4：
F［1＊＝＂［ELK］＞＂：

\(\mathrm{CR}=\mathrm{COHF}(13):\)
CF＝2014：
I＝RHCl－TI
8064 MSt（1）＝＂H F゙STCHIE！＂：
MS事（z）＝＂E《CELLENT！＂：


MS事它＝＂FAIR＂：

80se FEETUFH
G0061 RENT FRIHT FATTERN OH GIWE－LIF
961日 FRINT CR末＂［GU］［RWSJGIVE UF＂
［DFF］PATTERN IS：＂
Fe90 FOF \(\mathrm{I}=1\) TO HH ：
PRIHT＂＞＂OEFCRCI）＂［GFF］＂：
HERT
\(90: 30\) BusUE 5006
9640 RETURH

\section*{MASTER for the APPLE}

GOSUB 8 øø ：GOSUB 75 \(7 \varnothing\)
100 GOSUB 7Øぁø：GOSUB 5øøø：ON N P GOSUB 1øøぁ，4ø币б：GN＝1：GOSUB
2060：GOTO 15б
140 GOSUB \(2 \varnothing 2 \varnothing\)
15ø IF T\＄＝＂？＂THEN GOSUB 9あぁ ：GOTO 1ø
\(16 \varnothing \mathrm{PM}=\varnothing: O M=\varnothing: \operatorname{COSUB} 3 \boxed{\circ} 0: \mathrm{IF}\)
\(P M=N N\) THEN GOSUB 6øøた：GOTO \(1 \varnothing \sigma\)
190 HTAB 22：PRINT PM＂＂OM＂
＂NN－（PM＋OM）：GN＝GN＋
1：GOTO 140
1 100 FCR I＝ 1 TO NN
\(1 ø 2 \varnothing \mathrm{RN}=\mathrm{INT}(\mathrm{RND}(1) * \mathrm{~N}+1)\) ：IF RP THEN 1 ．\({ }^{\circ} \emptyset\)
\(1 \nabla 4 \varnothing R Q=\varnothing:\) FOR \(J=1 T O I: I F R\) \(\mathrm{N}=\mathrm{R}(\mathrm{J}) \mathrm{THEN} \mathrm{RQ}=1\)
1б7б NEXT ：IF RQ THEN 102Ø
1 1の9 \(\mathrm{R}(\mathrm{I})=\mathrm{RN}:\) NEXT ：RETURN
2øøø HOME ：PRINT＂SELLCT LETTER
ON OFF WRONG＂
2б2б PRINT ：POKE 34，1：FOR I＝ 1 TO NN
204』 PRINT＂＞＂；：GET T\＄：IF T\＄＝ CHR\＄（8）THEN HTAB 1：CALL －868：I＝1：GOTO \(2 \varnothing 40\)
\(2 \varnothing 8 \varnothing\) IF T\＄＝＂？＂THEN \(\mathrm{I}=\mathrm{NN}\) ：GOTO \(212 \varnothing\)
\(2 б 9 \varnothing T=\) ASC（T\＄）－64：IF \(T<1\) OR T＞N THEN PRINT CHR\＄ （8）；：GOTO \(2 \varnothing 40\)
\(21 \varnothing 0\) INVERSE ：PRINT T\＄；：NORMAL PRINT＂＂；：GU（I）＝T
2120 NEXT ：RETURN
\(30 \%\) FOR \(I=1\) TO NN：PF（I）\(=\varnothing: P\)
\(G(I)=\varnothing:\) NEXT ：FOR \(I=1 T O\)
NN： \(\operatorname{IF} \mathrm{R}(\mathrm{I})=\mathrm{GU}(\mathrm{I})\) THEN \(\mathrm{PF}(\)
I）\(=1: P G(I)=1: P M=P M+1\)
306 NEXT ：FOR I＝ 1 TO NN：IF
PG（I）THEN \(357 \varnothing\)

3530 FOR J＝ 1 TO NN：IF PF（J）THEN 356
3550 IF \(R(I)=G U(J)\) THEN OM \(=0\)
\(M+1: \operatorname{PF}(J)=1: P G(I)=1: J=N N\)
3560 NEXT
3570 NEXT ：RETURN
4 4øø HOME ：PRINT＂ONE PLAYER EN
TERS PATTERN＂：PRINT＂WHILR OTHER PLAYER LOOKS AWAY．＂：PRINT ：PRINT＂ENTER PATTERN：＂：FOR \(I=1 \mathrm{TO} \mathrm{NN}\)
\(4 \not 7 \varnothing\) PRINT＂\(>\)＂；
409 GET T\＄：IF T\＄＝CHR\＄（8）THEN HTAB 1：CALL－868：I＝1：GOTO 4070
\(412 \varnothing T=\) ASC（T\＄）－64：IF \(T<1\) OR T＞N THEN 4の9ø
413ø PRINT CHR\＄（95）；：R（I）＝T： NEXT ：RETURN
5бø VTAB 23：hTAB 10：FLASH ：PRINT ＂ANY KEY WHEN READY＂；：GET T\＄：NORMAL ：RETURN
600 TEXT ：HOME ：VTAB 5：FLASH
：FOR \(\mathrm{I}=1\) TO 6：IF \(\mathrm{GN}<\mathrm{G}\)（
I）THEN MS \(=I: I=6\)
6030 NEXT ：PRINT MS\＄（MS）＂＂；：NORMAL
：PRINT＂YOU TOOK＂GN＂TRIES
！＂：GOSUB 5\＃\＃：RETURN
7бぁØ HOME ：VTAB 5：PRINT＂SELEC
T GAME：＂：PRINT ：PRINT ：INVERSE
：PRINT＂1＂；：NORMAL ：PRINT
＂EASY＂：PRINT ：INVERSE ：PRINT
＂2＂；：NORMAL ：PRINT＂MIDDL
E＂：PRINT ：INVERSE ：PRINT
＂3＂；：NORMAL ：PRINT＂HARD＂ －PRINT ：G（6）＝ 5 Øø
\(7 ø 60\) PRINT＂WHICH？＂；：GET T\＄：T＝ VAL（T\＄）：IF T \(<1\) OR T \(>3\) THEN 7060
\(7 \varnothing 80\) ON T GOSUB 71øø，72øø，73ø0：RETURN
\(71 \varnothing \varnothing \mathrm{~N}=4: \mathrm{RP}=\varnothing: \mathrm{G}(1)=2: \mathrm{G}(2)=\) \(4: G(3)=6: G(4)=8: G(5)=1\) 1：HOME ：PRINT＂EASY GAME：＂ ：gosub 7400：vtab 5：htab 1 8：PRINT＂ONLY ONCE＂：RETURN
\(720 \mathrm{~N}=4: \mathrm{RP}=1: \mathrm{G}(1)=2: \mathrm{G}(2)=\) \(5: G(3)=7: G(4)=9: G(5)=1\)
3：HOME ：PRINT＂MIDDLE GAME
：＂：GOSUB 74øø：VTAB 5：hTAB 18：PRINT＂MORE THAN ONCE＂：RETURN
\(7300 \mathrm{~N}=6: \mathrm{RP}=1: G(1)=2: G(2)=\)
\(6: G(3)=8: G(4)=11: G(5)=\)
16：HOME ：PRINT＂HARD GAME：
＂：GOSUB 7406：VTAB 5：hTAB
18：PRINT＂MORE THAN ONCE＂：RETURN
74øø PRINT ：PRINT＂＂；：FOR I＝
1 TO N：INVERSE ：PRINT CHR\＄
\((64+1) ;\) ：NORMAL ：PRINT＂
＂；：NEXT ：PRINT＂ALLOWED＂： PRINT ：PRINT＂EACH MAY BE
USED＂：VTAB 15：PRINT＂＜－ to Clear gurss＂：PRINT ：PRINT ＂？TO GIVE UP＂：RETURN
7500 HOME ：PRINT ：PRINT＂＂；： INVERSE ：PRINT＂1＂；：NORMAL
：PRINT＂OR＂；：INVERSE ：PRINT
＂2＂；：NORMAL ：PRINT＂PLAYERS？＂
7510 PRINT＂WHICH？＂；：GET T\＄：N
\(\mathrm{P}=\mathrm{VAL}(\mathrm{T} \$): \operatorname{IF} \mathrm{NP}<1 \mathrm{OR}\) NP＞ 2 THEN 7510
7530 RETURN
80\％NN \(=4: \mathrm{MS} \$(1)=\)＂A PSYCHIC＂
MS\＄（2）＝＂EXCELLENT！＂：MS\＄（3）
＝＂VERY GOOD！＂：MS\＄（4）＝＂GO
OD＂：MS\＄（5）＝＂FAIR＂：MS\＄（6）＝
＂TRY，TRY，TRY AGAIN＂：PETURN
9øøø TEXT ：HOME ：PRINT＂GIVE U
P？＂：PRINT＂PATTERN IS：＂：FOR
I＝ 1 TO NN：PRINT＂\(>\)＂；：INVERSE
PRINT CHR\＄（ \(64+\mathrm{R}(\mathrm{I})\) ）；：NORMAL ：
PRINT＂＂；：NEXT ：GOSJB 5øø：RETURN

\section*{TELECOMMUNICATIONS on the VIC and \({ }^{\prime} 64!\)}
"A versatile and exceedingly well-done package." David Malmberg. MICRO
"Simply the best \& nicest VIC terminal software I have seen." Greg Yob. CREATIVE COMPUTING

We created quite a flurry and earned rave reviews with Terminal-40, the unique software that transforms the VIC screen into a 40 -column smooth-scrolling display. And with features like a Receive Buffer and VIC printer dump, Terminal-40 sets a new stardard for personal modem communications with networks such as CompuServe and Source. Our 64 Terminal does the same quality job for the '64.
And now there's even MORE! ! ! SuperTerm-40 and SuperTerm '64 support text storage to disk or tape and program UPLOADIDOWNLOAD. SuperTerms, used with our Smart ASCII. also support popular parallel printers.
Choose the one right for you. Call or write today for the "best", then


\section*{NEW FROM MACMILLAN!}

BASIC \(80^{\circ}\) and CP/M \({ }^{\text {º }}\)
Jack J. Purdum, Butler
University 220 pp
Paperback 1983


ORDER YOUR COPY TODAY!

A complete discussion of BASIC \(80^{\circ}\) and the \(\mathrm{CP} / \mathrm{M}^{* *}\) operating system. This new book relates the key features of BASIC \(80^{\circ}\) to the most popular microprocessor operating system. Topics include: sequential, random and skip-sequential file structures. Also included are: Coverage of many useful subroutines for applied programs including binary searches, Shell and Bubble sort, as well as range checks, direct cursor control for many popular CRT's, and error messages under direct cursor control.
* For more info about Macmillan books circle Reader Response Number 66


\title{
Conservation of Momentum for ATARI and COMMODORE \\ by Jerry Faughn
}

Conservation laws，such as the conservation of momentum，are among the most important concepts covered in an introductory level physics course．This program examines the conservation of momentum as applied to collision problems．Two cars are sent toward each other to collide under a variety of conditions selected by the viewer． Programs such as this can be a valuable instructional tool used in a physics class，either as a demonstration or as an interactive tutorial program for a student．But，you don＇t have to be a physics student to have fun playing around with it．

One of the parameters that the viewer must choose is a value for the coefficient of restitution． This number can range between the extremes of zero and one．If the coefficient of restitution is selected to be one，the collision is said to be perfectly elastic．That is，when the objects collide there is no distortion or bending of the objects． Such conditions obviously do not prevail in the real world of collisions between cars，but they can and do occur in collisions between atoms and subatomic atomic particles．

In the real world，collisions between very rigid objects，such as billiard balls，are highly elastic．At the other extreme are collisions for which the coefficient of restitution is zero；these are called perfectly inelastic collisions．Such collisions are characterized by the two objects sticking together and moving as a unit after the collision．This program can handle elastic and perfectly inelastic collisions as well as the broad spectrum between these two extremes．

Two typical trial situations that you might want to examine use the following parameters． Trial one：coefficient of restitution \(=1\) ，mass of blue car \(=20\) ，mass of orange car \(=4\) ．Trial two：coefficient of restitution \(=0\) ，mass of blue car \(=10\) ．

This program used player－missile graphics and is explained via remarks within the program．
Editor＇s note：The Commodore 64 version uses the C64 Sprite graphics．The two movable－object－block graphics systems have a number of similarities，as well as differences．
```

REM PRINT TITLE
GRAPHICS 18:SETCOLOR 4,2,2
20 POEITION 4;4:PRINT *G!-CONSERVATION"
30 POSITIION 9,5:? MGI"OF"
S POSITION 6, 6:? %GI"MOME
49 REM SET UP EXAMPLE COLLISION
So GRAPHICS O: SETCOLOR 4,14,4: SETCOLOR 2,8,4
70 ? I"HERE' IS AN EXAMPLE OF A COLLISION
7 ? I"LIKE YOU WILL SEE"
oo ? '"the blue car and the oranee car"
日5 ? "HAVE EQUAL MASSES. BLUE HAS A SPEED"
B6 ? "OF 2 M/S. ORAMGE 4 M/S.
O9 REM PARAMETERS FOR RESTITUTION IS ONE.":FOR N=1 TO 1500:NEXT N
99 REM PARAMETERS FOR INITIAL COLLISION
100 COR=1:M1-5
GRAPHICS 16:SETCOLOR 4,14,4:SETCOLOR 2,8,4:REM INPUT PARAMETERS FOR NEXT COL
LISION
204 POKE 752,1:? ")"
207 TRAP 215
10 ? "WHAT COEFFICIENT OF RESTITUTION":? "DO YOU WANT?":INPUT COR
211 IF COR<O THEN GO TO 1000
12 IF COR>L THEN GO TO 1000
15? "INPU
if 10so mumber o thru 1":GO to 210
217 ? "WHAT WILL be the mass of The blue car? ": INPUT MI
218 1F M1<=O OR M1>50 THEN GD TO 1050
225 TRAP 1060
"What wILL be the mags of":? "THE orANge Carr":INPut mz
28 IF M2<=O DR H2>SO THEN GO TO LObO
240 TRAP 1075 %INPUT VELOCITY OF bLUE CAR."
46 ? "USE POSITIVE NLMBERS EETWEEN O AND 10.
47 INPUT V1I
249 IF V1I<O THEN GO TO 1075
250 TRAP 1100
252 ? "INPUT VELOCITY OF ORANGE CAR."
253 ? "UBE POSITIVE NUMBERS BETWEEN O AND 10.": INPUT V2I
254 IF V2I<O THEN GO TO 1100
55 IF V2I>10 THEN OO TO 1100
60 HPO1=135-(V1I/(V1I+V2I))*85
65 HPO2=135+
500 HPOI=50:HPG2-220:REM INITIAL HOR POS OF CARS
O1 POKE 53248, HPO1: POKE 53249,HPO2
SO9 REM CHOOSE REGLLAR PLAYFIELD AND COLOR OF CARS
10 GRAPHICS 23:SETCOLOR 4,10,4:POKE 559,62:POKE 704,116:POKE 705,40
515 SETCOLOR O,O,4:COLOR 1:FOR Z=42 TO SO:PLOT Q,Z:DRAWTO 159,Z:NEXT Z:REM DRAW
HIGHway
S20 I-PEEK(106)-32:REM RESERVE SPACE FOR P/M GRAPHICS
S30 POKE S4279, I:REM PLACE ADR IN P/M BASE ADDRESS REGISTER
SO POKE S327,,O:REM SET COLLISION REGISTER TO ZERO
S50 POKE 53277, 3:REM ENABLE P/M GRAPHICS
359 REM IF CAR I IS MUCH MORE MASSIVE THAN CAR 2, CAR 1 IS TWICE NORMAL SIIE
S60 IF M1/M2>5 THEN POKE S3256,1:POKE 53257,0:G0 TO 600
570 IF
S80 POKE S325a,0:POKE 5.5257,0
600 J=1*256+1024:REM LOCATION OF PLAYER O
10 FOR YmJ+120 TO J+127:REM READ IN SHAPE OF CAR
630 DATA 0, 255,125, 22J, 223, 223, 125, 255,0, 255,125,251, 251, 251, 125,255.0
640 J=I*25b+12BO:REM HEM LOCATION OF PLAYER I
S50 FOR Y-J+120 TO J+127:READ Z:REM READ IN SHAPE OF CAR z
51 POKE Y,Z:NEXT Y
G52 RESTORE
600 FOR }x=1\mathrm{ TO 220: REM MOVE CARS TOWARD EACH OTHER
70 PO1=HPO1+V1I\#x/5
490 POKE 53240,PO1:POKE 53249,PO2
700 IF PEEK(53260)<>O THEN GO TO 720:REM CHECK FOR COLLISION
710 NEXT X
20 V2F=M1*(COR*VII-COR*(-V2I)+V1I)+M2*(-V2I):REM FIND VELOCITY OF EACH CAR AFTE
COLLISION
30 M=M1+M2:POKE (53260),0
70 UZF=V2F/M
TO FOR X=1 TO SOO: REM MOVE CARS AFTER COLLISION
770 POKE 53249,PO2+U2F*X/S
80 PDKE 5324日,POL+V1F*X
790 IF PO2+V2F* }x<20\mathrm{ THEN GO TO 900:REM STOP MOVEMENT
800 IF PO2 +V2F*x>245 THEN EO TO 900
810 IF PO1+VIF*x<20 THEN GO TO 900
900 PQKE 53277,1:REM TURN OFF P/M GRAPHICE

```

```

910 GRAPHICS
O20 POKE 752,1:? "}
930 ? "FINAL VELOCITY OF ELLUE CAR IS "; (INT (VIF*100))/100
930 ? "FINAL VELOCITY OF ELLUE CAR IS ";(INT(VIF*IOO))/100
940 ? "FINAL VELOCITY OF ORANGE CAR IS"I{INY(VZF\#100)YIIOO
960 IF PEEK (764)<>3S THEN GO TO 960
970 00 TO 200
1000 ? "COEFFICIENT MUST EE BETWEEN ZERG AND ONE.":FOR N=1 TO 5O:NEXT N:GO TO 21
0
loso ? "MASS muSt be a pOSITIVE NUMEER"
051? "PETWEENT 位A POSITIVE NUMBER"
OS1 ? "BETWEEN 1 AND SO":FOR N=1 TO SO:NEXT N:GO TO 217
1061? "BETWEEN I AND SO":FGR N=1 TO SO:NEXT N:GO TO 227
1075 ? "VELOCITY MUST PE A POSITIVE NUMBER." NSOL
1075? "BETWEENO AND 10":FOR N=1 TO SO:NEXT N:GO TO 245
1100? "VELOCITY MUST BE A POSITIVE NUMEER
1101? "BETWEEN O AND 10":FOR N=1 TO SO:NEXT N:GD TO 252

```

1 REM CLINSERVATION OF MLMMENTLII
2 REM GIT IERFY FRUGHN
3 REM CE4 VEFSION EY LGREH WRIGHT
19 coslib 4 Q 610

28 PRINT＂M＂TAE：13）＂\＃CiF＂
25 FRIHT＂国＂TRES 16，＂ETOMENTUM＂

35 PRINT＂JEHERE IS A SFMPLE COLLISION．＂
4 4 PRINT＂ITHE MRESES OF THE TWO CRRS＂
45 PRINT＂ARE EQULHL．＂ 1 THE RED LRR IS
55 PRIHT．＂THICE THAT OF THE ELUE CAR＂

65 CR＝1：M1＝50：M2＝5Q：v1＝z： \(1 / 2=4\)
PO GQTCLE1Q
10a FEIT FROGRAM MAJH LINE
110 FRINT＂ZAHAT COEFFICIENT GF REST：TUTION？＂：INFUT＂〔YALUE 日 TO 1 》＂；CR
130 FRICRCGORGCRン1）THENI 14
140 FRINT＂WHAT IS THE MRSS OF THE BLLIE CRR？＂：INPLIT＂（YALLIE 1 TO 5日）＂；M



1？a IHFUT＂YELGEITY OF BLUE CFRR（E TO 18）＂：V
190 IHFUT＂ソELGEITY OF REC CAR

205 REM SET STARTI HG FOSITIOHS SO THAT
206 REM COLL 1 SIOH OCCURS AT SCREEN CEHTER
\(218 \quad H 1=174-1,(1+42) 150\)

230 coslugana Gosub 200


260 E0SLIE 2960
z7a 00TOLE
1900 REM FERFORM COLLISION
1018 REM E！PFH＋L EITHER EMR IF \(5 \%\) HERYIER
1020 Z1＝0：IFM1，M2 STHENZ1＝1

185 FUKEV＋36．
IsEG REM ADYRHCE CARS UNTIL COLLISIOH
\(1116 \mathrm{~F}=\mathrm{A}\)

\(1139 \mathrm{~F} 2=\mathrm{H} 2-\mathrm{v} / \mathrm{m}<\mathrm{S}\)

1150 O2＝E：IFF \(Z 25 S T H E H P 2=P 2-255: 02=2\)
117 IFPEEK（V＋？\({ }^{2}\) ）THEHPOKEV +36 ， \(\mathrm{A}=0\) OTO 210
\(1184 x=x+1\)
1190 GOTO112e
12 GU REM FIHD FIMAL VELOCITIES
1210 VE＝M1w（CRWV1－CRw（－Y（2）＋V1）＋M2wr－v2）


1304 REM MOYE CRRS LIHTIL ONi：RERCHES EDGE
\(131 e x=0\)
\(132 \mathrm{EEP} \mathrm{PEPz+VEW} \mathrm{\times S}\)
\(1336 \mathrm{PH}=\mathrm{P} 1+\mathrm{V}, \mathrm{P} \times \mathrm{X} / \mathrm{S}\)
\(1346 \mathrm{PD}=\mathrm{PB}: \mathrm{QL}=\mathrm{A}: 1 \mathrm{IFPB} 255\) THENPD＝PD－255：Q2＝2




\(14 \dot{4} \dot{c} ;=x+1\)
1416 gotal32e
15 Re日 RETLIRN

2010 GETT＊：IFT＝＂＂THEH2O18
2020 RETURN
GIA REM SET LIP SCREEN
382e PRINT＂Z＂：POKEV＋33．日

304 FOKEY +21.3
3 SES RETURN
dGGG REM SET UP CONSTANTS \＆SPRITES

40 2
403 REM CLEAR SPACE FOR TWO SPPITE

\(405 B\) REM READ PATTERNS FROM OATA
4060 REM FANO STURE IH MEMORY
40TQ FORI＝GTOZE：REAOA：POKEE +1 ，A INEXT
\(4089 \mathrm{B=193}\) W64
4189 FORI \(=\) ETO26：READH：POKEB＋1，A：NEXT
4189 REM SET UP POIMTERS，COLORS，\＆Y POS
4120 POKE2日4，192：POKE2041， 19
\(413 G\) POKEV \(+1,149\) ：POKEV \(+3,149\)
4140 FOKEV＋21．6
4150 POKEY +33 ， 0 ：POKE \(\%+32,1\)
4166 RETLIRN
 5016 DATAR231，240，127，255，128，28，14，日，62，31，0
5920 DATA15，135，192，7，3，128，31，255，224，254，127，
5830 OATA127， \(240,31,255,224,7,3,128,15,135,192\)


Let Unique Data Systems help you raise your sights on AIM 65 applications with our versatile family of AIM support products．
－Go for high quality with our ACE－100 Enclosure．It accom－ modates the AIM 65 perfectly，without modification，and features easy access two board add－on space，plus a \(3^{\prime \prime} \times 5^{\prime \prime} \times 17^{\prime \prime}\) and a \(4^{\prime \prime} \times 5^{\prime \prime} \times 15.5^{\prime \prime}\) area for power supplies and other com－ ponents．\＄186．00．
－Get high capability with Unique Data System＇s add－on boards． The UDS－100 Series Memory－l／O boards add up to 16 K bytes of RAM memory or up to 48 K bytes ROM／PROM／EPROM to your Rockwell AIM 65 ．You also get 20 independently programmable parallel I／O lines with an additional user－dedicated 6522 VIA，two independent RS－232 channels with 16 switch－selectable baud rates（ 50 to 19.2 K baud），and a large on－board prototyping area． Prices start at \(\$ 259.00\) ．
－If you need to protect against RAM data loss，the UDS－1008 of－ fers an on－board battery and charger／switchover circuit．\＄296．00．
－Heighten your AIM 65＇s communications range by adding the UDS－200 Modem board．It features full compatibility with Bell System 103 type modems and can be plugged directly into a home telephone jack via a permissive mode DAA．No need for a data jack or acoustic coupler．The UDS－200 also has software－ selectable Autoanswer and Autodial capability with dial tone detector．The modem interfaces via the AlM 65 expansion bus， with the on－board UART and baud rate generator eliminating the need for an RS－232 channel．\＄278．00．
－The UDS－300 Wire Wrap board accepts all ．300／．600／．900 IC sockets from 8 to 64 pins．Its features include an intermeshed power distribution system and dual 44－pin card edge connectors for bus and I／O signal connections．\＄45．00．
－Get high performance with the ACE－100－07 compact 4 ＂\(\times 5^{\prime \prime} \times\) \(1.7^{\prime \prime}\) switching power supply，delivering \(+5 \mathrm{~V} @ 6 \mathrm{~A},+12 \mathrm{~V} @ 1 \mathrm{~A}\) ， and +24 V for the AlM printer．\(\$ 118.00\) ．
Installation kits and other related accessories are also avail－ able to implement your AIM expansion plans．Custom hard－ ware design，programming，and assembled systems are also available．High quality，high capability，high performance，with high reliability．．．all from Unique Data Systems．Call or write for additional information．

Unique Data Systems Inc． 1600 Miraloma Avenue，Placentia，CA 92670
（714）630－1430

\title{
üls a Number a Number?
}

\author{
by Phil Daley
}

On your toes now. Here is a quick quiz: How much is \(7+5\) ? a) \(12, \mathrm{~b}|14, \mathrm{c}| \mathrm{C}, \mathrm{d} \mid\) all of the above, el I don't know. If you answered d, then you may skip the rest of this article, unless you made a lucky guess.

The answer depends upon the base of the number system you are working in. Normally, when you are working with everyday decimal numbers, you are using the base of 10 . That means that each place to the left (or right) of the decimal point represents a power of ten. The first place to the left of the decimal point represents how many \(10^{\circ}\) 's there are in that number. For instance, a ' 7 ' indicates \(7 *\left(10^{\circ}\right)\). Since \(10^{\circ}=1,7\) \(* 1=7\). The number \(7=7\) ! When working with base 10 numbers things seem pretty easy, but humor me and follow along; it will get tougher.

What about 17 ? The 1 represents \(1 * 10^{1}\), or 10 . Add the 7 and you get 17. Each place farther to the left of the decimal point increases the power of 10 \(-10^{2}, 10^{3}, 10^{4} \ldots\) etc. This gives you the one's place, ten's place, hundred's place, and so on.

What happens when you use a base that is different than 10 - for instance 16 ? I choose 16 as an example since it is the basis of the hexadecimal system, which computer people use all the time as it is a more convenient system with which to work. Now the first place to the left of the point represents \(16^{\circ}\), or ones. Sounds familiar, right? However, how many numbers can be counted until you have to carry over to the next place? In decimal you count to 9 and then carry one to the ten's column. In hexadecimal you count to 15 before the carry to the next column. This is going to cause trouble. What happens after 9? You use letters! The first six letters of the alphabet represent the numbers \(10-15\). Counting in hexadecimal goes \(1,2, \ldots 8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, 10,11 \mathrm{etc}\).

The second place to the left counts as \(16^{1}\), or \(16^{\prime} \mathrm{s}\), the third place \(\left(16^{2}\right), 256\) 's, and the fourth place \(\left\{16^{3}\right\}, 4096\) 's. This is normally as high as you need to go on microcomputers.

How much is \(7+5\) (in base 16)? Now you see how answer \(C\) derives. Standard convention uses the \(\$\) sign to indicate hexadecimal numbers. What
does \(\$ 5 C E\) equal? The answer is \(5 * 256+12 * 16\) +14 * 1. 1486 in base 10 .

A computer doesn't really understand hexadecimal. A hardware circuit in the computer has only two states - on and off or high and low. These are represented by 1 's and 0 's. Since you can count only to one before you have to carry to the next place, this is working with base 2 numbers. Binary numbers are the code that microcomputers understand; unfortunately they are not recognized easily by humans and are, therefore, prone to error in reading and typing. It is simple to transpose two digits in a number like \(\% 1110010101100110\). The \% sign is standard to indicate a binary number. So that number is equivalent to 58726 in base 10 . \(1 * 32768+1 *\) \(16384+1 * 8192+0 * 4096+0 * 2048+1 *\) \(1024+0 * 512+1 * 256+0 * 128+1 * 64+\) \(1 * 32+0 * 16+0 * 8+1 * 4+1 * 2+0 *\) 1). Not the easiest conversion.

A number like \(\% 1000000000000000\) is equivalent to 32768 in base 10, which is not too memorable. In hexadecimal, it's equivalent to \(\$ 8000\). Now perhaps you can see why computer people use hexadecimal. When talking about a microcomputer's memory map, pages of memory are used as a convenient way to locate various usages. For instance, in 6502 computers page 0 is used by the system for pointer storage (due to zero page addressing), page 1 is used for the system stack, and page 2 is sometimes used for the input buffer. In decimal, that would convert to page \(0=\) 0 to 255 , page \(1=256\) to 511 , and page \(2=512\) to 767. Hexadecimal notation is much easier to remember - page \(0=\$ 0\) to \(\$\) FF, page \(1=\$ 100\) to \(\$ 1 \mathrm{FF}\), and page \(2=\$ 200\) to \(\$ 2 \mathrm{FF}\).

Even if you can't see much use for the different numbering systems now, when you start to work with machine language you may wonder why anyone works with base 10 . This program converts any base \((2,8,10,16)\) into all the others. The routines do the conversions the same way you would do them by hand; you can learn the conversion method as you type in the program.

This program should run on any computer with


WE (SORT OF) LIED:
Motorola has been promoting its advanced microprocessor chip as a vehicle for large, complex systems exclusively. Now, the 68000 does work well as the heart of big, complex systems. But their promotional literature implies that one can only build big, complex systems with the 68000 , and that is dead wrong (in our opinion). Nevertheless, the public (that's you!) perception of the 68000 follows Motorola's line: Big systems. Complex systems.

Our boards are not complex and not necessarily big (starting at 4K). Our newsletter is subtitled "The Journal of Simple 68000 Systems." But since the public has become conditioned to the 68000 as a vehicle for FORTRAN, UNIX, LISP, PASCAL and SMALLTALK people naturally expect all these with our \(\$ 595\) (starting price) simple attached processor. Wrong!

We wrote our last ad to understate the software we have available because we wanted to get rid of all those guys who want to run (multi-user, multi-tasking) UNIX on their Apple II and two floppy disks. Running UNIX using two 143K floppies is, well, absurd. The utilities alone require more than 5 megabytes of hard disk.

\section*{HERE'S THE TRUTH:}

We do have some very useful 68000 utility programs. One of these will provide, in conjunction with a suitable BASIC compiler such as PETSPEED (Pet/CBM) or TASC (Apple II), a five to twelve times speedup of your BASIC program. If you have read a serious compiler review, you will have learned that compilers cannot speed up floating point operations (especially transcendentals). Our board, and the utility software we provide, does speed up those operations.

Add this ine in front of an Applesoft program:

\section*{5 FRINT CHR\$(4);"BLOADUTIL4,A\$8600":CALL38383}

That's all it takes to link our board into Applesoft (assuming you have Applesoft loaded into a 16K RAM card). Now run your program as is for faster number-crunching or compile it to add the benefit of faster "interpretation". Operation with the Pet/CBM is similar.

\section*{68000 SOURCE CODE:}

For Apple II users only, we provide a nearly full disk of unprotected 68000 source code. To use it you will have to have DOS toolkit (\$75) and ASSEM68K (\$95), both available from third parties. Here's what you get:
1) 68000 source code for our Microsoft compatible floating point package, including LOG, EXP, SQR, SIN, COS, TAN, ATN along with the basic four functions. The code is set up to work either linked into BASIC or with our developmental HALGOL language. 85 sectors.
2) 68000 source code for the PROM monitor. 35 sectors.
3) 68000 source code for a very high speed interactlve 3-D graphics demo. 115 sectors.
4) 68000 source code for the HALGOL threaded interpreter. Works with the 68000 floating point package. 56 sectors.
5) 6502 source code for the utilities to link into the BASIC floating point routines and utility and debug code to link into the 68000 PROM monitor. 113 sectors.

The above routines almost fill a standard Apple DOS 3.3 floppy. We provide a second disk (very nearly filled) with various utility and demonstration programs.

\section*{SWIFTUS MAXIMUS:}

Our last advertisement implied that we sold 8 MHz boards to hackers and 12.5 MHz boards to businesses. That was sort of true because when that ad was written the 12.5 MHz 68000 was a very expensive part (list \(\$ 332\) ea). Motorola has now dropped the price to \(\$ 111\) and we have adjusted our prices accordingly. So now even hackers can afford a 12.5 MHz 68000 board. With, we remind you, absolutely zero walt states.
'Swiftus maximus'? Do you know of any other microprocessor based product that can do a 32 bit add in 0.48 microseconds?

\section*{AN EDUCATIONAL BOARD?}

If you want to learn how to program the 68000 at the assembly language level there is no better way than to have one disk full of demonstration programs and another disk full of machine readable (and user-modifiable) 68000 source code.

Those other 'educational boards' have 4 MHz clock signals (even the one promoted as having a 6 MHz CPU , honest!) so we'll call them slow learners. They do not come with any significant amount of demo or utility software. And they communicate with the host computer via RS 232, 9600 baud max. That's 1 K byte/sec. Our board communicates over a parallel port with hardware AND software handshake, at 71K bytes/sec! We'll call those other boards handicapped learners.

Our board is definitely not for everyone. But some people find it very, very useful. Which group do you fit into?

DIGITAL ACOUSTICS
1415 E. McFadden, Ste. F
Santa Ana, CA 92705
(714) 835-4884

CENTER
Microsoft BASIC. It was written on an Apple and has two machine-dependent lines. Line 40 clears the screen and vertically tabs down the screen 10 lines. Line 340 clears the screen and homes the cursor. You should substitute the clear screen command for your computer in those two lines. The lower case is purely for cosmetic reasons and, if you have only upper case, then that's what you will get. The REMarks may be ommitted.

Octal numbers are halfway between hexadecimal numbers and binary numbers. They are easier to use than decimal numbers for binary thinking, but they are not commonly used. The standard notation for octal numbers is \(\ddot{o}\) (with two dots abovel, not always found on computer terminal keyboards. I assigned them the \# sign so that the program can tell the numbers apart.

When entering numbers into the program to be converted, the program assumes all numbers to be decimal, unless you prefix the number with a special sign - \$ for hexadecimal, \% for binary, and \# for octal. The program does no checking for proper input; you will get some very strange results if you input illegal numbers.

Hopefully, the next time you see a binary or hexadecimal number, you will understand what they are all about.

\section*{Program Description}
[10] DIMensions the arrays to store the individual digits of the numbers.
[20-30] Set up the functions to get integer divisions and remainders.
[40-90] Present the introductory screen information and prompt for the number to be converted. A < return > quits the program.
[110, 170, and 230] check to see what type of number you entered.
[120] Converts octal to decimal.
[180] Converts binary to decimal.
[240] Converts hexadecimal to decimal.
[350] Converts negative decimal to positive decimal.
[370] Converts decimal to hexadecimal.
[440] Converts decimal to octal.
[530] Converts decimal to binary.
[710-790] Prints the results and waits for a return to start over.
[800] A subroutine to convert numbers larger than 9 into the A-F hexadecimal letters.
[840] A subroutine to divide A by N, assign \(\mathrm{Q}|\mathrm{I}|\) the integer division result, and return with A equal to the remainder.
[860] A subroutine to assign \(\mathrm{Q} \$()\) and Q() arrays each digit of the input number.

\section*{Number Conversion Listing}

1 DIM Q(2ø), Q\$(2ø)
\(2 \emptyset\) DEF FN \(A(X)=\) INT \((X / N)\) : REM Int function
\(3 \varnothing\) DEF \(\mathrm{FN} B(X)=X-F N A(X) *\) N: REM Mod function
40 HOME : VTAB 18
50 PRINT "This program converts numbers into other bases."
60 PRINT "Input your number in \(t\) he following form:"
7 ( PRINT " <DECIMAL> or <-DECIMAL \(>,<\$ H E X I D E C I M A L>, "\)
80 PRINT "<\#OCTAL> and < BIINARY \(^{2}\).
\(9 \emptyset\) PRINT : INPUT A\$: IF LEN (A\$ \()=\emptyset T H E N\) END
\(10 \varnothing \mathrm{~A}=\operatorname{VAL}(\mathrm{A} \$)\)
11才 IF LEETS (A\$,1) < > "\#" THEN 170
\(12 \varnothing\) REM Convert Octal to Decimal
\(130 \mathrm{~A} \$=\operatorname{RIGHT\$ }(\mathrm{A} \$, \operatorname{LEN}(\mathrm{~A} \$)-1)\)
140 IF LEN (A\$) \(<6\) THEN A\$ \(="\) の" + A§: GOTO 140
\(150 \mathrm{~N}=6: \cos \cos 860\)
\(160 \mathrm{~A}=\mathrm{Q}(1) * 32768+Q(2) * 4 \varnothing 9\) \(6+Q(3) * 512+Q(4) * 64+\) \(Q(5) * 8+Q(6):\) GOTO \(34 \varnothing\)
170 IF LEFT\$ (A\$,1) < > "\%" THEN \(23 \%\)
180 REM Convert Binary to Decimal
\(190 \mathrm{~A} \$=\) RIGHT\$ (A\$, LEN (A\$) - 1)
20 E IF LEN (AS) \(<16\) THEN A\$ \(=\) "Ø" + A\$: GOTO 2øø
21б \(\mathrm{N}=16\) : GOSUB 860
\(22 \varnothing A=Q(1) * 32768+Q(2) * 163\) \(84+Q(3) * 8192+Q(4) * 48\) \(96+Q(5) * 2848+Q(6) * 18\) \(24+Q(7) * 512+Q(8) * 256\) \(+Q(9) * 128+Q(10) * 64+\) \(Q(11) * 32+Q(12) * 16+Q(\) 13) * \(8+Q(14) * 4+Q(15) *\) \(2+Q(16): \cot 0340\)
```

230 IF LEFT\$ (A$,1) <> "$" THEN 340
240 REM Convert Hex to Decimal
250 A\$ = RIGHT\$ (A$, LEN (A$) - 1)
260 IF LEN (A$) < 4 THEN A$ = "
*" + A$: COTO 260
270 N = 4: GOSUB 860
280 FOR I = 1 TO 4
290 IF Q$(I) < "A" THEN 31ø
300Q(I) = ASC (Q$(I)) - 55: GOTO 320
310 Q(I) = VAL (Q$(I))
32g NEXT
330 A =Q(1)*4096+Q(2)*256+
Q(3) * 16 + Q(4)
340 HOME
350 IF A < THEN A =65536+A
360 ASAAVE = A
370 REM Convert Decimal to Hex
380 N = 4096:I = 1: cosub 840
390 N = 256:I = 2: cosUB 840
400 N = 16:I = 3: cosuB 848
410 Q(4) = A
420 N = 4: GOSUB 8%|:H\$ = A\$
430 A = ASAAVE
440 REM Convert Decimal to Octal
450 N = 32768:I = 1: cosub 840
460 N = 4\varnothing96:I = 2: GOSUB 840
470 N = 512:I = 3: cosub 840
480 N = 64:I = 4: cosuB 840
490 N = 8:I = 5: GOSUB 840
5%|Q(6) = A:01 = ""
510 N = 6: GOSUB 8ø0:0\$ = A\$
520% A = ASAAVE
530 REM Convert Decimal to Binary
540 N = 32768:I = 1: COSUB 84%
550 N = 16384:I = 2: GOSUB 840
560 N = 8192:I = 3: COSUB 840
570 N = 4096:I = 4: COSUB 840
580 N = 2%48:I = 5: GOSUB 840

```
\(590 \mathrm{~N}=1624: \mathrm{I}=6:\) cosub 840
\(600 \mathrm{~N}=512: I=7: \operatorname{cosiv} 840\)
\(610 \mathrm{~N}=256: \mathrm{I}=8: \operatorname{GOSUB} 840\)
\(620 \mathrm{~N}=128: \mathrm{I}=9: \cos \cos 840\)
\(630 \mathrm{~N}=64: \mathrm{I}=10\) : \(\operatorname{GOSUB} 840\)
\(640 \mathrm{~N}=32: \mathrm{I}=11\) : GOSUB 840
\(650 \mathrm{~N}=16: \mathrm{I}=12: \cos\) UB 840
\(660 \mathrm{~N}=8: I=13: \cos \operatorname{CoB} 840\)
\(670 \mathrm{~N}=4: I=14: \cos \cos 840\)
\(680 \mathrm{~N}=2: \mathrm{I}=15\) : GOSUB 840
\(690 \mathrm{Q}(16)=\mathrm{A}\)
\(7 \% \mathrm{~N}=16\) : GOSUB \(8 \varnothing 0: \mathrm{E}=\mathrm{A}\)
710 PRINT "Decimal="
720 PRINT ASAAVE" ("ASAAVE - 65536")"
730 PRINT : PRINT "Hexadec!mal="
740 PRINT H \(\$\)
750 PRINT : PRINT "Octal="
76 PRINT O\$
770 PRINT : PRINT "Binary="
780 PRINT \(\mathrm{E} \$\)
790 PRINT : PRINT : INPUT "Press <return> ";A\$: GOTO 40
890 A\$ \(=\) "": FOR \(I=1\) TO N
810 IF \(Q(\mathrm{I})>9\) THEN \(\mathrm{C} \$=\mathrm{CHR} \$\) \((Q(I)+55):\) GOTO \(83 \varnothing\)
\(820 \mathrm{C} \$=\mathrm{STR} \$(\mathrm{Q}(\mathrm{I}))\)
830 A\$ = A\$ + C\$: NEXT : RETURN
\(840 \mathrm{Q}(\mathrm{I})=\mathrm{FN} A(\mathrm{~A}): \mathrm{A}=\mathrm{FNB} \mathrm{B}(\mathrm{A})\)
850 RETURN
860 FOR \(I=1\) TO N
870 Q \(\$(\mathrm{I})=\operatorname{MID\$ (A\$ ,I,1)}\)
\(88 \emptyset Q(I)=V A L(Q \$(I))\)
890 NEXT : RETURN


\section*{Ver. 2 For your APPLE II/II +}

The complete professional software system, that meets ALL provisions of the FORTH-79 Standard ladopted Oct. 1980). Compare the many advanced features of FORTH79 with the FORTH you are now using, or plan to buy!


\section*{QDxsan}

\section*{better from inside out}


\section*{at the lowest price!}

Call our Modem Holline (anytime) - 619-268-4488 for exclusive monthly specials. Our free catalog contains more than 600 tantastic values.

ABC Data Products
8868 CLAIREMONT MESA BLVD. SAN DIEGO. CALIFORNIA 92123
ORDERS ONLY ITT TELEX INFORMATION 800.850.1555 4992217 619.268.3537


THE TACKLER \({ }^{\text {m }}\) - dUAL - MODE PARALEL INTERFACE FOR THE APPLE* 2 BOARDS IN ONE FOR NO MORE COMPATIBIUTY PROBLEMS!
An intelligent board to provide easy control of your printer's full potential. Plus a standard parallel board at the flip of a switch - your assurance of compatibility with essentially all soffware for the APPLE \({ }^{\oplus}\). Hires printing with simple keyboard commands that replace hard to use software routines. No disks to load. Special features include inverse, doubled, and rotated graphics and many text control features, available through easy keyboard or software commands. Uses Industry standard graphics commands. This is the lirst truly universal intelligent parailel interface! Change printers - no need to buy another board. Just plug in one of our ROM'S and you're all set. ROM'S available for Epson, C. Itoh, NEC, and Okidata - others available soon. Specity printer when ordering Call for


\section*{THE UPGRADEABLE PPC-100 \\ PARALLEL PRINTER CARD}

A Universal Centronics type parallel printer board complete with cable and connector. This unique board allows you to turn on and off the high bit so that you can access additional features in many printers. Easily upgradeable to a fully intelligent printer board with graphics and text dumps. Use with EPSON, C. ITOH, ANADEX STAR-WRITER, NEC, OKI and others with standard Centronics configuration. \(\$ 139.00\)
IF YOU WANT GRAPHICS AND FORMATTING THEN CHOOSE THE PERFORMER
for Epson, OKI, NEC 8023, C. ITOH 8510 provides resident HIRES screen dump and print formatting in firmware. Plugs into Apple slot and easy access to all printer fonts through menu with PRy command. Use with standard printer cards to add intelligence.


\section*{THE MIRROR FIRMWARE FOR NOVATION APPLE CAT \(\|^{\circ}\)} The Data Communication Handler ROM Emulates syntax of an other popular Apple Modem product with improvements. Piugs directly on Apple CAI II Board. Supports Videx and Smarterm 80 column cards, touch tone and rotary dial, remote terminal, voice toggle, easy printer access and much more. List \(\$ 39.00\)

Introductory Price \(\$ 29.00\)

\section*{MINI ROM BOARDS}

Flace your 2K program on our Mini Rom Board. Room for one 2716 EPROM. Use in any slot but zero.

Circle No. 48

\section*{DOUBLE DOS Plus}

A piggy-back board that plugs into the diskcontroller card so that you can switch select between DOS 3.2 and DOS 3.3 DOUBLE DOS Plus requires APPLE DOS ROMS. \(\$ 39.00\)


\section*{Super Pix}

Hires screendump sottware for the Epson, OKI, C. Itoh and Nec 8023. Use with Tymac PPC-100. Special \(\$ 19.95\) (Specity Printer)

Mr. Lister - Customer Contact Profiler \& Mailer
A Super Mail List Plus more - up to 1000 Entries on single 3.3 Disk (only 1 Drive requred) - 2 second access time to any name - full sort capabilities - Dual Index Modes - supports new 9 digit Zip. Easy to follow manual - Not Copy Protected - 4 user defined tables with 26 sort selections per table - Beta tested for 6 months - user defined label generation. introductory Price \(\$ 135\).
\(\$ 99.00\) Dealer \&: Dist. Inquiries Invited.

\section*{APPLE LINK}

A communications system for the Apple* (Requires Hayes Micro Modem). Transmut and receive any type of file between APPLES*, Automatic multi-file transfer, real time clock indicating file transfer time. Complete error check. Plus conversation mode. Only one package needed for full transfers. Compatable with all DOS file types. (requires Hayes Micro Modem)
\(\$ 59.00\)

\section*{THE APPLE CARD/ATARI CARD}

Two sided \(100 \%\) plastic reference card Loaded with information of interest to all Apple and Atari owners.
\(\$ 3.98\)

\section*{NIBBLES AWAY II}

AGAIN! Ahead of all others.
- AUTO-LOAD PARAMETERS
. Free's the user from having to Manually Key in Param values used with the more popular sottware packages available for the Apple II.
- EXPANDED USER MANUAL . . . incorporates new Tutorials for ail leveis of expertice; Beginners Flowchart for 'where do I begin' to 'Advanced Disk Analysis' is inctuded.
- TRACK/SECTOR EDITOR . . . An all new Track/Sector Editor, including the following features: Read, Write, Insert, Delete Search, and impressive Print capabilities!
- DISK DIAGNOSTICS . . Checks such things as: Drive Speed, Diskette Media Reliability, and Erasing Diskettes.
- HIGHEST RATED . . . Best bach up Program in Softalik Poil (Rated 8.25 out of \(i 0\) ).
- CONTINUAL UPDATES . . . Available from Computer Applications and new listings on the source.


\section*{ACORN 6893}

\section*{ATTACHED PROCESSOR FOR THE APPLE \(\|^{T M}\)}

\$1495

\section*{LEARNING CENTER}

A Beginner's
Computer Glossary
Mnemonic - A technique intended to assist human memory; an abbreviation or acronym that is easy to remember. A symbolic representation (e.g., ADD or SUB).

Modem - Acronym for MOdulator/DEModulator A chip or device that converts data from a form that is compatible with data processing equip. ment to a form compatible with transmissior facilities and vice versa. It is often used to inter face a digital device to a telephone line.

Module - A device or piece of equipment that is in terchangeable with other components.

Monitor - 1. To control operation of several un related routines. 2. A black and white or colo: CRT display.

Mother Board - A circuit board used to connect othe processor boards, such as CPU cards, cassette in terfaces, and memory cards, to name a few.

Nanosecond - A billionth of a second.
Nesting - Placing a routine or program segmen within a larger routine or program segment.

No Operation (NOP) - Tells computer ts deliberately leave a blank to allow insertion o data or information at a later time withou rewriting.

On Line - A system or device in a system that i controlled by the central processing unit. (Off line means the equipment is not under control o the CPU.)

Operation Code (Op Code) - A command, usuall: given in machine language.

Optimize - Arranging instructions or data in th storage area so that a minimum amount c machine time is spent accessing the instruction or data.

Port - The entry channel to which a data set i attached. It is in the central computer, and eac] user is assigned one port.

\section*{Part 2}

PROM - Programmable Read-Only Memory. Generally, any type of memory not recorded during packaging, but can be programmed in later.

Queue - A line or group of items waiting to be processed..

RAM - Random Access Memory. Provides immediate access to any storage location in memory. Information may be written in or read out quickly.

Register - 1. A device for the temporary storage of one or more words to facilitate arithmetical, logical, or transferral operations. 2. The hardware for storing one or more computer words. 3. A term used to designate a specific computer unit for storing a group of bits or characters.

ROM - Read-Only Memory. A memory that is programmed in during packaging. There are many types of ROMs. Information is stored permanently (or semi-permanently) and is read out, but not altered, in operation.

Routine - 1. A sequence of machine instructions. 2. A set of coded instructions in proper sequence that tells the computer to perform an operation or series of operations.
"Smart" terminal - A rudimentary smart terminal consists of a CRT, keyboard, serial communication I/O device, and a microcomputer. It may use peripheral memory devices such as a tape cassette. A "smart" terminal provides built-in capability not alterable by the user; an "intelligent" terminal is user programmable.

Subroutine - A program that defines operations and which may be included in the main routine.

Text Editor - Facilities designed into a computer program to allow keyboarding of text without a format. Once placed in storage, it can be edited and justified to the required specifications.

Variable - A symbol whose numeric value changes from one repetition of a program to the next, or changes within each repetition of a program.

NCRO

\title{
What's eating your Apple'?
}

\section*{Find out with Apple-Cillin IITM}

If you use your Apple for your business or profession, you probably rely on it to save you time and money. You can't afford to guess whether it is working properly or not. Now you don't have to guess. Now you can find out with Apple-Cillin II.
Apple-Cillin II is the comprehensive diagnostic system developed by XPS to check the performance of your Apple II computer system. Apple-Cillin II contains 21 menu driven utilities including tests for RAM memory, ROM memory, Language Cards, Memory Cards, DISK system, Drive Speed, Keyboard, Printer, CPU, Peripherals, Tape Ports, Monitors and more. These tests will thoroughly test the operation of your Apple, and either identify a specific problem area or give your system a clean bill of health. You can even \(\log\) the test results to your printer for a permanent record.
Apple-Cillin II works with any 48K Apple system equipped with one or more disk drives.
To order Apple-Cillin II - and to receive information about our other products - Call XPS Toll-Free: 1-800-233-7512. In Pennsylania: 1-717-243-5373.

Apple-Cillin II: \$49.95. PA residents add 6\% State Sales Tax.


XPS, Inc.
323 York Road
Carliste, Pennsylvania 17013
800-233-7512
717-243-5373

\footnotetext{
Apple II is a registered trademark of Appie Computer Inc.
}

\title{
Analysis of Bond Quotations on the APPLE \\ by David C. Lewis
}

\section*{A program to compute information regarding the performance of bonds. Data for computations is available in financial sections of many newspapers.}

The bond-analysis program presented here grew out of the realization that I was spending a lot of time with my calculator and a sheet of paper, punching buttons and making notes. It occurred to me that it should be possible to develop a program that prompts the inputs required, does the calculations quickly without any superfluous intervention on my part, and presents the data intelligently. This program meets my requirements.

Three things are necessary to understand this program: you should know a little about the bond market and bond market quotations, you should understand some (by no means all) of the basic criteria that are used to analyze bonds; and you should know quite a lot about string-handling operations. This last item may surprise many microcomputerists. However, for reasons I will explain later, analyses of bond market quotations rapidly become a case study in string-handling procedures.

\section*{Financial Background}

Before getting into a program to analyze bonds you should understand what bonds are, and what the quoted numbers relating to bonds are. These basic concepts and data are used to develop an approach to the analysis of any particular bond and the bondanalysis program. Basically bonds are a type of promissory note or IOU that many corporations, municipalities, and state and local governments use to finance their projects. To get a feel for
the numbers and diversity of bonds simply turn to the financial page of your local newspaper; generally you will see only the corporate bonds that traded recently (i.e., yesterday in a daily paper). Municipal, state, and federal government bonds often are not reported, and corporate bonds that are not bought or sold on any day are not reported that day.

Typically, bonds are issued in units of \(\$ 1,000\). The issuer promises to pay the buyer a fixed percentage of the face value of the bond each year until some date in the future, at which time the issuer will redeem the face value of the bond. Thus, a \(10 \%\) bond of 1983 would yield its buyer \(\$ 100\) in 1982 and he would get back the full amount ( \(\$ 1,000\) ) in 1983.

Although a bond may have a nominal value of \(\$ 1,000\), its actual price may fluctuate substantially. While no one should pretend to understand all the factors that make the bond market go up or down, many people think that prevailing interest rates have a pronounced effect on the market. Thus, to induce a prospective bond buyer to actually buy a bond, that bond must offer the investor a return on his investment comparable to what he could realize by putting his money elsewhere. If someone purchased a 30 -year bond in 1960 that yielded \(7 \%\), he

\footnotetext{
Bond Quotations
requires:
Microcomputer with Microsoft BASIC
}
would receive \(\$ 70\) per year from the bond. If it were necessary to sell that bond in a market where investors could routinely get \(14 \%\) on their investments, the original buyer would have to reduce the sales price to \(\$ 500\) so the buyer would realize \(14 \%\) on his purchase. If the buyer couldn't get \(14 \%\) then he wouldn't buy the bond. Of course, this line of reasoning would not apply if the bond came due in the next few years, since the buyer could anticipate getting \(\$ 1,000\) in return for whatever he paid for the bond. For example, if someone paid \(\$ 800\) today for a bond that came due in 1983, then the buyer would realize a profit of \(\$ 200\) in 1983 , or a return of \(25 \%\) on his investment. Thus, it is possible to make for lose) money on bonds in two ways from the interest payments and from capital appreciation or depreciation.

Often I have heard my broker speak of the "yield-to-maturity" of a bond. This is the sum of the yield on a bond due to its interest and the capital appreciation portion of the bond. If a \(10 \%\) bond came due in 1990 and was currently selling for \(\$ 500\), then the yield related to the interest income is \(1 \$ 1,000 * 10 \% / \$ 500=20 \%\) and the pro-rated capital appreciation on the bond is \((\$ 1,000-\$ 500) /(\{1990-\) \(1982 \mid * \$ 500\) ) \(=5.5 \%\), so the yield-tomaturity is \(20 \%+5.5 \%=25.5 \%\).

Yields-to-maturity can be misleading since they include two different types of yields. The interest income is available at least yearly and can be reinvested and compounded. The yield due to capital appreciation, however, is prorated straight line from now to maturity - there is no compounding. For example, if a bond were bought for \(\$ 100\) and matured 20 years later for \(\$ 1,000\), the prorated yield due to
capital appreciation is \(\|(\$ 1,000-\) \(\$ 100 \mid /(\$ 100 * 20\) years \() /=45 \%\) per year. However, if the bond were to pay roughly \(12 \%\) interest each year, and if that interest could be compounded without taxes, the investor would realize the same capital appreciation. This subtlety is particularly important in analyzing zero-coupon bonds. These bonds generally are sold at much less than face value and pay no annual interest. All of the yield on coupon bonds is a result of capital appreciation. When comparing zero-coupon bonds and other types of investments, it is important to consider the yield on a zerocoupon bond (or any capital accumulation yield) and some type of "deflated" basis in which the lack of opportunity to compound your earnings is factored.

\section*{Financial Calculations}

The program here prompts user inputs and accepts inputs as they are typically published in the literature (i.e., fractional numbers are accepted for price and interest, and the true price is computed based on the price quoted in the newspaper. The program computes the following indices:
1. Interest paid per year in dollars.
2. Number of years from the current year to the year of the bond's maturity. 3. Simple yield based on interest.
4. Yield due to straight-line capital appreciation (i.e., no compounding).
5. Straight-line yield to maturity (i.e., the sum of items 3 and 4 above).
6. The equivalent yield if the capital appreciation could be compounded.
7. Compounded yield to maturity (i.e., the sum of items 3 and 6 above).

Finally, the program presents an annotated listing of each of the seven items listed above and offers the option of providing a hard copy of the program output.

\section*{Getting the Data}

A principal resource for data regarding bonds is your newspaper. If you look in the financial section of your paper, generally you will see a statement such as:

XYZ INC \(95 / 802611 / 2\)
This means the particular bond issue put out by XYZ Inc. has a yield of 9 \(5 / 8 \%\) on the face value of the bond \((\$ 1,000)\), will be redeemed in the year 2002 ('02') , and was bought for \(\$ 615\). Note that the quoted price is a factor 10
times smaller than the price shown in the newspaper (i.e., \(611 / 2\) ), and interest and price quotations are typically (although not always) given in fractions of \(1 / 8\), and only the last two digits of the year of redemption of this or any other bond is quoted. Clearly, some massaging of the input data is necessary before the computer can compute the various yields, dates, returns, etc.

\section*{Programming Considerations}

The main problem associated with developing the program was creating some mechanism to allow the user to input data as it is typically quoted. Microcomputerists familiar with DATA and INPUT statements know they accept either strings or decimal numbers; Apple will not immediately understand numbers like \(95 / 8\). To get a microcomputer to accept and manipulate what might be referred to as "fractional numbers" it is necessary to input the data as a string and develop a way to evaluate that string.

The subroutine developed to evaluate the string inputs is shown in figure 1. The routine is structured to interpret a string by first evaluating the denominator of the fractional number, then the numerator, then the integer, and using that information to compute the type of decimal number with which the computer can deal. If no fraction is sensed for a number (i.e., if no "/"' is sensed) then the string is evaluated as a number. This option is necessary since bond data is sometimes quoted in integer and even decimal form.
amined is a "/"", it is compared to the ASCII representation of "/" (i.e., CHR \$(47) ). If a "/"' is sensed, then the program knows it is examining a fraction, and that the \(\operatorname{MID} \$(1 \$, N, 1)\) statement has stepped its way from right to left across the denominator. To sense the value of the denominator, the program simply backs the MID\$(I\$,N, x) up one character and defines a new string from that character to the right end of the string using the RIGHT\$ (I\$,N-1) statement. Then it takes the VAL ( ) of that substring to get a real number for the denominator.

To get a real number for the numerator the \(\operatorname{MID} \$(I \$, 1, N)\) statement is used to search the string for a "space." Thus, you expect a space between the integer portion of the fractional number and its fractional portion. As with the search for the "/", the ASCII representation of each character in the string is compared with CHR\$(32), the ASCII representation for a space. When CHR \(\$(32)\) is sensed, the MID \$(I\$,N,2) statement has stepped to the beginning of the numerator of the fractional input. To get the value of the numerator, a new substring of \(1 \$\) is defined that includes the entire fractional portion of \(I \$\) and then takes the VAL ( ) of the substring. Since the VAL statement evaluates the string up to the first non-numerical character (in this case the "/""), what is retumed is the numerator of the fraction in the string. The fractional part of the input string is evaluated by dividing the numerator of the denominator. It's that simple.

\section*{One problem was getting the computer to accept and manipulate fractions.}

The subroutine uses virtually all the string-handling operations available in MicroSoft BASIC. Apart from some variable setting operations, the first step in the routine is to determine the number of characters (called N ) in the string using the LEN ( ) statement. Subsequently, each character in the string is examined, starting with the rightmost character, to see if it is a "/". To break out each character in the string the MID\$() statement is used where \(N\), the number of characters in I\$, is obtained by counting from the right of the string, and 1 indicates that PI\$ is only 1 character. To determine whether or not the character being ex-

Evaluating the integer portion of the input string is straightforward when you know which character constitutes the start of the numerator. Simply establish a new string, starting from the left, and use the LEFT\$| | statement, whose length is the difference between the length of the input string and the string position of the first digit in the numerator. Then take the value, using the VAL | | statement, of the new sub-string. If you simply take the VAL|| of the input string you will get some strange number that includes the integer and numerator characters. For example, if the VAL statement were used on the string \(573 / 8\), the computer
would read 573 (i.e., all numbers up to the first non-numeric character, skipping over spaces).

Once the integer and fractional portions of the input string have been evaluated, it is easy to develop a number the computer can use - just add the two numbers.

The subroutine described above will evaluate fractional data inputs. To complicate life, bond interest and price data is sometimes given in integer or decimal form. The subroutine deals with this contingency by determining whether or not it finds a "/"'; if none is found after stepping across the input string, the program evaluates the number using VAL( ) on the entire input string.

Another programming problem, which also involves strings, relates to the formatting of the output display. The quantities that are calculated by the program are routinely calculated and displayed to nine significant figures. However, there is generally no reason to evaluate a bond's performance to more than three or four significant figures. Displaying all the significant digits adds little to the utility of the program and can make the results harder to read and understand. For example, if the number of significant digits displayed can be limited, it is possible to get the results of the calculations all on the same line as the captions, thus improving the readability of the display.

I limited the number of significant digits displayed by converting the numerical results of the calculations to strings, using the STR\$() statement, and then using the LEFT\$() statement to take the four most significant figures. This simple approach is not a rounding operation; rather, it is a truncation.

\section*{The Bond Program}

The program is designed to accept data in the sequence data generally appears in financial periodicals, and also in the formats that are commonly used (i.e., fractional numbers).

The interest is computed in dollars, paid per year, and assumes the bond has a face value of \(\$ 1,000\). Thus, the interest is \(\$ 1,000\) times the interest rate.

The total capital yield is simply the difference between the value of the bond at maturity and its purchase price divided by the purchase price. To get a prorated portion of this yield simply divide the total capital yield by the number of years to maturity. This calculation assumes that the price of a bond will steadily approach its mature value on a straight-line basis; it makes no allowance for market conditions.

The program computes a "net" yield by summing the yields due to interest payments and the yield attributed to the prorated capital appreciation of the face value of the bond. As noted previously, these are two rather different yields since "yield-to-

maturity,' while often quoted, is of questionable significance.

There is a fundamental difference between annual interest payments and the prorated straight-line yield that might be attributed to capital appreciation. In particular, the capital appreciation cannot be compounded. To get a better estimate of the yield that can be attributed to capital appreciation, compute the equivalent annual yield that, if compounded, would offer the same net capital appreciation as the simple uncompounded capital yield discussed above. This yield is always less than the uncompounded capital yield.

Next sum the equivalent compounded capital yield and the interest payments to give a more realistic yield-to-maturity.

After completing the calculations outlined above, you may want to make a hard copy of the results, complete another analysis, or quit. The program is set up for an MX- 80 operating with a GRAPPLER. The printer portion of the program may have to be adapted for different printers.

Dave Lewis is a scientific project officer in the Department of Navy's Office of Naval Research. He manages a variety of electronic warfare and surveillance programs, when he is not trying to beat the bond market. You may contact Mr. Lewis at 7417 Westwood Park Lane, Falls Church, VA 22046.
```

10. GOTO 390
30 REM
40 PRINT ****BCNDS****BONDS****
BONDS**** R RETURN
60 REM
8|N=|:N = HEN (I$):IFN=, <
1:60TO 350
11% FOR Q = 1 T0N-1:V=N-Q
PI$ = MID\$ (I$,V,1)=IFPI
= CHRS (47) GOTO 226
150 IF PI$ = CHR\$ (32) 60T0 270
170 NEXT : IF I = \emptyset coTO 35%
190 REM
2Ø0: RETURN
220 REM
230 Z\$ = RIGHT\$ (I$,Q):A= VAL
 (2$): GOTO 16\emptyset
270: REM
280.B = VAL (RIGHT\$ (F$,Q)) EI %
 B/A:DI = N - Q:D$= NDFT\$
(I$,DI):I = VAL (DS):I = I+
 FI: GOTO 160
350 REM
360 I = VAL (I$): GOTO 190
39% REM
4\emptysetØ HONE : COSUB 30: VTAB 5% RRINI
ENTEF DAY DATE , I INPUSD,
D: PRINT ENTER MONIH(1 OR 2
DIGITS) ; INPUT MD:PRINT
ENTER YEAR(LAST 2 DIGITS);
: INPUT YD: HONE : GQSUB 166
Ø: cosuB 30
```

1320 . PRIN YIBLB TO MATGRITY;
- PRINT T1; PRINI \(t: 2 Z=\)
\(106 / P H: Z 1=(10 G(Z z)) /\)
\(\mathrm{DY} \mathrm{zz}=(\operatorname{ExP}(\mathrm{z} 1))-1)\) *
\(164: 228=S T R \$(22): 238=\) IEFTS
( 228,4\(): 23=\mathrm{VAL}(238) \cdot \mathrm{PRTMF}\)
COMPOUD CAPTL YID \(=\); PRINT
23 , PRINT \(\% \mathrm{CY}=\mathrm{Y}+22: \mathrm{Y}\)
\& , STR 9 (CY) \(118=\) LEFT\$
\((Y \$, 4)+Y 1=\forall A L \quad(Y 1 \$): P R T N L\)
COMPOUNDED YIELD TO MATURIT
Y, P PRINT YI; P PRINT \%: VTAB
2 20 REM
1580 REM RRIT WANT TO CONTINUET \(Y\) ES/NO/PRINT,
159d INPUT ES:Z \(=\) LEFTS (C\$,1)
\(1590 \mathrm{IF} 28=\mathrm{CHR}(89)\) coro 17
76
1620 IF \(25=\) ctis (80) coIO 183
1636 IF Z \(=\) CHR\$ (78) GOMO 189
0
1640 TRTNT \(3 \boldsymbol{1}\) C0T0 1590
1660 REM
1680 HTAB 30\% PRINT DD; : PRINT
/: PRINR ND; PRINT /; PRINT
YD : RETURN
1770 HONE : GOSUB 30 : GOSUB 1660
+ 4010560
1836 PRINT PRE1: PRINT S: ERTNT
RRTD: coro 1570
1896 HONE : VTAB 12: HTAB 14: PRTNT
PINIS: END

Announcing
The best 6502 A ssemble th the Wolld
 Support you'd oniy expect? to findson a maintrame: ORCAM (Haydens Ob, ept Relocatable Cooe 4 sise mble for Micros) lets youdeneto sophisticated pplicatients with the speed and ease oft high-level language ye \(x\) eta the control and etficietcy 18 only assembly langurgecenct give.

\section*{Here's what Orcalligives: you:} The Assembler
Macro language features:
o Conditionalassembty ol source and macra \(f\) f
- Sepatay soute and nocto. fles
- Nestable macios
o Parameter mid-strigangt sting search functions
- Symbote parameter assignment
O Nuneric, sting and badeck type parameters:
- Parameter subscipyng
- Global gomminicatión between macros:
- Macro expansion loone contiol
- Count lengthand lyper parameter-atubute finctich



\section*{regersky \\ \begin{tabular}{|c|}
\hline \\
\hline \\
\hline
\end{tabular}
 5enciaysi \\  Hrs \\ } 84chentas
 \(6 x=18\)

\section*{He 4 ther}

 thatitys
Thrucuth rentiont

\section*{4185}

Hetskinufes


 6y nop watit

ylatig shathedidurd
 Ththich ressuatios

53th





\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \multirow[t]{11}{*}{} \\
\hline \\
\hline
\end{tabular}

8
8. Cathash
 sectidetrint

\section*{}
hlener minsusher

subger
contigurains
Usert ne0 fableI

\section*{ \\ 8k neguta}

\footnotetext{
3 3if digge

4ser inepowergorerst

}

2 whatustadecunented
cearkindextensyey Souree Theting fat he subputide

3

\section*{actucte}
bund
 13
```

40wughwnyautocals
4edembyth
8ensymy38

```

25054
 Thurderas antuate
greminthated

\section*{Introductory price:}

\section*{rg9495}

\section*{Easle \\  \\ Call on Eagle 8 Bit \& 16 Bit Computers and Software \\ NEC \\ COMPUTERB \\ \begin{tabular}{|c|c|}
\hline 6000. & CALL \\
\hline 8001A & . 3719.00 \\
\hline 8031 & . \(\$ 719.00\) \\
\hline 8012 & \$549.00 \\
\hline & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{8023 ........................ \(\mathbf{\$ 4 6 9 . 0 0}^{\text {c }}\)} \\
\hline 7710/7730 & \$2299.00 \\
\hline 3510/3530 & \$1549.00 \\
\hline \multicolumn{2}{|c|}{MONITORE} \\
\hline JB-1260 & \$119.00 \\
\hline JB-1201 & ... \(\$ 149.00\) \\
\hline JC-1212 & \$299.00 \\
\hline +C-12-202 & \$299.00 \\
\hline JC-1203 & \$599.00 \\
\hline
\end{tabular}

\section*{PRINTERS} BMITH COPONA
TP 1.
ractor Feed


108
Mkroptism
132 (Fully Conilgured) ........ \(\$ 1.599 .00\) \$0 (Fully Configured) . . . . . . . . \(\$ 1399.00\)

Call lor other configurations.
ETAR
\begin{tabular}{|c|c|}
\hline Gemini 10 & \$379.00 \\
\hline Germini 15 & \$489.00 \\
\hline DA1 & - \\
\hline Letter Quality & . 51049.00 \\
\hline & \\
\hline 620 & .. 5999.00 \\
\hline 630 & . \(\$ 1769.0\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 910 & . \(\$ 579.00\) \\
\hline 912 C & \$699.00 \\
\hline 920 C & . \(\$ 749.00\) \\
\hline 925 C & \$749.00 \\
\hline 950. & \$950.00 \\
\hline WYSE WY100 & . \(\$ 749.00\) \\
\hline \multicolumn{2}{|c|}{COMPUTER\$} \\
\hline 800A. & . \(\$ 1299.00\) \\
\hline 802 & . \$2649.00 \\
\hline 802 H . & . 54695.00 \\
\hline 806 & . 54999.00 \\
\hline 816 & . 58999.00 \\
\hline 803 & ....call \\
\hline 1602/1603 & . CALL \\
\hline
\end{tabular}

PANABONIC
JR200U 32K Pers. Computer . . \(\$ 309.00\) MONITORE
TR-120, 12" Hires Green ....... \(\$ 159.00\) CT-160. 10" Dual Mode Color ... \(\$ 299.00\) DT-D1000, 10" RGB ........... \(\$ 349.00\) DT-D1300. \(13^{-R}\) RGB/Compostre. . . \(\$ 429.00\)

\section*{SANYO \\  \\ SHARF \\  © 1 E9.}
pC \(1250 .\). . 899.00
CE 150 Printer, Plotter and
Cass Interface Unit ............. \(\$ 172.00\) CE 152 Cass. Recordet.......... \(\$ 62.00\) CE 155 8K Ram Expansion Module. . \(\$ 94.00\) CE125 Printer/Micro Cascette. . \(\$ 129.00\)

MONITORE AMDEK
\begin{tabular}{|c|c|}
\hline 300 G & . \(\$ 159.00\) \\
\hline 300A & \$169.00 \\
\hline 310G & \$179.00 \\
\hline 310A & \$169.00 \\
\hline Color 1. & \$299.00 \\
\hline Color II & \$599.00 \\
\hline Cotor II A & \$799.00 \\
\hline Color & \\
\hline
\end{tabular}

EMC


\section*{C=commodore}

\begin{tabular}{|c|c|c|}
\hline Motor Mouse . . . . . . . . . . . . . . . . . . \(\mathbf{\$ 2 3 . 0 0}\) & 8032 & \$1039.00 \\
\hline Centipede . . . . . . . . . . . . . . . . . . . . \(\mathbf{\$ 2 3 . 0 0}\) & 4032 & \$749.00 \\
\hline Frogge (VIC) . . . . . . . . . . . . . . . . . . . \$23.00 & 8096 Upgrade Kit . & \$369.00 \\
\hline Frogge (64). . . . . . . . . . . . . . . . . . . \(\mathbf{\$ 2 3 . 0 0}\) & Super Pet. & \$1499.00 \\
\hline VIC 20 Dust Cover . . . . . . . . . . . . \(\$ 99.99\) & 2031 & \$469.00 \\
\hline VIC 1530 Datassette . . . . . . . . . \(\mathbf{\$ 6 9 . 0 0}\) & 8250 Dh.Sided Disk Drive & \$1699.00 \\
\hline VIC 1541 (64K Disk Drive) . . . . \(\$ 339.00\) & D90605 Meg. Hard Disk. & \$2399.00 \\
\hline VIC 1525 Graphic Printer . . . . \(\mathbf{\$ 3 3 9 . 0 0}\) & D9060 7.5 Meg. Hard Disk & \$2699.00 \\
\hline VIC 1210 3K Mem. Exp. . . . . . . . \(\mathbf{\$ 3 2 . 0 0}\) & 8050 & \$1299.00 \\
\hline VIC 1110 8K Mem. Exp. . . . . . . . \(\mathbf{\$ 5 3 . 0 0}\) & 4040 & \$969.00 \\
\hline
\end{tabular}

VIC 1111 16K Mem. Exp.......... \(\mathbf{\$ 9 4 . 0 0} \mathbf{8 3 0 0}\) (Letter Quality)........... \(\$ 1549.00\) VC 1011 PC232C T Ent VIC 1112 IEEE-488 Interiace . . . . \(\$ 86.00\) VIC 1211 Super Expander ....... \(\$ 53.00\) VIC Mother Board. ................. \(\$ 99.00\)
HES. UMI, EPYX \& Creative Soltware for VIC. Now In Stock!!
PROFEEBIONAL BOFTWARE
Word Processing for VIC 64...... \(\$ 79.95\)

\section*{HEWLETT \\ PACKARD [p] 41 cV \$209 \\ HP75 \(\mathbf{5} 799\).}

HP 41 C(free memory module) .. \(\$ 149.00\)
\begin{tabular}{|c|c|}
\hline HP 10C & 9.00 \\
\hline HP 11C & \$72.00 \\
\hline HP 12C & \$99.00 \\
\hline HP 15C & \$99.00 \\
\hline HP 16C & 99 \\
\hline
\end{tabular}

\section*{MOQEME}

HAYEE
Smart .............................. \(\$ 219.00\)
Smart 1200 ( 1200 Baud) . . . . . . \(\$ 549.00\)
Chronograph. . . . . . . . . . . . . . . . . . \(\$ 199.00\) Micromodem 100 . . . . . . . . . . . . . . \(\$ 309.00\)
Micromodem II. . . . . . . . . . . . . . . . . \(\$ 279.00\)
Micromodem II (with Term) . . . . \(\$ 299.00\) NOVATION
J-Cat . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 119.00\)

Cat . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 144.00\)
D-Cat.
103 Smart Cat. .
Apple Cat II. . \(\qquad\)
103/212 Smant Cat ...........
212 Apple Cat II .
.........
Apple Cat II 212 Upgrade ..
ANCHDR
Mark I(RS-232) . . . . . . . . . . . . . . . . \(\$ 79.00\)
Mark II (Atari) . . . . . . . . . . . . . . . . . . . \(\$ 79.00\)
Mark Ill (TI-99) .................. \(\$ 109.00\)
Mark IV (CBI/i/PET) . . . . . . . . . . . \(\$ \mathbf{1 2 5 . 0 0}\)
Mark V (OSBORNE) . . . . . . . . . . . . \(\$ 95.00\)
Mark VI (IBM-PC) . . . . . . . . . . . . \(\$ 179.00\)
Mark VII (Auto Answer Call) . . . . \(\$ 119.00\)
TRS - \(\mathbf{8 0}\) Color Computer . . . . . . . \(\$ 99.00\)
9 Voit Power Supply

\section*{computer mail order east}

Dept.

\section*{415}

\section*{800-233-8950}

UN PA. CALL 71713 Рフ-9EフE, 477 E.THIPD ET., WILLAMBPDRT, PA. 17701
No rbalk, no deposit on C.O.D. ordere. Pre-paid ordere receive free shpping whthin the UPS Continental United States Delivery Zone with no walting period for certified checks or money orders. Add
37 (minimum \$3.00) ahpptng and handiling on all C.O.D. and credit card orders. Larger shlpments may require additional chargea. NV and PA residents add esles tax. All items aubject to availability and price ehange. NOTEi We atock manufacturer's and third party tothware bor most all computert on the market. Call today for our new catalog.

\section*{FRANKLIN}


Call on FRANKLIN Computers， Disk Drives，Software and System Specials．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MicRa－sCI} \\
\hline \multicolumn{2}{|l|}{－İKORIVEs for} \\
\hline APpl & LIN \\
\hline A2． & ．\(\$ 299.00\) \\
\hline A40 & ． 3349.00 \\
\hline A70 & ．． 3459.00 \\
\hline C2 Controller & ． 579.00 \\
\hline C47 Controller & ． 589.00 \\
\hline
\end{tabular}

\section*{VIBICO日P}
for Apple，I日M \＆Franklin Visidex ．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 189.00\) Visifile．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 189.00\) Visiplot ．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 159.00\) Visiterm ．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 89.00\) Vistitend／Plot ．．．．．．．．．．．．．．．．\(\$ 229.00\) VisiSchedule ．．．．．．．．．．．．．．．． 3229.00 Desktop Plan ．．．．．．．．．．．．．．．．．．．\(\$ 189.00\) Visicala（Applelw．，CBM．JBM）．．．．．．．．．5179．00 Visicorp prices for IBM may vary slightly．

\section*{CONTINENTAL}

Home Accnt．（Apple／Atari）．．．．．．． 559.00 The Tax Advantage（Apple．Atari）．．\(\$ 45.00\) 1st Class Mail／Form Letter（Apple）．．\(\$ 79.00\) The Book of Apple．
The Book of Alari \(\$ 14.95\) The Book of Apple Graphics ．．．．．\(\$ 14.95\) giriug
\begin{tabular}{|c|c|}
\hline Free Fall & \＄24．00 \\
\hline Beer Run． & \＄24．00 \\
\hline Snake Byte． & \＄24．00 \\
\hline Space Eggs & \＄24．00 \\
\hline Sneakers． & \＄24．00 \\
\hline Bandits & \＄28．00 \\
\hline \multicolumn{2}{|l|}{ERODERBUND} \\
\hline Apple Panic & ． \(\mathbf{5 2 3 . 0 0}\) \\
\hline David＇s Magic & ． \(\mathbf{\$ 2 7 . 0 0}\) \\
\hline Star Blazer． & \＄25．00 \\
\hline Arcade Machine． & ． 334.00 \\
\hline Choplifter & \＄27．00 \\
\hline Serpentine & \＄27．00 \\
\hline \multicolumn{2}{|l|}{INFOCOM} \\
\hline Deadline（Atari，Apple．IBM） & \＄35．00 \\
\hline Star Cross & \＄29．00 \\
\hline Zork I．II，or III ． & ．\(\$ 29.00\) \\
\hline \multicolumn{2}{|l|}{MPC} \\
\hline Bubdisk（128K Ram） & \＄719．00 \\
\hline \multicolumn{2}{|l|}{AXLDN} \\
\hline Apple／Franklin 128K Ram & \＄399．00 \\
\hline Apple／Franklin Ram Disk & \＄999．00 \\
\hline \multicolumn{2}{|l|}{KRAFT} \\
\hline Apple Joystick & ． 544.00 \\
\hline
\end{tabular}

1010 Recorder ．．．．．．．．．．．．．．．．．．．\(\$ 74.00\) 1020 Printer ．．．．．．．．．．．．．．\(\$ 269.00\) 1025 Printer ．．．．．．．．．．．．．．．．．．．．．．\(\$ 589.00\) 830 Modem ．．．．．．．．．．．．．．．．．\(\$ 159.00\) 820 Printer ．．．．．．．．．．．．．．．．．．．．．．\(\$ 259.00\) 850 Interface ．．．．．．．．．．．．．．．．．．．．\(\$ 169.00\) CX40 doy Sticks（pair）．．．．．．．．．\(\$ 18.00\) CX414 Bookkeeper Program ．．．\(\$ 119.00\) CX419 Bookkeeper Kit．．．．．．．．．．\(\$ 195.00\) CX481 Entertainer Package ．．．．．\(\$ 69.00\) CX482 Educator Package ．．．．．．\(\$ 130.00\) CX483 Programmer Package ．．．．\(\$ 54.00\) CX484 Communicator Package．．． \(\mathbf{\$ 3 4 4 . 0 0}\) Full Stroke Replacement Keyboard．．． for Atari \(400 \ldots \ldots \ldots \ldots . . . . . . . . \$ 119.00\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ALIEN} \\
\hline Atari Voice Box & \＄119．00 \\
\hline Apple Voice Box & \＄149．00 \\
\hline \multicolumn{2}{|c|}{MEMORY} \\
\hline Axlon 32K Ram． & \＄89．00 \\
\hline Axlon 48 K Ram． & ．\(\$ 139.00\) \\
\hline Axlon 128 K Ram & \＄399．00 \\
\hline Intec 32K Board． & \＄74．00 \\
\hline Intec 48K Board． & ．\(\$ 99.00\) \\
\hline Intec 64K Board（ & \＄149．00 \\
\hline
\end{tabular}

\section*{wico}

Joystick．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 24.95\)
Famous Red Ball ．．．．．．．．．．．．．．\(\$ 26.95\)
Apple Trackball ．．．．．．．．．．．．．．．．．．． 559.00
Atari／VlC Trackball ．．．．．．．．．．．．\(\$ 55.00\)
Apple Adapter． .\(\$ 16.00\)

\section*{PERCOM}

ロIEK QRIVEB FOR ATARI
\begin{tabular}{|c|c|}
\hline AT 88－S1 & \＄399．00 \\
\hline AT 88－A1 & \＄299．00 \\
\hline RFD 40－S1 & \＄549．00 \\
\hline RFD 40－A1 & \＄349．00 \\
\hline RFD 40－S2 & ． 5889.00 \\
\hline RFD 44－S1 & ．\(\$ 679.00\) \\
\hline RFD 44－S2 & \＄1029．00 \\
\hline
\end{tabular}

\section*{RANA DIBK DRIVEE}

Call for price and availability on the new Rana Disk Drives for The Apple and Franklin Computer Systems．

FLOPpY DIBKS
MAXELL
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MD I（Box of 10）．．．．．．．．．．． \(\mathbf{\$ 3 2 . 0 0}\)}} \\
\hline & \\
\hline FD I（8＂） & ． 540.00 \\
\hline FD II（8＂DD）． & ．\(\$ 50.00\) \\
\hline \multicolumn{2}{|c|}{VERBATUM} \\
\hline 5\％＊＂SS SD & ．\(\$ 26.00\) \\
\hline 54／4＂DS bD & \＄36．00 \\
\hline \multicolumn{2}{|c|}{ELEPHANT} \\
\hline 5\％\％SS SD ． & ．\(\$ 19.99\) \\
\hline
\end{tabular}

\section*{48K
 \(E+B=\)}

\section*{ATARI 400}

16K．．．．．．．．．．．．．．．．

48K ．．．．．．．．．．．．．．．．．．．．se99：
64K
．．．．．．．．．．．．．．．．． \(\boldsymbol{\$ 3 5 9 : ~}\)
Non－Atari Ram
One Year Extended Warranty ．．．． \(\mathbf{5 7 0 . 0 0}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ATAPI} \\
\hline Pac－Man & \＄33．00 \\
\hline Centipede & \＄33．00 \\
\hline Caverns of Mars & \＄32．00 \\
\hline Asteroids． & \＄29．00 \\
\hline Missile Command & \＄29．00 \\
\hline Star Ralders & \＄35．00 \\
\hline Galaxian & \＄33．00 \\
\hline Delender & \＄33．00 \\
\hline Atari Visicalc & ．\(\$ 159.00\) \\
\hline \multicolumn{2}{|l|}{ON－LINE} \\
\hline Jawbreaker． & \＄27．00 \\
\hline Softporn & ． 327.00 \\
\hline Whard and the Princess & ． 329.00 \\
\hline The Next Step． & \＄34．00 \\
\hline Mission Asteroid． & \＄22．00 \\
\hline Mouskattack & \＄31．00 \\
\hline Frogger & \＄31．00 \\
\hline Cross Fire（ROM） & \＄36．00 \\
\hline
\end{tabular}

GYNAPEE
Fise Manager 800＊．．．．．．．．．．．．．．． \(\mathbf{\$ 6 9 . 0 0}\)
Chicken（Rom）．．．．．．．．．．．．．．．．\(\$ 334.00\)
Picnic Paranoia（Rom）．．．．．．．．．．．．．\(\$ 34.00\)
Claim Jumper（Rom）．．．．．．．．．．． \(\mathbf{\$ 3 4 . 0 0}\)
Slime（Rom）．．．．．．．．．．．．．．．．．．．．．．．\(\$ 34.00\)
Shamus（Rom）．．．．．．．．．．．．．．．．．．\(\$ 34.00\)
Protector（Rom）．．．．．．．．．．．．．．．．．．\(\$ 34.00\)
Dodge Racer（C／D）．．．．．．．．．．．． \(\mathbf{\$ 2 6 . 0 0}\)
Nautilus（C／D）．．．．．．．．．．．．．．．．．．．．\(\$ 26.00\)
Shadow World（C／D）．．．．．．．．．．．．．． \(\mathbf{\$ 2 6 . 0 0}\)
Survivor（C／D）．．．．．．．．．．．．．．．．．．．\(\$ 26.00\)
Drelbs（C／D）
Necromancer（C／D）．．．．．．．．．．． \(\mathbf{\$ 2 6 . 0 0}\)
Pharohs Curse（C／D）．．．．．．．．．．．．． \(\mathbf{s 2 6 . 0 0}\)
For Apocolypse（C／D）．．．．．．．．．．．． \(\mathbf{\$ 2 6 . 0 0}\)
Page 6 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 19.00\)
Assembler．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 30.00\)
Disk Manager ．．．．．．．．．．．．．．．．．．．．．．\(\$ 24.00\)

\section*{DATABDFT}

Pacific Coast Highway ．．．．．．．．．．．．\(\$ 25.00\)
Canyon Climber ．．．．．．．．．．．．．．．．．\(\$ 25.00\)

Tumble Bugs ．．．．．．．．．．．．．．．．．．．．\(\$ 25.00\)
Shooting Arcade ．．．．．．．．．．．．．．\(\$ 25.00\)
Clowns and Balloons ．．．．．．．．．．．．\(\$ 25.00\)
Graphic Master．．．．．．．．．．．．．．．．．\(\$ 30.00\)
Graphic Generator ．．．．．．．．．．．．．．．\(\$ 13.00\)
Micro Painter．．．．．．．．．．．．．．．．．．．．\(\$ \mathbf{\$ 2 5 . 0 0}\)

Spell Wizard ．．．．．．．．．．．．．．．．．．．\(\$ 79.00\)
Blshop＇s Square．．．．．．．．．．．．．．．．．．．．\(\$ 25.00\)
Sands of Egypt ．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 2 5 . 0 0}\)
Moon Shuttle．．．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 2 5 . 0 0}\)


\author{
810 Disk Drive ．．．．．\(\$ 429.00\)
}

\section*{Call for Price and}

Availability of the NEW
E4KATAFI 1 巴OD
APX
\begin{tabular}{|c|c|}
\hline Text Formatter & \＄18．50 \\
\hline Family Budgeter． & \＄18．50 \\
\hline Eastern Front & \＄24．00 \\
\hline Family Cash & \＄18．50 \\
\hline dukebox． & \＄13．50 \\
\hline Downhill & \＄18．50 \\
\hline Outlaw． & \＄18．50 \\
\hline Holy Grail． & \＄24．00 \\
\hline Player Piano & \＄18．50 \\
\hline Keyboard Organ． & \＄18．50 \\
\hline Number Blast & \＄13．50 \\
\hline Frogmaster． & \＄18．50 \\
\hline 747 Land Simulator & \＄18．50 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{crer} \\
\hline K－raxy Shoot Out． & \＄32．00 \\
\hline K－razy Kritters & \＄32．00 \\
\hline K－razy Antics． & \＄32．00 \\
\hline K－star Patrol & \＄32．00 \\
\hline Stick Stand．． & ．\(\$ 55.99\) \\
\hline & \\
\hline
\end{tabular}

Crush，Crumble \＆Chomp ．．．．．．．\(\$ 24.00\)
Crypt of the Undead ．．．．．．．．．．．\(\$ \mathbf{\$ 2 4 . 0 0}\)
Curse of Ra ．．．．．．．．．．．．．．．．．．．．．．\(\$ 16.00\)

Datestones \＆Ryn ．．．．．．．．．．．．．．．．．．\(\$ 16.00\)
Invasion Orion ．．．．．．．．．．．．．．．．．．．．．．．\(\$ 19.00\)
King Arthur＇s Heir ．．．．．．．．．．．．．．．\(\$ \mathbf{\$ 2 4 . 0 0}\)
Morloc＇s Tower ．．．．．．．．．．．．．．．．．．\(\$ 16.00\)
Rescue at Rigel．．．．．．．．．．．．．．．．．．\(\$ 24.00\)
Ricochet ．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 16.00\)
Star Warrior ．．．．．．．．．．．．．．．．．．．．．．．\(\$ 29.00\)
Temple of Asphai．．．．．．．．．．．．．．．． \(\mathbf{\$ 2 9 . 0 0}\)
Upper Reaches of Apshal ．．．．．．．．．\(\$ 16.00\)

\section*{－PINNAKER}
\begin{tabular}{|c|c|}
\hline Snooper Troops＊ 1 & \＄34．00 \\
\hline Snooper Troops＊2 & \＄34．00 \\
\hline Face Maker & \＄24．00 \\
\hline Story Machine． & \＄24．00 \\
\hline Delta Drawing． & \＄45．00 \\
\hline Rhymes and Riddles． & \＄21．00 \\
\hline Kinder Comp & \＄21．00 \\
\hline \multicolumn{2}{|l|}{ROKLAN} \\
\hline Wizard of War（Rom） & \＄34．00 \\
\hline Deluxe Invader（Rom） & \＄29．00 \\
\hline Gorf（Rom） & \＄34．00 \\
\hline \multicolumn{2}{|l|}{FIRETETAR} \\
\hline Astro Chase．． & ． 525.00 \\
\hline \multicolumn{2}{|l|}{BIE} \\
\hline Miner 49er & \＄35．00 \\
\hline \multicolumn{2}{|l|}{GAMESTAR} \\
\hline Baja Buggies & \＄24．95 \\
\hline Football．．．．． & ．\＄24．95 \\
\hline
\end{tabular}


\section*{}

\section*{ERNATIONAL DRDERE：All shipments outside continental United States must be prepaid by certified check only！Include \(3 \%\)（minimum \(\$ 3.00\) ）shipping and handing} UUCATIONAL DIBCDUNTB：Additional discounts are available from both Computer Mail Order locations to qualified Ertucational Institutions
Po E Fpo：Add minimum \(\$ 5.00\) shipping on atl orders．
CP／M is a registered trademark of Drgital Research．Inc

\title{
Mutual Fund Charting
}

\section*{Two programs to make, update, and print mutual fund files on both OSI and Apple Computers}

Buy low, sell high! Sound advice for any investor but not easy to achieve. The microcomputer has opened a new avenue for the small investor to quickly store and then easily display collected data in a manner that can assist materially in decision making - a vital requisite to successful investing.

Mutual funds and money market funds are investment vehicles tried by many, including this author. Inspiration for the program described here came from an article in Creative Computing (May 1981) that presented a computer-assisted method of investment analysis developed in part by Richard J. Fabian, a registered financial advisor in the state of California. Authors Browning and Clemmens enlarged upon this procedure using a SWTPC 6800 computer system.

A mutual fund tends to follow the rise and fall of stock market averages. A money market fund, on the other hand, remains more stable. Exchanging the stock fund for the money market fund and vice versa minimizes the effects of falling prices but takes advantage of rising prices. The investor must follow stock market trends by charting selected mutual funds and stock market averages over a 39 -week period. When the current price moves through the 39 -week average an exchange signal

\footnotetext{
Mutual Funds requires:
OSI with 065D or
Apple Il with one drive
Dot-matrix printer needed for
hardcopy printouts
}
is generated. That is, when the trend is downward, change to the money market fund; when the trend is upward, change to the mutual stock fund.

The program generated for this article attempts to duplicate the approach used by Browning and Clemmens, but is adapted to the OSI-065D operating system on a C4P-MF and an Epson MX-80 printer. One part of the program, "FILCHG," enables you to update data files for each Friday's closing price or when the fund makes a distribution (dividend and/or capital gains). The other part of the program arranges data from the data files for the printer to display in chart form.

Data files must be established first, then changed later. "FILCHG" provides this option in lines \(80-120\). The funds and averages I selected are defined as string variables (line 40 ) to be recalled by either part of the program. To initially set up the data files the latest 39 consecutive weeks of prices are gathered from financial pages of major newspapers. Option A is selected (line 120) and the program loops to line 490 where separate files are identified in a printout to the screen (lines 150-180). The file to be initialized is selected in line 200. The value of \(X\) (line 210 ) assigns the file to be worked to the variable, \(\mathrm{N} \$\).

Next, control passes to a subroutine at line 690. Thirty-nine numerical items are entered in an array, the file is written (line 440), and program control returns to line 80 . A new file to be initialized can be selected again until all files are filled.

Previous and current distributions of the fund must be considered to ac-
curately reflect current price trends. If a distribution occurs during these 39 weeks it must be subtracted from all earlier entries. Note that when a data item is a distribution (see line 730), program control goes to line 840 . This subroutine subtracts the entered amount from each previous price, adjusts the loop counters, and returns to the data-gathering loop at line 760 . When all data is entered, the file is written (lines 440-470). A new file now can be opened and this process repeated or the program terminated, depending on the choice selected in line 120.

Once files are established, you can update the files each week or at regular intervals by selecting option B (line 120). The program then moves to line 140 for a screen clear and printout of the mutual fund data-file choices [lines \(150-200\) ). When a choice is made (line 200), the next statement defines \(\mathrm{N} \$\) for the subroutine at line 310 . Here the disk file is opened and data is taken off the disk and placed into array \(A\).

If the data is a price change, it is entered at lines \(390-400\) as a string (to accommodate the \(1 /\) ' symbol used for exiting the loop). This string is changed to a number and multiplied by 100 for storing on disk which eliminates trailing zeros. Line 430 discards the oldest data and enters the new data in the 39 -item array. The program now loops back to line 400 for a new entry or the exit ['/'] symbol. When no new item is to be entered, the 39 data items are returned to disk (line 450). Line 470 prompts the user that the file is closed and waits for any key press, after which the program returns to line 80 where the file choices are displayed again on the CRT. Another file may be updated or the program exited.

A final note on program "FILCHG" concerns entering a distribution. Line 350 asks if data is a distribution. If so, the amount is entered (line 370), subtracted from all entries in the current

\title{
for APPLE and OSI
}

\author{
by Ralph H. Green
}

file, and the 39 updated items are returned to disk storage (lines 440-470).

The PRINT program plots the data by providing the necessary commands to the printer. The program uses the CRT as much as possible; the printer is
used only to plot the charts. The available choices are printed to the screen (line 1200). One subroutine accomplishes the printing task for all the charts. At line 200, the user inputs a number corresponding to his choice, after which the serial port is activated
(line 1410), the corresponding data file is opened (line 310), and the chart heading printed double-size. Line 320 transfers data from the disk and divides by 100 (line 1350), as mentioned earlier. At the same time the data is established in an array ( A ) and a companion array ( \(B\) ), which has an ascending number that corresponds to the order in which the data appears in the original file.

Since the printer can only advance, not reverse, you must arrange the data in descending order, highest to lowest. A "bubble sort" routine is used for this. Lines 1370-1400 sort the data in descending order with the (B) array number tagging along with its original data item. More on this later.

Line 1410 is a required printer command that sets the proper paper advance. Line 1420 begins the printing of the 39 data items. Lines 1420-1450 ensures that the digits printed at the left of the chart (the share price) have all necessary trailing zeros. CHR \(\$|124|\) is the vertical line and \(\operatorname{CHR} \$(160)\) is the small square denoting a point on the chart. Lines \(1450-1470\) plot all points corresponding to a particular price by preventing a line feed until necessary. Also, the numbers in the \((\mathrm{B})\) array are tabs for the print head to place the point at the proper week when the price originally occurred.

After all points are printed, the amount of paper advance is reset to a new value (line 1480) and the chart is underlined (line 1490). Some useful data is then calculated and printed in lines \(1500-1570\). Since the Dow Jones Industrial averages and the Standard and Poor's 500 stock averages are not computed in dollars, lines 1490-1520 route program control where desired.

With the exception of certain commands peculiar to OSI machines, the programs are written in BASIC easily transportable to other microcomputers.
(Continued on next page)

The commands are：
1．DISK！＇＇IO ，03＂and DISK！＇ \(1 \mathrm{O}, 02\)＂ to activate and deactivate the serial port．
2 ．DISK OPEN，6，＂file＂and DISK CLOSE， 6 to open or close a data file．
3 ．DISK GET，X and PRINT\＃6 and IN－ PUT\＃6 and DISK PUT，which are used with both sequential and ran－ dom file access to and from the disk．
4 ．The screen clear routine．
Most other computer systems support－ ing data files and a serial port have ap－ propriate commands to accomplish these tasks．

As Browning and Clemmens stress in their article，the investor should spend at least an hour or more each week updating the files and perusing financial columns in daily newspapers． Especially critical are times when exchange signals might be generated． Using this program does not ensure success，but it does serve as an additional tool for making investment decisions．

You may contact the author at 2130 16th Street，Greeley，CO 80631.

\section*{Listing 1：Mutual Fund Charting}

IC REM Pgm called FILCHG to upd ate Mutual Fund Data Files
20 REM By Ralph Green for OSI
30 REM Translated for Apple ］［ by Philip Daley
\(4 \varnothing\) FOR \(I=\varnothing\) TO 9：READ B\＄（I）：NEXT
\(7 \varnothing\) DIMA（40）， \(\mathrm{B}(40): \mathrm{D} \$=\mathrm{CHR} \$(4)\)
\(8 \varnothing H C=\emptyset:\) HOME ：VTAB 5：PRINT＂ This program enters：\({ }^{n}\) ：PRINT
\(9 \emptyset\) PRINT＂（A）All 29 new values in a specifled＂：PRTNT＂ Mutual fund data file，or
1øø PRINT＂（B）Updates with the newest data＂：PRINT＂and discards old items in the flle．＂
110 PRINT＂（C）Print out graph o f data＂：PRINT＂on scre en or printer．＂
115 PRINT＂（D）Exit
128 PRINT ：PRINT＂Which do you prefer？＂；：GET A\＄：PRINT A\＄ ：IF \(A \$=\)＂A＂THEN COSUB 49 0：GOTO 80
123 IF AS＝＂B＂THEN GOSUB 14D： GOTO 80
125 IF \(A \$=" C\)＂THEN GOSUB \(1 \varnothing \varnothing \emptyset\) ：GOTO 80
130 HOME ：END
140 C \(\$\)＝＂update＂：GOSUB 15ø：COSUB 310：COSUB 340：GOTO 80
150 HOME ：VTAB 5：PRINT＂You are going to＂C\＄＂your data file．＂
170 PRINT ：PRINT＂Choice for th e data file is as follows：＂
180 PRINT ：FOR I＝TO 9：PRINT I＂－＂B\＄（I）：NEXT
20才 PRINT ：PRINT＂What is your choice？＂；：GET A\＄：X＝VAL （AS）：IF \(X=\emptyset\) THEN HONE ：END
\(216 \mathrm{~N} \$=\mathrm{B} \$(\mathrm{X}):\) RETURN
316 PRINT D\＄＂OPEN＂N\＄：HONE ：VTAB
5：PRINT＂You are to＂C\＄＂the＂
＊OSI REM DISK OPEN，6，N\＄：POKE 12076，3： POKE12042，255
311 PRINT N\＄＂file．＂
32 PRINT D\＄＂READ＂N\＄：FOR I＝ 1 TO
39：INPUT \(A(I)\) ：NEXT
＊OSI REM INPUT解，A（I）
330 PRINT D\＄＂CLOSE＂：RETURN
340 IF X \(>6\) THEN 390
\(35 \emptyset\) PRINT ：PRINT＂Do you have d istribution information？＂；： GET A\＄：PRINT A\＄
360 IF AS＝＂N＂THEN \(39 \%\)
\(37 \varnothing\) INPUT＂Distribution amount？
＂；A\＄：Z＝VAL（A\＄）：FOR I＝
1 T0 39：A（I）\(=A(I)-2 * 100\)
380 NEXT ：GOTO 440
390 PRINT ：PRINT＂Enter ney dat
a 1tem（s），use＇／＇to end．＂
40ø INPUT＂Data item＝＂；Y\＄：IF Y
\(\$=" / \overline{\text { THEN }}\) GOSUB 440：RETURN
\(410 Y=\operatorname{VAL}(Y): I F X>6\) THEN 430
\(420 Y=106 * Y\)
430 FOR \(I=1\) TO 38：A（I）\(=A(I+\) 1）：NEXT ：A（39）\(=\mathrm{Y}:\) GOTO 4 G
440 HONE ：VTAB 5：PRINT＂Now sa
ving data．Please wait for＇ DONE＇prompt．＂
456 PRINT D\＄＂OPENNN\＄：PRINT D\＄＂N RITE＂N\＄：FOR \(I=1\) T0 39：PRINT A（I）：NEXT ：PRINT D \(\$\)＂CLOSE＂
＊OSI REM DISKGET，J－1：PRINT＊6，A（I）：DISKPUT： NEXT：DISK CLOSE， 6
476 PRINT ：PRINT＂DONE－Press an y key to continue．＂：GET A\＄： PRINT ：RETURN
＊OSI REM DISK！＂GO 252B＂
490 HOME ：VTAB 5：PRINT＂Th1s s ection enters all 39 new
506 PRINT＂data entries in a spe cified file
\(516 \mathrm{C} \$=\)＂enter＂： \(\cos\) UB 150
69 PRINT ：PRINT＂Enter data fo r each of the 39 entries．＂
76 PRINT＂If you have distribut ions to enter，
710 PRINT＂when the＇Value？＇pro mpt appears，
\(72 \varnothing\) PRINT＂enter＇D＇．＂
730 PRINT \(: K=6:\) FOR \(J=1\) TO 3 9：PRINT J＂Value＂；：INPUT Z\＄：IF \(Z \$=\)＂D＂THEN COSUB 846：GOTO 760
\(740 \mathrm{~A}(\mathrm{~J})=\operatorname{VAL}(\mathrm{Z} \$):\) IF \(\mathrm{X}>6\) THEN 760
750 A \((J)=A(J) * 16 \varnothing\)
\(76 \hbar \mathrm{~K}=\mathrm{K}+1\) ：NEXI ：PRINT ：GOSUB 44才：RETURN
840 PRINT ：INPUT＂Distribution amount？ \(\mathrm{n} ; \mathrm{Z} \$: Z=\) VAL（ \(\mathrm{Z} \$\) ）：FOR \(J=1 T 0 \mathrm{~K}\)
\(850 A(J)=A(J)-Z * 160:\) NEXT ： \(J=J-1: K=K-1:\) PRINT
860 PRINT＂Continue with your en tries．＂：PRINT ：RETURN
899 DATA EXIT
906 DATA Fidelity Destiny Fund， Oppenheimer Special Fund，Ame rican Harbor Fund
901 DATA Sigma Investment Share s，Investment Company of Amer ica，Income Fund of America
962 DATA Dow Jones Industrial A verage，NYSE Common Stock Ind eI
963 DATA Standard \＆Poor＇s \(50 \%\) Stock Average
\(10 \phi 0\) REM Pgw called PLOTF
1610 REM Pgw to plot 39 week av erage of
1615 REM selected mutual funds
1020 HONE ：VTAB 5：INPUT＂Lates t date of entries？＂；z\＄

1630 PRINT ：PRINT＂Herdcopy？＂； ：GET A\＄：PRINT A\＄：IF A\＄＝ ＂Y＂THEN PRINT D\＄＂PR\＃1＂：HC＝2
＊OSI REM DISK！＂IO ，03＂
1060 PRINT CHR\＄（27）＂A＂CHR\＄（1 33）；CHR \(\$(27) " 2 "\)
1076 PRINT＂The following charts are plots of selected Mutus 1 Funds
\(108 \emptyset\) PRINT＂and selected Stock \(M\) arket indices for the pas： 3 9 weeks．
1996 PRINT＂All points are corre cted for distributions made by the
1166 PRINT＂funds during the 39 weeks．All prices are the Fr 1 day
1105 PRINT＂closing price．＂：DRIN．
1116 PRINT＂No investment sirate gy is indicated from this da ta．
\(1186^{\text {ta }}\) PRINT D \(\$\)＂PR\＃ø＂：IF HC＝\(\sigma\) THEN GET AS：PRINT
＊OSI REM DISK！＂IO，02＂
129才 C\＄＝＂print＂：cosub 150：cOSUE 316
\(1350 \mathrm{T1}=\mathrm{D}:\) FOR \(\mathrm{J}=1 \mathrm{TO} 39: \mathrm{IF}\) \(X<7\) THEN A（J）\(=A(J) / 1 \emptyset \emptyset\)
\(1360 \mathrm{~T} 1=\mathrm{T} 1+\mathrm{A}(\mathrm{J}): \mathrm{B}(\mathrm{J})=\mathrm{J}: \mathrm{NEXT}\) ：A1 \(=\mathrm{A}(39)\)
\(1376 \mathrm{R}=\emptyset: \operatorname{FOR} \mathrm{J}=2\) TO 39：IFA \((J)<=A(J-1)\) THEN 14бø
\(1390 \mathrm{R}=1: \mathrm{S}=\mathrm{A}(\mathrm{J}-1): \mathrm{A}(\mathrm{J}-1)=\) \(A(J): A(J)=S: S=B(J-1): B\) \((J-1)=B(J): B(J)=S\)
140才 NEXT ：IF R＝ 1 THEN 1370
1410 IF HC \(=1\) THEN PRTNT D \(\$\)＂PR ＊1＂：PRINT ：PRINT ：PRINT CHR\＄ （14）；N\＄：PRINT CHR\＄（27）＂A＂ CHR\＄（129）；CHR\＄（27）＂2＂
\(1428 \mathrm{~A} 2=\mathrm{A}(1): \mathrm{A} 3=\mathrm{A}(39):\) FCR \(\mathrm{J}=\) 1 TO 39：A\＄＝STR\＄（A \((J)): I F\) \(X>6\) THEN 1450
1430 IF INT \((A(J))=A(J)\) THEN \(A \$=A \$+{ }^{17} .6 \theta^{\prime \prime}: \operatorname{coTO} 45 \sigma\)
1440 IF INT（ \(10 * A(J)+.65) /\) \(1 \varnothing=A(J)\) THEN \(A \$=A \$+" \emptyset "\)

1450 PRINT A\＄；：POKE 36，8：PRINT CHR \(\$\)（124）；
1468 POKE \(36, \mathrm{~B}(\mathrm{~J})+9\) ：PRINT CHR \(\$\) （27）＂\({ }^{\prime}{ }^{\prime \prime}\) CHR（160）；
1465 PRINT CHR（27）＂\(=\)＂；
1470 IF A \((J)=A(J+1)\) THEN \(J=\) \(J+1: \operatorname{GOTO} 146 \theta\)
1480 PRINT ：NEXT ：PRINT CHR\＄ （27）＂A＂CHR \(\$\)（133）；CHR\＄（27 ）＂2＂
1490 FOR \(J=1\) TO 39：POKE \(36,9+\) J：PRINT＂－＂；：NEXT ：PRINT ：IF X \(=8\) THEN 1510
1506 IF X \(>6\) THEN \(152 \theta\)
1519 POKE 36，15：PRINT＂39 Week Average \(=\$ 1\) INT（106＊（T1） 39）＋．5）／1øб： \(\operatorname{coTO} 1530\)
1520 POKE 36，15：PRINT＂39Week Average \(="\) INT（10\｜＊（T1） 39）+.5 ）／1ه
\(1536 \mathrm{~A} 4=106 *(\mathrm{~A} 2-\mathrm{A} 1) / \mathrm{A} 1: \mathrm{A} 5\) \(=160 *(A 1-A 3) / A 3\)
1540 POKE 36，15：PRINT＂Percenta ge change since last high \(=\)＂；
1550 PRINT INT（ \(100 * A 4+.5\) ）／ 160＂中＂
1560 POKE 36，15：PRINT＂Percenta ge change since last \(10 w="\) ；
1565 PRINT INT（1dø＊A5＋．5）／ 109＂
1570 POKE 36，15：PRINT＂Mostrec ent entry is＂ \(\mathrm{Z} \$\) ：PRIN＂D\＄＂P RAg＂
1580 PRINT ：PRINT＂To continue， press any key．＂：GET A\＄：PRIN＂ ：RETURN

NCRO

\title{
EVERYONE NEEDS A
}


\title{
LETTERMASK: A Check Protecting Algorithm
}

\author{
by Barton M. Bauers, Jr.
}

In the August 1980 issue of MICRO (27:65), I discussed the tendency of binary computers to introduce small rounding errors when adding decimal numbers, and proposed a solution that programmers could implement to prevent these errors. In summary, decimal numbers between 0 and 1 cannot be represented exactly in binary mathematics, due to the limitation of precision (the number of places to the right of the decimal point] available to most computers. The solution involved storing all numbers within the program as integer numbers, and 'masking' them on output so they resumed their decimal form when printed. The function that converted the decimal values to integer for internal storage was:

DEF FN VL \((X)=\operatorname{INT}((X+.0001) * 100)\)
where X was any real number with two decimal places, and VL(X) was its integer equivalent for internal purposes.

The intent of the article was to preclude this rounding error in handling money calculations, and I included an example of utilizing the subroutine MASK to create check-protection with leading and trailing asterisks (*), as you see so often in computergenerated checks.

Subsequent programming requirements have led me to write a different kind of mask algorithm for check protection - one that spells out the amount when printed, much as you do when you write checks manually. This method is excellent for protecting checks from alteration because the spelled-out values are of varying lengths and are much more difficult to fraudulently change. I consider the word method of check protection preferable to the simple number mask and have created the subroutine 'LETTERMASK' for this purpose. Although

\section*{In addition to number masking, this routine creates checks with the amounts spelled out, for additional security.}

\section*{LETTERMASK \\ requires: \\ BASIC}
most computer-generated checks continue to use some version of the number-masking system (my own still do, in addition to the word masking), I hope the simplicity of the LETTERMASK subroutine will prompt programmers to add this extra protection to check-printing routines.

Almost all numbers can be represented with two sets of words. These are the words 'one, two, three, ..., eight, nine' and the words 'ten, twenty, thirty, ... eighty, ninety.' I say almost all, because there are the numbers from 11 to 19 , which, unfortunately, require a separate set of words. This oddity creates some minor programming complications, but it does not make the problem unsolvable.

For purposes of clarity, I refer to the first list (the words one through nine) as Word List A, the second list |the words ten through ninety) as Word List B, and the 'teens' list (11 through 19) as Word List C. In the program, these lists are referred to separately.

Subroutine LETTERMASK properly encodes any value from \(\$ .00\) to \(\$ 9,999.99\), and returns a word string for that amount. The upper limit is arbitrary and could be changed without too much difficulty. Values below \(\$ 1.00\), and the cents portion of any value, are returned as numbers. In addition, the routine replaces the standard ASCII 0 with the letter \(O\) to make the printout of the cents more readable. I
recommend that in all check-writing programs, 0 's be replaced with \(\mathrm{O}^{\prime}\) 's to spare the bank and the recipient of the check having to decipher the value and, perhaps, from making an error. Many people confuse the number 0 with the number 8 if they are not familiar with the ASCII convention.

The format for the output of the subroutine is:
***[ONE..NINE THOUSAND] [ONE.. NINE HUNDRED] [ONE..NINETY NINE] DOLLARS AND [00..99] CENTS***

The input to the subroutine is the variable AMT, which is created in your main program with the value you wish to have printed out as a lettermask. This value must be an integer number - no decimal places are to be shown. The subroutine will return with your masked number as variable T\$.

Subroutine LETTERMASK works quite simply. First it determines how many digits are in the integer number AMT that you present to the subroutine. Based on that value, one of six branches is taken (lines 20000 through 20040). The program then 'cascades' down from the most significant digit toward the cents part of the value, until the entire number has been converted. Note that REM statements have been used to separate the thousands, hundreds, tens, ones, and teens conversion routines. Using the thousands section (lines 20100 to 20130 ) as an example, follow the steps the program takes.

The computer evaluates the Ath element of the variable AMT (in this case \(A=1\), so it looks at the first, or leftmost, digit]. The variable K is set to this value and a branch to line 20700 is taken to get the proper word list from Word List A . The string variable \(\mathrm{T} \$\), previously loaded with "***", is now
(Continued on page 104)


KONEO KONG
Climb ladders, ovoid the barrels the crazy ape is rolling at you, and rescue the damsel. Fast machine code action.
AValloble tor VC-20 and COMMODORE 64
PLAYED WTH JOYSTCK OR KEMBO OR KEMBARD


GRAVE ROBBERS
Introducing the first GRAPHIC ADVENTURE ever ovailable on the VC-201 With reallstic audio-visual effects, you explore an old deserted graveyard and actually see the perils that lie beyond.
 Avalloble tol \(\mathrm{KC}-20\) and COMMODORE 64 PLAYED WTIH KEYBOARD
\(\qquad\)


Detend your planet against the hostile allens. makes this "Den-like" program one of our best arcade games.
Avaltoble lor \(M\) MC-20 and COMMODORE 64
 PLATED WTH JOYSTCK

ADVENTURE PACK 1
(3 programs)
jack and the Beanstaik Deteat the Giant in your quest for his Golden Hen.
Computer Adventure Re-live the "excitement" of getting your computer. An adventure with a very different flavor.
Moon Base Apha You must find a way to destroy the meteor that is racing towards your base. of else all moon colonies will be demollished!
Avaluble for \(\mathrm{VC}-20\) and COMMODORE 64
PLAYED WITH KEYBOARD
\(\qquad\)

ADVENTURE PACK II
(3 programs)
Nrican Escape As the sole survivor of a plane crash. you must find your way out of the dark continent. Hospltal Adventure You are a spy whose mission is to complere the bungled assassination is recuperatthe evil die hospital under heaw guard.
Bomb Threat Get back to town to warn the authorties of the bomb planted by the ter hideout.
prisoner at the 20 and COMMODORE 64 Available PLAYED WIH
\(\qquad\) \(\$ 19.95\)

CHOMPER MAN
High speed machine action. Don't let the bullies catch you in a game packed full of machine code. Avaliable lor COMMODORE 64 PLAVED WITH JOYSTCK OR KEBBOARD
\(\qquad\) \(\$ 19.95\)
Programs for the VIC-20 and the COMMODORE 64


VICTORY SOFIWARE INC. 7 Valler prook Rood, pooll. PA 19304 (215) 296-3787

Cneck your local dealer or order checks, money ORDERING We accepl perns HARGE. Charge orders. please include number and expliae or date. Overseas orders pleave a u.s. bank. Add nave check paydile
\(\$ 4.50\)
Circle No. 68 \(\$ 4.50\) postage and handing ales tax.

\section*{At Last! Two new ways to expand the usefulness of your Rock well AIM or Cubit CPU computer are available for immediate, off-the-shelf delivery.}

To discover how two new, state-of-the-art circuit cards from De sign Dynamics can expand the use you get from your AIM or Cubit computer by providing bus compatible Analog to Digital Interface and Full Color Graphics, please read on.

Until now, if you needed a complete Analog to Digital Interface or Full Color Graphics display for your AIM or Cubit computer, you had to design and build it yourself.

But today, Design Dynamics fills each need on \(41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}\) cards. Just look at the features packed into each card:

\section*{A total control interface}

The AIM/CPU-compatible interface has been designed to provide you with a flexible, total control interface which includes A to D functions, D to A functions, a clock with user ports section and a User Prototyping Area.

Analog to digital input is handled on 16 channels with 12 bit resolution. Maximum conversion time is \(35 \mu \mathrm{sec}\). per channel.

Digital to analog output provides control of 0 to 10 Volts. 8 \(\mu \mathrm{sec}\). conversion is provided by double-buffered, 4 channel, 12 bit D/A converters.

A 24-hour time of day clock, with independent crystal timebase, includes an alarm mode for scheduling events. Two 16 bit timers, each with 16 bit prescaler and start/stop control can count multiple source pulses.

And, a User Prototyping Area provides power, ground bus and grid area for custom signal conditioning.

The software, written in machine language and designed to interface with BASIC, includes routines for: A to D acquisition; D to A output; initialize board chips; and Set \& Read time functions. XY Plotter Driver and Data Logger routines are available as options.

\section*{Full Color Graphics}

Now you can expand your system display from limited alphanumerics to a full color CRT display which includes two graphic modes, multicolor mode and text mode, viewed on your own color CRT.

Design Dynamics Full Color Graphics uses no system RAM, and includes it's own 16K dynamic RAM memory. It provides 35 planes of vertically stacked display, 32 sprites in front of graphic plane and internal anticollision management.

Graphics I provides pattern graphics in 15 colors, \(256 \times 192\) pixels; while Graphics II offers more complex colors and patterns. The Multicolor mode displays in positions of \(64 \times 48\), with four colors per \(8 \times 8\) pattern. The Text mode pattern plane is broken into \(40 \times 24\) positions for text-only display.

Startup software included assists the user in becoming familiar with the extensive capacities of this board.

\section*{Full documentation included}

A Data Pack which includes full documentation for each board makes it simple to put the \(A\) to \(D\) Interface and Full-Color Graphics to immediate use. Or, if you need to be sure these board will fit your applications, you may order the Data Pack separately for only \(\$ 15\) per card.

\section*{Motherboard available}

A fully buffered Motherboard for system expansion of eight cards allows convenient placement of boards for prototyping.
Save time, money; call today
Why spend time and money expanding your AIM or Cubit functions when these useful, flexible boards are available right now?

Call Jack Schnabel for complete information on these state-of-the-art products.
lengthened with the proper word and the word "THOUSAND".

Hundreds and tens are created similarly, except if the tens digit happens to be a ' 1 '. This means that the value for the tens and ones digits together could be any number from 10 to 19 and, unless the value of the ones digit were 0 , the word "TEN" is not appropriate and the 'teens' list is required. A branch is therefore taken to line 20450 to determine whether or not a special word from Word List C is needed.

In the cents section, lines 20500 to 20610, the two rightmost digits are scanned to find any ASCII 0's so they can be converted to the letter O for clarity on printout. Note that at line 20520, if the number of cents is less than 10 , then the leading zero is required and the letter 0 is put into variable QQ\$. At lines 20540 to 20580 , the cents digits are scanned and then added to QQ\$. Line 20600 covers the
```

LETTERMASK
10 REM *************************
2б REM*
30 REM* LETTERMASK
40 RRM * BARTON M. BAUERS JR.
50 REM*
66 REM*\#***********************
76 REM*
Bø REM * RESERVED VARIABLES
REM*
10% REM* REAL
110 REM * A, AMT, K, J
12б REM *
130 REM * STRING
140 REM * AMT$, K$, Q$, QQ$,T\$
150 REM *
160RRM ************************
170 REM*
180 REM* READ IN vaLUE
190 REM*
2g|f REM *************************
50% HOME
510 INPUT "ENTER NOMEER ";AMT
52\varnothing GOSUB 2øбøб
530 PRINT T\$
540 GOTO 510
2øбøøA=\varnothing:K=\emptyset
2%|10 ANT\$ = STR\$ (AMT)
2øб2\emptyset J = LEN (AMT%)
2øø36 T% = "***"
2Ø\varnothing40 ON J GOTO 2\varnothing50|,205ø0,204\varnothing
\emptyset,2ø3øळ,2ø2ø\varnothing,2ø1ø\varnothing
20056 PRINT "NUMBER TOO LARGE "
T\$ = "***VOID***": RETURN
2Øø95 REM ***********************
20\emptyset%6 REM*
20097 REM * THOUSANDS
26098 REM *
2бg99 REM **********************
201% A = A + 1
20110 K= VAL (MID\$ (AMT$,A,1))
2ø12ø COSUB 2ø7øø
20130 T$ = T\$ + K\$ + "THOUSAND"
2б195 RRM**********************
20196 REM*
20197 REM * HUNDREDS
2б198 REM*
20199 RTM **********************
2\emptyset2\sigma\varnothing A = A + 1
2Ø210 K = VAL (MID\$ (AMT$,A,1))
2б22ø GOSUB 2б7øø
2ø230 IF K$ = "" THEN 2Ø30@
2\sigma240 T\$ = T\$ +K\$ + " HUNDRED"

```
instance when an amount being con－ verted has cents only and no dollars． Finally，at line 20610，the entire string \(\mathrm{T} \$\) is completed with the addition of the proper cents mask．

To try subroutine LETTERMASK， type in the following lines of code after saving LETTERMASK to disk．｜These lines are not part of the actual subroutine，so they should not be saved to disk．）
500 HOME
510 INPUT＂ENTER NUMBER＂；AMT 520 GOSUB 20000
530 PRINT T\＄
540 GOTO 510
Type＇RUN＂and enter some numbers． The computer will print out a properly masked value that provides more safety than the numeric masks commonly used．Remember，all numbers read in must be integers．

When you print T\＄on a check，you have to be careful to either omit any
other information from that print line， because of the varying length of T\＄，or you have to set up a method of spacing to allow for the unknown length．One method of doing the latter，if your checks will not permit the balance of the line to be blank，is to use the following convention：
xxx PRINT T\＄；SPC（yy－LEN（T\＄））；

\section*{［Balance of line］}
xxx refers to your line number，and yy to the distance from the leftmost char－ acter of \(\mathrm{T} \$\) to the leftmost character of the next item you wish to print on the same line．By my calculations LETTERMASK＇s longest word string is 71 characters．

A final note：Other than checking for a number that exceeds six digits， LETTERMASK does no error checking．

You may contact the author at 30 Hillock Drive，Wallingford，CT 06492.
```

LETTERMASK (continued)
2d295 REM **********************
2ø296 REM *
2%297 REM * TENS
2d298 REM *
20299 REM **********************
2б30øA =A + 1
28310 K = VAL (MID\$ (AMT$,A,1))
2ø32\varnothing GOSUB 2ø9øø
20738 IF K = 1 THEN COTO 2640%
2%34% T$ = T$+K$
20395 REM **********************
20396 REM *
26397 REM * ONES
20798 REM *
26399 REM **********************
26400A = A+1
20640 IF K=1 THEN 20450
26420 K = VAL (MID\$ (AMT\$,A,1))
20430 GOSUB 207%ø
20440 GOTO 2648%
20445 REM **********************
2g446 REM*
20447 REM * TEENS
20448 REM *
20449 REM *********************
2$450K=VAL (MID$ (AMT\$,A,1))
28460 IF K = Ø THEN 26480
2%476 GOSuB 21106
2$48\varnothingT$ = T\$ +K\$ + " DOLLARS AND"
2\varnothing495 REM ***********************
20496 REM*
2\emptyset497 REM* CENTS
20498 REM *
2\emptyset499 REM ***********************
2\emptyset5б\emptysetK = VAL (RIGHT\$ (AMT$,2))
20510 QQ$ = ""
2052\emptyset IF K < 10 THEN QQ\$ = "O"
20536 K\$ = STR\$ (K)
20540 FOR A = 1 TO 2
26550Q\$ = MID$(K$,A,1)
26560 IF Q\$ = "\emptyset" THEN Q\$ = "O"
20576 QQ\$ = QQ\$ + Q\$
2058Ø NEXT
2б590 K\$ = ""
2Ø6\emptyset\emptyset IF J < 3 THEN K\$ = " ZERO
DOLLARS AND"
2Ø610T\$ = T\$ + K\$ + QQ\$ + "CENT
S***"
2ø62\emptyset RETUFN
2\sigma621 REM ***********************
2Ø622 REM* END

```
\(2 \not 1898\) REM＊
26899 REM \(* * * * * * * * * * * * * * * * * * * * * *)\)
2б9бб ON K GOTO \(2 \varnothing 92 \emptyset, 2 \emptyset 930,2694\)

990，21066
\(26918 \mathrm{~K} \$={ }^{114}:\) RETURN
2б920 K\＄＝＂TEN＂：RETURN
\(20930 \mathrm{Kq}=\)＂TWENTY＂：RETURN
2б94б K\＄＝＂THIRTY＂：RETURN
2б950 K\＄＝＂FORTY＂：RETURN
\(20960 \mathrm{~K} \$=\)＂FIFTY＂：RETURN
\(26976 \mathrm{~K} \$=\)＂SIXTY＂：RETURN
\(26980 \mathrm{~K} \$=\)＂SEVENTY＂：RETURN
20990 K\＄＝＂EIGHTY＂：RETURN
21ØøØ K\＄＝＂NINETY＂：RETURN
21 б95 REM＊H＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
21096 REM＊
21697 REM＊WORD LIST C
21098 REM＊
21099 REM \(* * * * * * * * * * * * * * * * * * * * * *\)
211ØØ ON K GOTO 2111す，2112ø，21．13
Ø，21140，2115б，2116 ，21176，21
18\％，21190
\(21110 \mathrm{~K} \$=\)＂ELEVEN＂：RETURN
\(21120 \mathrm{~K} \$=\)＂TWELVE＂：RETURN
\(21130 \mathrm{~K} \$=\)＂THIRTEEN＂：RETURN
\(21140 \mathrm{~K} \$=\)＂FOURTEEN＂：RETURN
\(21150 \mathrm{~K} \$=\)＂FIFTEEN＂：RETURN
\(21160 \mathrm{~K} \$=\)＂SIXTEEN＂：RETURN
\(21176 \mathrm{KS}=\)＂SEVENTEEN＂：RETYRN 2118ø K\＄＝＂EIGHTEEN＂：RETURN \(21190 \mathrm{~K} \$=\)＂NINETEEN＂：RETURN MNO＂
LETTERMASK（continued
20695 PFM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
20696 REM＊
26697 REM＊WORD LIST A
20699 REM \(* * * * \# * * * * * * * * * * * * * * * * *\)
2б7бб ON K GOTO 2672б，26736，2674

79の，2Ø8Øб
\(2671 \sigma \mathrm{~K} \$=1 ":\) RETURN
2す72Ø K\＄＝＂ONE＂：RETURN
\(26730 \mathrm{~K} \$=\)＂TWO＂：RETURN
\(20740 \mathrm{~K} \$=\)＂THREE＂：RETURN
\(20750 \mathrm{~K} \$=\)＂FOUR＂：RETURN
\(20760 \mathrm{~K} \$=\)＂FIVE＂：RETURN
\(26770 \mathrm{~K} \$=\)＂SIX＂：RETURN
\(26780 \mathrm{~K} \$=\)＂SEVEN＂：RETURN
\(20790 \mathrm{~K} \mathrm{\$}=\)＂EIGHT＂：PETURN
\(2 \not 0806 \mathrm{~K} \$="\) NINE＂：RETURN

26896 REM＊
\(2 \varnothing 897\) REM＊WORD LIST B

5499595959953599535395sss ITMTDMPU SENSE1：，

\section*{CARDBOARD 3}
An Economy Expansion Interface （Motherboard）
For the \(\mathrm{VIC}-20^{\circledR}\) Personal Computer
The＂CARDBOARD／3＂is an expansion inter－ face designed to allow the user to access more than one of the plug－in－type memory or utility cartridges now available．It will accept up to 3 RAM or ROM cartridges at once．For example：
－16k RAM＋16k RAM＋3k RAM
－16k RAM＋8k RAM＋Super Expander
－16k RAM＋8k RAM＋Vic－Man
－16k RAM＋3k RAM＋Programmer＇s Aid
－High quality T．R．W．gold plated connectors －This board is fused
－ 90 day free replacement warranty covering everything except the fuse
\(\$ 39.95\)

\section*{CARDBOARD 6}
An Expansion Interface for V1C－20e
－Allows memory expansion up to 40 K
－Accepts up to six games
－Includes a system reset button
－All slots are switch selectable
－Daisy chain several units for even more
versatility
\(\$ 87.95\)

\section*{to order}
P．O．BOX 18765
WICHITA，KS 67218
（316）263－1095
Personal checks accepted
（Allow 3 weeks）or
C．O．D．（Add \＄2）
Handling charge \(\$ 2.00\)
VIC－20＂is a registered trademark of Commodore
\(35353939353535353 \underbrace{}_{\text {Circle No．} 55}\)
\begin{tabular}{|c|}
\hline SYSTEMS INTEGRATOR \\
\hline INTRODUCING： \\
ZYTREX \\
ZT14411 \\
CMOS BAUD RATE \\
GENERATOR \\
\hline
\end{tabular} GENERATOR
REPLACES MOTOROLA MC14411
－PIN／FUNCTION COMPATIBLE
－IMPROVED FREQ OUTPUT DRIVE（4 LSTTL LOADS）
－fully static operation
－TTL－COMPATIBLE INPUTS
－WIDE OPERATING VOLTAGE

\section*{FREE EVALUATION SAMPLES} FOR VOLUME USERS
\(\$ 6.20\) EACH AT 1000 PCS．
ZYTREX CORPORATION
224 NORTH WOLFE ROAD
SUNNYVALE，CA 94086
（408）733－3973

Interface Clinic

\author{
by Ralph Tenny
}

In my first article (MICRO 58:108) I presented various hardware and interfacing terms, one of which was "decoder." Functionally, a decoder can be made with a variety of techniques, but the usual approach is to use one or more ICs. The purpose of a decoder is to produce a unique signal that relates to (usually) a memory address appearing on the bus of a microcomputer.

Figure 1 shows a graphic representation of several 16 -bit binary addresses like those produced by every instruction cycle of the typical 8 -bit microcomputer (such as the 6502 or 6809 ).
\begin{tabular}{|llllllllllllllllll|}
\hline & \(A 15\) & \(A 14\) & \(A 13\) & \(A 12\) & \(A 11\) & \(A 10\) & \(A 9\) & \(A B\) & \(A 7\) & \(A 6\) & \(A 5\) & \(A 4\) & \(A 3\) & \(A 2\) & \(A 1\) & \(A 0\) \\
\(0 F F F\) & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1000 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(1 F F F\) & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2000 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3 F F F\) & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
4000 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A000 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Figure 1. A bit map of memory address lines showing which bits are on (logic one) when the microprocessor is running. Note that when an address fleld fills up (for example, address \$FFF), a migher-order address bit must be available to designate a larger address. In this case, the next address after \$FFF is \(\mathbf{\$ 1 0 0 0}\), which turns on address line A12 for the first time.
blocks of 4096 addresses as you have EPROMs. If you do not divide the memory this way, more than one EPROM will "anwer" each time you try to read memory. Of course, if each EPROM has exactly the same contents, each one will return the same data and there is no problem. Since that is unlikely, you might find that one EPROM is trying to output 10011100 and another 00011111 . The output circuit in each EPROM is fighting with the others, and the processor is trying to read digital trash! This situation is known as bus contention, and you can have contention at different times during the microprocessor operating cycles. A requisite of computer interfacing is to eliminate any possibility of

The 16 address lines are arranged along the top in descending order of mathematical significance. That is, A15 represents \(2 * * 15\), A14 represents \(2 * * 14\), etc. Beneath these address lines are the binary representations of each of six hexadecimal addresses. That is, if the processor is pointing to address \$OFFF, the various address lines are at a logic 1 or logic 0 level, as shown in the figure. Similarly, the binary representations of the other addresses are shown. Note that if All were the highest-order address line available, the process could reach only from \(\$ 000\) to \(\$\) FFF, or a total of \(\$ 1000\) ( 4096 decimal) unique locations. To completely address 4 K -byte memory devices, such as 2732 or 2532 EPROMs, those memory devices must have 12 address lines.

If you want to read data from more than one 4 K -byte EPROM, you must have additional address lines to divide the memory area into as many different
bus contention so you can predict what will happen at any time during computer operation.

To eliminate bus contention you need to enable only one block of memory at a time, and a decoder is designed to do just that. Figure 2 shows the pinout for one popular decoder the 74LS138. For those of you unfamiliar with part numbers, the series of IC part numbers beginning with 74 is a logic family called TTL (TransistorTransistor Logic]. This logic is about ten times faster than most microprocessors. TTL parts with LS in the number are lower power parts and are typically used as support devices for microprocessor systems.

The 74 LS 138 is a moderately complex IC and its operation is defined by the truth table shown in figure 3. A truth table defines what outputs result from certain input conditions, and this information allows logic designers to
understand how to use the device. Refer back to figure 2 , noting certain input and output pin signatures (names), which also appear in the chart of figure 3. G1, G2, A, B, and C are all inputs, and all " \(Y\) "'named lines are outputs. Note also that the IC has two inputs prefixed with G2 - G2A and G2B. Both these lines are active low (denoted by the circle at the input in figure 21 , which means that the lines have to be low for the device to operate. So, in figure 3, if either G2A or G2B are high (logic one), the input is disabled. Input Gl is active high (no circle), and so the decoder is disabled when Gl is low. One other common convention is used in figure 3: an " \(x\) " means "don't care."

Now examine figure 3 and interpret how a 74LS 138 decoder works. In the first line G2 is shown high |that means either G2 line), then the device is disabled, and so all four other inputs are "don't care" since they cannot affect a disabled device. When the decoder is disabled, all outputs are high, or inactive. Similarly, in line 2 Gl is shown low, and so all other inputs are don't care and all outputs are high. In the remaining lines, Gl is high and both G2 lines are low, and so the decoder is enabled. In the enabled state, each of eight possible combinations of high and low on inputs \(\mathrm{A}, \mathrm{B}\), and C results in a different single output line being low. In other words, changing input levels on inputs A, B, and C create eight unique signals that can be used to select different memory blocks and prevent memory bus contention. You might note one other item with regard to decoders: almost universally, memory devices are selected with ac-

Figure 2. The pin-out for one popular decoder, the 74LS138. See text for explanation of how the decoder operates.

tive low signals, and so almost all decoders have active low outputs.

Since a decoder responds to memory bus signals and then controls access to memory devices, such operation can be referred to as being

CS2, and R/W*. The RESET* line initializes the PIA during system startup (other lines will be discussed later). Each of the 16 port lines can be set up under program control as either input or output lines by setting a bit in a

Figure 3. A truth table explains how a complex logic IC works; this truth table is for the 74LS138 decoder.
\begin{tabular}{|ll|lll|llllllll|}
\hline G1 & G2 & C & E & A & YO & Y1 & Y2 & Y & Y4 & Y5 & YG & Y7 \\
\hline x & H & X & \(\times\) & r & H & H & H & H & H & H & H & H \\
L & X & X & X & \(\times\) & H & H & H & H & H & H & H & H \\
H & L & L & L & L & L & H & H & H & H & H & H & H \\
H & L & L & L & H & H & L & H & H & H & H & H & H \\
H & L & L & H & L & H & H & L & H & H & H & H & H \\
H & L & L & H & H & H & H & H & L & H & H & H & H \\
H & L & H & L & L & H & H & H & H & L & H & H & H \\
H & L & H & H & L & H & H & H & H & H & L & H & H \\
H & L & H & H & H & H & H & H & H & H & H & L H & H \\
\hline
\end{tabular}
'memory mapped;'" i.e., part of the memory space. In my first article I referred to a class of I/O (input/output) devices known as a PIA (Programmable Interface Adapter). PIAs reside directly on the processor bus and are selected and controlled by memory bus signals: they are called "memory mapped I/O" devices. A typical PIA is the MC6821 by Motorola. The Color Computer has two PIAs; one reads the keyboard, and one handles all other CoCo hardware joysticks, cassette recorder interface, serial port, and the D/A [digital/ analog| converter that synthesizes the sound tones. Since some of the interfacing experiments will be driven by these PIAs, you should examine the PIA and learn how to program it.

Figure 4 shows the pinout of the 6821 PIA. Note that there are 16 port lines (PA0-PA7; PB0-PB7), 8 data lines (D0-D7), plus RSO, RS1, CSO, CS1,
special register on the PIA. The three CS lines are chip select controls, which are usually driven by address decoders. The two RS (register select) lines are almost always driven by processor address lines, usually A0 and A1.

A 6821 PIA has six registers to control the entire operation of the device. Normally six registers would require three address lines so that each register could have a unique memory address. However, a simple trick allows six registers to be addressed with. only two address lines (RSO and RS1.). The internal registers are allocated this way: each of the two 8 -bit ports has three registers to control it. The Peripheral Register stores output data that drive the eight package pins associated with the port when the port is acting as an output port; or, if the port is an input port, the Peripheral Register stores in-
(Continued on next page)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline V55 & 1 & 40 & CA1 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Figure 4. Pinout and register addressing scheme for}} \\
\hline FAO & 2 & 39 & CA2 & & & \\
\hline FA1 & 3 & 30 & IRQA* & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{the Motorola Adapter. Note th}} & 6821 Programmabie interiace \\
\hline F'A2 & 4 & 37 & IRQE* & & & each output port shares an \\
\hline FAS & 5 & 36 & RSO & \multicolumn{3}{|l|}{address with Its Data Direction Reglster, and that} \\
\hline F'A4 & 6 & 35 & FS 1 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Control Register Bit 2 controls which register is addressed. See text for further explanation.}} \\
\hline PAS & 7 & 34 & RESET* & & & \\
\hline FAb & 8 & 33 & Do & & & \\
\hline FAT & 9 & 32 & D 1 & & & \\
\hline FEO & 10 & 31 & D2 & RS1 RSO & CRA2 & Location Selected \\
\hline FE1 & 11 & 30 & D3 & & & \\
\hline FET & 12 & 29 & D4 & \(0 \quad 0\) & 1 & Output Fort A \\
\hline FES & 1.3 & 29 & DS & \(0 \quad 0\) & 0 & Data Direction Register A \\
\hline FE4 & 14 & 27 & D6 & 0 & \(\times\) & Control Register A \\
\hline FES & 15 & 26 & D7 & & & \\
\hline FR6 & 16 & 25 & E & RS1 RSO & CRE2 & Location Selected \\
\hline FE7 & 17 & 24 & CS 1 & & & \\
\hline CB1 & 18 & 23 & CS2* & 10 & 1 & Output Fort E \\
\hline CET & 19 & 22 & CSO & 10 & 0 & Data Direction Register E \\
\hline Vcc & 20 & 21 & R/W* & 1 & \(\times\) & Control Register \(B\) \\
\hline
\end{tabular}


\section*{INVESTMENT OPPORTUNITY}

Exclusive franchise in America's most profitable and dynamic industry is being offered for the first time in this area. International company will place qualified individual in "Turn Key" business, train key people, provide inventory, finance your customers and pay you thousands of dollars "up front" on orders where your customers pay only on future energy savings. Existing customers of our franchises reads like 'Who's Who'" of Fortune 500.

If you qualify, you will be flown to Los Angeles for a tour of instaliations and personal interview. Minimum investment of \(\$ 29,500\) cash required. Call president at 1-800-323-6556, ext. R-37.

THIS IS NOT AN OFFERING TO SELL

\section*{PIM + POWER from COMPUTECH}

\section*{All prices Postpaid (Continental U.S. otherwise \$2 credit)}


\section*{Check the outstanding documentation supplied with AIM65}

Top quality power supply designed to Rockwell's specs for fully populated AIM 65 - includes overvoltage protection, transient suppression, metal case and power cable:
PSSBC-A (5V 2A Reg; 24V .5A Avg, 2.5A Peak, Unreg) ... \(\$ 64.95\) Same but an extra AMP at 5 volts to drive your extra boards: PSSBC-3 (5V 3A Reg; 24V .5A Avg, 2.5A Peak, unreg) ... \(\$ 74.95\)
The professional's choice in microcomputers:


AIM65/1K + PSSBC-A . \(\$ 479.95\) AIM65/4K + PSSBC-3 . \(\$ 524.95\) We gladly quote on all AIM65/40 and RM65 items as well.

\author{
vise \\ Circle No. 65 \\ P.O. Box 20054 • Riverside, CA 92516 \\ California residents add \(6 \%\) sales tax
}


C COMPILERS-COMMON FEATURES:
- UNIX VER 7 compatibility e standard float, double, and long support • run time library with full I/O and source - fast compilation and execution - full language.

AZTEC C I CP/M (MP/M) \(\$ 199\)
- produces relocatable 8080 source code " assembler and linker supplied - optional M80 interface * SID/ZSID debugger interface • library utillty - APPLE requires Z80 and 16 K card

AZTEC C][APPLE DOS \(\$ 199\)
- relocating assemoler supplied * APPLE SHELL • VED editor • Nbrary and other utilities - requires 16K card

C86 IBM PC MSDOS CP/M-86 \$249
- directly produces \(8088 / 8086\) object code - linker supplied

Manuals - \$30 ORDER BY PHONE OR BY MAIL-Specify products and disk format
software systems
Box 55, Shrewsbury, N.J. 07701 (201) 780-4004

\section*{WE'VE BEEN BUSY!}

\section*{HAVEN'T HEARD FROM US IN A WHILE?}

\section*{WONDER WAAT}

\section*{WE'VE BEEN}


We have developed a complete Typesetting System which expands the capabilities of an EditWriter to accept data from the phone lines, produce plain paper proofing copy, use improved word processing techniques, plus run a variety of printing/publishing oriented packages.

We have given "SERVICE CALL" a new meaning. Using our Master/Slave programs, a system can be examined, tested and often fixed via the telephone!!! Blown data disks, strange malfunctions, and other 'quirks' can be cured immediatelyover the telephone. Software updates can also be sent directly to your system.


We have been expanding the capabilities of the FOCUSTM Systemand have added a lot of software: TypePlus - a complete word processing system
SpellingPlus - interactive spelling checker Dynacalc \({ }^{T M}\) - the latest in VisaCalc™ type

Accounts Receivable/Accounts Payable and
Mailing List with Form Letters and more...
 If you are expanding your existing AIM, SYM or KIM computer. or building a system from the ground up, check out these updated boardsDRAM PLUS now 16/32/64/80/128 K bytes plus up to \(8 K\) static RAM or EPROM Programmer, VIA's... VIDEO PLUS/MICRO Plus has been refined... FLEXI PLUS has gone to 64 K dynamic RAM, DMA for the Floppy and IEEE 488, \(2 \mathrm{MHz} . .\).

YES - we have been very busy. In addition to our development work in both hardware and software, we have been providing board level products to a variety of OEMs and end users.* We don't have time right now to tell you about all of the things we can provide, but, write or give us a call and we'll make time!!!
Call us at 617/256-3649 or call our FOCUS System at 617/250-1460 (300 BAUD)
*Significant OEM Discounts Start At Only Five (5) Units. FOCUS, DRAM PLUS, VIDEO PLUS, MICRO Plus, FLEXI PLUS, and TypePlus Trademark TCI
Dynacalc TM Computer Systems Center VisaCalc TM VisaCorp

\section*{TSENO ME MORE İNFORMATION}
| Name
Company
| Address
\(\qquad\)
City State zip I MY INTEREST B: \(\qquad\) 1 1

\section*{THE COMPUTERIST}

34 Chelmsford St., Chelmsford, MA 01824
617-256-3649

\section*{Reviews in Brief}

\section*{Product Name:}

Equip. req'd:
Price:
Manufacturer:

\section*{C64-Link}

Commodore 64
\(\$ 185\) (Canadian)
Richvale Telecommunications 10610 Bayview Avenue \#18 Richmond Hill, Ontario L4C 3N8 Canada
Description: C64-Link is a module containing circuitry that provides the C64 with IEEE-488 bus compatibility, BASIC 4 commands, a machine-language monitor, and communications routines. It plugs into the 64's cartridge connector, and includes an edge-card connection (like the PET) for a PET-to-IEEE cable. Two programs are included on cassette. One moves the addresss of C64-Link's ROM from \(\$ 9000-\$ 9 F F F\) to \(\$ C 000-\$ C F F F\), freeing more RAM for BASIC. The other copies the C64's BASIC ROMs into RAM and replaces the standard serial I/O routines with IEEE ones. No extra RAM is used, but BASIC 4 and the monitor are not available in this configuration.

Pluses: One package adds several desired C64 enhancements. Unit design is sturdy and clean. Software allows great flexibility.

Minuses: Module hangs out from back of C64 without any support. An accident may result in damage to the C64 or C64-Link. A new design will include supporting rubber feet.

Documentation: Manual includes summary of capabilities, description of provided software, detailed hook-up instructions for different equipment combinations, and documentation of BASIC 4 and monitor commands.

Skill level required: Beginner
Reviewer: Loren Wright
\begin{tabular}{ll} 
Product Name: & Star-DOS \\
Equip. req'd: & \begin{tabular}{l} 
TRS-80C Color Computer with disk \\
and 16K memory
\end{tabular} \\
& \begin{tabular}{l}
\(\$ 49.90\) \\
Price:
\end{tabular} \\
Manufacturer: & \begin{tabular}{l} 
Star-Kits \\
\\
\\
\\
\\
P.O. Box 209 \\
Mt. Kisco, NY 10549
\end{tabular}
\end{tabular}

Description: Star-DOS is a high-quality disk operating system for the Color Computer that is compatible with Radio Shack Disk BASIC. It features six memory-resident commands and three disk-resident commands. While this is a relatively slim menu, the most commonly needed commands are available. Also, the structure of Star-DOS is such that special commands can be added easily by the experienced programmer. Unlike the Radio Shack DOS, StarDOS has 18 user-accessible functions that do most of the I/O needed to support assembly-language programs. For example, the programmer has available routines to read

\title{
Perry Peripherals Repairs KIMs!! (SYMs and AIMs Too)
}
- We will Diagnose, Repair, and Completely Test your Single Board Computer
- We Socket all replaced Integrated Circuits
- You receive a 30 -day Parts and Labor Warranty
- Your repaired S.B.C. returned via U.P.S. - C.O.D., Cash

Don't delay! Send us your S.B.C. for repair today
Ship To: (Preferably via U.P.S.)
Perry Peripherals
6 Brookhaven Drive
Rocky Point, NY 11778

\section*{KIM-1 Replacement Modules}
- Exact replacement for MOS/Commodore KIM-1 S.B.C.
- Original KIM-1 firmware - 1 K and 4K RAM versions

\section*{Replacement KIM-1 Keyboards}
- Identical to those on early KIMS - SST switch in top right corner
- Easily installed in later model KIMs

Perry Peripherals is an authorized HDE factory service center.
Perry Peripherals carries a full line of the acclaimed HDE expansion components for you KIM, SYM, and AIM, including RAM boards, Disk Systems, and Software like HDE Disk BASIC V1.1. Yes, we also have diskettes. For more information write to: P.O Box 924, Miller Place, NY 11764, or Phone (516) 744-6462.

\section*{Reviews in Brief (continued)}
the keyboard, send characters to the screen, print strings to the screen, etc. The programmer need only develop the central core of his program, with a probable time saving of \(50 \%\) or more. Also, several routines support disk operations, making it easy to build a custom system that does exactly what the owner requires.

Pluses: Star-DOS is inexpensive for a disk program, and is comfortable to use. It is also the only DOS that will run on either the 16 K or 32 K Color Computer. R/S BASIC compatibility means that a user need not buy a BASIC to have a higher-level language available, and he need not give up the refinements of R/S BASIC that support the special Color Computer hardware and its graphics.

Minuses: Star-DOS is new enough that it does not have a large stable of software that will run with it, but this is being remedied. The chief lack is an assembler. An editor/text processor/mailing list/mailing label package is available now.

Skill level required: This product is ideal for the serious disk user who works mainly in assembly language \{users who work only with BASIC have no need for any DOSI. At the same time the diligent computer user will be able to learn disk system principles and techniques easily.

Documentation: An extremely well-written 55 -page manual is furnished. The instructions are thorough and
understandable, and a liberal use of examples enhances the learning process. Instructions are included for modifying FLEX-based programs to run under Star-DOS when those programs can be made compatible with the stock Color Computer architecture.

\section*{Reviewer: Ralph Tenny}

Product Name: VICMODEM - Model 1600
Equip. req'd: VIC-20 (5K or more)
Price:
Manufacturer: Commodore Business Machines, Inc. 487 Devon Park Drive Wayne, PA 19087
Description: The VICMODEM package lets the VIC owner join the telecommunications world. A small cartridge-like unit plugs into the VIC-20's user port and enables the VIC to communicate with other computers over telephone lines. The VICMODEM connects directly to the telephone via the plug that attaches to the handset; no accoustic coupler is required. There is a carrier detect light. The modern has both answer and originate modes to communicate with another VIC or to a time-sharing service like The Source or CompuServe. The package includes a tape with VICTERM, a comprehensive machine-language communications program. Using the menu-driven options
(Continued on next page)

\title{
EVER WONDER HOW YOUR APPLE II WORKS?
} QUICKTRACE will show you! And it can show you WHY when it doesn't!

> This relocatable program traces and displays the actual machine operations, while it is running and without Interfering with those operations. Look at these FEATURES:
singlo-Step mode displays the last instruction, next instruction, registers, flags, stack contents. and six user-detinable memory locations.
Trace mode gives a running display of the Singie. Step information and can be made to stop upon encountering any of nine user.detinable conditions.
Background mode permits tracing with no display until it is desired. Debugged routines run af near normal speed until one of the stopping conditions is met, which causes the program to return to Single-Step.

QUICKTRACE allows changes to the stack, registers, stopping conditions, addresses to be displayed, and output destinations for all this information. All this can be done in Single.Step mode while running.
Two optlonal diapley formata can show a sequence of operations at once. Usually, the information is given in four llnes at the bottom of the screen.
QUICKTRACE is completely transparent to the program being traced. It will not interfere with the stack, program, of I/O.

QuICKTRACE is relocatable to any free part of memory. Ifs output can be sent to any slot or to the screen.
QUICKTRACE is completely compatible with programs using Applesoft and integer BASICs, graphics, and DOS. (Time dependent DOS operations can be bypassed.) It will display the graphics on the screen while QUICKTRACE is glive.
QUICKTRACE is a beautiful way to show the incredibly complex sequence of operations that a computer goes through in executing a program

\section*{QUICKTRACE DEBUGGER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Last addresa & \multicolumn{3}{|r|}{Disassombly} & \\
\hline \multirow[t]{2}{*}{Last instruction} & FFb9 & A9 AiA & LDA & A \#すAf & \\
\hline & \multicolumn{3}{|r|}{Top soven byta of track} & Procossor codes & Usor dellined location a Contents \\
\hline Stack & ST=:70 & A 12 DE & 4.5 D4 & C1 NV-EDIZC & 0¢¢ 4 C \\
\hline & Accumulator & \(x_{\text {reg. }} \quad Y_{\text {reg. }}\). & Stack pointer & Procossor status & Content of reforenced addraas \\
\hline Contonts & \(A=A A\) & \(X=98 \quad Y=25\) & \(S F=F 2\) & \(F S=10110901\) & [] \(=\mathrm{DD}\) \\
\hline
\end{tabular}


Anthro-Digital, Inc. P.O. Box 1385

\section*{TER \\ Quit Playing Games . . . \\ Disk Based Software to Make Your \\ Computer Get Down to Business}

Disk Data Manager-Create and manage your own data base. Allows you to create, add, change, delete, search sort, print, etc Up to 1200 records on a single disk VIC 20. . . 59.95 CBM 64 . . 89.95
Payroll System-Full featured, complete payroll system. Even prints checks.

VIC 20. . . 89.95
CBM 64 . . . 99.95
Mailing List-Up to 1200 records on a single disk. Presorts by Zip Code. Prints on stock up to four labels wide.

VIC 20.
. 44.95
CBM 64 . . . 54.95
Inventory Package-Maintains quantity on hand, cost sales price, reorder point, etc. Generates suggested reorder, sales report, and sales analysis.

VIC 20. . . 89.95 CBM 64 . . 99.95
General Ledger-Up to 75 accounts! Generates Balance Sheet, Income Statement, Update Report, etc.
\[
\text { VIC 20. . } 89.95 \text { CBM } 64 \ldots 99.95
\]

Checkbook Manager-Up to 25 expense categories. Tracks all outstanding checks until they are paid.

VIC 20. . . 49.95 CBM 64 . . 49.95
CONTACT US FOR ALL YOUR DISK BASED SOFTWARE NEEDS
Call for specifics on Hardware Configurations. Send Self-Addressed Stamped Envelope for Catalogue of Games and other Applications DEALER INQUIRIES WELCOME
P.O. Box 863085

VISA \({ }^{-1}\) Plano, Texas 75086
(214) 867-1333

\section*{Reviews in Brief (continued)}
in VICTERM, it is easy to set baud rate (up to 300 baud), duplex, word length (seven or eight bits), stop bits, parity, line feed "signals", CBM "half" ASCII or true ASCII, and screen color combinations. VICTERM can avoid having words split from one line to the next. VICTERM also redefines the VIC's function keys to the most frequently used communications codes; e.g., Fl is Control-C, etc. A free subscription to CompuServe is included, with the first hour paid by Commodore.

Pluses: The modem and the software are easy to use and reliable. An outstanding value.

Minuses: The current VICTERM software will not support a disk or a printer, nor is there any way to use the package to transmit or receive a program. The manual refers to a new terminal software package called VICTERM-40 that is being developed and should solve these shortcomings as well as provide an optional 40-character terminal display line.

Documentation: The 20-page booklet is well written and comprehensive.

Skill level required: No special skills.
Reviewer: David Malmberg

DISCOUNT COMPUTER s fotysikis


\section*{OSI LIVES !}
and gets FULL SUPPORT at Community Computers

\section*{Keywriter - New Word Processor}

Compatible with Single User, MultiUser and Network Systems! Keywrlter incorporates standard commands with powerful features like:
- Mail Merge, DMS Compatible
- Menu Driven
- Full Screen Editing - User Friendly
- On Screen Help and Prompts and Formatting
- Linked Print-out of up to Nine Files
- Compatible with latest OS-65U Version
- Requires 8" Floppy or Hard Disk System
Keywriter offers a true full screen oditor, with four way cursor control at all times.
Keywriter documentation includes a 60 page Self Teaching Manual. \(\$ 300\)

\section*{Compiler for 65 U}

A true native code compller. Supports all OS-65U features, except common varibles. 2-10x improvement in speed. Compatible with latest version of OS-65U.
\(\$ 395\)

\section*{Editor-ROM}

Most powerful Editor-ROM available for OSI machines. Full four way cursor movement; windows; keystroke control of special features. Also has communications software for level I multistation systems.
For all C1P, C2, C4, C8P Basic-inROM systems, except 400 and 500 Rev A, B, C, CPU's. Requires some cuts and jumpers
- Full Support for OSI
- Custom Hardware \& Software
- Service Contracts Avallable
(703) 527-4600

2704 N. Pershing Dr. Arlington, Va 22201

Dealer Inquirles Invited

\section*{Cluster System Software}

Connect up to 16 , or more, C1, C2, C4, or C8 systems to any OSI 8" floppy system. Fast, simple disk/printer share system.
Ideal for schools.
\(\$ 500\)

\section*{DMS-X}

DMS compatible database management system with full screen file editor; definable reports with specifications editing; powerful report formatter; fast machine code keyfile sort; flexible create and recreate utilities; more.

System is fully driven menu.
\(\$ 300+\) DMS license


Double Density Floppy Controller
- Replaces 470 board
- Fully compatible with OSI format and IBM single density format.
- Double density, too. Up to 2.4 meg storage on standard floppy drives.
- \(51 / 4\) " Drive capability, software selectable.
- Phase-locked loop insures data integrity.
- Special introductory price. \$500
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{COMPUTERS} \\
\hline ATARI 400 & S 197. \\
\hline ATARI 800. & \$598. \\
\hline ATARI 410. & \$74. \\
\hline ATARI 810. & S439. \\
\hline COMMODORE 64. & CALL \\
\hline COMMODORE VIC 20. & \$149. \\
\hline COMMODORE VIC 1530 & \$69. \\
\hline NEC PC 8001A. & \$739. \\
\hline NEC PC 8012A. & \$499. \\
\hline NEC PC 8031A. & \$739. \\
\hline SANYO MCB 1000. & \$1599. \\
\hline TIMEX 1000. & S84. \\
\hline XEROX 51/4". & CALL \\
\hline XEROX \(8^{\prime \prime}\) & Call \\
\hline XEROX 630 & call \\
\hline
\end{tabular}

\section*{DISKETTES}

TERMINALS
TELEVIDEO 910. . . . . . . . . . . . . . . . . . 5589.
TELEVIDEO 950 . . . . . . . . . . . . . . . . . . . 5945.

PRINTERS
\begin{tabular}{|c|c|}
\hline DIABLO 620 & \$1199. \\
\hline DIABLO 630. & \$1675. \\
\hline OKIDATA 82A & \$419. \\
\hline OKIDATA 83A & \$699. \\
\hline OKIDATA 84P & \$1029. \\
\hline EPSON & CALL \\
\hline NEC 8023 & \$479. \\
\hline
\end{tabular}

SOFTWARE


24 LUMBER ROAD
ROSLYN, N.Y. 11576
toll free
8006451362
5166211362
Circle No. 63


Basic Aid
"An excellent program and fine utility." Rainbow Review - Aug. 82
Single control key input of
BASIC commands. \(\$ 34.95\)

\section*{Spectrum Stick}
"More like arcade joysticks than anything we've yet encountered.
Rainhow Review-Oct. 82
Response and control put the joy
back in color computing. \(\$ 39.95\)

\section*{Colorcom/E}
"Out of thousands of programs, this program... SUPER!" 80.US Review-Nov. 82 A smart commurications package. Disk or Rompack \(\$ 49.95\)

\section*{CoCo/EAD}

Color Computer Editor, Assembler and Debugger \(\$ 6.95\)
Spectrum Paddle
For quicker side-to-side action and higher scores. \(\$ 19.95\)

\author{
CALL NOW \\ 212.441-2807 \\ FOR FAST DELIVERY \\ All orders plus \(\$ 2\) shipping
}

SEND TO
DEPT. C2 93-15 86TH DRIVE
WOODHAVEN, N.Y. 11421 WY residents add sales tax

\section*{MICRObits}

Deadline for MICRObits: 20th of second month before publication ie. April 20th for June issue. Send typewritten copy (40-word limit) with \(\$ 25.00\) per insertion. [Subscribers: first ad at \(\$ 10.00\).

\section*{Enhanced OS65D 3.3 C1P-MF}

Many new functions such as system commands for catalog control, 10 active files, end of file/end of volume processing, background printing, file append, dynamic file buffers/sectors command file processing, long string read command. Many morel \(\$ 30\). Write for details.
Ray Lydon
20 Eastwood Dr
Grafton, OH 44044

\section*{Lessons in Algebra}

An easy and fun way to learn the basic elements of high school algebra. Apple computer diskette \(\$ 29.95\). 30-day money-back guarantee if not satisfied.

\section*{George Earl \\ 1302 So. General McMullen Dr. \\ San Antonio, TX 78237}

\section*{The State of the Art in Astro-Software}

Wide range of astrological and astronomical software of the highest quality. From powerful (and income-producing) astrological chatting service packages and printing interpretation packages, to super-accurate computer ephemerises. For all Commodore computers, Apple II Plus, and TRS- 80.

Matrix Software
315 Marion Avenue
Big Rapids; MI 49307

\section*{Apple II Interfacing}

FLY BOARD is a programmable interface that includes a 6522
VIA, 2 K bytes of RAM, two 36 -inch DIP jumpers, and
documentation that makes interfacing easy and fun. Only
\(\$ 129.95\) from:
SNAVE SYSTEMS
P.O. Box 957

Niles, IL 60648
1312|966-4505

Go
Plays at 9 kyu level, scores automatically, can vary board size, etc. \(\$ 29.00\).

> Thn F Moore
> 1145 Alameda 11
> Belmont CA 94002

\section*{VIC-20 USERS: Get Serious With A PRDMQUEEN}
- A cartridge development system - Comprehensive manuals
- Program from Commodore VIC-20 keyboard into built-in 4K ROM emulator - Jumper to target ROM socket
- Test programs in circuit
- Fits EXPANSION PORT
- Includes Hexkit 1.0, a powerful \(100 \%\) machine code editor/debugger utility program that makes coding for 8-bit Micros a snap.
- Built-in EPROM programmer and power supply
- Burns \& runs EPROMS for the Commodore VIC-20, too

Programs 2716, 2732, 2732A, 27C16, 27C32, adaptable to 2532 \& 2764

\section*{PRGMILUEEN CARTRIDGE COMPLETE ONLY \(\$ 199\)}


\section*{GLDILCESTER CGMPUTER, mic.}
\begin{tabular}{lcr} 
& \multicolumn{1}{c}{ US } & Canada \\
Promqueen 64 & \(\$ 299.00\) & \(\$ 399.00\) \\
8K board with 1 EPROM & \(\$ 29.95\) & \(\$ 39.95\) \\
16 board with 1 EPROM & \(\$ 39.95\) & \(\$ 49.95\) \\
8K board with 1 EPROM, C64 & \(\$ 39.95\) & \(\$ 49.95\)
\end{tabular}

Send for Free Brochure

\section*{UPGRADE YOUR AIM-65* INSTANTLY \\ - A trademark of Rockwell Inc}

\section*{To A 6809 Development System}

With The
"MACH-9"
From
M M S Inc.



Includes:
*6809 CPU Plug-in Assembly
*Super-set of AIM Monitor
*Two-Pass Symbolic Assembler
*Complete Monitor Source Listings
*Enhanced Cut \& Paste Editor
*200 Page Manual
*Full I/O Control
"MACH-9" is assembled and tested with local BUS, 5 locking low force ROM sockets and 2 K Static RAM

M M S Inc.
1110 E. Pennsylvania St. Tucson, AZ 85714
[602] 746-0418

\title{
INICRO Hardware Catalog
}


Apple Drive

A unique programming aid for Apple computers monitors drive line status and computer power. The


Drive Signal monitor from Teaco, Inc.

ADASI units provide LED status indication of all lines
connecting the floppy drive to the computer. On system bootup, the display shows the activity with a display of flashing lights. First, it indicates the power supply voltages to assure safe operation. Then the multi-colored display shows the status of all lines, for system analysis. ADASI daisy chains between the computer and drive or can be used with the computer alone.

Three are available: The ADASI I (\$59.50), designed for internal drive connection, and the ADASI II (\$139.50) and ADASI III (149.50), for their respective drives with external connection.

Contact computer stores or Teaco, Inc., P.O. Box E, 2117 Ohio Street, Michigan City, IN 46360; (219)874-6234

\section*{Apple Software Protected}

A programmable Data Lok for protection of Applecompatible software allows software to be copied for normal backup. However, the software will run only on machines with Data Lok plugged into the game port socket.

Each series of keys supplied to various software companies is unique to that company. They in turn insert unique code into their software. Quantity pricing is as low as \(\$ 12\). The device is available only to

authorized software companies on a controlled basis.

Available from Teaco, Inc., P.O. Box E, Michigan City, IN 46360; (219)874-6234


A new electromagnetic digitiaing tablet features user specification of output data in absolute measurement or the number of user-defined minimum increments down to \(0.001^{\prime \prime}\) \((0.025 \mathrm{~mm})\). Metric or English measurements are also switch-selectable. Multiple interfaces add to its flexibility - dual RS232C, bit parallel or IEEE-488 - and can be output in either the standard serial or packed binary format. It operates in point, stream, incremantal. or switch stream modes and measures up to 200 points per second. Other standard features include firmware for self-diagnostics, metric menuing. host override of switch-settable functions, and an inboard audible tone. Optional features include 1,4 , or 16 button
cursors, axis rotation and scaling.

An \(12^{\prime \prime} \times 12^{\prime \prime}\) ( \(\$ 675.00\) ) and a \(20^{\prime \prime} \times 20^{\prime \prime}\) ( \(\$ 1275.00\) ) version are available. Quantity prices on request.

For more information write Numonics, 418 Pierce Street, Lansdale, PA 19446 (215)923-0183

\section*{Silence Noisy Printers}

Soundtrap quiets printing noise to a level where a business or phone conversation can be conducted standing next to a functioning printer, according to Trace Systems, Inc. with the unit in the upright position, held by the optional stand, the accessory becomes a data holder or copy stand. Soundtrap also
provides storage for paper and simplifies paper feeding and fan folding.

This accessory accomodates most popular printers, including Epson, NEC, Okidata, IBM, and Apple.

For pricing and other information, contact Trace Systems, Inc., 1928 Old Middlefield Way, Mountain View, CA 04043; toll free (800) 24-TRACE, or in CA, call Jim Paige collect at (415) 964-3115


Soundtrap from Trace Systems, Inc.

\section*{Commodore Communications}

Compack for the Commodore 4032, 8032, 64 is an intelligent terminal communications package that turns the Commodore into a communications control center. It records data to disk, reads data from disk, and sends data to the printer. User programs control the unit to provide remote telemetry, bulletin boards, etc. Price is \$129.95.

For more information contact CGRS Microtech, P.O. Box 102, Langhorne, PA 19047.

\section*{Portable 68000 Trainer}

Micro 68000 is a portable 68000 Training/Prototyping System designed for engineers and technicians. It comes with six amp switchig power supply, Versabus 68000 computer board, hexadecimal keyboard, and LED display packaged in a hardwood and dark, plastic case. An optional, padded carrying case is also available.

The 16 K byte memory can be any combination of RAM or ROM and includes both Pete-bug keyboard monitor and Tutor-bug providing the user with debug, assembly, disassembly, program entry, and I/O control functions. The expanded display board shows entries in both hexadecimal and binary. The computer board contains two RS-232 ports and 32 bits of parallel I/O. Micro 68000 comes with Lance Leventhals's " 68000 Assembly Language Programming," Motorola's "68000 Users Manual," and CSA's "Micro 68000


Micro 68000 from Computer Systems Associates

User's Manual." Price is \$1498.00

For more information contact Computer Systems Associates, 7562 Trade St., San Diego, CA 92121; (619)566-3911

\section*{64K Buffer for Epson Printers}

A new printer buffer card, Wizard-EBI Epson Buffered Interface mounts

\section*{Wizard-EBI Epson Buffered Interface from Wesper Microsystems}

inside all Epson MX Series Printers. It allows the computer to dump its print data into the buffer quickly freeing up the computer. The printer continues to print at its own rate of speed while the computer goes on to the next task.

The Wizard-EBI does not change the printer characteristics, so no special software or cabling is required. Delivered ready to install by a simple procedure, the buffer is available with 8 K (\$139.00), 16K (\$158.00), \(32 \mathrm{~K}(\$ 200.00)\), or 64 K (\$280.00) characters, depending on the number of RAM chips plugged into sockets provided on the card. The Wizard-EBI has a Centronics-compatible parallel interface identical to that of the Epson printer.

For more information contact Wesper Microsystems, 3188 Pullman Street, Costa Mesa, CA 92626; (800) 850-8737, or in CA (714) 850-1666.

\title{
Incro Software Catalog
}

\section*{Dark Crystal for the Apple}

The Dark Crystal Adventure Game offers significant advancements in graphics, language, and programming, according to its producers. The player becomes Jen, the hero of the movie ''The Dark Crystal," and controls actions by typing commands on the computer keyboard.

The plot of the game concerns a quest for a missing shard (as it did in the motion picture), which must be replaced by Jen in the broken crystal in order to save the world.

Price is \(\$ 39.95\). Available from Sierra On-Line Inc., Sierra On-Line Building, Coarsegold, CA 93614; (209) 683-6858.

\section*{Elementary Fun}

Rhymes and Riddles for the Atari, IBM/PC, and Apple II Plus, contains three-letter guessing games, nursery rhymes, riddles, and famous sayings. In each game you press letters to fill in the blanks and complete the lines. Once you have correctly completed the lines you are rewarded with colorful graphics and sound.

Price is \(\$ 29.95\). Available from Spinnaker Software Inc., 215 First St., Cambridge, MA 02142

\section*{Help With Math}

Elements of Mathematics for the Apple II Plus assists in the instruction of the elements of mathematical functions. Content
includes: adding fractions (common denominators); reducing fractions; adding fractions (unlike denominators). Student recordkeeping is provided.

Price is \(\mathbf{\$ 9 0 . 0 0}\). Available from Electronic Courseware Systems, Inc., P.O. Box 3274, Station A, Champaign, IL 61820; (217) 359-7099.

\section*{Stock Market on the Apple}

This Stock Market Utility Package, DOW 2000/ OPTION43/BE. POINT7, will determine price projections based on a stock's BETA coefficient or Relative Strength \# and the Dow Jones Average. Projections are made as you vary

"The Dark Crystal" adventure game recreates scenes from the motion picture.
the DOW, on one stock or entire portfolio with single scan, quick scan, or variable scan of values. The option program will give you the percent of cost increase over the option months to determine which month and strike price option to buy for a given stock. BE.POINT7 will determine your break-even point for options or securities.

Price is \(\$ 23.95\) booklet \(\$ 4.95\) extra). Available from Bit'n Pieces Series, P.O. Box 7035, Erie, PA 16510-0035.

\section*{Improve Your Typing}

Typing Package for the VIC-20 consists of three different programs on a single tape and assists typing students. One program, WARMUP, takes the student through a series of finger exercises of increasing difficulty. The other programs give the student drill on longer blocks of text. A score is indicated for all programs. The package is a supplement to a school course or self-teaching text.

Price is \(\$ 12.75\). Available from MFJ ElectroEnterprises, P.O. Box 13076, Kanata, Ont. K2K 1X3 Canada; (613) 592-2962.

\section*{VIC Adventure}

In Zorlok an adventure game for the VIC-20, you are the great, great grandson of Zorlok the wizard, and you have inherited a quest! You must enter his castle, wipe out a plague of monsters, and regain his

KWARE RSSUCIATES, LTD.


\section*{0.card Questionnaire Anaiysis Software}
- Microcomputer based

Avoid the expense of contract services -. do everything in-house on yaur own Apple \(\|^{+}\)microcomputer
- Easy dato entry

Avoid time consuming keypunching. Uses respondent-marked cards entered with on Optical Mark Reader (keyboard entry alsa passible).
- Comprehensive data onalysis

Sart on any varioble(s), tally all responses, conduct cross tabs, correlations, linear regression, trequency distributions, and more.
- Complete editing copabilities

Weight items, derive compasites, add or delete items, and more
- Easy-1o-use

Programs are user friendly, menu driven, ond interactive. No special computer expertise is required.

Call ar send for more intormation today.

SCIENTIFIC SOFTWARE RSSOCIPTES, LTD.


> Boxey Says: 'The place to find the Cable you need is in my Catalog!"


No matter what type of data cable you need, you can find it in the BLACK BOX \({ }^{\circ}\) Catalog. We carry 23 types of cables to fit every popular interface ( 17 in all). Data Cables are available cut to length and terminated to your specs or in bulk with separate connectors for on-site installation.
The 1983 Edition of the BLACK BOX \({ }^{\circ}\) Catalog contains \(282^{*}\) different data communications products, including cables.
Send for your copy today. It's Free!
- 56 models of Data Switches. 14 Test Sets, 7 Modern Eliminators, 6 Line Orivers. 5 Protocol Converters, 9 Communication Adapters, 8 Printer Intertacess, 8 Terminal/Line/Modem sharing devices, Tools, etc., etc.
Phone or write:

BLACK BOX \({ }^{\circledR}\) CATALOG
Dept. SQ • P.O. Box 12800 • Pittsburgh, PA 15241
(412) 746-2910

TWX 510-697-3125
Circle No. 69

\title{
IMAGE PRINTER ][ THE FULL SERVICE PICTURE PRINTER
}

\section*{BEYOND CONVENTIONAL PROGRAMS.}

The new, improved IMAGE PRINTER goes beyond the capabilities of conventional picture printing programs for the Apple //. Even owners of graphic printer interface cards will find that IMAGE PRINTER greatly expands their picture printing abilities!

\section*{FULL SERVICE MEANS MORE FEATURES.}

IMAGE PRINTER starts you out on the fast track by helping you "capture" the HI-RES pictures from your favorite programs-even the copy-protected ones!

IMAGE PRINTER then lets you customize the picture the way you want by adding titles, lines, boxes, color filling portions of the screen, or even scrolling the entire picture in any of four directions.

After you polish your picture, IMAGE PRINTER lets you easily select any portion of it to be printed. The resulting image can be shrunk or expanded and then printed either vertically or horizontally, anywhere on the printed page.
\begin{tabular}{|c|c|c|c|}
\hline FEATURES & PMAGE & \multicolumn{2}{|l|}{GRAPHIC
PRINTER \(\begin{gathered}\text { PTHER } \\ \text { PICTURE }\end{gathered}\) CARDS PROGRAM} \\
\hline Capture pictures from programs & \(\times\) & - & \\
\hline Save pictures on diskette & \(\times\) & - & \(\times\) \\
\hline Menu driven for ease of use & \(\times\) & - & X \\
\hline Unprotected, modifiable & \(\times\) & - & \\
\hline Add titles, borders, lines \& boxes & \(\times\) & - & \\
\hline Color fill portions of picture & \(\times\) & & \\
\hline Scroll pictures 4 ways & X & - & \\
\hline View picture before printing & \(\times\) & - & \\
\hline Print any portion of picture & \(\times\) & - & X \\
\hline Select a portion of a picture using a graphic "window' & \(\times\) & - & \\
\hline Print \(1 / 2\) to \(6 \times\) normal size & & & - \\
\hline Print horizontally or vertically & \(\times\) & \(\times\) & \(\times\) \\
\hline Print anywhere on page & X & - & X \\
\hline
\end{tabular}

Image Printer works with over 30 different printers and 20 different interface cards.
DON'T SETTLE FOR LESS!
GET THE FULL SERVICE PICTURE PRINTER! \$49.95

\section*{Software Catalog}
treasures. Multiple skill levels are provided.

Price is \(\$ 39.95\). Available from MicRo Information Systems, P.O. Box 73, Wayne, NJ 07470; (201) 696-3296.

\section*{FILEX for PET/CBM}

FILEX for PET/CBM allows you to read and write IBM "BASIC Data Exchange" diskettes. The system allows information exchange between mainframe/mini computers, and remote CBM machines. Requires 32 K , PEDisk \(8^{\prime \prime}\) floppy.

Price is \(\$ \mathbf{2 4 5 . 0 0}\), which includes ROM and manual. Available from CGRS Microtech, P.O. Box 102, Langhorne, PA 19047; (215) 757-0284.

\section*{Light Typing}

MasterType \({ }^{\text {TM }}\), for the Atari 400 or 800 and Apple II provides typing instruction in game format. You
(continued)
must zap the enemy word by typing it correctly or the word will zap you. Eighteen lessons graduate from home letter recognition to eight-letter words, numbers, and BASIC programming words. You can create your own lesson to meet individual needs.

Price is \(\$ 39.95\). Available from Lightning Software, Inc., P.O. Box 11725, Palo Alto, CA 94306.

\section*{SXR Plus for the Apple II}

SXR Plus produces a sorted cross reference of an Applesoft source program. Variables are always included and the user has the option to include/exclude referenced line numbers, numeric constants and or strings. All information is presented in a single alphabetized list; the user can select either a 40 - or an 80 -column format. A search feature is also included.

Price is \(\$ 39.95\). Available from Prasek Computer Systems, Inc., P.O. Box 2427, Santa Clara, CA 95055; (408) 554-0420, or computer stores.

\section*{Geography on the Color Computer}

Geography Pac for the TRS-80 Color Computer, an educational program, helps you learn world or U.S. geography in an enjoyable way. You need 16 K Extended BASIC machine language and a cassette tape recorder.

The \(\$ 29.95\) price includes cassette tape of U.S., Europe, Asia, Africa, and South Central America.

Available from Spectral Associates, 141 Harvard Avenue, Tacoma, WA 98466.

\section*{Apple II Game}

Monster Mash is an arcade-style game for the Apple II and Apple III (in emulation model computers. It's your job to keep the
rowdy monsters in the graveyard, and all you have to do it with is your new Monster Masher system and quick reflexes. The game offers many different skill levels and control configurations. 48 K required.

Price is \$29.95. Available from The Software Farm, 3901 So. Elkhart St., Aurora, CO, 80014; (303) 690-7559.

\section*{Commodore Word Processor}

Copy-Writer for the Commodore PET/CBM and Commodore 64 is a secondgeneration word processor containing features of the best word processing systems; pagination, numbering, justification, spacing, searching. block moves, etc. It also contains capabilities for double column, shorthand, and graphics. Peridodic updates are included.

Price is \(\$ 185.00\) Available from CGRS Microtech, P.O. Box 102, Langhorne, PA 19047; (215) 757-0248

MICRO"

\title{
IS THERE LIFE AFTER BASIC? YES I WITH... COLORFORTH \({ }^{\text {TM }}\)
}

MOVE UP FROM BASIC! Forth is a new, high level language available now for the TRS-8O \({ }^{\text {® }}\) Color Computer. COLORFORTH, a version of fig FORTH, has an execution time as much as 10 to 20 times faster than Basic, and can be programmed faster than Basic. COLORFORTH is highly modular which make testing and debugging much simpler. COLORFORTH has been specially customized for the color computer and requires only 16k. It does not require Extended Baslc. When you purchase COLORFORTH, you receive both cassette and RS/DISK versions, the standard fig EDITOR and an extensive instruction manual. Both versions and 75 page manual
\(\$ 49.95\)

\section*{ARMADILLO INT'L SOFTWARE}
P. O. Box 7661

Austin, Texas 78712


Phone (512) 459-7325


THE PROFESSIONAL'S CHOICE
FORTH - A Tool for Craftsmen!
It has been said that if Chippendale had made programs he would have used FORTH as his tool. If you want to learn how to program, use a teaching language-PASCAL or BASIC. If you know how to program, use a language designed for craftsmen-FORTH.

\section*{FORTH Systems}

For all FLEX systems: \(6800 \& 6809\). Specify \(5^{\prime \prime}\) or \(8^{\prime \prime}\) diskette and hardware configuration. For standalone versions, write or call.
** tFORTH-extended fig-FORTH (1 disk)
\$100 (\$15)
** tFORTH + -extended more! ( \(3^{\prime \prime}\) " or \(28^{\prime \prime}\) disks) \(\quad \$ 250\) ( \(\$ 25\) ) tFORTH + includes 2 nd screen editor, assembler, extended data types and utility vocabularies, GOING FORTH CAl course on FORTH, games, and debugging aids.

TRS-80 COLORFORTH - 10K ROM Pack
Full screen editor. Will work on \(4 \mathrm{~K}, 16 \mathrm{~K}\), or 32 K systems
\(\$ 110\) (\$20). Disk versions available.

\section*{Applications Programs}
** firmFORTH 6809 tFORTH + only
\$350 (\$10) For target compilations to rommable code. Deletes unused code and unneeded dictionary heads. Requires tFORTH + .
** TINY PASCAL compiler in FORTH 6800/09
\(\$ 75\) (\$20)
** FORTH PROGRAMMING AIDS: Extensive debugging, decompiling, and program analysis tools. \(\$ 150(\$ 10)\)
Manuals alone, price in (). Add \(\$ 5 /\) system for shipping. \(\$ 12\) for foreign air. Talbot Microsystems
1927 Curtis Ave., Redondo Beach, CA 90278
(213) 376-9941
(TM) IFORTH, COLORFORTH and firmFORTH are trademarks of Talbot Microsystems. (TM) FLEX is a trademark of Technical Systems Consultants.

\section*{ATTENTION PROGRAMMERS!!}

DATASOFT is currently seeking programs and programmers to add to their rapidly growing and expanding operation. A qeading marketer and developer of personal computer software, DATASOFT offers experienced assemblylanguage programmers the opportunity to join their staff to develop and translate arcade games such as ZAXXON'm, as well as to author original material for their games, education and home management product lines. DATASOFT pays competitive salaries, plus bonuses based on product performance. Relocation assistance is available, if needed.

If you have working knowledge of Atari, Apple, TI, or Commodore operating systems, graphics, animation and sound, call or write Melinda Storch at:


9421 Winnetka Ave.
Chatsworth, CA 91311
(213) 701-5161/(800)423.5916

ZAXX[JN and SEGA are registered trademarks of Sega Enterprises. DATASOFT is a registered trademark of Datasoft, Inc.

\section*{ROCKWELL Microcomputers from Excert, Inc.}
\begin{tabular}{|c|c|}
\hline A65-1 (TKRAM) & \$435 \\
\hline A65-4 (4KRAM) & \$45 \\
\hline A65-4B,4F (4K, BASIC or FORTH) & \$495 \\
\hline A65-4AB (4K, BASIC \& Assembler) & \$5 \\
\hline A65/40-5000 (32K RAM) & \$125 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LANGUAGES for AIM 65 \({ }^{\text {® }}\) \& AIM 65/40 \({ }^{\circledR}\)} \\
\hline Assembler & \$35 \\
\hline BASIC ROMs & . \(\$ 65\) \\
\hline FORTH ROMs. & . \(\$ 65\) \\
\hline
\end{tabular}

ENCLOSURES \& POWER SUPPLIES
\begin{tabular}{|c|c|}
\hline A65-006 & \$175 \\
\hline ENC4A & \$115 \\
\hline ENC5A & \$130 \\
\hline ENC6A & \$140 \\
\hline
\end{tabular}

\section*{Edrueational Computer Division EXCERT INCORPORATED}

\author{
- sules \\ - SERvice \\ - installation \\ - Consulting
}
P.O. Box 8600 White Bear Lake Minnesota 55110 (612) 426-4114

\section*{RM 65 \({ }^{\text {® }}\) SERIES}

Deduct 5\% from list if ordered with AIM \(65{ }^{(1}\) or AIM 65/40 \({ }^{\circledR}\).

REPAIR SERVICE
(out of warranty only) \(\$ 25 / \mathrm{hr}\). plus parts - \(\$ 25 \mathrm{~min}\).

\section*{SPARE PARTS \\ are available}


\section*{Authorized Dealers for:}

CUBIT, MTU, FORETHOUGHT PRODUCTS, GORDOS, SEAWELL, DYNATEM, APPLIED BUSINESS COMPUTER

CASH DISCOUNT - Deduct \(5 \%\) for Prepaid Orders (we pay shipping)

TERMS:
Net 30 from approved Companies \& Institutions - otherwise COD. Shipping will be added to order. Minnesota residents add \(6 \%\) sales tax. Prices subject to change without notice.

AlM 65. AIM 65/40 and RM 65 are registered trademarks of Rockwell international Corp.

\section*{= VIDEO TERMINAL BOARD 82-018}

This is a complete stand alone Video Terminal board. All that is needed besides this board is a parallel ASCII keyboard, standard NTSC monitor, and a power supply. It displays 80 columns by 25 lines of UPPER and lower case characters. Data is transferred by RS232 at rates of 110 baud to 9600 baud switch selectable. The UART is controlled (parity etc.) by a 5 pos. dip switch.

Complete source listing is included in the documentation. Both the character generator and the CRT program are in 2716 EPROMS to allow easy modification to your needs.

This board uses a 6502 Microprocessor and a 6545-1 CRT controller. The 6502 runs during the horz. and vert. blanking ( \(45 \%\) of the time). The serial input port is interrupt driven. A 1500 character silo is used to store data until the 6502 can display it.


\section*{Features}
- 6502 Microprocessor
- 6545-1 CRT controller
- 2716 EPROM char. gen.
- 2716 EPROM program
- 4K RAM (6116)
- 2K EPROM 2716
- RS232 I/O for direct connection to computer or modem.
- 80 columns \(\times 25\) line display
- Size \(6.2^{\prime \prime} \times 7.2^{\prime \prime}\)
- Output for speaker (bell)
- Power + 5 700Ma.
+1250 Ma .
-1250 Ma .


This board is available assembled and tested, or bare board with the two EPROMS and crystal.
Assembled and tested
```

\#82-018A \$199.95 \#82-018B \$ 89.95

```

Bare board with EPROMS and crystal

\title{
John Bell Engineering, Inc.
}

\section*{BULLETIN BOARD}

FORUM-80 Augusta, GA FORUM-80 Charleston, SC FORUM-80 Cleveland, OH . FORUM-80 \#2, Denver, CO FORUM-80 El Paso, TX.
FORUM-80 Family Historian Fairfax, VA
FORUM-80 Ft. Lauderdale, FL
FORUM-80 Hull, England.
FORUM-80 Kansas City, MO FORUM-80 Kansas City, MO FORUM-80 Las Vegas, NV
FORUM-80 Linden, NT.
FORUM-80 Medford, OR
FORUM-80 Medical, Memphis, TN
FORUM-80 Monmouth, Brielle, NJ
FORUM-80 Montgomery, AL
FORUM-80 Nashua, NH
FORUM-80 Prince William County, VA FORUM-80 San Antonio, TX ORUM-80 Seattle, WA FORUM-80 Sierra Vista, AZ FORUM-80 Westford MA FORUM-80 Westord, FORUM-80 Wichita Falls, FORUM-80 Wild goose board, Tampa, FL

Greene Machine, WPB, FL
Greene Machine Fricaseed Chicken, Arcadia, CA Greene Machine, Riverside, CA.
Greene Machine, Los Alamitos, CA
Greene Machine, Rome, NY
Greene Machine, Rome, NY Greene Machine, Temple City, CA

HBBS Denver, CO
HBBS Oklahoma City, OK
MCMS C.A.M.S. Chicago, 1 L MCMS J.A.M.S. Lockport, lL. MCMS L.A.M.S. Round Lake, 1L MCMS P.C.M.S. Wheaton, IL
MCMS Metro West Database, Chicago, IL
MCMS NC Software Minneapolis, MN MCMS WACO Hot Line, Schaumburg, IL
NET-WORKS ABC, Kansas City, MO
NET-WORKS Apple Grove, Dallas, TX
NET-WORKS Apple Shack, Dallas, TX
NET-WORKS Apple Shack, Dallas, TX.
NET-WORKS Armadillo, Grand Forks, ND
NET-WORKS Beach BBS, Pensacola, FL. . NET-WORKS Beach BBS, Pensacola,
NET-WORKS Big Apple, Miami, FL
NET-WORKS Big Apple, Miami, FL
NET WORKS C.A.M.S., Decatur, IL
NET WORKS C.A.M.S., Decatu
NET-WORKS Charleston, WV.
NET-WORKS Chipmunk, Hinsdale, IL.
NET-WORKS Coin Games, Los Angeles, CA
NET-WORKS COMM Center NW3N AGAD, Laurel, MD
NET-WORKS Computer City, Providence, RI
NET-WORKS Computer Emporium, Des Moines, IA
NET-WORKS Computer Emporium, San Jose, CA
NET-WORKS Computer Pro, Ft. Worth, TX'
NET-WORKS Computer Station, St. Louis, MO
NET-WORKS Computer Store, Honolulu, HI
NET-WORKS Computer World Los Angeles,
NET-WORKS Crescent City, Baton Rouge, LA
NET-WORKS Dallas, TX.
NET-WORKS Eclectic Computer Sys., Dallas, TX
NET-WORKS Granite City, IL
NET-WORKS Greenfield, IN.
NET-WORKS Hacker-net, Dallas, TX
NET-WORKS Hawaii
NET-WORKS Hawaii Connection, Honolulu, HI.
NET-WORKS MAGIE, Galesburg, IL
NET-WORKS Magnetic Fantasies, Los Angeles, CA.
NET-WORKS MICRO-BBS Chelmsford, MA
NET-WORKS Missouri
NET-WORKS New York, NY
NET-WORKS North Parks, Chicago, IL.
NET-WORKS Pirate's Harbor, Boston, MA
NET-WORKS Pirate's Lodge
NET-WORKS Pirate's Ship, Chicago, IL
NET-WORKS Portsmouth, NH
NET-WORKS Softworn, West Los Angeles, CA
NET-WORKS Softwors, West Los Angeles, CA. .
NET-WORKS Sparklin' City, Corpus Christi, TX
NET-WORKS Sparkin' City, Corpus
NET-WORKS Warlock's Castle, St. Louis, MO NET-WORKS Winesap, Dallas, TX.
NET-WORKS ???

ONLINE CDC, San Diego, CA................... CN
ONLINE Dickinson's Movie Guide, Mission, KS.
ONLINE Indianapolis,IN.ID\# = GUES, pswd = pass
ONLINE Saba, San Diego, CA..................
ONLINE Santee, CA...ID \(\#=\) GUEST, pswd \(=\) PASS
PASBBS Torrance, CA
PBBS Co-operative Comp Svc, Palatine, IL
PET BBS S.E.W.P.U.G., Racine, W1
PET BBS Commodore Comm., Lake St. Louis, MO
PMS -*'IF**, Anaheim, CA.
PMS Anchorage, AK
PMS -Apple Bits, Kansas City, MO.
PMS -Apple Guild, Weymouth, MA
PMS -Baltimore, MD.

8031
80315551612
852
\& \(216 \mid 4864176\)
(303) 3998858
915) 7551000
(703) 9787561
1705) 7724444
011) 44482859169
\#1 \& 81618617040
\& 81619319316
702) 3623609 (201) 4862956 (503) 5356883 901 2768196 (201) 5286623 (205) 2725069 (603) 8825041 1703) 6705881 \(\begin{array}{r}512 \mid \\ \hline 2061723 \\ 72143 \\ \hline\end{array}\) (206) 7233282 (602) 4583850
\((318) 6317107\)
\(1617) 6923973\)
(617) 6923973
\(8|316| 6822113\)
(817) 8553916
(305) 9654388
\((213) 4453591\)
\(:(714) 3548004\)
\(714) 3548004\)
\(305) 9688653\)
\(\begin{array}{r}305 \\ 213 \\ \hline 4311443\end{array}\)
\begin{tabular}{r|r|r}
213 \\
3151 & 337743 \\
\hline
\end{tabular}
 ! (213) 2871363
[303| 3438401 4051 8489329
\#18|312| 9271020 \(\left(\begin{array}{l}815) \\ 312 \\ 748 \\ 740 \\ 312120 \\ \hline\end{array}\right.\) \&|312| 4627560 \& \(312 \mid 2600640\) \(1612 \mid\)
\(312)\)
31231
3 . \((816) 4832526\)
2146444781
(701) 7464959
(904) 9328271 (305) 9488000 \begin{tabular}{l} 
(217) \\
\(304 \mid 3458541\) \\
304 \\
\hline
\end{tabular} 304) 3458280
 (213) 3365535 (301) 7920305 (401) 3318450 (515) 2798863
 \begin{tabular}{|c|c|c|}
\hline \(808 \mid\) & 5217312 \\
817 & 7321787
\end{tabular} 81717321787
\(314 \mid 4327120\) \begin{tabular}{l}
\(314 \mid\) \\
\hline 808 \\
4827 \\
7756 \\
\hline
\end{tabular} 213) 8590894 \begin{tabular}{r}
213 \\
\hline 504 \\
4546688
\end{tabular} (214) 3611386 (513) 2233672 \begin{tabular}{r|r|}
214 & 22395672 \\
5842
\end{tabular} (618) 8772904 317) 3263833 \((214) 8247160\)
\(808) 5217312\) 808) 5217312 (808) 4231593 \begin{tabular}{l|l|l|}
\hline 309\()\) & 3427178 \\
213 & 3885198
\end{tabular} 213
617
28851488
2561446 617) 2561446 (212) 4100949 (312) 7450924 (617) 7203600 (914 6341268 (512) 9352933 (516) 6279048 (213) 4732754 (512) 8826569 416) 4456696 1618 3456638 214) 8247455
(619| 4526011 514) 9310458 (913) 4325544 317) 7879881 61916921961 619) 6921961
\#1 (213) 5167089 (312) 3599450
(414) 5549520
\((314) 6254576\)
714) 7728868 (907) 3448558 (913) 3413502 611 7641995

PMS -Campbell, CA
PMS -Century 23, Las Vegas, NV
PMS -Chicago, 1L
PMS -Cincinnati, OH ..............
PMS -Computer Merchant, San Diego, CA
PMS -Computer Solutions, Eugene, OR
PMS -Datel Systems Inc., San Diego, CA
PMS -Downers Grove/SRT, Downers Grove, IL
PMS -El Cajon, CA.
PMS -Ellicott City, MD
PMS -Escondido, CA
PMS -Ft. Smith Comp. Club, Ft. Smith, AK
PMS -Gulfcoast, Freeport, TX.
PMS -Indianapolis, IN.
PMS -Lakeside, CA. (type PMS to activate)
PMS -Los Angeles, CA
PMS -Massillon, OH.
PMS -McGraw Hill Books, New York, NY
PMS -Minneapolis, MN.
PMS -I.A.C., Lake Forest, IL.
PMS -O.A.C., Woodland Hills, CA.
PMS -Pikesville, MD.
PMS -Pleasanton, CA
PMS -Portland, OR.
PMS -Portland, OR.
PMS -Portola Valley, CA.
PMS -RAUG, Akron OH

PMS -Santa Cruz, Apros, CA
PMS -Santee, CA.
PMS -Software Unltd, Kenmore, WA.
PMS -Software Unltd, Kenmore, WA.
PMS -Your Computer Connection, KS Cty, MO.
PSBBS Baltimore, MD.
PSBBS Washington, DC
RATS Systems.
RATS Homewood, IL
RATS Wenonah, NJ.

RCP/M A.B. Dick Co., Niles, IL
RCP/M AIMS Hinsdale, IL
RCP/M Arlington, \(V A\)
RCP/M CBBS CP/M Net Simi Valley, CA
RCP/M CBBS Columhus, OH
RCP/M CBBS Dallas, TX
RCP/M CBBS Frog Hollow, Vancouver, BC, CN
RCP/M CBBS Pasadena, CA.
RCP/M CBBS RLP, MacLean, VA
RCP/M CBBS Sacramento, CA
RCP/M Chuck Forsberg, OR.
RCP/M Collossal Oxgate, San lose, CA
RCP/M CUG-NOTE, Denver, CO
RCP/M CUG NODE, PA State College.
RCP/M
RCP/M Detroit, ML.
RCP/M Geneseo, IL.
RCP/M HAPN Hamilton, Ontario, CN
RCP/M IBN PC, Niles, IL
RCP/M Logan Square, Chicago, IL
RCP/M MCBBS Keith Petersen, Royal Oak, MI
RCP/M MCBBS Ken Stritzel, Flanders, N.
RCP/M MCBBS TCBBS Dé
RCP/M Mississauga HUC Toronto
RCP/M Mississauga HUG, Toronto, Ont., CN
RCP/M Palatine IL
RCP/M Palatine, IL.
RCP/M RBBS ANAHUG, Anaheim, CA
RCP/M RBBS Arvada Elect., Colorado Springs, \(\mathrm{C} \dot{O}\)
RCP/M RBBS BBS Valley.
RCP/M RBBS Boulder, CO.
RCP/M RBBS Bethesda, MD
RCP/M RBBS Comp. Tech. Assoc., El Paso, TX.
RCP/M RBBS Computerized Services, Tampa, FL RCP/M RBBS Computron, Edmonton, Alberta, CN RCP/M RBBS Cranford, N
RCP/M RBES DataTech 001, San Carlos, CA.
RCP/M RBES DataTech 004, Sunnyvale, CA.
RCP/M RBBS DataTech 006, San Francisco, CA
RCP/M RBBS Edmonton, Alberta, CN.
RCP/M RBES El Paso, TX
RCP/M RBBS Fort Mil, SC........................
RCP/M RBES GFRN Dta Exch. Garden Grove,
RCP/M RBBS GFRN Dta Exch. Garden Grove, CA
RCP/M RBES GFRN Dta Exch. Palos Verdes, CA.
RCP/M RBES Grafton, VA.
RCP/M RBBS Houston, TX
RCP/M RBES Lavel MD
RCP/M RBBS Lavel, MD.
RCP/M RBBS Marin County ic
RCP/M RBES Mike's, Milwaukee w
RCP/M RBES MUG'Mission KS W
RCP/M RBBS MuG, Mission, KS
RCP/M RBBS Ocean, NT
RCP/M RBBS Ocean, NJ
RCP/M RBBS Piconet Oxgate, Mountain View, CA
RCP/M RBBS San Jose Oxgate, San Jose, CA
RCP/M RBES Pontiac, MI.
RCP/M RBES Paul Bogdanovich, N
RCP/M RBBS Rochester, NY.
RCP/M RBBS Rutgers, New Brunswick, NJ. RCP/M RBES San Diego, CA.
RCP/M RBBS Sofwaire Store, Los Angeles, CA RCP/M RBBS Software Tools, Austrailia. RCP/M RBES Southfield, MI RCP/M RBES Westland, M1 RCP/M RBES Woodstock, NY RCP/M RBBS Yelm, WA.
RCP/M Silicon Valley, CA
[408| 3700873 (702| 8789106 (312) 3738057 (513) 6712753 \begin{tabular}{l}
\(617) 7747516\) \\
\(619 \mid 5829557\) \\
\hline 15159255
\end{tabular} (503) 6892655 (619) 2718613 (312) 9646513 \begin{tabular}{r|r|r|}
1312 & 9646513 \\
6790553
\end{tabular} \begin{tabular}{r|}
6191 \\
\(301 \mid\) \\
465 \\
3176
\end{tabular} (619) 7460667 (501) 6460197 1713) 2337943 \((317) 7875486\)
\((619) 5617271\) |619) 5617271 (213) 3347614 (216) 8328392 (212) 9972488 1612| 9296699 |312| 2956926 (213) 3461849 (301) 6533413 (415) 4627419 !(503) 2452536 (415) 8513453
(216) 867746 ?

20119323887
\(408) 6889629\)
61915617277
(201) 7476768

120614862368
|206| 4862368

(301) 9940399
(202) 3374694
. \#1 (201) 8878874
|312| 9573924
\((609) 4685293\)
\((609) 4683844\)
\&|312| 6477636 (312) 7890499 (703) 5363769 805) 5279321 614| 2722227 (214) 9318274 604
213.7991632 70315242549 9161 4838718 5031 6213193 \(408 \mid 2632588\) (303) 7814937 (814) 2384857 (313) 5841044 (309) 9445455 (416) 3356620 312| 2598086 \begin{tabular}{l}
\(1312) 2522136\) \\
\((313) 7596569\) \\
\hline
\end{tabular} \& 61718620781 . 31318466127
\$\&(416) 8265394
\begin{tabular}{l} 
\& \\
\&12) \\
\hline
\end{tabular}
\(\begin{array}{r}(215) 3983937 \\ \hline\end{array}\) \(\begin{array}{r}(215) \\ (714) 7747837 \\ \hline\end{array}\)
\(714)\)
3031
6341158
(213) 3605053 (303) 4999169 (301) 2293196 (914) 2795693 (915 5332202

\section*{BULLETIN BOARD}

RCP/M SIBBS Bears ville, NY
RCP/M SJBBS Johnson City, NY RCP/M Terry O'Brien, Vancouver, BC, Canada

Remote Northstar Atlanta, GA.
Remote Northstar Denver, CO
Remote Northstar Largo, FL
Remote Northstar NASA, Greendelt, MD
Remote Northstar Santa Barbara, CA
Remote Northstar Santa Barbara, CA.
Remote Northstar Virginia Beach, VA.
(914) 6796559
(914) 6796559 |607| 7976416 604) 5842543
\#1 (404) 9264318
(303| 4447231
\(\begin{array}{r}813 \\ 3013599341 \\ 344 \\ \hline\end{array}\)
(301 3449156
80516827876
(804) 3405246
* 24
.24
rb
* 24
*24

ST80-CC Lance Micklus, Inc. Burlington, VT ST80-PBB Monroe Camera Shop, Monroe, NY
TCBBS B.A.M.S. New York, NY
TCBBS Leigh's Computer World, NY
TRADE-80 Alhany, GA
TRADE-80 Ft Lauderdale, FL
TRADE-80 Omaha, NE
TRADE-80 Erie, PA. .

1|802) \(8627023 \quad\) •24 . 914 \} 7827605
(212) \(3621040 \quad 24\) .|212| 8797698 \#1!(212) 7994649
.(912) 4397440
1 (305|525 1192
(402) 2926184
\(\cdot 24\)
-24

\section*{MISCELLANEOUS OR UNKNOWN SYSTEM TYPES}

ABBIES Info System Phila, PA . . . . . . . . . . . . . . . . . . . . . . . . \(215 \mid 2376908\)
ABBS |?] Queens, NY.......
(?) (Western Massachusettes).
ACE Oregon.
Adventure BBS
Alpha, Tampa, FL . . acct = ABCDOO, pwd = TRYIT
Aphrodite-E.
Apollo's Chariot, Apollo, FL.
Apple-Can Ontario
Apple-Gram
Applecrackers, Columbus, OH
Apple Tree BBS California.
ARBB Seattle, WA
Armadillo Media Services, Houston, TX.
Astro BBS New York
ATBBS Honolulu, HI
Aviators Bulletin Board, Sacramento, CA.
Bathroom Wall BBS, San Antonio, TX.
Baton Rouge Data System, Baton Rouge, LA
Blue BOSS IBM PC, Berkeley, CA.
BBS Annandale, VA.
BBS Apollo, Phoen
BBS Atlanta, GA.
BBS Atlanta, GA. .........
BBS B.R., Los Angeles,
BBS Computer Applications Co., Poland, OH
BBS Homestead, FL.
BBS Living Videotext, Menlo Park, CA
BBS Metro Detroit,
BBS Pensacola, FL
BBS The BUI
BBS To DALTŕ Toronto, Ontario, CN
BBS-80 DALTRUG, Dallas, TX.
Big Top Games System, Milwaukee, WI
Bronx BBS, NY.
Bradley Computer
BSBB Tampa, FL
Call A.P.P.L.E. Washington.
C.A.M.S. Illinois

Capital City BBS, Albany, NY
Carrier 2 Alexandria, VA
C-HUG Bulletin Board, Fairfax, VA
COMM-80 Queens, NY
Communique-80 Livingston, NT
Compuque-80, Houston, TX
Compusystems, Columbia, ??
Computer Connection.
Datamate, Canoga Park, CA.
Davy lones Locker
Dimension-80 Orange, CA.
Distra-Soft, Montreal, Quebec, CN
Dragon's Game System.
Drummer
Electric Line Connection, Sherman Oaiks, CA.
Experimental-80 Kansas City, MO
FGS/RP Games Illinois.
Heath BBS Lakewood, NI
Hermes-80 Allentown, PA
Hermes-80 Allentown, PA
HEX Silver Spring, MD.
HEX Silver Spring, MD
IDBN Info-Net Costa
IDBN Into-Net, Costa Mesa, CA
INFOEX-80 West Palm Beach, FL
Infoex-80 Akron, OH
mroport Ontario.
Irvine Line Irvine CA
ICTS Redmond, WA
Kinky Kumputer San Francisco, CA
Kluge Computer
L.A. Interchange, Los Angeles, CA.

Lehigh Press BB, PA.
Lethbridge Gaming System, Lethbridge, AB
LITHO/NET.
Long Beach Community Computer
215) 2376908
(413) 6373515
(413) 6373515
\((503) 3434352\)
(503) 3434352
(516) 6219296
(213) 5647636
(113)
(1813) 2514
251095 . (201) 7905910 . 81316453669 . 41617811796 (313) 2950783 (614) 4759791 (714) 9637222 (206) 5466239 (713) 4447098 (212) 7875520 (808) 8332616 (916) 3934459 . 512 ) 6558143 |504| 9260181 (415) 8459462 . 170319789754 \begin{tabular}{r}
\(!602 \mid\) \\
\hline 10461432 \\
9391520
\end{tabular} . (404) 9391520 (213) 3945950 (216) 7573711
(305) 2461111
\(1415) 3278876\)
. (415) 3278876 (904) 4778783 (904) 4778783
\((414) 4834578\) 1416) 4233265 \(|416| 4233265\)
\((214 \mid 2358784\) \((214) 2358784\)
\((414) 2599475\) . \(414 \mid 2599475\) \(\begin{array}{r}1617) \\ \text { (212) } 9339985 \\ \hline 9459\end{array}\) (212) 9339459
\((813) 7347103\)
\(\begin{array}{r}1813) \\ \hline 813 \\ 8856187 \\ \hline\end{array}\)
(206) 5240203
. 21714295505
(518) 3463592
(703) 8235210
(703) 3603812
(212) 8973392
201) 9924847
713) 4447041
(803) 7710922
(213| 6571799
11 (213) 9987992
(313) 7641837
.|714| 9749788
(514) 3275764
.(213) 4285206
(415) 5527671
[2131 7899512
(913) 6763613
(312) 7438176
(201) 3633122
(215) 4343998
\(96(215) 4343998\)
\(1301 \mid 5937033\)
\(.714) 5457359\)
714
305
5457359
68344
\(\begin{array}{r}1 / 216] \\ 7242125 \\ \hline\end{array}\)
! \(216 \mid 7242125\)
\((416) 2783267\)
(416) 6222462
\(416) 6222462\)
.71415514336
206) 8830403
\(206) 8830403\)
\((415) 6265465\)
8(213) 9478128
\(\begin{array}{r}\text { (213) } 6313186 \\ \# 1(215) 4353388 \\ \hline\end{array}\)
1 (145) 4353388
. (403) 320693
(800) 8316964
(213) 5917239
-24
-50

客

Mail Board-82 Seattle, WA
Micro-80 West Palm Beach, F
Micro Design, Houston, TX
Micro Informer
Midwest, St. Louis, MO
Mini-Bin Seattle, WA.
MOUI-Bin Seattle, WA.....
MRCBBS.
MSG-80 Everett, WA.
NBBS Norfolk, VA.
NESSY Chicago, IL
New England Comp Soc., Maynard, MA
New Jersey TELECOM.
North Orange County Computer Club.
Novation CO., Los Angeles, CA.
Nybbles-80 Elmsford, NY
Nybbles-80 NY
OARCS Portland, Oregon.
OCTUG Orange County, Garden
Ohio Valley BBS.
Oracle North Hollywood, CA.
Orange County Data Exchange, Garden Grove, CA
OS UNA Scarsdale, NY
PACS Online Phila, PA.
PACE -NET Pittsburg, PA
Personal Msg. System-80 Deerfield Bch, FL
PET BBS Commodore, Chicago, IL
PET BBS AVC Comline, Indianapolis, IN
PET BBS KCPUG, Kansas City, KS
PET BBS Nortec Ontario.
PET BBS SE Wyoming PUG
PET BBS PSI WordPro, Ontario, CN
PET BBS TPUG, Toronto, Ontario, CN
PHOTO-80, Haledon, NJ.
PIG-STY Costa Mesa, CA
PMBBS.
Potomac Micro Magic Inc., Falls Church, VA
RACS V Fullerton, CA
Remote Apple Jackson, MS
RIBBS Villanova, PA
SATUG BBS, San Antonio, TX
Scream Machine.
Seacomm-80 Seattle, WA
SIGNON Reno, NV.
SISTER Staten Island, NY
SLAMS Missouri.
S.L.U.M.S. Missouri

Software Referral Service
Sunrise Omega-80, Oakland, CA
Swap and Shop Washington.
Switchboard, Alexandria, VA
System/80 San Leandro, CA
Talk-80 ROBB, Portsmouth, VA
Tari-Board Denver, CO.
TBBS Canopus, Milwaukee, WI
TCUG BBS, Washington, DC
TECOM-80, Tampa, FL
Telcom 7 New Fairfield, CT.
Ielemessage-80, Atlant
THUG Heath Ontario.
THUG Heath On
Treasure Island.
Vanmil, Milwaukee, WI.
Visiboard, Wellesley MA
Weekender, Houston, TX.
Westside Download, Detroit, MI
XBBS Hamilton, OH
Zachary *Net, Houston, TX
(206) 527089
(713) 8644672
. 81318841506
314) 2274312
\(206(7625141\)
(305) 2770473
(415) 9681093
(206) 3347394
1804) 4443392
(312) 7733308
(617) 8970346
\#1 (201) 6350705
[714] 6335240 (213) 8816880 \(\begin{array}{r}\text {. } 914 \mid 5925385 \\ \hline\end{array}\)
. (212) 6260375
(503) 6412798
714) 5308226

61414234422
(213) 9805643
(714) 5377933
. \(914 \mid 7254060\)
215 3424013
\& \begin{tabular}{r|r|}
412 & 655 \\
305 & 42762 \\
42300
\end{tabular}
(305) 4276300
\(312) 3970871\)

131213970871
(317) 2555435
1816) 3562382

1416 7827320
. 141618846198
13071 6376045
Y 140766376045
. \(41612232625: 24\)
(416) 2232625
(201) 7906795
(713) 4414032
(703) 3790303
(601 5241228
|601| 9921918
(215) 5276087
\((512) 4940285\)
.\((312) 6809613\)
(312) 6809613
(206) 7638879
. (702) 8267234
\$(702) 8267277
(212) 442387 ?
(314) 8394307
(314| 3947233
(603) 6251919
. 441544520350
. (206) 2482600
\((703) 7652161\)
\((415) 8950699\)
(1815) 8950699
\(.1804) 4849636\)
(803) 4849636
!(414) 2810545

(8131 8396746
(203) 7465763
(203) 7465763
\(416)\)
41733011
( 313 ) 5477903
(313) 7751649
(414) 2717580
(617) 2355082
(301) 6574507
.|7131 4928700
.|313| 5330254
(513)8637681 24
*24
\(\qquad\)
*2 4 denotes 24 -hour operation
\#1 denotes original system of that type
-rb denotes call, let ring once and call back
-so sexually-oriented messages
-rl religious orientation

\section*{MEGAFLEX ABILITY}

\section*{You Pick The Disk System, MegaFlex Controls It!}

\section*{WITH SOFTDRIVERS FOR A FLEXIBLE FUTURE!}

MEGAFLEX-a universal floppy disk controller and modern alternative to the Apple drive system offering increased storage, improved reliability and... FLEXIBILITY.

Enjoy megabytes of online storage with your choice of micro, mini, or maxi drives-or even 6Mb with the Amlyn cartridge pack! Ideal for highcapacity storage now, winchester-disk backup later.

The MEGAFLEX secret is to autoboot softdrivers that match the needs of your drive system. All hardware functions are software-controlled. MEGAFLEX can match new drive capabilities without hardware changes. Drive-dependent ROMs have been eliminated.

\section*{APPLE III? OF COURSE!}

MEGAFLEX is compatible with BASIC, CP / M, Pascal, VISICALC, SOS and DOS-emulation on the Apple III, Apple II, Franklin Ace and Basis. All language features and operating system commands (LOAD, BRUN, etc.) are standard. If you can operate Apple drives you can operate MEGAFLEX! Your Apple software will run without modification too.


\section*{BRIDGE THE APPLE FORMAT BARRIER!}

The MEGAFLEX diskette does what Apple's cannot-read and write diskettes from other computers! Softwarecontrolled industry-standard IBM 3740 or System 34 type formats allow the MEGAFLEX library of reformatting software to read and write Altos, Radio Shack, Osborne, and IBM PC diskettes. (Call for the latest software details.)
MORE STORAGE, MORE
UNIVERSAL FEATURES, LOWEST COST
MEGAFLEX with \(8^{\prime \prime}\) maxi or high density \(5.25^{\prime \prime}\) minis gives you 1.2 Megabyte of formatted data per diskette for 8 times the file and data size!
MEGAFLEX offers flexible software choices:
- data rate ( \(250 / 500\) Kbits per second),
- single and double density recording, and
- single/double sided drive operation (max 4 drives).
MEGAFLEX has the lowest chip count of any controller today! This means less power, a cooler Apple and better reliability.
Lowest price, highest performance, that's
 MEGAFLEX!
11722 SORRENTO VALLEY ROAD SAN DIEGO, CA (619) 452-0101

\section*{MCRO} 6809 Bibliography
119. Microcomputing 6, No. 11, Issue 71 (November, 1982)

McGowan, Garrett E., "COCO Can Go," pg. 27 A comparison between the Color Computer and the IBM PC on the generation of random numbers in benchmark tests.

\section*{120. MICRO, No. 54 (November, 1982)}

Tenny, Ralph, "A Monitor for the Color Computer, ' ' pg. 19-21. Step-by-step instructions to get composite video from the 6809 -based Color Computer to drive a standard video monitor.
Anderson, Ronald \(W\)., "FLEX and the TRS- 80 Color
Computer,' pg. 23-24.
A brief description of the FLEX09 operating system as implemented on the 6809-based TRS-80 Color Computer
Steiner, John, "CoCo Bits," pg. 38-39.
Notes on the TRS-80 Color Computer point out that this machine is more than a game machine.

\section*{121. Compute! 4, No. 11 (November, 1982)}

Anon., "Terminal Emulation Package for the SuperPET," pg. 246-247.
A utility package for the 6809 -based SuperPET.
122. 80-U.S. 5, No. 11 (November, 1982)

Staff, "'Notes," pg. 16.
Simulating the PRINT@ command on the TRS-80 Color Computer.
Wright, Darrel, "Color Computer Communication," pg. 58-60.

An evaluation of ColorCom/E Version 2.0 for the TRS-80 Color Computer
Laronda, Joseph P., "Variable Listing," pg. 65-71 Analyze your Color Computer programs with this utility.
Latham, J.L., "EDTASM Plus," pg. 109-111. An editor/assembler for the TRS-80 Color Computer.
Latham, J.L., '"PRINTCC Version 1.4,'" pg. 111-112. A printer buffer for the Color Computer
Staff, "Color Computer EPROM Cartridge," pg. 119. CMEMORY-16 is a plug-in cartridge for the TRS-80 Color Computer that allows the user to add up to 16 K of continuous read-only memory.
123. Creative Computing 8, No. 12 (December, 1982)

Coffey, Michael, "New Processors for the Apple II," pg. 30-47. A review includes information on 6809 options for the Apple.
Linzmayer, Owen, "TRS-80 Color Computer Games," pg.
75-87.
A review of several games for the 6809 -based Color Computer.
Norman, Scott L., "The Color Computer Speaks," pg. 148-152. A speech-synthesis program for the Color Computer.
Ahl, David H., "Make Your Computer Into a Love Potency Meter,' pg. 346-348.

How to build an analog-to-digital interface on your Color Computer for fun and learning.
124. Micro Computer Printout 3, No. 12 (November, 1982)

Allason, Julian, "Micro 8," pg. 29.
The Fujitsu "Micro 8" has three microprocessors, two 6809 's, and a Z80A CPU to run CP/M software.

\section*{125. Commodore Magazine (October/November, 1982)}

Staff, "SuperPET Update," pg. 12.
Questions and answers on the 6809-based SuperPET.
126. '68 Micro Journal 4, Issue 11 (November, 1982)

Anderson, Ronald W., "FLEX User Notes," pg. 9-11. Comments on 6809 /FLEX software, Lucidata Pascal Version 3 and ABASIC for the 6809, FORTH for the TRS-80 Color Computer, etc.
Nay, Robert L., "Color User Notes," pg. 14-16. Notes on Color FORTH and other products for the Color Computer.
Wolf, Michael, "Keyboard Scan Routine," pg. 16-19. A routine enabling you to generate all 128 ASCII characters, control codes, and Escape sequences for the TRS-80 Color Computer.
Perotti, James, "CC FORTH," pg. 19-20. A discussion of the features of this version of FORTH for the 6809-based Color Computer.
Como, Norm, " 'C' User Notes," pg. 20-24. Notes on the use of ' C ' by 6809 -based systems.
Anon, "Problem 6809 Chips," pg. 29. A discussion of "flakey" 6809 CPU devices points to problems with chips made prior to the CW3 mask set number.
Anon, "FD88 Dev. Sys.," pg. 31-34.
With the FD88 Acorn Computer System development board two systems \{FLEX, OSO, UniFLEX, SDOS, etc.] can coreside in a single 6809 computer at one time.

\section*{127. 80 Micro, No. 35 (December, 1982)}

Wasler, David L., 'Wolfbug 64K,' pg. 41-44.
Upgrade the \(4 \mathrm{~K}, 16 \mathrm{~K}\), or 32 K Color Computer to 64 K using a monitor called Wolfbug and a 64 K RAM adapter card.
Norman, Scott L., "The Color Computer Goes FORTH," pg.
80-86.
Programming in FORTH is now possible for TRS-80 Color Computer users.
Garrison, Sidney C., "Flaky," pg. 94-98.
A graphics program for the 6809-based TRS-80 Color Computer.
Chuck, Michael J., "CC CQ," pg. 200-209
Morse Code for the Radio Amateur on the TRS-80 Color Computer.
Knecht, Ken, "Color Diskdump," pg. 354.
A BASIC program for the 6809 -based Color Computer that lets one see what is stored on a disk file or in any area of memory.
Ginger, Ron, "Easy Picture Editor," pg. 388-392.
Simple commands for art or games graphics: lines, boxes, and circles for the 6809-based TRS-80 Color Computer.
Ramella, Richard, "Fun House," pg. 419-424 A Color Computer listing for the ancient Hanukkah game of Driedel.
128. Interface Age 7, Issue 10 (November, 1982)

Segal, Hillel, "Smoke Signal Chieftain," pg. 42-45 The Smoke Signal Chieftain microcomputer runs on a 6809 microprocessor at 2 MHz , and has shown very good results in business benchmark programs.

MCRO

\section*{Advertiser's Index}
AB Computers ..... 60
ABC Data Products ..... 89
Acorn Software Systems ..... 90
Alternative Energy Products ..... 22
Amdek ..... 64-65
Anthro-Digital Software ..... 111
Applefest ..... 126
AppleTree Electronics .....  8
Arbutus Total Soft ..... 115
Ark Computing ..... 66
Armadillo Software ..... 120
Aurora Software ..... 52
Black Box Catalog ..... 119
Community Computer ..... 113
Compress ..... 77
Compu\$ense ..... \(18,52,81,105,107\)
CompuTech ..... 108
Compu-Way ..... 113
Computer Case Co ..... 7
The Computerist, Inc ..... 109
Computer Mail Order ..... 96-97
Computer Science Engineering ..... 59
Computer Trader ..... 59
Datamost, Inc ..... 6,25
DataSoft, Inc. ..... 121
Design Dynamics ..... 104
Digital Acoustics ..... 87
D \& N Micro ..... 11
Don't Ask Software ..... 75
Eastern House Software ..... 56
Excert ..... 121
Execom, Inc. ..... 43
Federal Energy ..... 107
Gimix, Inc .....  1
Gloucester ..... 115
Hayden Software ..... 95
Hudson Digital Electronics ..... 41
I J G ..... 63
Intec Peripherals ..... 22
Interesting Software ..... 10
John Bell Engineering ..... 122
John Wiley \& Sons. ..... 9
Leading Edge ..... BC

\title{
National Advertising Representatives
}

\author{
West Coast: \\ The R.W. Walker Co., Inc. Gordon Carnie \\ 2716 Ocean Park Boulevard, Suite 1010, Santa Monica, California 90405 (213) 450-9001 \\ serving: Washington, Oregon, Idaho, Montana, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, California, Alaska, and Hawail (also British Columbia and Alberta, Canada \\ Mid-West Territory: Thomas Knoor \& Associates \\ Thomas H. Knoor, Jr. \\ 333 N. Michigan Avenue, Suite 707 \\ Chicago, Illinois 60601 (312) 726-2633 \\ serving: Ohio, Oklahoma, Arkansas, Texas, North Dakota, South \\ Dakota, Nebraska, Kansas, Missouri, Indiana, Illinois, lowa, Michigan, Wisconsin, and Minnesota.
}
Logical Devices. ..... 43
Lyco Computing ..... 19
Manx Software ..... 108
McMillan Publishing ..... 83
Microbits (Classifieds) ..... 114
Micro Data Supplies ..... 21
Micro Motion ..... 89
Micro Mountain ..... 69
Microspec ..... 112
Microtech ..... 16
Microware Distributing ..... 89
Midwest Micro. ..... 83
Modular Mining ..... 115
Modular Systems ..... 90
Penguin Software. ..... 3
Performance Micro Products ..... 18
Perry Peripherals ..... 110
RH Electronics ..... 15,101
Rockroy ..... IFC
Scientific Software ..... 119
Sensible Software ..... 119
S G C. ..... 53
S J B Distributors ..... 17
Skyles Electric Works ..... 34
Smartware ..... 114
Softronics ..... 36
Sorrento Valley Assoc ..... 125
Southwestern Data Systems ..... 79
Spectrum Projects ..... 114
Strom Systems Inc. ..... 112
Talbot Microsystems ..... 121
Unique Data ..... 85
Versa Computing ..... 13
Victory Software. ..... 103
Vista Computing. ..... IBC
XPS, Inc. ..... 91
Zytrex ..... 105
MICRO Advertising
Mastering Your Vic-2068
MICRO INK is not responsible for claims made by its advertisers. Any com-plaint should be submitted directly to the advertiser. Please also send writ-ten notification to MICRO.

\section*{Middle Atlantic and Southeastern States:}

Dick Busch Inc.
Richard V. Busch
6 Douglass Dr., R.D. \#4,
Princeton, NJ 08540 (201) 329-2424
Dick Busch, Inc.
Eleanor M. Angone
74 Brookline,
E. Atlantic Beach, NY, 11561 (516) 432-1955
serving: New York, Pennsylvania, New Jersey, Delaware, Maryland,
West Virginia, Virginia, D.C., North Carolina, South Carolina, Louisianna, Tennessee, Mississippi, Alabama, Georgia, and Florida


\section*{THELEADING EDGE INPRINIIERS}

\section*{ONE GREAT LINE. ONE GREAT WARRANTY.}

Finally, there's one full family of printers that covers every business or word processing applicationall from C. Itoh, a company known for packing more product into less price: and all distributed exclusively by Leading Edge, a company known for searching out and providing that very thing. Which means that one call to one source can get you any printer, any time you need it. for any purpose. All backed by a full years' warranty from Leading Edge. (Try that on any other line of printers.)

\section*{THE PRO'S.}

The Prowriters: business printers-and more. The "more" is a dot-matrix process with more dots. It gives you denser. correspondence quality copy (as opposed to business quality copy. which looks like a bad job of spray-painting).

Prowriter : 120 cps .80 columns dot matrix compressable to \(136.10^{\prime \prime}\) carriage. Parallel or serial interface. Prowriter 2: Same as Prowriter. except \(15^{\prime \prime}\) carriage allows full 136 columns in normal print mode.

Parallel or serial interface.


\section*{THE STAR.}

The Starwriter F-10. In short (or more precisely, in a sleek \(6^{\prime \prime}\) high. 30-pound unit), it gives you more of just about everything - except bulk and noise-than any other printer in its price range. It's a 40 cps letter-quality daisy-wheel with a bunch of built-in functions to simplify and speed up word processing.

It plugs into almost any micro on the market, serial or parallel.


\section*{THE MASTER.}

The Printmaster F-10. Does all the same good stuff as the Starwriter except. at 55 cps , the Master does it faster.
```


[^0]: VISAMASTERCARD accepted $\$ 2.00$ shipping
 handling charge (California residents add 6 \%
 sales tax)
 *Apple II is a trademark of Apple Computer. Ir.c.

[^1]: Phone orders welcome. Mall orders may send charge card number (include expiraton date) cashiers check, money order or personal chech (allow ten business days for persoral or cort pany checks to cleart, Add \$3.00 for shipping, handing and insurance Nevada residents add 5.75\% sales tax. Please include phorre number. All equipment is in factoy cartons with mants facturers warranty, Equipment subject 1o piee change and availability. Call or write for price list.

 Circle No. 30

[^2]: *Registered trademarks of Apple Computer Inc.

[^3]: Bradley "Pete" Coley is founder of Communications Strategies. His firm consults to information technology companies and new ventures. You may contact him at B.L. Coley Public Relations, 533 Second Ave., New York, NY 10016.

[^4]:
 50 md $=$ ="line-by-line": IF x $\ll \gg 1 "$ THEN md $\$=$ =char-by-char 70 INPUT "[DOWNJdisplay control chars (y/n) n[3 LEFT]"; x (

 REM: turn on 6551 line
 REM: disp. modes bot. line
 10 GOSUB 270:
 So PRINT "ICLFIYou should now attempt to logon. 240 SYS 32031: ${ }^{2}$ FRINT:
 250 IF st=19 THEN 130:

 280 PRINT TAE (30) "control chars: "cc\$CS\$"[UF']" TAE (79)"[SET EOTJ[HOMEJ"

[^5]: Dialing
 requires:
 6809-based microcomputer

[^6]: You may contact the author at 3395
 Nostrand Ave., Brooklyn, NY 11229.

[^7]: SLOT EQU $70 \quad ; 6809$ slot pos. (ex.)
 IRQ02 EQU C080 + SLOT; 6502 IRQ line
 HALT EOU C081 + SLOT ; 6809 halt line RESET EQU C082 + SLOT;6809 reset line
 NMI EQU CO83 + SLOT ;6809 non-maskable interrupt line
 FIRQ EQU C084 + SLOT ;6809 fast interrupt In
 IRQ EQU C085 + SLOT;6809 interrupt reqst in
 ROM EQU C086 + SLOT ; on bd ROM enable bit for Stellation Two
 SWAP EQU C087 + SLOT ; switches A15 to be
 opposite or same as 6502
 ;most significant bit of each location determines what lines will do

 LDA STA HAL
 STA RESET ;off
 ;ensure that
 6809 is

[^8]: You may contact Mike Rosing at 4260 E. Evans Ave., Denver, CO 80222.

[^9]: ${ }^{*}$ Registered trademark of the Apple Computer Company
 tM A trademark of Computing Teaching Corporation

