

Advancing_Computer Knowledge

Opepaling Systems

The Best OS for 6809 Microprocessors

PASCAL
Machine Level Read and Write
APPLE DOS
Improve Your Apple With A New OS

Color Disk OS
Restore A Crashed Disk Recover Your Directory

The 68000 Educational Board Reviewed Redesign Your PET Calculator Keyboard Atari Program Perfects Calibration

In this month's Learning Center:

BUY A BANANA.

SAVE A BUNCH. MORE TO COME.

+

 DISCSAVERS

 DISCSAVERS

 VINYL PROTECTIVE DISK SLEEVES

 VINYL PROTECTIVE DISK SLEEVES}

COLOR CODED: Multi-color DiscSavers ${ }^{2 \pi}$ are designed for easy recognition of individual disks with your own color-keyed filing system. Ideal for office or home use.
PROTECTIVE: Custom grain vinyl provides added protection for magnetic disks by guarding against common handling hazards.
ATTRACTIVE: DiscSavers provide a handsome and professional method of single disk storage and enhance the look of your hardware while protecting your valuable software.

DURABLE: Rigid vinyl construction protects against constant handling to ensure long wear and tear.
PORTABLE: DiscSavers are the only portable vinyl disk sleeves for use with a single diskette that bear the RockRoy mark of quality.
Contact your Dealer or Pistributor.

Computer Products Division

7721 E. Gray Road Scoltsdale, Arizóna 85260
(602) 998-1577

Toli-Free 800-528-2361

...and so there werekeys for the Atari400.

So it was to be done that Inhome Software would create a full-stroke keyboard for the Atari 400 Home Computer and it would be called the B Key 400 , and would sell for $\$ 119.95$ U.S. funds. (Now just $\$ 44.95$)

The new B Key 400 was made so easy to install that the owner could do it himself in a miraculous two minutes.

With the B Key 400 keyboard from Inhome Software, you will follow into the land of professional home computers that are powerful, easy to program and have a great capacity that can be made even greater with Inhome Software 48 K and 32 K memory boards. It was done and it was good.

Your computer system is only as good as your operating system. New operating systems coming on the market provide the consumer with products that are more powerful and easier to use than most earlier versions. The June issue of MICRO takes a look at some of these operating systems including OS-9 and Motorola's MEX68KECB educational computer board. Our feature section will help you learn about many of these exciting new items and enable you to choose the right options for your particular needs and computer system.

We open our feature section with an article by Phil Daley entitled "Apple Operating Systems" (pg. 20). Phil discusses operating systems that can be used with both unmodified Apples and with those requiring additional hardware. All the systems use standard DOS 3.3 format disks. Steven Lesh, in "U.C.S.D. Directory" (pg. 26) examines the U.C.S.D. directory at the byte and bit level rather than in the usual terms of high-level language data structures. Included is a brute-force method of accessing U.C.S.D. directory blocks.
"OS-9, A Structured Operating System" by Mark Boyd (pg. 32) is a summary of OS-9, one of the most powerful systems for an 8 -bit microprocessor. MICRO follows up on Mark's article with "A Unix-Like Operating System for the 6809 Microcomputer, Part 1" by Steve Childress (pg. 46). Steve discusses the ''power-per-dollar'" of hardware as yet untapped due to manufacturers' fears of software incompatibility. Steve claims OS-9 is a new way to view software architecture that is beneficial to the smallcomputer user.

William Clements reviews the Color Computer disk system, examines disk sectors, and explains how to repair a crashed directory in "Comments/Utilities on Color Disk BASIC" [pg. 34]. And finally, to complete our feature section see Terry Jackson's "A Review of the 68000 Educa-

tional Board" (pg. 42), an overview of Motorola's new 68000 educational computer board.

In our applications section we have three articles designed to assist you in problem solving. First, if you are building remote sensors for a personal computer you may encounter trouble calibrating the homebrew sensors. See Mike Dougherty's program "Calibrating by Least Squares Polynomials" (pg. 54), which allows a set of calibration data points to be fitted with a least squares polynomial. "Pinewood Derby with Computer Timing"' by Sidney Koegler (pg. 60) eliminates the arguments and frustrations of judging the Boy Scouts' Pinewood Derby! Here is an automated timing and judging program that uses photosensors installed at the finish line. For those of you who feel helpless when converting BASIC decimal results to fractions, Dr. LeRoy Moyer has written a program that automates such calculations in "Fractionated BASIC' ${ }^{\prime \prime}$ (pg. 64).

This month the Learning Center provides you with three programs that educate and entertain. Brian Zupke teaches you how to use the VIC's joystick to draw high-resolution pictures in four different colors. Study "Four-Color Hi-Res Graphics" (pg. 70). Do you dream of becoming a note-able musician? Phil Daley's "VIC Player" (pg. 72) is a fiveoctave keyboard on which you can compose your own tunes or play old favorites while learning music programming. And David Bryson shows you how to construct a lightpen for approximately $\$ 15.00$ and two hours of work. Read "An Inexpensive Lightpen for the VIC-20, C64, and Atari" (pg. 82).

Our machine-language utilities include the continuation of Joe Hootman's series on "68000 Instructions" (pg. 88) and Randy Hyde's "Parameter Passing, Part 2" (pg. 94). Also included is Bob Sullivan's "HEXPAD: Utility for M/L Key-ins" (pg. 90).

IS THERE LIFE AFTER BASIC ? YES ! WITH... COLORFORTH ${ }^{\text {TM }}$

MOVE UP FROM BASICI Forth is a new, high level language available now for the TRS-8O ${ }^{\circledR}$ Color Computer. COLORFORTH, a version of fig FORTH, has an execution time as much as 10 to 20 times faster than Basic, and can be programmed faster than Basic. COLORFORTH is highly modular which make testing and debugging much simpler. COLORFORTH has been specially customized for the color computer and requires only l6K. It does not require Extended Basic. When you purchase COLORFORTH, you receive both cassette and RS/DISK versions, the standard fig EDITOR and an extensive instruction manual. Both versions and 75 page manual
$\$ 49.95$
Add $\$ 2.00$ shipping
Texas residents add 5 percent
DEALER AND AUTHOR INQUIRIES INVITED
Circle No. 3

dBASE II. $\$ 489.00$ BOTTOM LNE STRATEGIST 279.00 C.ITOH

PROWRITER PARALLEL. 399.00
F-10 55. 1799.00
F.10 PARRALELUSERIAL. 1359.00

GRAPPLER INTERFACE 125.00
PROWRITER II. 789.00
CALIFORNIA COMPUTER SYSTEMS ASYNCHRONOUS INTERFACE $\$ 129.00$ SYNCHRONOUS INTERFACE 149.00 CALENDAR CLOCK 105.00 RS232 INTERFACE. 124.00 PROGRAMMABLE TIMER FOR APPLE... 99.00

COMSHARE TAROET MARKETINO PLANNER CALC $\$ 79.00$ TARGET FINANCIAL MODELING. . . 249.00 CONTINENTAL SOFTWARE HOME ACCOUNTANT FOR APPLE... $\$ 59.00$ HOME ACCOUNTANT FOR IBM. . . . 109.00 DICTRONICS, INC.
RANDOM HOUSE ELECT: THESAURUS\$129.00 PROOF READER.

MONEY DECISIONS.
MATH *
dUTIL 50.00 $\$ 99.00$
FORCE II $\$ 89.00$
FOX \& CELLER $\$ 68.00$
QUICKCODE FOR dBASE II 219.00
QUICKSCREEN . 129.00

Cin104piry
 1.800-573.9511
 IM Painsymania 1-215-868-8219

IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINE, APPLE IS A REGISTERED TRADEMARK OF APPLE COMPUTERS INC., CROSSTALK IS A TRADEMARK OF MICROSTUFF. INFOSTAR IS A TRADEMARK OF MICROPRO. PRICES, SPECIFICATIONS AND AVAILIBILITY SUBJECT TO CHANGE WITHOUT NOTICE. NOT ALL PROGRAMS AVAILABLE IN ALL FORMATS. PLEASE
CALL FOR ADDITIONAL PRODUCT INFORMATION CALL FOR ADDITIONAL PRODUCT INFORMATION.
MICROHOUSE
P.O. BOx 499/1444 LInden Street

Department 302
Bethlehem, PA 18016
Dealers inquirles welcome!

INTEGRAL DATA SYSTEMS IDS MICROPRISM 480 PRINTER . . . $\$ 589.00$ IDS PRISM-132 PRINTER. 1279.00 IDS PRISM-80 PRINTER. 999.00 INTERACTIVE STRUCTURES PKASSO $\$ 135.00$ INNOVATIVE SOFTWARE, INC.
CRAPHMACAIC 8359.00
MATHEMACIC 69.00 EASYFINFORMATION UNLIMITED SYSTEMS
EASYEDER \$349.00
FD-1 or FH-1-32 (8' simaLE SIDED) $\$ 39.00$
FD-2 (8י' DOUBLE SIDED) 49.00

MD-1 or MH-1 (5% " SINOLE SIDED) 31.00
48.00

MICROPRO
CALCSTAR $\$ 99.00$
DATASTAR 165.00
MAILMERGE 149.00
WORDSTAR 279.00

WORDSTARMAILMERGE 349.00
MICROSOFT
128K RAM FOR IBM PC $\$ 389.00$
BASIC COMPILER FOR APPLE II 289.00
128K RAMCARD 389.00
192K RAMCARD 519.00
256K RAMCARD 659.00
64K RAMCARD 259.00
MICROSOFT 280 PREMIUM PACX. . 489.00
MICROSOFT 280 SOFTCARD 249.00
MULTIPLAN 199.00

TASC APPLESOFT COMPIER. . . 129.00
NORTH AMERICAN BUSINESS SYSTEMS
THE ANSWER
$\$ 229.00$
ACCOUNTS PAYABLE. PEACHTREE
ACCOUNTS RECEIVABLE. CAL
CENERAL LEDOER CAL
INYENTORY CALL
PAYROL SALES INYOICING. CAL
SALES INVOICING CALL
PERFECT CALC.
PERFECT FILER. 199.00
PERFECT SPELLER 139.00
PERFECT WRITER 199.00
128K MEMORY EXPANSION . . $\$ 380.00$ 192K MEMORY EXPANSION 475.00 64K MEMORY EXPANSION 280.00 64K MEMOY UPGRADE. 129.00 MICROFAZERS ALL MODELS . CAL QUADBOARD 64K 459.00

QUADBOARD 128K
.599 .00
QUADBOARD 192K 699.00

QUADBOARD 256K 779.00

CONTROLLER FOR EUTE I
$\$ 99.00$
RANA ELITE I 289.00

RANA ELITE II
RANA ELITE III 465.00

SMITH-CORONA $\$ 599.00$ SORCIM
SUPERCALC BY SOREIM. $\$ 219.00$
SPELIOUARD
189.00

IAICRO

Advancing Computer Knowledge

MICRO is published monthly by MCRO Amherst, NH 03031. Second Class postage paid at Amherst, NH 03031 and additionat mailing offices. USPS Publication Number: 483470. ISSN 027 1-9002. Send subscrip tions, change of address, USPS Form 357%. requests for back issues and all other fulfil. ment questions to MICRO, 10 Northern Blvd., PO. Box 6502, Amherst, NH 03031 , ar call 160318894330 , Telex 955329 ILX SRVC, 800-227-1617. Subscription rates. (per year) US. $\$ 2400, \$ 4200 / 2$ y. Foreign surface mail $\$ 27,00$ Air mail. Europe $\$ 42.00$, Mexico, Central Amenea, Middle East, North Arrica, Central Africa $\$ 48.00$, South America, South Africa, Far East, Australasia, New Zealard $\$ 72.00$ Copyight (C) 1983 by MICRO.
All Rights Reserved.

0 Operalling Systems

20 APPLE II Operating Systems Phil Daley - A look at the features offered by six popular systems

26 UCSD Directory

Steven Lesh - A description of UCSD at the byte and bit level

32 OS-9, A Structured Operating System
Mark J. Boyd - One of the most powerful systems for 8 -bit microprocessors

34 Color Disk BASIC: Observations and Utilities Michael Dudgeon and William Clements, Jr. - Examine disk sectors and repair a crashed directory

42 The 68000 Educational Computer Board
Terry A. Jackson Motorola's board features 32K of RAM and a terminal-based ROM monitor
ІІІІ||

Applications

54 Calibration by Least Squares Polynomials on the Atari
Mike Dougherty — Correct calibration problems in your home-built computer sensors

60 Pinewood Derby with Computer Timing
Sydney S. Koegler - An automated judging and timing program for this popular Cub Scout model car race

Operating Systems Feature

64 Fractionated BASIC

LeRoy Moyer - Automate fraction calculation

음

The Learning

 Center70 Four-Color Hi-Res Graphics for the VIC-20
Brian S. Zupke - Use the joystick to draw four-color pictures

72 VIC Player
Phil Daley and Bob Tripp Learn music with this fiveoctave keyboard program

82 An Inexpensive Lightpen for the VIC-20, C 64, and Atari David A. Bryson - Construct a lightpen for only $\$ 15.00$

Wachine
Language
Aids

8868000 Addressing Modes Joe Hootman - Immediate, direct, implied, and indirect addressing

90 HEXPAD: PET Utility for Machine-Language Key-Ins
Bob Sullivan - Redesign your PET calculator keyboard

94 Parameter Passing in Assembly Language, Part 2
Randall Hyde - Passing parameters via the Return Address

Columns

10 PET Vet
Loren Wright - A review of the Script 64 and WordPro 3 Plus/64 wordprocessors

14 From Here to Atari
Paul Swanson - The InHome keyboard for the Atari 400, Atari 1200XL map modes, and more

18 CoCo Bits
John Steiner - More information on video output

98 Interface Clinic

Ralph Tenny - A discussion on interface components the latch and shift register
Departments
2 June Highlights
7. Editorial

8 Letters/Updates/Microbes
51 Data Sheet
106. Software Catalog

114 Hardware Catalog
118 Reviews in Brief
1246809 Bibliography
128 Advertiser's Index

EaEK per $\boldsymbol{a}^{\prime \prime}$ cisk cartridge!

My favorite computer dictionary offers this definition of an operating system: 1. An organized collection of techniques and procedures for operating a computer. 2. A part of a software package (program or routine) defined to simplify housekeeping as input/ output procedures, sort-merge generators data-conversion routines, or tests.

Now you ask, "OK, but what really is an operating system?" Unfortunately the definition will not get much clearer. If you are technically oriented and know your computer inside as well as out, you don't need a better definidion because you already have a good understanding of operating systems. But, if you're still in a fog, read the articles in our feature section beginning on page 20 .

Of course, whatever your level of knowledge, we all know that the operating system is crucial to the running of any computer. The reason we have problems using different software on different computers is that the operating systems aren't compatible. The logical solution seems to be to provide a standard operating system that could run on many different compouters. Some steps are being taken in this direction.

As you read through this issue you'll notice that operating systems are usually developed for a particular chip or by a company for its computers. The

6502 world, where there is no standardization, provides the most problems; you'll find Commodore BASIC, Atari BASIC, Atari DOS, Apple DOS, and more. For the most part, 6809-based computers are standardized to FLEX or OS-9, and UNIX is becoming a standard for 68000 -based machines.

When you get involved with compouters based on the $\mathrm{Z} 80,8086$, etc., you'll find that CP/M is supported by virtually all of these computers. Because all the machines use one operating system, more software is available for these machines than those based on other microprocessors. As a result, many of the manufacturers of the new compouters have chosen the Z 80 or 8086 . And, manufacturers of 6502 microprocessors are beginning to plan for CP / M compatibility on their machines. For instance, Commodore has made provisions for the Z 80 or 8086 on their C 128, although neither option is yet available. There will be a Z 80 cartridge for the Commodore 64, too. A $Z 80$ card is available for the Apple, as well as a 6809 card, which will allow for CP/M, OS-9, and FLEX.
Mayinienimase

Marjorie Morse Managing Editor

MICRO Moves North!

Our new address is: 10 Northern Blvd., Northwood Executive Park P.O. Box 6502

Amherst, NH 03031
Our new phone number is: (603) 889-4330

Circle No. 6

INICRO
 Letterbox

New FCC Ham Radio Proposal

Dear Editor:

Since the April issue of MICRO featured Communication, I thought you should be aware that the FCC is now proposing a new class of amateur radio license requiring NO morse code test. The class will be intended for people whose primary interest is in computers or experimentation rather than the traditional amateur goals of work-
ing all states or all countries. The license will probably be restricted in power and in frequency, and will be mainly for short-range high-quality communication such as data links.

The existing ham radio community is vigorously opposing this new class and has organized letter-writing programs to the FCC stating their opposition. I would like to suggest that the readers of MICRO would be among those to benefit from such a new class
of license. The FCC should hear from more computer people since the ham radio voice will be well represented opposing the idea.

I believe connecting a radio link to a computer will open a new mode of communication. Comments should be addressed to the FCC referring to docket $=83-28$ FCC, Washington DC 20554. Send your comments to MICRO too.

An anonymous radio ham/computerist

Updates and Microbes

Interface Fixes

Four misprints appeared in my article "Building a Parallel Printer Interface" (53:23). In the diagram on page 23 , lines A0 and A8 are interchanged. In the same diagram, the STROBE line should not be connected to +5 . On page 24 there are two errors in the second column. About halfway down, the text should read "...simply use the Q output from U8 rather than Q.' Finally, on the next-to-last line of column 2 , the STA command should be changed to LDA.

Rolf B. Johannesen Rockville, MD

Line Correction

There is an error in my article, "A Binary Search Routine" (57:37). Line 10170 in both listing 1 and listing 2 should be:

10170 For $\mathrm{J}=\mathrm{J}$ TO 0 STEP -1
instead of
10170 For $\mathrm{J}=\mathrm{J}$ TO 1 STEP - 1
Alfred J. Bruey
Jackson, MI

Send your comments, insights, ideas, or bugs to Letterbox, MICRO, P.O. Box 6502, Amherst, NH 03031.

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 20, AMHERST, NH
POSTAGE WILL bE PAID BY ADDRESSEE

10 Northern Blva.
P.O. Box 6502

Amherst, NH 03031

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 20, AMHERST, NH

POSTAGE WILL BE PAID BY ADDRESSEE
INCRO
10 Northern Blvd.
P.O. Box 6502

Amherst, NH 03031

||III|

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 20, AMHERST, NH
POSTAGE WILL BE PAID BY ADDRESSEE
AICRO
10 Northern Blvd.
P.O. Box 6502

Amherst, NH 03031

Use This Postage Paid Card to Order the Next 12 Issues of MICRO and SAVE $\$ 6.00 \mathrm{Off}$ Newsstand Price!
SAVE 20\%!!!!

SAGETECHINCALBRIERING

SYSTEMDESGN, SMGEV

Meethenverertorme

Thechallengé víastacrealéa Computer having roompora mega byte of RAM, z buith wincheste with foppy backup, andtheabligy to perform 2000000 instictigns persecond.

A small minacle n aticfuyd And smallis excty whati tumed out to be fintact the 6 git Sagemiv-ricuding anotine beber attibutes takes yplesstian cubicfoot

What makes súch a break: through passible? systermidesigh It took the tetest 64 k dynary RAMs andtheMotorola 68ege processortechindegu pincky chertertechniology fhat trastcy: highynitegrated cosép pacted low pawerfigh speed desgif incorporatigy a propictary her Now the sagem vis ready for you: Actualyy you can choose bon three different sayen $1 V$ moders to meet your exactneeds contiguraions wina 5 miegatyte

Whathester elus b40k fopy iten onuptoz combinalortof four
 phsorederna ropoes 20 gisg bxeseforkearactynrall

 from Whidiresterdisk

Whyts nore wereareaver 20
somber frexisting popuathrs
 bep systentaperating sistent strintarneveysagem Hacta Vers softwe that was org maty Whitentor 8 bicomputersingased. QAsichid Eortan Qptionalu CEIN 6ekModua, a ne ypet Ferthiareasoavanables
Betteryetoursinat picctes

Westernjoh instates
sadacernatertatinologut

Eustern ung eqsates

1710

Tel 01745496
6x44465shyctar
Th Siexty

 terccos 180
545254 Jincicod

- sogureus a cal or yhte today fof
more sage $\cdot \mathrm{N}$ informavoms hathe:
name of your nearest:

dealer

PROCESSOA
EEGED

IIICRO

PET Vet

Loren Wright

When you start to think about serious applications for yeur Commodore 64 , a word processor should be one of the first to come to mind. Word processurs work well with the C64. The extrat memory ${ }^{\text {tid }}$ 解 more text to be held in memory A dine time, and the keyboard allows repid and accurate entry of text- Shis 40-columa display is not as mimch of problem as yod would think nerante of interference of centain coltas pri some IVs of monitors, bents ene we change character and serecnstodoss important.
lhave reviewed twoy very geod woud

 reviewed as lime ind space perm

Script 64

Script: 64 is a new word proceusitis program fort the Commiodore, 6417 David Foster of Richvale Telecoriz? munications 110610 Bayview Avenue: Richmond Hill Ontario L4C 3 Al Canada) Richvalés prodicts: in: cluding Script 64 and the $Q 64$ Lumpeartridge reviewed in Aptil, are now marketed in the U.S $10 y$ Comphit Marketing Services (300 W: Marten Pike, Cherry Hill, NJ 08002)-Thefisk version sells for \$139.95:

Design

Unlike other word processors liat use either an actual-page cor continueus-scroll organization, Scept 64 arganizes text in 22 -line screens 14 first this seemed inconvenient, but the more I used the progran, the mire 1 could see advantages, Advancing to the next numbered screen is accomplished easily hy pressing the F1' key If you advance to the next screen well before you reach the end, then you avoid a lot of problems, This leaves room to insert text later in the editing process. If you keep only a paragraph or two on a screen, then cut-and-paste operations are easy. On printout, incomplete
 ind he thank shes ar whe ehat of sereen fivardo have bo ghascreet

 \log

 mecanth64

Entry of Text

 speciar stractureds sctezas

The targe contret mip aphres toptie whole docuneat zand defues such
 lincs spacing, top and therom burders page Jength, page rumberng: anid placement of a title Scipt 64 has a
atenit control may thacis adequate for many tapplicitions, but yau may drange the parmeters You can also 3 3ye suantrolt arap with these tierted 75tandxas

Editing

Wed.

 Wexnex es thet

 thiousty inserted tw the cansor hesi=
 mbdest mpre chmbersome hationh Wordyse

1tisyeasy to trander at copy blocks Of tex front one position to anothet: even bequeen widely sepurated screens: The black is defined using the same 150celime as for block deletes:

Whole screens may be deleted bef moved, and blank ones may be mserted:

Abstract

Search and Replace The search dad search-and wedtice functions operate either foenly 0 frat carrent screen to tic ena 40-screen fire in memoty or tht ${ }^{2}$ from current strect to the ferde the disk) you byt the wice conttof over each replacement: jap may have it naker refhgements ity 1 occuriences atitomaticilly: or the shmethas throulthetext There is no widerad character mate at zigoretase mitiont

Printouts

The primitut is contrehned by? contrat nit: rompritatis specif the seduence of prame whea xafy rysten first to be sure tex y hang you intender ${ }^{2}$ the dow on the Whider fhan the 40 colninit: can begin printug trom the hert diming chis omput to yideo by pie (P) Othef Mint wiphs clude aitomatic hyphenation hit copies, pauses, and paining of screen numbers- A frequentiy used complicated print sequente my ytic saved on a blank screen, Thent priatout time onity this one seteeg needs to be fisted if the printsequente:

Form Letters and Variable Data

Script 64 has a variable chatt that allows you to define up to 20 different words or plirases of 30 or fever characters. Wheneyer you wantifo ase one of these, you enter an asterisk and the number of the variable. The word or phrase correspozding to the variabie number will be inserted at that position at printout time.

These asterisk codes are also used to fill a document from fields of a sequential or CBM Scratchpad file: ICBM Scratchpad is a separate database pro

Equipment Compatibility

Special Features

Scint 64 provides fon finty special riench charactets: whehded grave, fircomflex aygutand wahe marks: These appear correcty screen had on the printout, tht the pinter can hande it:
The dictionary mode 8 , pir int. teresting and potentially yseful (extixe It allows you to butla up a dietioniary disk of 20000 worts You ther com:

OHIO SCIENTIFIC
 NEW PROGRAMS!

SCOUT - Full color, machine language, fast action and graphics! After a year of development, comes the all machine language SCOUT. Patrol the planet surface protecting and saving the human population from abductors. Turn your OSI into a real arcade!
\$24.95 C4PMF, C8PDF.
Send for our FREE catalog. We have what you want for less: S-FORTH \$39, FULL SCREEN EDITOR \$19, ADVENTURE \$19, SKYHAWK \$8, TOUCH TYPING \$19, INTELLIGENT TERMINAL \$24, THE WIZARD'S CITY \$12, UTILITIES, and much more for the C1P to the C8PDF.
(312) 259-3150 AURORA SOFTWARE

nan

37 S. Mitchell Arlington Heights, Illinois 60005

"CARD/?"
(CARD/PRINT)

UNIVERSAL CENTRONICS
PARALLEL PRINTER
INTERFACE FOR THE VIC-20 ${ }^{\circledR}$
Now you can use your VIC-20 with an EPSON MX-80 printer, or an OKIDATA printer, or a TANDY printer, or just about anybody's printer. And you don't have to give up the use of your user port (MODEM), or change to special printer commands, or load any special software driver programs to do it.

- Outputs standard ASCII codes to the printer
- Plugs in the $\mathrm{VIC}-20^{\oplus}$ printer serial i/o port.
- Understands all standard VIC-20@ print commands.
- No modification to your VIC-20 ${ }^{\oplus}$.
- No special programs required.
- Includes all necessary cables to hook up a standard printer using centronics parallel input.
- MADE IN THE U.S.A.

The "CARD/?" is a product of CARDCO. Inc $\$ 79.95$
TO ORDER:
P. O. 80×18765

WICHITA, KS 67218
(316) 263-1095

Personal checks accepted
(Allow 3 weeks) or
C O. D (Add \$2 00
rcle No. 9
Handling charges $\$ 2.00$
VIC-20* is a registered trademark of Commodore

SYSTEMS INTEGRATOR

INTRODUCING:

ZYTREX ZT14411 CMOS BAUD RATE GENERATOR

REPLACES MOTOROLA MC14411

- PIN/FUNCTION COMPATIBLE
- IMPROVED FREQ OUTPUT DRIVE (4 LSTTL LOADS)
- FULLY STATIC OPERATION
- TTL-COMPATIBLE INPUTS
- WIDE OPERATING VOLTAGE

FREE EVALUATION SAMPLES FOR VOLUME USERS

$\$ 6.20$ EACH AT 1000 PCS.

ZYTREX CORPORATION
224 NORTH WOLFE ROAD SUNNYVALE, CA 94086
(408) 733-3973

Circle No. 10

"IIMTOMPU SENSE:,

CARDBOARD 6 \$87.95

An expansion interface for the VIC-20. Allows expansion to 40 K or accepts up to six games. May be daisy chained for more versatility.

CARDBOARD 3 \$39.95
Economy expansion interface for the VIC-20
CARD "?" CARD/PRINT \$79.95
Universal Centronics Parallel Printer Interface for the VIC-20 or CBM-64 Use an Epson MX-80 or OKIDATA or TANDY or just about any other.

CARDETTE

\$39.95
Use any standard cassette player/recorder with your VIC-20 or CBM-64

LIGHT PEN

$\$ 29.95$
A light pen with six good programs to use with your VIC-20 or CBM-64

Prices subject to change.	
TO ORDER:	P. O. BOX 18765 WICHITA, KS 67218 (316) 263-1095
rsonal Chec	ccepte

Personal Checks Accepted (Allow 3 Weeks) or C.O.D. (Add \$2)

Handling Charges $\$ 2.00$

PET VET (continued)

WordPro 3 Plus/64

Salty xie fyy tramontaty
 s89.95:

Design

 farextyion:

Entry of Text

4 41 EIIs is Ghered in 4 continous
 540 Lirevepmintaut trine: Whan the carsor Peches the erid of a screen line it 4mph whareste tre berting of the iextline, eved fit means sphting a Whty it the midile: To force ar new luk Eueh as as the end of a paragiaph,

34 A oother fie ch disk my be hrked 10 the end of the cirrent one by inChame the name of the next fite in a Spectil formit line:

Whyrersempt subsaipt and bold or

 windernedrater thate indieated with sigrutrcontrit shatacerstuspecial
 4n mos hiso wan fee demer fand meneatis

Editing

4. 5h thatsed exnmil keys can he used
 evicuthe changes may be made by

 yom 4 thenteneex und screernines may bethecen in tometh haracters may

 4x wheftan mpte function tised to minhopke any sequence ofscreen lines. Ontes fefned, linese mines mat be 4nted winsferred; ox copied. This is nivi s cinkenient as a true block type firetion where the begimings and end3nt epurits may be specified anywhere Yithin a line.
his yon can msert a whole file fon the disk at any point, assuning it yvillit:

Search and Replace

There are separate search and search and-replace functions, which can operate either locally or globally.

Abstract

Global operations act both op the cur reht file and upon subsequent linked separate command codes, plis two more to restart the searches peplace ment is done automatically on yllioc. currences, without any selective option. The Wi character is used as a wildcard to match any cbaracter, but there is no ignore-case option.

Printouts

Printouts are done:according to thie codes contained in the formantines or enter in the text Before priningt you may speef $/$ whether or not to pause beween pages, where to get duertorill vainable hlocks; and the number of copies. There is also a global option where you specify the manie of the frst file in a sequenee Linked fites are loaded automatically as they are required.

Form Letters and Variable Data

Fill points may be indicated within: your text, These will be filled betare printout either manuallyr with datu you type in, or automatically from ex. tra memory or a sequential fiewhiere is no differentiation among Gateponis. in a document, so you must les sure yeur extia memory or sequential Tle contains the right items in the proper order.

Frequently used phrases . and paragraphs may be defined in extra memory A few keystrokes, including the appropriate abbreviation, will copy that phrase of paragraph at the current cursor position.

Equipment Compatibility

WordPro is especially designed to operate with the NEC Spinwiter series of printers, so it supports all the features of that line, including special characters on its interchangeable print wheels, Other printers, inchiding Diablo, Qume, TEC, and various Commodore printers are supported too:

This evaluation was conducted using a CBM 4022 printer and a Star Micromics Gemini-10 printer througha

Manual

 bindet:

Special Features

4the screen ocharacers and borter colorsma hechatiged this sis required

 Tmastid smbeidct and hyphenation:
 Whoretre, in its miny torns, suthe most popular word processor tor Cont modore equif nent Inles are compat ible with centam size restricthors le: tween the fifferent versions:

Next Month

In my July column I'll take a look at FORTH as a development tool for commercial software on the Commodore 64. Also, I'll review some new books for the VIC
 6604 amtersty NH e3031

ROACH MOTEL	$\$ 9.95$
Kill the bugs!	
YAHTZEE 1.1	$\$ 12.95$
YAHTZEE 2.1	$\$ 14.95$

TO ORDER
P. O. BOX 18765

WICHITA, KS 67218
(316) 263-1095

Personal checks accepted
(Allow 3 weeks) or
Handling charges $\$ 2.00$

FOXSORTM"
 Presents....

Spryte B yter $^{\text {rm }}$
For the Commodore 64*

The user affectionate sprite development program. Menu-driven, Mono/Multicolor sprites, joystick/keyboard, Tape/Disk 20K w/FAST machine language routines. Over 60 commands: ROTATE (any angle 0-360), INVERT/ OBVERT, SHIFTS, SYMMETRY, AND/OR. REVERSE, REVIEW, MOVIE (animation). Create and Edit up to 128 sprites per file. For programming efficiency and FUN!

plus

The Game Maker

Automatically prepares a base for game de-velopment-up to 32 sprites WITHOUT DATA STATEMENTS! Adds SPEED to your games. Saves memory too.

To order: Send check (U.S. Funds) $\$ 29.95$ for Cassette, $\$ 34.95$ for Disk Dealer inquiries invited.

FOXSOETS

P.O. Box 507

Deer Park, Texas 77536
(713) 473-6723

Division of Foxfire Systems, Inc.

ACORN 6898e

ATTACHED PROCESSOR FOR THE APPLE IITM

\$1495
HARDWARE

- 68000 Microcomputer with 16 MHZ clock
- 131.072 Bytes of RAM Memory
- 32,768 Bytes of ROM Memory
- Two RS 232c serial ports up to 9,000 bps
- One million bps interface with APPLE" ${ }^{\prime \prime}$
- Seven levels of vectored interrupts
- Real time clock and timer
- Separate case and power supply

SOFTWARE

- Uses only one peripheral slot in the APPLE'"
- Invisible operation with APPLESOF or PASCAL
- Compatible with Compilers and 6502 Assemblies
- 68000 Assembly Language Development System

Write or call for a free brochure or send $\$ 10$ for 100 page users manual (refunded with order for ACORN)

ACORN SYSTEMS INC.
4455 TORRANCE BLVD., \#108 • TORRANCE, CA 90503 Telephone (213) 371-6307
 in assembly language programming, you needed this finely-crafted aid "yesterday." All the features you'd expect in an advanced debugger are included - step, breakpoints, windowing, super-complex conditional breaks, symbolic debugging, patch, show prior 128 steps, and compiled BASIC-like language. Supplied complete with a detailed instruction manual. A new data sheet is available on request.
PTD-6510 Debugger for Commodore 64 $\$ 65.10$ PTD-6502 Debugger for Apple II and Ile $\$ 49.95$ Manual (only) for above, each DisKit 64 Fast single disk copy (+utilities) for Commodore 64 $\$ 75.00$

200 Bolinas Road \#27, P.O. Box 538 Fairfax, CA 94930 (415) 485-0714

From Here To Atari

Many companies supply products that can be attached to the Atari 400 and almost as many supply products for the Atari 800 . Starting with this column, I will include a description of one of these products each month.

InHome B Key Keyboard

I recently installed an InHome keyboard in a customer's Atari 400 computer. This keyboard replaces the membrane keyboard inside the case. The membrane keyboard is smaller than a standard keyboard but the InHome keys are placed at the standard distances from each other. In order to do this and still fit the new keyboard into the same space, a few of the keys at the ends of the rows were relocated to places on each side of the spacebar.

Specifically, there are five relocated keys: CNTL, TAB, CAPS/LOWR, BACK S, and ESC. A period of adjustment is required for touch typists who are very familiar with the layout of the Atari 400 and Atari 800 computer keyboards. The most annoying part of the adjustment is the relocation of the BACK S key. The BREAK key on the InHome keyboard occupies the spot formerly occupied by BACK S. I feel that this point is the keyboard's major weakness; the BREAK and BACK S keys should be reversed.

Once you get past the adjustment period, the keyboard has obvious advantages. All of the keys, including SYSTEM RESET and the three function keys, are full stroke keys on this board. In addition, increasing the distance between the key centers to the standard distance of typewriters makes word processing and other textoriented tasks even easier. All except one of the keys are labelled almost identically to the keys on the Atari 400 computer keyboard. The only one completely changed is the Atari key, which is now the InHome key.

Adding an InHome keyboard and a 48 K memory board to an Atari 400 makes it almost equivalent to an Atari 800 at a savings of up to $\$ 200$. You still don't have a right cartridge slot, but that is starting to look like a vestigial organ of Atari 800 computers. Also missing is the circuit for attaching a monitor. For more information write to InHome Software Inc., 2485 Dunwin Dr., Mississauga, Ontario, Canada L5L 1T1.

On Map Modes

The new Atari 1200XL computer has two new map modes. One of them is mode 15 which is a four-color mode with 160 dots horizontally and 192 vertically. Trying a GRAPHICS 15 statement on an Atari 400 computer or an Atari 800 computer will produce an error 145 because the operating system does not support that mode. It is available on both of those computers, but you must supply your own display list or alter one supplied by the operating system.

Listing 1 alters the display list that results from a GRAPHICS 8 statement. The FOR/NEXT loop in lines 40 through 70 performs this alteration. Line 30 gets the location of the start of the display list first, then the FOR/NEXT loop investigates the list and makes the changes. The specific differences are two types of commands. A decimal 79 ($\$ 4 \mathrm{~F}$) loads the memory scan counter for the mode 8 screen. This gets changed to a decimal 78 $(\$ 4 \mathrm{E})$ for a mode 15 screen. Decimal 15 ($\$ 0 \mathrm{~F}$) is a mode line command that displays one mode 8 line on the screen. The decimal 14 ($\$ 0 \mathrm{E}$) causes a display of a mode 15 line instead.

The numbering of the commands and the modes can be a little confusing. There are two distinct numbering systems used. The modes declared in GRAPHICS statements are OS (operating system) modes and obey a numbering system quite different from the internal numbering system, referred to as the \mathbb{R} (internal register) mode. OS mode 8 is IR mode $\$ F$ and OS mode 15 (Atari 1200 XL computers only) is IR mode \$E.

The FOR/NEXT loop occupying lines 80 through 150 draws three diagonal bars of color on the screen. The BASIC? (PRINT) statement to a map mode screen is not documented at all as far as I have been able to determine. It interprets one screen dot per character in the string. If the screen is a two-color screen, as in this example, only the last bit is used in each character. Therefore, if the ATASCII value of the character is an odd number, the

《WARE ASSUCIRTES, ITD.

O.card
 Questionnaire Analysis Software

Micracamputer based
Avoid the expense of contract services .. do everything in house on your own Apple IIt micracomputer.

- Easy data entry

Avoid time consuming keypunching. Uses respondent-marked cards entered with an Optical Mork Reader (keyboard entry alsa possible).

- Comprehensive data onalysis

Sort on any variable(s), tally all responses, conduct cross rabs, correlations, linear regression, frequency distributions, and more.

- Complete editing capabilities

Weight items, derive composites, add or delete items, ond more.

- Easy-to-use

Programs ore user friendly, menu driven, and interoctive. No special camputer expertise is required.

Call or send for more information today.
SLIEMTIFIC SUFTWRAE RSSOCIATES, LTD.

Circle No. 16

Apple $11+$ is a registered trademark of Apple Camputer, inc.

PET / CBM ${ }^{\text {TM }}$ SOFTWARE SELECT!
 8032 DISPLAY
 OR
 4032 DISPLAY

FROM THE KEYBOARD OR PROGRAM NOW RUN WORD PRO 3 OR WORD PRO 4

FROM THE SAME MACHINE
Available for either 4000 or 8000 Series
ALSO:
For 2001 / 3000 Series Computers
Operate these Models in a Full 8032 Like Display For Word Pro 4* and all other 80 Column Software All installation instructions included.

EXECOM CORP.
1901 Polaris Ave. Racine, WI 53404
Ph. 414-632-1004
Circle No. 17
PET/CBM a trademark of Commodore Business Machines *trademark of Professional Software, Inc.
foreground color is used for the dot and the even numbers produce background colored dots. The ?\#6 method is used in this example because DRAWTO cannot be restricted to only even numbered or only odd numbered columns.

The requirement for the even or odd numbered columns is due to the operating system 'thinking'' that it is maintaining a mode 8 screen. Altering the display list causes the screen image to be interpreted in bit pairs. Beginning on an even row, bit pairs of 01 (binary) result in a dot of the color in register 0,10 to register 1 , and 11 to register 2 . Note that this follows the same scheme used in the BASIC COLOR statement numbering.

Listing 2 produces the same display on an Atari 1200XL computer as does Listing 1 . Since the operating system "knows" that it is a four-color screen, the numbers 1,2 , and 3 are used instead of the pairs 01,10 , and 11 . On fourcolor screens, each character in the string contributes the last two bits of its ATASCII value.

Listing 3 demonstrates the increased resolution between mode 7 and mode 15 . This listing (and Listing 1) will work on the Atari 400 computer and the Atari 800 computer as well as on the Atari 1200XL computer. Lines 10 through 70 draw the three colored bars on a mode 7 screen. Lines 80 through 100 wait for the RETURN key. Lines 110 through 140 convert the display list to mode 15. The screen will shrink to one half height because mode 7 has only half the number of lines as a full mode 15 screen.

POKEY Times

I recently received a letter from Ian Chadwick, the Associate Editor of InfoAge and author of Mapping the Atari. He suggested that I include some information on the POKEY timers in my column. His observation that the Atari documentation does not adequately cover them has some merit.

There are three of these timers available for use. All of the times use the AUDF values for initialization, which are the same values used for sound channels 0 through 2. STIMR is another location actually used to start the counters. Each timer sets an interrupt when it counts down to zero.

A couple of peculiarities about the timers reveal some interesting insights into how they operate. They are enabled by setting the corresponding bit at location 16 (decimal) to one. Set timer 1 by POKE 16,193. Note that the keyboard, including the BREAK key, no longer functions. Press SYSTEM RESET to restore the keyboard. The reset puts the value 192 (decimal) back in location 16 , disabling the interrupt.

POKEing 193 into location 16 enabled timer 1 when the AUDF value was zero. This causes a constant interrupt, leaving no processor time available and masking all other maskable interrupts. SYSTEM RESET is a nonmaskable interrupt that can override the timer interrupt.

Now POKE 53760,10, which sets AUDF1 to 10, giving timer 1 some time when it is counting before it generates
the interrupt. POKE 16,193 to enable the timer and hold down the space bar. Notice that the auto-repeat is irregular and slower and that the keyboard click changed its tune. If you POKE a number smaller than 10 into AUDF1, the auto-repeat will be even slower, the limit being a zero in AUDF1, which stops everything.

Although the examples are BASIC, the BASIC language cannot really function with these timers because interrupt routines cannot be written in BASIC. In machine language, an interrupt routine can handle the timer 1 in terrupt very effectively. One of the best uses for the timer interrupts is to time two external events like pulses on the controller jack pins. Set AUDF1 to the interval you want to use to time the event first. Alter $\$ 0210$ and $\$ 0211$, which is the interrupt vector. Store your interrupt routine starting address here. Set up a flag and a counter in memory and set the flag to zero. Last, enable the interrupt.

The interrupt routine is in three sections, controlled by the value in the flag. When it is zero, just poll the first signal. If it is present, set the flag to one, store anything in location \$D209 (this is STIMR - writing to this location initializes all timers to the AUDF value). Then zero your counter, PLA and RTI. Make sure that you pull A before any RTI and always restore X and Y and any other registers you affect or you will probably crash the system. If the flag is one, increment the counter and test the second signal. If it is present, set the flag to 2 before you restore the registers and RTI. If the flag is 2 , just restore registers and RTI.

That sequence will time the duration between the two events polled in the units determined by the value in AUDF1. To start the sequence, just store a zero in the flag. Check for the flag equal to 2 for a completed timing sequence. When the flag equals 2 , the counter value is valid. Note that the units are N/63921 seconds, where N is the AUDF1 value, so using 64 for AUDF1 produces units reasonably close to milliseconds. Altering AUDCTL can change the frequency used if this is an inconvenient unit - the default 64 KHz can be altered to about 15 KHz or about 1.79 MHz . The exact frequencies are 15.6999 KHz and 1.78979 MHz for these alternates.

Next Month

The 850 interface seems to be an interesting yet misunderstood device. July's column will clear up questions you may have. Next month's hardware product description will be of the new 80 -column RGB interface recently announced by Austin Franklin Associates.

NCRO

Send your letters to: Paul Swanson, 97 Jackson St., Cambridge MA 02140.

NEW COMMODORE PRODUCTS	
CBM 64	Call
CBM B500	\$ 695
CBM B700	2990
CBM 1520 Plotter	259
CBM 1701 Color Monitor	279
B Series Software	

INTERFACES \& ACCESSORIES	
a	\$159
VIC 1600 Modem	95
VIC 1650 (auto answer, auto	150
VIC 1525 Graphic Printer	329
VIC 1530 Datasette Recorde	65
VIC 1541 Disk Drive	329
VIC Switch (connect 8 64's or Vics to printer, dd)	
IEEE Imterface (64)	85
PET-IEEE cable	33
IEEE-IEEE cable (2m).	43
Parallel Interface (Epson, Okidata, IDS, NEC)	
RS-232 Printer Interface (Okidata,	
Programmers Reference Guide	18
Verbatim Diskettes (10 per box)	26
Victree (Programmers Utility)	75

VIC PRODUCTS \& ACCESSORIES 8K RAM Memory Expansion Cartridge . . . \$ 40 16K RAM 70 24K RAM.

Andek Color I. \$ 299
Andek II or III . call
Panasonic CT160 279
Comrex 6500-13" Color 299
Transtar 20 (High Resolution
Green Phosphor).
129
Video/Audio Cable 15
PRINTERS - LETTER QUALITY
CBM 8300, 40 cps. $\$ 1450$
Diablo 620, 25 cps 949
ComRiter, 17 cps 819
Transtar 130, 16 cps (auto load,
wp features!). 769
NEC 7700 series. 2350
NEC 3500 series 1600

PRINTERS - DOT MATRIX

CBM 8023, 150 cps/graphics 589
Epson FX Printer, 160 cps. 529
Epson MX-80 w/Graftrax. 349
CBM Graphics for Epson 65
Okidata 82A, 120 cps (serial
and parallel) 429
NEC 8023A (paralle) 439
Okidata 92 . 559
Star Gemini, 10. 360
Stor Gemini, 15. 499

COMMODORE BUSINESS SERIES

SuperPet (5 languages,
2 processors) \$1409
CBM 8032 Computer, 80 Column . . . 1029
CBM Memory Expansion, 64K. 359
CBM 8050, 1 mg. Dual Drive. 1259
CBM 8250, 2 mg Dual Drve. 1500
CBM D9060, 5 mg Hard Disk. 2240
CBM D9090, 7.5 mg Hard Disk . . . 2600
CBM 2031, 170K Single Drive (New) 489
DC Hoyes Smart Modem. 220

BUSINESS SOFTNARE

WordPro 4^{+}or 5^{+}. $\$ 309$
Administrator . 489
VisiCalc (expanded) 199
The Manager (database). 199
BPI ARR, G/L, Job Cost, Inventory,
Poyroll. 00.325

MasterCard, Visa, Money Order, Bank Check

COD (odd \$5) accapted.
Add 3\% surcharge for credit cards. In stock items shipped within 48 hours,
F.O.B, Dallas, Texas

All products shipped with manufacturer's worranty.

Prices are subject to change without notice.

```
TO ORDER CALL TOLL FREE 800-527-4893 800-442-1048
(Within Texas)
Business Hours Mon.- Fri. 8 to 6, Sat. 10-2
Winte for tree cotalog.
```

GAME OF THE MONTH
Adventu-Writer (make your
own adventure game)
S.JB DISTRIBUTORS INC.

10520 Plano Road, Suite 206 Dallas, Texas 75238
(214) 343-1328 Circle No. 18

IAICRO CoCo Bits

by John Steiner

Last month I commented about jaccessories that connect to the RF output of the CoCo and provide video output for a monitor. I was not precisely correct: the monitor adapter hooks into the input of the modulator. The unit from Computerware requires removal of the 1372 video IC, which is installed in a socket that comes with the kit. They are reinstalled as a package in the 1372 socket. Three wires leave this assembly to provide power and video to the preamplifier circuit board. The board is postage-stamp size and can be attached to the RF modulator case with the double-stick foam tape provided. A single clip is attached to the audio input line of the modulator, and a jumper is provided that must be cut if you are using a color monitor. Two cables exit the assembly, allowing separate audio and video signals to be available.

Needless to say, I had to justify the purchase of this board, so I bought a green screen monitor. The conversion was worth the expense as the crispness and clarity compared to a television are amazing. The RF output is available in addition to the video signal, which is a real advantage for demonstration purposes. There is a disadvantage in that selecting black and white mode kills color at the RF output, while selecting color puts a fine cross-hatch pattern on the monitor, making it difficult to read. Interestingly, high-resolution color graphics are still available in B / W mode even though there is no colorburst signal present.

Recently I had a long chat with Bob Rosen of Spectrum Projects. While talking with Bob about using the Color Computer with a TV, the subject of radio frequency interference (RFI) came up. If you own a CoCo disk system, probably you are already aware of interference caused by the drive cable. Repositioning and coiling the video cable have been my only remedies for the problem, and yet the interference still persisted. In addition, selecting the 64 K RAM mode increased the interference to a point where it was extremely annoying. The problem was one of the major reasons I wanted to use a monitor, which isn't affected by RFI.

Bob suggested a solution to the problem: replace the standard audiotype cable Radio Shack provides to connect CoCo to the monitor with a higher-quality 75 -ohm video cable with phono plugs installed. The cable can be made easily using RG-59 Coax and two RCA-style phono plugs; or many video specialty stores have them readily available. I have a video dubbing cable I purchased for my video tape recorder that contains video and audio lines. Replacing the Radio Shack cable significantly decreased the interference, though it was not eliminated entirely. My next step will be to coil the cable through a 1 -inch toroid coil.

While on the subject of video interference, removing the TV/computer switch, running the cable directly to the coax inputs or through an adapter to the 300 -ohm VHF terminals is advantageous. Don't try to ground the cable or shield to the TV set chassis ground, as I have heard some people suggest. Connecting to chassis on many TVs may be unhealthy, not only to your computer equipment, but to yourself. Some TV chassis are tied directly to the AC line terminals, and connecting the TV plug backwards would be an unforgetable experience

If you do much work with machinelanguage files, probably you have wished that you could log the start, end, and execute addresses of your files. Ken Christiansen provides a short utility that will provide you with that pertinent information from either a disk or tape machine-language file. To use the routine, first load (or CLOAD) the program in listing 1, then load your machine-language file. Once loaded, type RUN. The screen will clear and provide both decimal and hex values for the file. There are a few limitations: first, HEX\$ is available only on Extended Color BASIC CoCos. Secondly, auto executing programs and programs that must occupy workspace required for listing 1 must be loaded with an offset. For example, CLOADM "filename", 2000 will load the program 2000 bytes higher than it normally resides.

Last month I promised to comment further on FLEX as I get more accustomed to working with it. For those who may not be familiar with.
using a DOS, commands may be memory-resident or disk-resident. If you specify a command, the DOS first looks in memory to see if the command routine is stored there; if not, it turns on the drive and searches the disk. This allows the flexibility of writing your own commands, which can be added to the disk. If a command is not on the disk, a "NOT FOUND" response is printed.

Most commands can be given with files or operation data specified after the command. For example, "LIST, <filename>" will list the textfile called filename to the CRT or terminal. "DATE, month, day,year" will install a new date. In all, there are over 50 commands, files, and utilities included in the package. The EXEC command has the ability to execute FLEX commands stored in a text file. For example, initializing a new disk requires at least three separate commands. These commands can be stored in a textfile and implemented by typing "EXEC, filename." Each command in the file will be read and executed. You can use the BUILD command to build a textfile that contains the desired commands. BUILD is not a text editor but allows entry of single lines of text.

FLEX files can be individually protected, unlike R/S DOS, by using the PROT command. Files can be write-, delete-, or catalog-protected. A writeprotect automatically delete-protects as well. The catalog-protect prevents the file from being displayed during a CATALOG command.

LISTING 1

10 CLS : $\mathrm{P}=\operatorname{PEEK}(487)^{\star} 256+\operatorname{PEEK}$ $(487)^{*} 256+\operatorname{PEEK}(488):$ PRINT "START DEC";P; : PRINT "HEX"; HEX\$(P) : 'START
$20 \mathrm{P}=\mathrm{PEEK}(126)^{*} 256+\operatorname{PEEK}$ (127)-1 : PRINT "END DEC"; P; PRINT "HEX";HEX\$(P) : 'END
$30 \mathrm{P}=\operatorname{PEEK}(157)^{*} 256+\operatorname{PEEK}(158)$
PRINT "EXEC DEC";P; : PRINT "HEX";HEX\$(P) : 'EXEC

You may contact Mr. Steiner at 508
Fourth Ave. NW, Riverside, ND 58078.

BUSIWRITER

BUSIWRITER A Honey of a Word Processor

Why word processors?
Word processors allow the user to quickly and easily create letters, memos, notes, reports, term papers, manuals, poetry and any other written information using the memory of the computer as a pencil and paper. The computer display or terminal acts as a window through which the user views the information as it is entered. The outstanding advantage of using BUSIWRITER is that it acts not only as a pencil and paper but as a perfect eraser and automatic typewriter.

Commodore 1515, 1525, Epson, C. Itoh, Qume, Diablo, NEC Spinwriter, Starwriter, Prowriter, Okidata, Microline, Gemini-10
 And many more printers
 BUSIWRITER The Queen Bee of Word Processors

BUSIWRITER allows the user to quickly and easily make any number of alterations to the text. BUSIWRITER will instantly reformat your text and show you exactly and continuously how the final output will appear. BUSIWRITER has more functions than any other known microcomputer word processor. With BUSIWRITER assisting in the entry of text, providing a 20 page memory and performing an enormous number of editing/ composing functions, the preparation of written data is far faster and outstandingly more accurate than if it were prepared by hand.

BUSIWRITER With the Sting Removed from the Prices
BUSIWRITER 64
only $\$ 99.00$ for the CBM 64
BUSIWRITER AVAILABLE NOW FROM YOUR LOCAL DEALER
(800) 227-9998 FOR THE NAME OF YOUR NEAREST DEALER

California, Canada, Alaska and Hawaii please call (415) 965-1735

Skyles Electric Works
231G South Whisman Road
Mountain View, CA 94041

APPLE II Operating Systems

by Phil Daley

TThe operating systems that I have seen available for the Apple use essentially the same read/write routines, but they have been modified or changed. All the disks created by any one system can be read by any other system if you know the procedure. Modifying disks to make them copyprotected (unreadable) is a different technique and a different topic. The Operating Systems covered in this article all use standard DOS 3.3 format disks. The list is as follows: DOS 3.3 ${ }^{\circledR}$, Pascal ${ }^{\oplus}$, ORCA/M ${ }^{\oplus}$, Flex^{\oplus}, OS-9 ${ }^{\circledR}$ and $\mathrm{CP} / \mathrm{M}^{\oplus}$ There are also many varieties and colors of patches and fixes for DOS 3.3 on the market, ranging from Craig Peterson's and the Floeters' articles in Nibble to 'DIVERSI DOS' and 'MASTER DOS'.

Except for ORCA, all of the systems have a special \{format $\}$ command. Whether a user types 'INTT', 'NEWDISK' or 'FORMAT' the results are a disk that is DOS 3.3 compatible as far as the individual sectors are concerned. The difference is in the boot program installed (or not installed) on the disk, and the directory and other housekeeping type sectors (for instance: the VTOC) written to various tracks on the disk. Having talked to some of the individuals responsible for converting operating systems for other microcomputers to the Apple, I discovered that the lowest common denominator and the reason for this compatability at the low level is the DISK II Apple disk drive and controller card, which impose certain hardware limitations on the software involved.

DOS 3.3 from Apple Computer Co.

Other than the CONTROL-D kludge, the standard operating system is highly efficient, moderately user friendly, and extremely error free. Other than the misadventures I had with a Corvus Systems hard disk running DOS 3.3, I have crashed a disk only two or three times. Apparently the people at Corvus do their field testing on the first group of unsuspecting customers that come along, with

work the first time because of the lack of a carriage return.

The only file-handling capability that I find missing is a 'LIST' function for textfiles. It would be convenient not to have to run a file reading program to see what is in a particular file.

The technique of a track/sector list of program sectors seems to waste disk space at first glance. (If you want to talk about waste, consider RS DOS for the Color Computer. The minimum amount of information that can be read or written is a granule - 2,304 bytes of information: one half of a track.) The extra space required for short programs is more than compensated for in quick disk access using random records on large files. DOS is able to calculate the exact track and sector that any particular randomaccess record resides on, and immediately seek that sector. This is a tremendous improvement over the sector-
predictable results. I was able to resurrect most of the files on my crashed disks using a disk zap program.

Due to the lack of disk commands in the BASIC ROM, it is necessary for DOS to intercept all of the commands and check to see if any particular one is a disk command. This is facilitated (for DOS, not for us) by placing a CHR $\$(4)$ at the beginnng of every disk command. It is also wise policy to place a CHR $\$(13)$ immediately preceding the CONTROL-D to insure that DOS sees it. That is the 'basic' problem with Apple DOS. I can't remember how many programs I've written that didn't
linking so prevalent in other systems.
The best consideration for using Apple DOS is that most of the commands are loaded into RAM and stored there while the computer is left on. This means that disk access to a system disk is kept to the absolute minimum and a program rarely requires a specific system program to reside on the program disk (for example, the 'CHAIN' program!. In addition, a single drive system is a practical reality. This is not true of the other systems available.

There are also many different patches to the standard DOS on the market today. If one fits a specific
(Continued on page 23)

NEW!

EPSON FX-80 PRINTER

Now Available
For Immediate Delivery!

- Up To 160 cps• 11×9 Matrix • Pinfeed Platen
- Proportional Spacing - Graphics • Elite Pitch
- Centronics Parallel Interface - Internal 2K Ram

It's All New... And It's OMEGA PRICED!
For Our Price...CALL 1-800-343-0873 TODAY!

SAVE ON LETTER QUALITY PRINTERS

| DIABLO 620 New Low Price | $\mathbf{9 2 9 . 0 0}$ |
| :--- | :--- | ---: |
| DIABLO 630 w/API \& cable | $\mathbf{1 , 3 9 9 . 0 0}$ |
| NEC 3510 SPINWRITER | $\mathbf{2 , 0 4 5 . 0 0}$ |
| NEC 7710 SPINWRITER | $\mathbf{2 , 0 9 5 . 0 0}$ |
| NEC 7730 SPINWRITER | |

BIG SAVINGS ON ACCESSORIES
HAYES SMARTMODEM 300 Baud
HAYES MICROMODEM II (APPLE II)
MICROSOFT SOFTCARD PREMIUM SYSTEM .
ORANGE MICRO GRAPPLER +
PKASO PRINTER CARDS. \qquad
RANA ELITE I (APPLE II)
SIGNALMAN MODEMS (MK I) As Low As

ACCESSORIES \& SUPPLIES

OMEGA Has A Complete Line of Accessories \& Supplies for the Apple Il and many other Popular Computers by manufacturers like:

- D. C. Hayes - Microsoft • Tymac
- M \& R Enterprises - Mountain Computers
- Kensington Microware - Practical Peripherals
- T.G. Products • Videx

SOFTWARE

Omega Caries Software by the following companies

- American Business Systems - Ashton Tate
- Dakin 5 - Innovative Software - Microsoft
- Sorcim • Stoneware • Visicorp
230.00
289.00
459.00
120.00
129.00
299.00
85.00

DOT MATRIX PRINTER BARGAINS

| C-ITOH PROWRITER 8510 AP | $\mathbf{3 9 9 . 0 0}$ |
| :--- | :--- | ---: |
| IDS MICROPRISM 480. | $\mathbf{5 4 9 . 0 0}$ |
| OKIDATA MICROLINE 92 (NEW) | $\mathbf{5 4 9 . 0 0}$ |
| OKIDATA MICROLINE 93 (NEW) | $\mathbf{8 5 9 . 0 0}$ |
| STAR MICRONICS GEMINI 10 | $\mathbf{3 4 9 . 0 0}$ |

MONITOR SPECIALS FROM OMEGA

AMDEK 300 G	139.00
AMDEK 300 A	165.00
NEC JB1260	119.00
NEC JB1201 M	169.00
USI Pi-2 12" GREEN MONITOR	159.00
USIPi-3 12" AMBER MONITOR	179.00

MAGNETIC MEDIA

OMEGA Stocks Diskettes by:

- Dysan • Elephant - Maxell - Verbatim
- All Equipment Factory Fresh w/ MFT Warranty
- Prices Do Not Include Shipping Charges
- Mass. Residents Add 5\% Sales Tax
- All Returns Subject To Restocking Fee

CALL TOLL FREE
1-800-343-0873
Call Toll Free far Ordering. All Others call (617) 229.6464
CHARCE IT! MasterCard / Visa WELCOME AT NO
EXTRA CHARGE

UNADVERTISED SPECIALS ON • COMREX • EPSON • NEC • IDS PRISM • OKIDATA

 OMEGA INTERNATIONAL

DISCLAIMER

WE ACCEPTVISA/MASTERCARD, PERSONAL CHECKS (ALLOW 10 DAYS TO CLEAR) OR COD ($\$ 2.00$ CHARGE). PLEASE INCLUDE 3% FOR SHIPPING ($\$ 2.00$ MIN.) OR 5\% FOR BLUE LABEL ($\$ 3.00$ MIN.). FOREIGN SHIPPING $10 \%(\$ 5.00 \mathrm{MIN})$. CALIFORNIA RESIDENTS ADD 6% SALES TAX. ALL ITEMS ARE NEW AND CARRY MANUFACTURERS WARRANTY. PRICES AND AVAILABILITY ARE SUBJECT TO CHANGE WITHOUT NOTICE.

(Continued from page 20)
application you can use, then by all means, use it. Generally speaking: none of them do everything well, or even the same as standard DOS, and many of them won't work on anything that is sophisticated - assemblers/ editors, word processing, or programs with a write-protection scheme. In other words, about 75% of my disks. If you have a large collection of simple BASIC programs, then one of these may suit you quite well.

PASCAL from Apple Computer Co.

The Pascal operating system requires a 16 K RAM card in slot 0 . I certainly recommend an 80 -column card in slot 3. Having worked in Pascal in 40 -column mode, I found it difficult to follow the screen flipping sideways to accommodate the long lines. A nice option is to have a clock card, such as the CPS Multi-function card, included. This will set the system date for you and allow a parallel printer in slot 1 and serial I/O in slot 2.

The text editor is powerful and easy to use, once you get the hang of it. The assembler is a non-standard version, which I avoid using when possible. The compiler is too fussy, and while diagnosing a zillion errors, should correct some of them for you, especially the silly ones, like where all those ';'s belong.

If Pascal were easier to use, I might be tempted to write more programs with it. A straightforward writing of the simplest program starts with

1. Loading the OS from APPLE1:.
2. Calling the text editor.
3. Typing in the appropriate program text.
4. Saving the WORKFILE.
5. Exiting the text editor.
6. Calling the compiler that's when you discover all those 'syntax errors').
7. Making a list of the mistakes.
8. Calling the text editor.
9. Correcting the errors.
10. Saving the WORKFILE.
11. Quiting the text editor.
12. Compiling the program.
13. Executing the program.
14. Discovering a flaw in the program logic (which sends you back to step 7). That's assuming you corrected all the syntax errors on the first go-round.

Not only is this process inconvenient, but the system drive has to be on-line most of the time, or you get 'diskitis' of the thumb from swapping disks. A two-drive system is minimal but three are better. If you really want to cut the turn-around time between edit/compile, get a hard disk. They were invented with Pascal in mind.

I did not intend to give the impression that I don't like Pascal as a language. I just don't like the Apple implementation. A microcomputer is a one person computer and shouldn't make you wait. If you are familiar with time-sharing systems that make you wait no matter what language you are using, then Pascal is probably a better choice than some of the other languages available on those systems.

ORCA/M from Hayden Software

A new entry into the language development system market, ORCA/M is a self-contained OS and (currently) assembler. In the near future, Hayden intends to add a Pascal compiler into the system. (All the commands are already included.) The Operating System is packed into \$B000-BFFF. Some of the system is also incorporated into the various overlaying parts of the program - text editor, assembler, linker and soon-to-be compiler.

While omitting the BASIC file commands (for obvious reasons), they have included several disk utilities not normally resident in Apple DOS: a PEEK command that invokes a sector editor; a VOLUME command that sets the disk volume number; a TIME command for the current date and time (if you have a clock); an APPEND command that adds a disk file to the current file in memory; a CHECK command that looks for bad sectors, lists a warning if a file is endangered and marks the sector as unusable in the VTOC; a COMPRESS command to either alphabetize the directory or move deleted files to the end of the directory; a COPY command that works like ' FID^{\prime}; a RESTORE command to restore deleted files; and a SWITCH command to switch directory entries in the catalog.

All commands are memory resident and may be abbreviated to the shortest definable string. The command search is linear, so that a ' C ' command would produce the first command with start-
ing with a ' C '. To address a different ' C ' command, only enough letters have to be typed to distinguish it from the other ' C ' commands.

The text editor produces ' S ' (for Source) type files, and the assembler creates ' R ' type relocatable object files. The R file must be 'linked' into an address-oriented, BRUNable binary file. During linking, a subroutine library is searched for undefined addresses, allowing the addition of often used routines to the program without having to manually include them in the source file. ORCA/M has a SUB.LIB file with a raft of subroutines for your use. The assembler uses a fairly standard source file format.

Flex for the Apple from Norell Data Systems

Norell has adapted TSC Flex for the Apple computer using their FLEX09 6809 board. Flex is a small, easily adapted OS because it is mainly disk resident. Almost all of the commands reside on disk and are called into use by typing the appropriate command name. This means the system commands are easily modified or appended because each module is an executable binary file. It also means the system disk must be on-line all the time. Two drives are necessary to perform most functions.

The TSC text editor that comes with the system is an elemental lineoriented editor. It would be great with a hard-copy terminal, but most of us work with CRTs. Now, I have some good and some bad news. The good news is that there are several good screen-oriented text editors available for Flex. The bad news is that you would have to get the source file and type it into the Apple, because the disk format is totally different at the hardware level.

Flex has several convenient commands from the system level. The ' P ' and ' O ' commands, prefaced to any other command, send the output to printer or disk respectively. The 'LIST' command will print any ASCII (BASIC or Text typel file. 'APPEND' will join any number of files (of any type) together into a single file. 'COPY' is like 'FID', including wildcards, but has no prompting. Sometimes you copy programs you didn't intend to by mistake.

A nice feature of Flex is the ease of changing the system commands. At MICRO, we have rewritten several of the commands and added several com-
mands to the original list. Any 6809 machine-language executable file can be a command if its name ends with '.CMD', and it can run at $\$ \mathrm{Cl} 100$.

Unfortunately, TSC's extended BASIC is not available as of this date, but Norell Data Systems considers implementation of the Apple version a high priority.

OS-9 from MICROWARE

OS-9 is a newer and more advanced operating system than Flex. Flex is a holdover from the 6800 microprocessor days and was rewritten in 6809 code, but not updated. OS-9 was originally written in 6809 code and utilizes the capabilities of the microprocessor more fully. It includes more advanced technology, such as multi-tasking, and in its higher levels, a multi-user environment.

The OS commands are similar to Flex: they are disk resident and called when needed. However, OS-9 allows loading commands into memory as an option, and removing them when they are no longer needed. Since OS-9 takes up more room in memory than Flex, I still recommend two disk drives.

I don't have access to another system that runs OS-9, so I can't compare it to a standard implementation. The Apple OS-9 disks are DOS 3.3 compatible, and as such must not be compatible with the rest of the OS -9 world.

It is a real pleasure, when working with a word processor, to finish one letter and send it to the printer, while at the same time, working on the next letter on the stack without having to wait for the printer to get done before starting in again (there goes the coffee breaksl. There doesn't seem to be any particular limit to the number of tasks that can be specified to run at the same time, and I gave up after running four tasks simultaneously.

The BASIC that comes with OS-9 is called BASIC09 and is the most Pascallike language I have seen, without being called Pascal. It includes named procedures with parameter passing, data typing, print using, IF. .THEN. .ELSE. .ENDIF, REPEAT. .UNTIL, WHILE. .DO. .ENDWHILE, LOOP. .ENDLOOP, EXITIF. .THEN. .END EXIT, and variables and line numbers (optional) local to procedures. The text editor checks syntax during line entry, and loop and subroutine nesting upon exit from the editor. It almost makes

BASIC too easy. Compilation is fast and errors return you to the text editor, text file intact. A trace mode aids in debugging. The BASIC file can be PACKed to remove REMs and spaces and reduce the space requirements of the program. BASICO9 computes to 9 decimal digits.

The text editor is line-oriented, common to most BASICs. It uses commands to move from line to line, as line numbers are optional, includes line insert and delete, and has string search and replace. The Debug mode allows controlled program execution, trace on/off, variables examined/ changed, procedure-nesting listing and stepping one or more steps through the program.

BASIC09 improves many of the shortcomings of the standard BASIC language by incorporating ideas and structures of the PASCAL language, without adding the faults of PASCAL and losing the interactivity of BASIC.

CP/M from Digital Research

The Appli-Card from Personal Computer Products, Inc., arrived at our office too late to be included in last month's new boards article, so I will briefly mention its attributes now. The board includes a six megahertz Z-80 microprocessor and 64 K of RAM. The software includes CP/M 2.2 and drivers for an 80 -column card or a 70 -column hi-res display, horizontal scrolling of up to 255 characters screen width, and display of all 96 printable ASCII characters. It also has a rewritten FORMAT command that includes formatting, copying the CP/M tracks, and disk copy.

The documentation is clearly written in a step-by-step fashion that should allow someone without extensive computer knowledge to install an Appli-Card and have it running in less than 30 minutes. I also booted up Wordstar, MBASIC, GBASIC, and FORTRAN in less time than it takes to write about it. I waited about eight months to receive this card, and it was worth the wait.

The only problem that I've found is that the CPS Multi-function card software won't recognize the Appli-Card as a CPM card, and the program exits immediately, meaning that I have to use the old Apple Serial card to do my printing. The company is currently working on drivers for specialized cards.

The Control Program for Microcomputers is probably the most popular microcomputer operating system, and if you are looking for a system with a large installed base and corresponding software availability to add to your Apple (no small amount of software alreadyl, then $C P / M$ is the system for you. In spite of its problems and slowness, the number of people currently using the system assures its place in the future of microcomputers.

One complaint is that the DIR command does not display the length of the files, although that can be determined with the STAT command. Another complaint is the amount of memory that $C P / M$ requires compared to DOS. A standard 48 K Apple without DOS (just for reference, not really too useful - have you used a tape recorder lately?) has 47101 bytes of free memory. Adding DOS to the system reduces the total to 36349 bytes. With MBASIC you have 32883 bytes free without the use of hi-res graphics. GBASIC contains hi-res graphics commands and further reduces the amount of memory free to 23793 bytes. That is on a 64 K Z-80 board. If you have a RAM card in slot 0 , you can increase the amount of space available for programs to 46076 bytes by moving DOS onto the card.

The Microsoft BASICs available, both M and G, are a more standard implementation llike the big machine versions) than Applesoft, and are easier to learn for someone who knows another BASIC. The file commands eliminate the Control-D, and include reading EOF. The text editor also allows whatever indentation and line spacing that you desire.

Wrapping it all up

Since the Apple is so versatile due to its plug-in slots and OEM support by Apple Computer, many additional operating systems are available that increase the quantity of useable software. The one big disadvantage with all the other systems is the lack of disk compatibility between the Apple Disk |[and other microcomputer disk drives. This means that while the programs will execute without many changes, getting the programs into Apple disk format is the biggest hurdle.

MCRO

[^0]
IAKE COUWHAND OF PLAYER-MISSILE GRAPHICS

by Roger Bush

You can write brilliant animated graphics in Atari BASIC-without any bit-mapping, and without know ing machine language

All you need is PM ANIMATOR, the new Player Missile Graphics toolkit from DON'T ASK.

PM ANIMATOR makes it easy to: draw pictures and animate them, change your drawings and animation sequences. save your graphics creations on disk, and build them into your BASIC programs. You do it all with Player-Missile Graphics. You do it from BASIC using two almost magical editors, plus PM ANIMATOR's special subroutines for Player-Missile Graphics control.

Create the most visually exciting software you've ever written. The power is yours.

Have your software dealer demonstrate PM ANIMATOR. Includes numerous demos and detatied owner's guide/tutorial Requires 32 K , disk. Suggested retail $\$ 34.95$
Also available by mail from DON'T ASK. Send check or money order for $\$ 34.95+\$ 2.00$ shipping/handling. Califor nia residents add 6 sales tax (6.5% if you reside in L.A County).

Aatlis at trademarm Atar fr

D®ก'T ASK COMPUTER SOFTWARE

2265 Westwood Blvd., Ste. B-150 Los Angeles. California 90064 (213) 477.4514

PHONE RIGHT IN WITH TeleTari

The Friendly Terminal by Harry Koons

Want to put your Atari in touch with other computers? TELETARI is just what your modem needs: a powerful telecommunications program that's a breeze to use. Choose the functions you want from a menu. Send or receive text or programs, save new data on disk, or print it on paper. A buffer of up to 20K bytes holds your data; page through it to find what you want. Adjust and save terminal parameters with another menu.

TELETARI is adaptable to most remote computers and most modems, including 1200 baud modems. It works through the RS232 port on the Atari 850 Interface, and it's suitable for any RS232 application and supports all 850 options. It's also compatible with the Bit 3 Full-view $80^{\text {rm }}$ board.

Ask your software dealer for TELETARI, by DON'T ASK $\$ 39.95$. Requires 32K, disk, BASIC, 850 Interface.

D(3) M N
 COMPUTER SOFTWARE

2265 Westwood BI., Ste. B-150 Los Angeles, CA 90064 (213) 477-4514

Dealer inquiries welcome

Or order by mail direct from DON'T ASK. Add $\$ 2.00$ shipping/han dling to your check or money order. Calif. resi dents add 6\% sales tax (6.5\% if you reside in L.A. County)

Circle No. 22

Atari is a trademark of Atarı. Inc Full view 80 is a trademark of Bit 3 Computer Corporation.

U.C.S.D. PASCAL DIRECTORY

A byte and bit-level demonstration of a brute force method to access U.C.S.D. directory blocks.

by Steven Lesh

TThe F (iler program, which comes as part of the Apple Pascal Language System, provides the applications software developer with a number of useful capabilities; e.g., listing titles for files currently in the diskette directory, deleting files from the directory, and changing the date to be associated in a directory entry for each newly written file. Unfortunately, these capabilities are not conveniently available to the applications program user.

In this article, the format of the Apple Pascal diskette directory is examined. In addition to information about specific files, the first directory block contains information relating to the entire diskette. Since the structure of the fields containing this information resembles that of functionally similar fields for a file directory entry, the format for a directory entry is covered first.

The Apple Pascal Language System supposedly conforms to U.C.S.D. Pascal specifications, and so what you read here should apply to other implementations of U.C.S.D. Pascal as well. Hopefully, enough information about directory entry formats will be

provided to allow you to develop most directory-related capabilities your applications software might require. Following the article is a listing for an intrinsic unit that demonstrates how to access file directory entries.

The FILELIST unit source code accompanying this article provides a 'bare bones' directory list capability. It performs a function similar to the U.C.S.D. Pascal Filer L(ist Directory command. FILELIST differs from the Filer L(ist command in that it allows the user to restrict the directory listing to titles for a specific file type even though the file name contains no information about what type of file it is. The procedure INITTITLEREAD permits a user to specify a drive number from which the directory is to be read, choose between displaying a file titles list on the monitor or listing it on the printer, and to select the type of file for which directory entries are to be listed (i.e., text, code, or data). If this information is already known, the procedure TTTLEREAD can be called directly.

Non-Apple users may have to change the starting and ending directory block addresses (STARTDIR and ENDDIR in FILELIST) to addresses applicable to the U.C.S.D. Pascal implementation for their system.

To illustrate the format of a diskette directory entry, let us examine an entry
for the file 'SYSTEM.WRK.TEXT'. If the Filer E\{xtended Directory List command is used, the following information would be provided for this file:

SYSTEM.WRK.TEXT 4 27-Sep-82 255 text

The hexadecimal characters stored on disk to represent this entry are:
(file block addresses \& file-type identifier)
nul
FF 0003010300
(file name)
S Y S TEM.WRK.TEXT nul OF 5359535445 4D 2E 5752 4B 2E 54 45585400
(file creation date)
stx
02 B9 A5

File Block Addresses and File Identification Byte

The first data items in a U.C.S.D. directory entry are the starting and ending block addresses for the file and the file-type byte. The ending block address is actually the address of the first block following the block(s) occupied by the file with which the ending address is associated in the directory.

A directory block address consists of a two-byte hexadecimal value representing the number of the block at which a file begins or ends. On the Apple diskette there is room for 280 file blocks. Since one byte can represent a maximum value of 255 decimal, when a block address of 256 or greater is reached, a ' 1 ' is added to the second byte of the value containing the block address and the left byte of the block address "wraps around" starting at $x^{\prime} 00^{\prime}$ again. For the example file, the block addresses would be translated as follows:

255 (starting address) FF 00
259 (ending address) 0301

Following the ending block address for the file is a file-type byte. The three file-type values I have been able to identify are:

```
x'02' = code file
x'03' = text file
x'05' = data file
```

The file identification byte for a code file can be distinguished from the $x^{\prime} 02^{\prime}$ ('stx') character that sometimes precedes the date (see Locating the File Creation Date below) by the 'nul' character that always immediately follows the file identification byte.

File Title

The next grouping of characters in a directory entry stores the file name. For the example file, the string of hexadecimal characters that represent the file title 'SYSTEM.WRK.TEXT' is:

SYSTEM.WRK.TEXT nul OF 5359535445 4D 2E 5752 4B 2E 54 45585400

Fifteen bytes are allocated for file title storage regardless of the actual title length. The file title itself is immediately preceeded by a one-byte value giving the length, in characters, for the file name ($x^{\prime} O F$ ' in the example). When a title is R(emove'd from a disk using the Filer R/emove command, this value is changed to a 'nul' character. (Unfortunately, restoring an accidently removed file seems to require more than reinserting the proper file title length again.)

Locating the File Creation Date

Following the fifteen bytes allocated to file title storage and preceding the date are two bytes whose exact use I was not able to determine. The directory entries for files generated by U.C.S.D. system software - e.g., the E/ditor, Clompiler, Library etc. appeared to have a 'nul' character after the file title followed by a 'stx'. (In the hexadecimal breakdowns for the example shown above, I grouped the 'nul' character with the file title.) The byte preceding the date in files generated by applications software using the system procedures REWRITE and CLOSE contained a 'soh' ($\mathrm{x}^{\prime} 01$ ') character; however, dates for some system 'data' files were preceded by another 'nul' character. By looking for 'nul', 'soh', and 'stx' I was able to find the dates for all files on my Pascal diskettes using FILELIST.

File Creation Date

The file creation date (day, month, and year) is the last item in the direcNo. 61 - June 1983
tory entry. An elegant scheme is used to pack all the date information into two bytes (one word). The two bytes containing the date for the above entry are B9 A5. The bit allocations for the date word are as follows:
dddd mmmm yyyy yyyd
where: ' d ' = day

> ' m ' $=$ month
> $‘ y$ ' year

Five bits are required for a range of values from 1 to 31 to represent the days of the month. In the U.C.S.D. date-word, however, these bits are not contiguous. The leftmost four bits help represent the day of the month, but the next four bits are used to represent the month. Storing a numerical equivalent for a month in the second four bits presents no difficulty; there are 16 possible values and only 12 months. So let's take a look at how the year is stored.

In any given century there are 0 to 99 years. If a value representing one of these years is doubled, it still fits nicely into the last eight bits; in fact, the rightmost bit will always be zero. This is precisely the way the year is stored.

Why? Because the right-most bit of the date word is used to help represent the day. For any day after the sixteenth of the month, a ' 1 ' is added to the byte containing the doubled value for the year. Thus, if the value contained in the rightmost eight bits is odd, 16 is added to the value contained in the leftmost four bits to derive a value for days in the last half of the month. The status of the rightmost bit is ignored when determining the value for the year stored in the other seven bits.

Diskette Title, System Date, and Block Address Information

Information about an Apple Pascal diskette is located in the first 26 bytes of block two. The array locations given below assume that you have read block two into a PACKED ARRAY of type CHAR.

The field specifying the first block in which code, text, or data files can be stored begins in block array element three. Armed with this information, you can thieve a couple of blocks from the directory if you need them, and if your directory does not need room for 77 files, of course.

Listing 1: FILELIST Program

```
    { $L #6: }
{$C e STEVEN LESH 1982}
[$5+}
UNIT FILELIST;
INTRINSIC CODE 18 DATA 26;
INTERFACE
CONST
    ALLFILES=Ø; CODEFILE=2;TEXTFILE=3;DATAFILE=5;
    STARTDIR=2;ENDDIR=5;
VAR
    MONTH,DAY,YEAR:STRING;
    OUTPUTDEV: INTERACTIVE;
{ SUPPLY TWO 'CHARS' CONTAINING THE DATE IN SYSTEM FORMAT }
PROCEDURE READDATE(FIRSTDATECHAR,LASTDATECHAR:CHAR;
                    VAR DAY,MONTH,YEAR:STRING);
{ CALL TITLEREAD DIRECTLY IF YOU KNOW:
{ 1-THE DRIVE # FOR THE DIRECTORY TO BE READ }
{ 2-THE TYPE OF FILE FOR WHICH DIRECTORY
    ENTRIES aRE TO BE PRINTED
        **YOU CAN LIST ALL. FILES IN THE **
        ** WITH A FILETYPE OF '\emptyset' **
    { 3-THE OUTPUT DEVICE FOR A FILE LIST
PROCEDURE TITLEREAD(DISKUNIT: INTEGER;
                    FILETYPE: INTEGER;
                    PRINTTITIE:BOOLEAN);
    { INITTITLEREAD ASKS THE USER:
    1-SCREEN OR PRINTER OUTPUT FOR FILE TITLES LIST? }
    2-READ THE DIRECTORY FOR WHAT DISK DRIVE?
{ 3-LIST TITIES FOR what fILE TYPE (OR aLL FILES)?}
PROCEDURE INITTITIEREAD;
{ $P }
IMPLEMENTATION
VAR
        DISKNO,FILETYPE,PRINT:CHAR;
        DISKNNITS:SET OF CHAR;
        PRINTIT:BOOLEAN;
        NUMROFILES, FILECOUNT, VOLNO, FILEID:INTEGER;
PROCEDURE HALTDISPLAY;
```

 (Continued on next page)
 The eight-byte field allocated to the diskette title (or "volume name") starts in the seventh element of the character array with the first character specifying the length of the diskette title.

The field giving the total number of blocks available on an Apple Pascal diskette starts in the fifteenth element and the number of files currently in the directory is found in the seventeenth element of the character array into which block two is read.

The same format used for the file creation date associated with each entry in the directory is also used to store the current system date (i.e., the date associated with any newly written files). The current system date is stored starting in the twenty-first element of block two. The FILELIST procedure WRITESYSDATE should be called prior to creating new or updating existing disk files to set the current system date.

Conclusion

With an understanding of the way file directories are stored on disk, a variety of procedures could be developed to give Language System applications software users more control over vital program disk files. Beyond merely emulating existing F (iler program capabilities, new file maintenance capabilities could be developed: e.g., datestamping compiled program listings, changing the date associated with existing directory entries and encoded prefixes and suffixes to allow longer, more meaningful file names.

It would be nice if Apple, Softech, or an ambitious reader would provide us with a 'fleshed out' library of units that emulated the capabilities of the Language System F(iler program. Until this happens, however, we must fend for ourselves. I hope this article will be of some use to those of you seeking to add file maintenance capabilities to your U.C.S.D. applications software.

Steven Lesh has programmed telecommunications computer system software for the last eight years. Programming became a hobby when the first microcomputers were marketed, though he still programs an old UNIVAC 9300 to support his habit. You can reach Mr. Lesh at General Delivery, Sierra Vista, AZ 85616.

Listing 1 (continued)

becin

```
        Mriteln('Press 'C'' to continue..');
        qEPEAT
```

 READ (KEYBOARD, PRINT)
 until print= 'C';
 END;
 \(\{\$ \mathrm{~F}\}\)
 PROCEDURE READDATE;
TYPE
\{ THese subranges must be allowed to accept ' \varnothing ' For \}
\{ INTERMEDTATE AND EXCEPTION PROCESSING
DAYS= $\varnothing . .31$;
MONTHMRS $=\varnothing . .12$;
YEARS=ø...99;
var
DAYMIM:DAYS;
MONTHNMM:MONTHNMES;
YEARNM: YEARS;
horkarea: Integrr;
begin
WORKAREA: $=$ ORD (FIRSTDATECHAR);
MONTHNTM: =WORKAREA MOD 16;
IF WORKAREA > 15 THEN DAYNUM: =WORKAREA DIV 16
EISE DARNM: = ;
WORKAREA $:=\mathrm{ORD}$ (LASTDATECHAR);
IF ODD(WORKAREA) =TRUE THEN DAMNM: =DAYNUM + 16;
YEARNM: =WORKAREA DIV 2;
CASE MONTHNUM OF
1:MONTH: ='JAN';
2:MONTH: = 'FEB';
3:MONTH: = 'MAR';
4:MONTH: = 'APR';
5:MONTH: = 'MAY';
6:MONTH: = 'JUN';
7: MONTH: = 'JUL';
8:MONTH: = 'AUG';
9: MONTH: = 'SEP';
1ヵ: MONTH: ='OCT';
11:MONTH:='NOV';
12: MONTH:='DEC';
END; \{ CASE MONTHNUM \}
STR(DAYNM, DAY);
STR (YEARNUM, YEAR);
END;
\{\$P \}
procedure titieread;
CONST
BLOCKSIZE=512;
BOTTOMLINE=22;
NUL $=\varnothing$;
SOT=1;
STX $=2$;
var
DATECHECKED,DATEFOUND, FIRSTBLOCK, MIDFILE,MIDTITLE: BOOLEAN;
PRINT:CHAR;
BLINCKTEXT:PACKED ARRAY[D. .BLOCKSIZE] OF CHAR;
titieline:packed array[\varnothing. . 15] of char;
blockindex, DIRELDCKINDEX, LINECOUNT,
PRINTINDEX, DATEFTNDER, TITTEINDEX,TITLEIENGTH: INTEGER;
DISPLAY:STRING[8];
begin
IF PRINTTITLLE=TRUE THEN DISPLAY:='PRINTRR:'
ELSE DISPLAY:='CONSOLE:';
REWRITE (OUTPUTDEV, DISPLAY);
DATECHECKED: =FALSE;
FILECOONT: $=\varnothing$;
FIRSTBLOCK: =TRUE;
LINECOONT: = Ø; $^{\text {; }}$
MIDFILE: $=$ FALSE;
MIDTITLE:=FALSE;
FOR DIRBLOCKINDEX: = STARTDIR TO ENDDIR DO
begin
UNITREAD(DISKUNIT,BLOCKTEXT,BLDCKSIZE,DIRBLOCKINDEX);
IF FIRSTBLOCK=TRUE THEN
begin
TITLELENGTH: $=0$ RD (BLOCKTEXT[6]);
BLOCKINDEX:=7;
FOR TITLEINEX: $=1$ TO TITLLIENGTH DD
begin
WRITE(OUTPUTDEV, BLOCKTEXI[Blockindex]);
BLOCKINDEX:=BLOCKINDEX +1 ;
END;
WRitelen(OUTPUTDEV, ':');
NUMROFLLES $:=\operatorname{ORD}(\mathrm{BLOCKTEXT}[16])$;
END;
(continued)

Listing 1 (continued)
REPEAT \{ STEPPING THRU BLOCK \}
\{ FIND A FILE TITLE \}
WHILE (MIDFILE=FALSE) AND
(BLOCKINDEX < BLOCKSIZE-2) AND
NOT (BLOCKTEXT[BLOCKINDEX] IN
[CHR(CODEFILE), CHR(TEXTFILE), CHR(DATAFILE)]) DO BLOCKINDEX: =BLOCKINDEX+1;
IF (MIDFILE=FALSE) AND
(BLOCKINDEX < BLOCKSIZE-2) AND
(BLOCKTEXT[BLOCKINDEX+1] = CHR(NUL)) THEN BEGIN
\{ GET CHARACTER FOR TITLE LENGTH \}
TITLELENGTH: $=0$ RD (BLOCKTEXT[BLOCKINDEX+2]);
If (TITLELENGTH > \quad) AND
(TITLELENGTH < 16) THEN FILECOUNT: FFILECOUNT+1;
\{ IF FILE TITLE FOUND SET UP TO GET CHARACTERS \}
IF ((BLOCKTEXT[BLOCKINDEX] $=$ CHR(FILETYPE)) OR
(FILETYPE=ALLFILES)) THEN BEGIN

IF (FIRSTBLOCK=FALSE) OR
\{ THE NEXT CHECK PREVENTS A LOW BLOCK ADDRESS \} -FOR THE FIRST DIRECTORY ENTRY ONLY\{ > THIS IS NOT NORMALLY A PROBLEM FOR THE \{ > THIS IS NOT NORMALLY A PROBLEM FOR THE \{ >STANDARD PASCAL FILE TYPES UNLESS YOU \{ >REDUCE THE NUMBER OF BLOCKS ALLOCATED TO < (> THE DIRECTORY OR USE THIS CODE WITH OTHER $<$ (>PASCAL-BASED LANGUAGES (E.G. PILOT) < ((EIRSTBLOCK=TRUE) AND (BLOCKINDEX > 29)) THEN BEGIN MIDTITLE: =TRUE TITLEINDEX: $=\varnothing$; MIDFILE:=TRUE; BLOCKINDEX: =BLOCKINDEX +3 ; END;

END;

 END;\{ GET FILE NAME FOR DISPLAY \}
WHILE (BLOCKINDEX < BLOCKSIZE-1) AND
(MIDTITLE=TRUE) DO
BEGIN
REPEAT
TITLELINE[TITLEINDEX]:=BLOCKTEXT[BLOCKINDEX];
BLOCKINDEX: =BLOCKINDEX +1 ;
TITLEINDEX: $=$ TITLEINDEX +1
WTIL (TITLEINDEX=TITLELENGTH) OR
(BLOCKINDEX=BLOCKSIZE);
[SEE IF ANOTHER 'BLOCKPEAD' REQD TO FINISH TITLE \}
IF TITLEINDEX = TITLELENGTH THEN
BEGIN
MIDTITLE: =FALSE;
\{ POSITION TO END OF TITLE SPACE FOR SHORT TITLES \}
IF TITLEINDEX < 15 THEN
BEGIN
DATEFINDER: $=15$ - TITLELENGTH;
BLOCKINDEX: =BLOCKINDEX + DATEFINDER;
\{ DO THIS FOR SHORT TITLES ENDING ON A BLK BNDRY WITH \}
[UNUSED CHARS BEFORE THE DATE IN THE NEXT BLOCK \}
IF BLOCKINDEX > (BLOCKSIZE-2) THEN
DATEFINDER: =BLOCKINDEX-BLCCKSIZE;
END;
\{ SET INDEX TO WHERE DATE 'STX' SHOULD BE \}
BLOCKINDEX: $=$ BLOCKINDEX +1 ; END;

END;

\{ FIND THE FILE CREATION DATE \}
WHILE (MIDFILE=TRUE) AND
(BLOCKINDEX < BLOCKSIZE - 1) AND
(DATECHECKED=FAISE) DO
BEGIN
DATEFOUND:=FALSE;
\{ FOR TITLES WHICH END ON A BLOCK BOUNDARY \}
IF BLOCKINDEX= \varnothing THEN BLOCKINDEX:=DATEFINDER +1 ;
IF (BLOCKTEXT[BLOCKINDEX] IN
$[\mathrm{CHR}(\mathrm{STX}), \mathrm{CHR}(\mathrm{SOT}), \mathrm{CHR}(\mathrm{NUL})]) \mathrm{THEN}$ DATEFOUND: $=\mathrm{TRUE}$ ELSE

REPEAT
BLOCKINDEX: =BLOCKINDEX +1 ;
UNTIL (BLOCKTEXT[BLOCKINDEX] IN [CHR(NUL), CHR(STX)]); IF (BLOCKTEXT[BLOCKINDEX] $=$ CHR(STX)) THEN DATEFOUND: =TRUE; DATECHECKED: =TRUE;
END;
\{ DISPlay a TITLE \}
IF (TITLEINDEX > Ø) AND (DATECHECKED=TRUE) THEN BEGIN
\{ PRINT FILE NAME \}
(continued)

FOR FRINTINDEX: $=\emptyset$ TO TITLETENGTH-1 DO WRITE (OUTPUTDEV, TITLELINE[PRINTINDEX]);
\{ TAB TO DATE-WRITE AREA \}
FOR PRINTINDEX: $=\varnothing$ TO 17-TITLELENGTH DO WRITE(OUTPUTDEV,' ');
\{ CONVERT DATE FOR DISPLAY \}
IF DATEFOUND $=$ TRUE THEN
BEGIN
READDATE(BLOCKTEXT[BLOCKINDEX+1], BLOCKTEXT[BLOCKINDEX+2],
DAY, MONTH, YEAR) ;
WRITE (OUTPUTDEV, DAY:2,'-', MONTH, '-' , YEAR);
END
ELSE WRITE(OUTPUTDEV,'CAN'TT FIND DATE');
WRITELN(OUTPUTDEV,);
LINECOUNT: $=$ LINECOUNT +1 ;
DATECHECKED: =FALSE;
MIDFILE: =FALSE;
IF (LINECOUNT=BOTTOMLINE) AND (PRINTTITLE=FAISE) THEN BEGIN
haltoisplay;
LINECOUNT: $=\varnothing$;
END;
END;
\{ BUMP TO THE NEXT CHARACTER FOR CHECKS \}
IF MIDFILE=FALSE THEN BLOCKINDEX:=BLOCKINDEX +1 ;
[IF WE have processed all file titles on the \}
(DISK EXIT H.O. READING ALL DIRECTORY BLOCKS \}
IF FILECOUNT > (NOMROFILES-1) THEN
BEGIN
HALTDISPLAY;
CLOSE (OUTPUTDEV, NORMAL) ;
EXIT(TITLEREAD);
END;
\{ END REPEAT BLOCK STEPPING \}
UNTIL BLOCKINDEX > BLOCKSIZE -1;
FIRSTBLOCK:=FALSE;
END; \{ FOR DIPBLOCKINDEX:= STARTDIR TO ENDDIR \}
CLOSE (OUTPUTDEV, NORMAL);
(ALLOW TIME TO READ LAST SCREEN \}
HALTDISPLAY;
END;
Procedure inittitlleread;
BEGIN
REPEAT
DISKUNITS:=['1'..'6'];
PaGE(INPUT);
REPEAT
WRITELN('TYPE 'PP' FOR HARDCOPY;');
WRITELN(''S'' FOR SCPEEN OUTPUT..');
READ (KEYBOARD, PRINT)
UNTIL PRINT IN ['P','S'];
IF PRINT= $=1$ ' ${ }^{\prime}$ THEN PRINTIT: $=$ TRUE
EISE PRINTIT:=FALSE;
REPEAT
WRITELN('LIST TEXT FILE DIRECTORY FOR WHICH DISK?')
WRITEIN ('**TYPE 1-6..');
READ (KEYBOARD, DISKNO)
UNTIL DISKNO IN DISKUNITS;
Case diskno of
'1': VOLNO: =4;
'2':VOLNO:=5;
'3':VOLNO:=9;
' 4 ': VOLNO: =1Ø;
'5':VOLNO:=11;
'6':VOLNO:=12;
END \{ CASE DISKNO \};
repeat
WRITELN('ENTER FILE TYPE..');
WRITELN(' Ø -> ALL FILE TYPES');
WRITEIN($12 \rightarrow$ CODE FILES');
WRITELN(' $3->$ TEXT FILES'); WRITELN(' 5 -> DATA FILES'); WRITELN(' $9 \rightarrow>$ **QUIT**'); READ (KEYBOARD, FILETYPE);
UNTIL FILETYPE IN ['D','2','3','5','9'];
CASE FILETYPE OF
' Ø' $^{\prime}$:FILEID: $=\varnothing$;
'2':FILEID: =2;
'3':FILEID:=3;
'5':FILEID: =5;
'9':FILEID: =9;
END \{ CASE FILETYPE \};
If FILEID < 6 THEN TITLEREAD(VOLNO, FILEID, PRINTIT);
UNTIL FILEID=9;
END;
BEGIN
END.

The price-performance leader. Includes Z80A, 1 or 2 full $8^{\prime \prime}$ drives (double density, double sided), 3 serial and 1 paralle port, and winchester port. Prices start at less than $\$ 2000$. Networking Available. DEALER / OEM inquiries invited.

SPECIALS on INTREGATED CIRCUITS

65027.45	10/6.95	50/6.55	100/6.15
6520 PIA 5.15	10/4.90	50/ 4.45	100/4.15
6522 VIA 6.45	10/6.10	50/ 5.75	100/5.45
6532 7.90	10/ 7.40	50/ 7.00	100/6.60
2114-L300	1.95	25/1.85	100/1.75
2716 EPROM	5.90	5/ 5.75	10/5.35
2532 EPROM	6.90	5/ 6.45	10/5.90
$61162 \mathrm{~K} \times 8$ CMOS RAM	5.90	5/ 5.45	10/5.10
4116 RAM		for 14	
Zero Insertion Force 24	ocket	anbe)	2.00

Hewletr Packard		
Write or call for prices.		
Anchar		
tnintion + coser		
(5) (uncumunit		
FREE SOURCE MEMBERSHIP NITH SIGNALMAN		
All Signalman Modems are Direct Connect, and include cables		
Modems provide the best price-perform at less than $\$ 100$.	alue	start
Mark I RS232	(99)	9
Mark il for Atari 850	(99)	79
Mark IV for CBM/PET with software	(169)	99
Mark V for Osborne (software available)	(129)	93
Mark VI for IBM Personal Computer	(250)	180
Mark VII Auto Dial/Auto Answer	(179)	119
Mark VIII Beil 212 Auto Dial/Answer	(399)	319
IC HAYES Smartmodem		219
DC Hayes Smartmodem 1200		545

Apple Emulator lor Commodore 64 89
Screanmaker 80 COLUMN CARD tor C64 149
FROGGER for C54 or VIC 25

Solid Oak 2 Level Staad for C64 or YIC 29
C64, IIC Switch (networking)
BACKUP Y1.0 upo copler for C64 or VIC 125 CARDBOARD/6 Motherboard - VIC
CARDAPTER/1 Atari VCS Adapter - VIC CARDPRINT Printer interface - C64NIC CARDBOARD/3s Motherboard - VIC CARDETTE/ \dagger Cassette Intertace - C64NIC CARDRITER Lightpen - C64NIC CARORAM/16 RAM Expansion - VIC
We carry Apple II+ from
Bell \& Howell

Apple Emulater for

Cemmedere 64
IGK RAM Card Ier Apple
Salld Dak 2 Level Stand fer Appie
Super Serial Card
MPC RAM/BO celame card for IIE
280 Softcard and CP/M (Microsott)
Parallei Printer Interface/Cable
Applo Damplim (MIerated) Priater Ioteriace
Apple Oumpliay with 16K Befier
Grappler + Interface
TG Products for Apple in stock
DC Hayes Micromodem II

Videx 80 Colurnn Card
Hayden Softwere for Apple 20\% OFF
PHE Wrtar Worl Precassar

Gcommodore

See us for Persenal, Busiaoss, and Educatioaal reqairameats. Edicathanal Discounts availabie.

PETSCAN \$245 base price

Allows you to connect up to $30 \mathrm{CBM} / \mathrm{PET}$ Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.
CBC / PET / C64 COMMUNICATIONS!

COMPACK

Intallipeat Terminal Packaje

ACIA Hardware / STCP Sottware
VE-2 IEEE to Parillel Intertace 110
Includes case, power supply, full 8-bit transmission, and switch. selectable character conversion to ASCII

VIDEO ENHANCER for Commodore 6489
Realize video quality equal or better than composite monitor using standard color TV.

SCREENMAKER 80 Columa Adpater for C64 149 Provides big screen capability for business applications.
VIC 20 Products VIC Sargon II Chess 32
BACKUP Y1.0 20 VIC GORF 32
VIC RAM Cards in stock Meteor Run (UMI) 39

VIC SuperExpander 52 VIC Radar Ratrace 24
VIC 16K RAM 95 Amok (UMI) 20
Thera EMI Seftwirs Snakman
HES Seftwan Rubik's Cube
VIC Omega Race 32 Progranmers Reference
Spiders of Mars (UM) 39 FROGGER 25
Programmers Aid 45 VIC Adventure Series VICTORY Saftware for VIC and C64
Street Sweepers 12 Maze in 3-D
12
$\begin{array}{llll}\text { Night Rider } & 11 & \text { Cosmic Debris } & 12\end{array}$
Treasures of Bat Cave 12 Grave Robbers Advent
Games Pack I 12 Games Pack II 12
$\begin{array}{llll}\text { Victory Casino } & 8 & \text { Adventure Pack I } & 12\end{array}$
Adventure Pack II 12 Trek 11
Commodore 64 Programmers Reference Guide 16
MicraChess for C64 or PET
16
19
Compute's First Book of PET/CBM
C64 Er YIC SWITCH 25
POWER ROM Utilities for PET/CBM
WordPre 3+/64
SPELLMASTER apelliag chacker for WordPro $\quad 170$
VISICALC for PET. ATARI, or Apple
PETRAX PET to Epsen Graphics Software
SM-XIT enhanced PET/CAM ROM Utilities 40
Programmers Toolkit - PET ROM Utilities
CALC RESULT for C64
PET Spacemaker II RDM Switch
COPYWRITER Word Processer tor C64
2 Meter PET to IEEE or IEEE to IEEE Cable

DISK
 SPECIALS

Scotch (3M) 5" ss/dd Scotch (3M) 5" ds/dd Scotch (3M) 8" $5 \mathrm{~s} / \mathrm{sd}$ $10 / 2.25 \quad 50 / 2.10 \quad 100 / 2.05$ 10/3.15 50/2.90 100/2.85 Scotch (3M) $8^{\prime \prime}$ ss/dd 10/2.40 50/2.20 100/2.15

We stock VERBATIM DISKS

Write for Daaler and OEM prices.

BASF $5^{\prime \prime}$ or $8^{\prime \prime} \quad 10 / 2.00$ 20/1.95 100/1.85 NEW BASF Qualimetric Disks also in stock
Wabash 5"ss/sd
10/1.80 50/1.75 100/1.70
Wabash 5" ss/dd $\quad 10 / 2.0050 / 1.95100 / 1.90$
Wabash $8^{\prime \prime} \mathrm{ss} / \mathrm{sd}$
10/2.00 50/1.95 100/1.90

We stock MAXELL DISKS

Write for dealer and OEW prices.
Disk Storage Pages 10 for $\$ 5$ Hub Rings 50 for $\$ 6$ Disk Library Cases $8^{\prime \prime}-3.00 \quad 5^{\prime \prime}-2.25$
Head Cleaning Kits 11

CASSETTES—AGFA PE-611 PREMIUM

C-10
$\begin{array}{lll}10 / .61 & 50 / .58 & 100 / .50\end{array}$
C-30
$10 / .85 \quad 50 / .82$ 100/ 70

DATASHIELD BACKUP POWER SOURCE 225
Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.

Zenith ZVM-121 Green Phosphor Monitor 100
BMC 12A 12" Green Monitor
VOTRAX Personal Speech System
VOTRAX Type- N -Talk
160
VOICE BOX Speech Synthesizer (Apple or Atari)
CompuServe Subscription (5 hours free)
Prowriter Paralle! Printer
USI CompuM0D 4 R F Modulator
Daisywriter 2000
基
We Stock ANOEK Monitors
Amdek DXY-100 Plotter
600
A P Products
15\% OFF
Watanabe Intelligent Plotter $990 \quad 6$-pen 1290
ISOBAR 4 Outlet Surge Suppressor/Moise Filter 49
We stock Electronome Monitors
dBASE II ($8^{\prime \prime}$ format)
ALL BOOK and SOFTWARE PRICES DISCOUNTED
Panasonic TR-120M1P 12" Monitor (20 MHz) 149
Panasonic CT-160 Dual Mode Color Monitor 285

USI Video Moaitors-Green or AM8ER 20 MHz hitres.
Oesier and OEM inquirles invited
Synertek SYM-1 Microcomputer
SALE 189
KTM-2/80 Synertek Video and Keyboard

ZFMITH
 data systems

$\begin{array}{lr}\text { Z29 Terminal |new detachad keytoand) } & 680 \\ \text { ZT-1 Intedligent Cemmunications Terminal } & 369 \\ \text { Z100 } 16 \text {-bly/8-bit Systems in stock } & \text { CALL }\end{array}$
We stock entire Zenith line.

WE STOCK ENTIRE LINE—write for prices.

Atari 1200	549	01 x
Voice Box	100	Anchor Modom-Atart
FRO6GER	25	Ater Grimes (Compute)
Thern EmI Sottware		First Book of Atarl
EduFun Softwre		APX Sefture

WRITE FOR CATALOG. Add $\$ 150$ per order for United Parcel

C-64	Compute	\$399.00
VIC-20*	Personal Computer	147.00
VIC-1515	Printer	334.95
VIC-1530	Datasette	67.50
VIC-1541	Disk Drive	347.00
VIC-1010	Expansion Module	139.95
VIC-1311	Joystick	9.95
VIC-1312	Game Paddles	19.95
	Telephone Modem	99.95
VIC-1210	VIC 3K Memory Exp	34.95
	VIC sexpansion por. Exp	
VIC-1110 8K RAM expan	VIC 8K Memory Exp cartridge plugs directly into	52.50
CM102	24K Memory Expand	119.95
VIC-1011A	RS232C Terminal In	39.95
Provides in	between the VIC-20 and R	nications
PETSPEED	Basic Compiler for Commodo	140.00
	The	
Star Gemin	Printer	360.00
Star Gemi	Printer	450.00
SND Monl		347.00

| CS1 |
| :---: | :---: |
| The Word Processor of this decade! For the VIC-20 and $\mathrm{C}=64.0$ |

COMMODORE SOFTWARE

VIC-1211A
VIC-20 Super Expander
$\$ 55.00$
Everything Commodore coutd pack into one cartridgee - 3 K RAM memory expansion, high resolution graphics ploting, color, paint and sound commands. Graphic, text, multiccolor and music modes. 1024×1024 dot screen by hitting one of the VIC's special lunction keys. Includes tutorial instruction book. Excellent for all programming levels.
VIC-1212 Programmer's Ald Cartridge \$45.99 More than 20 new BASIC commands help new and experienced programmers renumber, race and edibASce programs. Trace any program line-by-IIne as execion pause 10 Sic commands subroutings or now Commands
finc
VIC-1213 VICMON Machine Language Monitor \$48.99 Helps machine code programmers write fast, efficient 6502 assembly language programs. Includes one line assembler/disassembler.

CARDCO	
Atari Adapter - play your 2600 games on the VIC-20	\$79.95
CARDBOARD 6	\$87.50
An expansion intertace for the VIC-20. Allows expansion to 40 K or accepts up	
CARDBOARD 3	35.95
Economy expansion interface for the vic-20.	
CARD "?" CARD/PRINT	\$76.00
Universal Centronics Parallel Printer Interface for the VIC-20 or CBM-64. Use an Epson MX-80 or OKIDATA or TANDY or just about any other.	
CARDETTE	\$30.95
Use any standard cassette player/recorder with your VIC-20 or CBM-64.	
A light pen with six good programs to use with your VIC-20 or CBM-64.	
16K Memory Expander \$50.50	

All CARDCO Products have a lifetime warranty

BUSINESS USES FOR YOUR VIC-20®		
SS	Accounts Payable \& Receivable	\$29.95
CW-107A	Home Calculation Program Pack	48.95
CPV-31	Data Files - your storage is unlimited	. 95
CPV-96	Household Finance Package - to keep records of all your household expenses	30.95
CPV-208	Bar-Chart - display your numerical data	95
CH	Turtle Graphics - learn programming	34.95
CH	VIC Forth - a powerful language for BASIC programming	49.95
CH	HES MON - a 6502 machine language monitor with a mini-assembler	34.95
C	HES Writer - time-saving word process tool	34.95
H	Encoder - keep your personal records away from prying eyes	5
CT-21	Statistics Sadistics - statistical analysis	14.95
CT-121	Total Time Manager 2.0 - creates personal or business schedules	15.95
CT-124	Totl Label - a mailing list \& labei program	13.95
CT-125	Totl Text BASIC	15.95
CT-126	Research Assistant - keep track of data	17.50
CT-140	Toti Text Enhanced	29.95
CM-152	Grafix Designer - design graphic characters	12.95
CQ-5	Minimon - allows you to program, load. save, or execute machine language programs	13.95
CS	Home Inventory - lists your belongings	17.95
CS	Check MInder - keep your checkbook right	14.95
CS	General Ledger - a complete ledger	19.95

GAMES FOR YOUR VIC-20®

CH-G203	Tank Wars	$\$ 15.95$
CH-G205	Plnball	13.45
CH-G206	Simon - It gets tougher as you get better.	13.45
Great for kids of all ages.	13.45	

CH-G207$\begin{array}{lll}\text { CH-G209 } & \text { Laser Blitz } & 15.95 \\ \text { CH-G210 } & \text { Tank Trap } & 15.95\end{array}$
CH-G211 Concentration15.95
CH-G212 Dam Bomber - pilot the plane, avoid enemy 13.45
CH-C307 Shamus - search room atter room tor the 34.95
$\mathrm{CH}-\mathrm{C} 308$ Protectoraction
CPU-79 Breakout 7.95
CPU-85 Hangman - unbelievable graphics \& sound 9.95CPU-87 Memory - vic challenges your memory
CPU-88 Match - nand \& eye coordination 7.95
CPU-89 Monks - a devilish game of logic 7.95
CPU-108 Bomber - you must decide who you want to tly tor, then pick a target \& your experience level
CPU-109CPU-153 Tank vs. UFO - the tank is moving back \& 9.95robots that obey one command - get the intruder!
CPU-194 Snakman - Pacman for the VIC 14.95
Defender on Tri - you're the pilot of an experimental ship 17.95
3-D Man - the popular arcade game, requires 3 K 17.95
20.95

When something new comes along most of us tend to be conservative about giving up the familiar. A good example of this behavior is the use of structured programming languages on microcomputers. Languages like Pascal have been available to us for a couple of years; they are easier to program in and more efficient than BASIC. However, only a relative minority of microcomputer users have switched to a structured language, and none of the major manufacturers offer anything other than BASIC as standard equipment.

Recently a number of new operating systems have come on the market. These operating systems bear about the

There are different types of tree structures used in structured programming and as data structures. I will restrict my discussion to one particular type: the hierarchical structure. In this structure the root node is called the ancestor of all other nodes. The next lower level of nodes are the children of the root node, each of which may have children of its own. As you work down the tree, each level of nodes represents a new generation of children. Each node has only one parent node, but it may have any number of child nodes. A path from the root node to any other node in the structure is simply a list of descendants, starting with the root

BASIC-09 needed an equally wellstructured operating system to support it, developed OS-9 to allow BASIC-09 users realize the full potential of a modern programming language.

I feel OS-9 is the best of the new operating systems. It is one of the most powerful 8 -bit operating systems available today and is the only truly powerful operating system that can run on a relatively small system. A 24 K -byte system can support OS9, and 48 K system can run several users simultaneously in a high-level language. A fully extended OS-9 system can have 1 megabyte of main memory, hard disk drives, and many users.

a structured operating system

by Mark G. Boyd

same relationship to the currently dominant systems $[\mathrm{CP} / \mathrm{M}$, Apple DOS, Flex) as Pascal does to BASIC. They are more powerful and, usually, easier to use.

Structured operating systems have the same type of structure found in a structured program, looking like an upside-down tree. The highest level is called the root node and is the overall control structure and most abstract part of the system. The root node is connected to the highest level of branch nodes, each of which are connected to their own set of branch nodes on the next lower level. On any level, a node may not be connected to any lower-level nodes. This type of node is called a leaf node and is connected only to a single branch node on the next higher level. In a structured program the leaf nodes are the most detailed part of the program. In a structured operating system they are the I/O device drivers, the data files, and the lowest level routines in the programs.
node and ending with the desired node. The path from the root node to any other node is unique. Any node may be reached from any other node by working up the structure until a common ancestor node is found and then working down to the desired node.

Data flow in a hierarchical structure is allowed only along the paths connecting the nodes. All data is local to the procedures/files that are the nodes. Data may be passed from a parent to its child or from a child to its parent; it cannot be passed to any other node without working through a path that involves a common ancestor. This system sounds complex but, as you shall see, it is the basis for very simple, but powerful operating systems.

OS-9, which uses this hierarchical structure and is a by-product of BASIC-09, is a result of Motorola's 6809 development process. The software was developed simultaneously with the hardware it is designed to use. Motorola and Microware, realizing that

A Structured Operating System

OS-9 is a descendant of UNIX, the Bell Telephone Laboratories operating system for large minicomputer systems. UNIX has become the standard for multiprogramming minicomputer systems because of it's versatility, power, and elegantly simple design. OS-9 looks much like UNIX, but its actual operation is quite different. UNIX dynamically swaps programs into memory from large, fast disk systems. OS-9 cannot do this because of the slow disk systems used with microcomputers. In order to support mulitple users, OS-9 makes use of position-independent re-entrant programs in RAM or ROM. Because the programs are re-entrant, multiple users can use the same code while maintaining different data and stack areas, and because the code is position independent, it can be brought into memory, in any available location, as needed. These two factors allow OS-9 to be

No. 61 - June 1983
much more efficient in its use of RAM and ROM than UNIX.

Multiprogramming means that the system can execute many different programs simultaneously. CPU time is divided in time slices labout .1 seconds in OS-9|, which are allocated by the system to the various tasks currently running and to the operating system overhead. With a powerful microprocessor like the 6809 and a welldesigned multiprogramming operating system like OS-9, users are not aware that they have only part of the CPU time.

OS-9 can run processes sequentially or concurrently. Each process is created by an existing process and may in turn create child processes of its own. This leads to a hierarchical structure where all processes are descendants of the original process run when OS-9 was brought up. To the user the root of each tree of processes is a process called Shell. A Shell process is executed when the system is started, and a new incarnation of Shell is created for each user who logs onto the system. Shell is a command interpreter that accepts input from the user and creates new processes in response to that input. Shell also can pass parameters to the process it creates.

When a Shell creates a process it puts itself into a waiting state until that process is finished. The user has the option of causing the Shell to create another incarnation of itself before it goes into its waiting state. This new Shell then can be used to create a new process and another incarnation of Shell, allowing a single user to make effective use of OS-9's multiprogramming capabilities. I'll give an example of this at the end of the article.

A hierarchical system also is used for all input and output. The top level [or roott of this tree is a general I/O manager. At this level all data is essentially a stream of bytes. Data being sent out to an external device passes down through the tree to a device driver, which is a leaf node (for single file devices) or the root node of the device file structure (for disk drives). The characteristics required for the data actually sent to the device are added as it passes down the tree. For example, data going to the disk would be blocked to sector size at one level, the appropriate preamble and postamble added at another level, and the actual sectors to be written determined at yet another
level. Input data undergoes the reverse of this process as it passes up the tree. Data at the top, which is the data passed to or from a process, has the same structure regardless of its course or its destination.

The device independence of I/O data has two advantages. First, it means that I/O paths can be redirected at any time. A program that normally outputs to the printer can have its output redirected to a disk file for later printing. Input to the Shell can be redirected to allow a disk file to control the system. In other words, printer spooling and procedure files are inherent in OS-9. Second, OS-9 programs are essentially hardware independent. The program is not aware of the device driver modules, so it cannot depend on the details of the I/O hardware. A program that runs on a small OS-9 system with one minifloppy and a serial printer will run, without modification, on a large system with hard disks and a chain printer. No more problems with software transportability or system upgrades!

The heirarchical structure extends to the file structure on the disk drive(s). A file is accessed by specifying a path to it. This path is simply a list of all of its direct ancestors. Each entry in the list, except for the first and last, is a directory file. Directory files are the branch nodes of the tree structure and contain only the names of their immediate descendants and pointers to them. The leaf nodes of the tree are the actual data or program files. The first entry in the path list may be a device driver (e.g.,/D1) or it may be a directory file in the current directory. The last entry is the name of the desired file. If the desired file is in the current directory, only the last entry is required.

Finally, lets explore some Shell commands. These commands are entered in response to the prompt OS9 and consist of a process name that may be followed by parameters for the process, a parameter that modifies the amount of memory used by the process, parameters that redirect the input/output paths of the process, and finally by a parameter that results in concurrent processing (i.e., creates a new incarnation of Shell). The parameters are separated by spaces and the entry is terminated by a return. Some examples are:

1. OS9: LIST FILE 7
2. OS9: COPY FILE3 FILE7
3. OS9: LIST /DI/ASSMFILES/BPROM
4. OS9: LIST /D0/MARKLIB/LETTER >/P1
5. OS9: LIST FILE7>/P1 \& EXECUTE \#7K
The first example runs the process LIST with input from FILE7, which lists FILE7 to the terminal. The second example runs the process COPY with input from FLLE3 and output to FILE7. So far things are much the same as in any DOS.

The third example runs the process LIST. Input is from the file BPROM. The path list specifies that BPROM is listed in the directory file ASSM-FILES, which itself is listed in the primary directory for the disk mounted in drive D1. The fourth example is similar to the third but it also demonstrates output redirection ($>$) to the serial printer driver / P1. This process lists the file LETTER to the serial printer.

The fifth example introduces concurrent execution (\&). The Shell creates a process that starts listing FILE7 to the printer. Then it creates another Shell that starts the process EXECUTE (EXECUTE is allocated 7 K of RAM (\#7K). All processes have a certain minimum amount of RAM that they require. This information is stored on the disk with each process. The \#7K is an execution modifier that can be used to allocate larger amounts of RAM at the time the process is created.

On my system EXECUTE is a BASIC-09 program. This information is noted by the system and, when a process using EXECUTE is created, BASIC-09 is loaded automatically and instructed to run the process. EXECUTE must be in packed form and located in the CMDS directory, but that's a subject for another article.

References

1. OS-9 Level I Operating System V1.1 Users Guide, Microwave Systems Corporation, 1981.
2. OS-9 Level I Operating System V1.1 System Programmer's Manual, Microware Systems Corporation, 1981.
[^1]
COIOP Disk

BASIC:

obsepvallons and ullilles

Dy Mehad Dusecon aid Willan Clemenls, th.

TThe disk system for the Color Computer [CoCol has been available for over a year now and has proved to be quite popular with CoCo owners. The DOS is ready to go at power-up, doesn't tie up a disk drive in reading program overlays, and since it is in ROM, it can't be overwritten by some renegade program. Best of all, it is easy to use; the commands are simple and direct, with many being easily understood by a complete novice.

In the year that we've used the CoCo DOS, we have discovered a few things that aren't specifically documented by Radio Shack, and have written some utility programs that we'd like to pass along to other disk users. We'll also discuss the structural details of BASIC and machine-language program files on disk. With this information, you can create new files, or modify old ones, directly from the keyboard. You can scroll through a file, or even through an entire disk, and explore the contents on the disk. You can back up the directories on all your disks, using sectors that are "hidden" from the operating system, as a safeguard against directory crashes that can help in recovering accidently KILLed files. You can list to the screen a complete summary of granules and sectors that a file occupies, and you can change individual bytes within a file without rewriting the whole file. Finally, we'll give you a program that lets you print a disk directory in a compact file-list table, including the start, end,
and exec addresses for machinelanguage files, appropriate for taping onto the disk jacket.

Disk Format and File Structure

There are three separate parts to a program file: the directory entry, the file-allocation table entries, and the filed data. The disk is formatted into 35 tracks, with eighteen 256 -byte sectors per track. The directory is contained on sectors $3-11$ of track 17 , and the fileallocation table is on sector 2 of the same track. Sectors 1 and 12-18 of track 17 are not used by the DOS.

Each track is divided into two 4096 byte granules, sectors $1-9$ comprising one granule and sectors $10-18$ the other. The granules are numbered 0 (track 0, sectors 1-9) through 31 (track 16 , sectors $10-18$), and 32 (track 18 , sectors 1-9) through 67 (track 34, sectors 10-18), skipping the directory track. The directory is located in the middle of the disk to minimize head travel; the directory must always be accessed first when program file operations are carried out by BASIC, and then the sectors containing the actual file are read.

The Directory Format

The directory structure is completely documented on pages $58-59$ of the Disk System Owner's Manual and Programming Guide, so we won't repeat every detail here. The directory entries
are contained in the first 16 bytes of each 32-byte cluster - beginning in sector 3 of track 17 and stored in the same order that the files were originally created on the disk. Each entry contains file name and extension, a filetype flag, a binary/ASCII flag, the number of the first granule in the file, and the number of bytes used in the last sector of the file.

Sector 2 of the directory track is the file-allocation table, which uses bytes $0-67$. Each byte indicates the type of use being made of the granule having the same number as the byte. A value \$FF means that granule is not part of a file. A value in the range $\$ 0-\$ 43$ (0-67 base ten) means that granule is part of a file; the value contained there is the number of the next granule used by the file. A value in the range $\$ C 0-\$ C 9$ means the corresponding granule is the last one used by that file. The second hex digit $[0-9]$ is the number of sectors in the granule that the file uses, counting from the first sector in the granule. Note that the four lowest order bits (bits $0-3$) in the word therefore give the number of sectors, rather than bits $0-5$ as the manual says. Table entries in the range $\$ 0-\$ 43$ and $\$ C 0-\$ C 9$ form a linked list of the granule allocations to every file.

When a file is killed, the first character of the file name is set to $\$ F F$, and the entries in the allocation table that correspond to the granules containing the file are also set to $\$$ FF. This destroys all information explaining where a file was stored. The file itself is left unchanged and will be overwritten by new data if the sectors are re-used. The FREE function of BASIC reports the number of table entries in the allocation table that currently equal \$FF.

How Program Files Are Stored

Let's look at how a BASIC program is stored in RAM, as a binary file on disk, and as an ASCII disk file. For our example, we'll choose a simple twoline program:

10 INPUT A
20 PRINT A;SQR(A):GO TO 10
BASIC stores its program lines in tokenized form, replacing all commands and functions with a one-byte code as the lines are entered. The interpretation of lines thus starts even before a program is run, saving some execution time and using less memory.

While listing or editing the lines, the tokenizing process is reversed to recover the original text. The pointer to the first BASIC statement is in locations $\$ 19$ and $\$ 1 \mathrm{~A}$ (25 and 26 decimal), and the address of the first free location after the last line is in locations $\$ 1 \mathrm{~B}$ and \$1C (26 and 27 decimal).

If we enter the example program with the disk system installed and peek at locations $25-27$, we find $\$ 2601$ and $\$ 2620$. Peeking at memory in between these limits gives the tokenized BASIC program in Table 1.

Now let's see how this list of bytes looks on disk. Let's take a freshly initialized disk and save the program under the name "TEST.BAS", which records it in binary (tokenized) format. The directory information and the sector containing the program statements can easily be examined using the DISKLOOK program, which we'll describe later. The information found there is summarized in Table 2. The first sector of the file begins with a one byte beginning-of-file mark (\$FF) and two bytes containing the total number of bytes in the file. Then the tokenized BASIC statements are copied verbatim from RAM, complete with the address links and zero markers between lines, filling sector after sector and granule after granule as required to hold the entire program.

Table 3 shows the file contents if the program is stored in ASCII format using SAVE "TEST.BAS",A. The tokenized lines in memory are untokenized and converted back to the way they were originally typed in, except for question marks that share the same token as PRINT and thus appear as PRINT in a listing. The file contains the list of program lines with the marker byte $\$ 0 \mathrm{D}$ before and after every line.

BASIC uses a slightly different format to store machine-language programs, since several absolute addresses must be associated with each file. Table 4 gives a six-byte test program and shows how it is stored. Notice that the end address is not stored with the file; the start address and total number of program bytes are saved at the front of the program, and the execute address appears at the end.

Saving Disk Programs On Cassette

While we're talking about storage of Disk BASIC programs, here is a word of caution about the cassette storage of

The pointer to the first location used for the lines is in locations $\$ 12$-S1A. The lines are stored in the following format: two-byte address of next BASIC line, two-byte line number. the BASIC tokenized line, and a one-byte end-of-line marker (500).

Example: 10 INPUT A 20 PRINT A, SQR(a) : GO TO 10

We find that $\$ 19$ - $\$ 1 \mathrm{~A}$ contains $\$ 2601$. At $\$ 2601$, we find the following data:

Hex Loc.	$\begin{aligned} & \text { Hex } \\ & \text { Byte } \end{aligned}$	Comments	Her Lac.	$\begin{aligned} & \text { Hex } \\ & \text { Byee } \end{aligned}$	Comments
\$2601	26 09 00 OA 89 20 41 00 26 $1 E$ 00 14 87 20 41.	Next line at $\$ 2609$	\$2610	$\begin{aligned} & 3 B \\ & \text { FB } \\ & 9 B \end{aligned}$	Function flag SQR token
		Line \#10		28	
		Space		29	A
		A		3 A	
		End-line marker		81	Token for co
\$2609		Another line		20	
		would go here		$\begin{aligned} & \text { A5 } \\ & 20 \end{aligned}$	Token for TO Space
		Line +20		31	
		PRINT token		30	0
		Space		00	End-line
		A			marker

disk programs. When the computer is powered up, the initialization routines put a table of pointers to the BASIC functions and commands into lower RAM starting at $\$ 0120$. If you have the Extended BASIC ROM, the pointers to those additional keywords are added to the table, and if the disk system is plugged in, pointers to the disk command and function lists are appended. Be sure the disk controller pack is plugged in if you save a program containing Disk BASIC statements onto cassette tape! Likewise, the disk pack must be in place whenever you read that tape back in. Otherwise, the table of pointers to legal keywords won't contain the ones for Disk BASIC. When you try to list a program containing unrecognizable tokens, BASIC goes ahead with the list but prints an exclamation point in place of the offending tokens as a signal that it couldn't figure out what keyword to put there.

Suppose, for instance, you want a printed listing of a Disk BASIC program but have no printer. You save the program on cassette and take it to a friend who has a printer but no disks. When he reads it in and lists it, he'll get '!' signs for all the disk-system keywords: you can see those now and then in published listings of programs for the disk system. If you use a cassette tape to hold Extended Disk BASIC programs, take your disk controller pack along with the tape; the ribbon cable and drives aren't needed if you just want a listing, but the Disk

ROM must be there before a CoCo can understand your tape!

Some Utility Programs For the Disk User

Now that we know the exact form in which the disk system stores programs, we can go in directly and alter the directory, fix a bad byte in the middle of a program, or construct our own files by POKEing in directory entries and file sectors directly from a program. We could even convert a BASIC program file into a machine-language file, and vice versa, by properly modifying the directory entry and changing the marker bytes at the beginning and end of the file. Many of these tricks are useful if you need to salvage a damaged file or a miswritten directory. The latter conversion might be helpful in overlaying or chaining program segments that have conflicting numbers by reading a BASIC file into a section of unused RAM and POKEing new line numbers into the statements. Then, by using a machine-language merge and move routine, you can combine them with the original program. Or you can just use the programs as an aid in learning about how Disk BASIC works.

1. The DISKLOOK Program. Listing 1 presents a multipurpose utility for examining and changing all kinds of files, including the directory itself. The program begins in the "disklook" mode, requesting a granule number and a sector number. When that information is
provided, the program reads the sector into memory. Beginning with the first byte in the sector and continuing until the screen is full, it prints the byte count, the hex value of the byte and its ASCII character equivalent. To continue scrolling through the contents of the sector, press the space bar or 'enter'. To reverse-scroll, hit the uparrow; to interrupt the scrolling and specify another granule and sector, press '@'. If you wish to look at the directory, enter ' D ' instead of a granule number. The byte count starts at 0 when the directory is read out, to correspond with the listings in the Disk System Manual and to allow the byte numbers in the allocation table to correspond with the granule numbers. For all other granules, the bytes are numbered starting with 1.

You may also enter a subcommand mode whenever the screen stops scrolling. A ' D ' key initiates a search through the directory sectors for the first unused position. Then you are prompted for the information needed to create a new directory entry (you must use as the extension either .BAS, .BIN, or .TXT). A ' C ' allows you to change one byte in the sector under examination by specifying the byte number and the new value. An ' F ' (for file-analysis) prompts for a file name, then lists all information contained in the directory about that file, including file type and mode, an ordered list of the granules used, the number of sectors in the last granule, and the number of bytes in the last sector.
2. The DIRDUPL Program. If you read the Disk System Manual carefully, you'll see that BASIC leaves nearly half the directory track unused. Sectors 1 and 12-18 can be used for other purposes, such as scratch storage or private files. We use them to back up the information contained in the directory. Most disk users at one time or another have gotten a mangled directory due to power failure, a power-line spike, or other mishap that occurs just as you are writing the disk. Another cause of crashed disks is the corrosion that forms on the contact fingers of the disk drive, causing intermittent connections.

You can use DIRDUPL to back up directory sectors $2-9$ into sectors 12-18 and 1 , respectively, and then later to rewrite the directory from the backup if it ever becomes necessary. Sectors 10 and 11 are not backed up due to lack of space; however, these are not normally
used unless you have more than 54 files on one disk.

By the way, DIRDUPL can provide an easy way to restore a killed file. The KILL command doesn't alter the file, it just flags the directory entry and wipes out that file's granule numbers in the file-allocation table so they all can be used again. If you kill a file and want to recover it later, you can do so by restoring the original directory provided that none of the file's granules have been reused. Of course, if the file space has been overwritten, the original file is unrecoverable by any method.
3. The DISKLIST Program. Several programs have been published that give
a printed listing of the names/extensions, length, type, addresses, and other statistics associated with the files on a disk. The most elaborate file statistics we've seen are those generated by F. S. Flack's program in Color Computer News, August, 1982, p. 11. Another program giving less detail but an easier-to-read listing is C . J. Roslund's program in The Rainbow, March, 1982, p. 31. Other programs have appeared that send the output of the DIR command to a printer. We wanted a program that would provide more information than the DIR command, yet would not use an entire printed page so that the user is forced to

TABLE 2. DISK STORAGE OF BASIC PROGRAM IN BINARY FORMAT

If the program of Table 1 is saved to disk, the sector containing the program will have the following bytes:

Byte No.	Byte	Comments	$\begin{aligned} & \text { Byte } \\ & \text { No. } \end{aligned}$	Byte	Comments
1	FF	Start marker	10	87	PRINT
2	00	Total length	11	20	
3	1F	of file	12	41	A
4	26	Address of	13	3B	;
5	09	next line	14	FF	
6	00	Line \#10	15	9 B	SQR
7	0 A		16	28	
8	89	INPUT	17	41	A
9	20		18	29	1
A	41	A	19	3 A	
B	00	End-line marker	1 A	81	GO
C	26	Where another	1 B	20	
D	1E	line could go	1 C	A5	TO
E	00		1 D	20	
F	14	Line \#20	IE	31	1
			1F	30	0
			20	00	End-line
					marker

TABLE 3. DISK STORAGE OF BASIC PROGRAM IN ASCII FORMAT
The same example program, stored in ASCI format, would appear in its sector as follows:

Byte No.	Byte	Comments	Byte No.	Byte	Comments
1	OD	Start/end marker	15	20	Space
2	31	1	16	41	
3	30	0	17	3B	;
4	20	Space	18	53	S
5	49	I	19	51	Q
6	4 E	N	1A	52	R
7	50	P	1B	28	
8	55	U	IC	41	A
9	54	T	1D	29	
A	20	Space	1 E	3A	
B	41	A	1F	47	G
C	OD	Start/end marker	20	4F	0
D	32	2	21	20	Space
E	30	0	22	54	
F	20	Space	23	4 F	\bigcirc
10	50	P	24	20	Space
11	52	R	25	31	
12	49	I	26	30	0
13	4 E	N	27	OD	Start/end
14	54	I			marker

P.O. Box 4364

Flint, Michigan 48504
ZANIM
(313) 233-5731
(313) 233-3125

COMMODORE VIC-20

ZFIN-1 This FINANCE Program is the most versatile business program available today for general home accounting, checkbook balancing, charts and graphs. The program makes full use of the VIC-20's many features such as color, sound, and the excellent implementation of the function keys for quick, accurate operation selection with NO programming experience required. (The program uses the disk and is compatible with the VIC 1540/41 disk drives. It comes with disk and manual.) Requires 3K super expander cartridge. Cassette \$29.95 Disk \$39.95

APPLE II-Plus

ZMAIL1' - A comprehensive mailing label program for the APPLE II + . ZMAIL features fullscreen editing capability, five of the most common sorts (NAMES, CITY, STATE, ZIP, COMPANY) plus an extra field for a group identifier. Custom variations available. It comes with disk and manual. Price $\$ 69.95$

ZINVEN1 - An inventory control program for small business applications. ZINVEN1 features full-screen editing for maximum flexibility AND several sort options (all are relational sorts). It comes with disk and manual. Price $\$ 79.95$

TELECOMMUNICATIONS on the VIC and '64!

"A versatile and exceedingly well-done package." David Malmberg, MICRO "Simply the best \& nicest VIC terminal software I have seen."

We created quite a flurry and earned rave reviews with Terminal-40, the unique soltware that transforms the VIC screen into a 40 -column smooth-scrolling display. And with features like a Receive Buffer and vIC printer dump, Terminal-40 sets a new standard for personal modem communications with networks such as CompuServe and Source. Our '64 Terminal does the same quality job for the ' 64.
And now there's even MORE!!! SuperTerm for the VIC and ' 64 supports text storage to disk or tape and program UPLOAD/DOWNLOAD. SuperTerm, used with our Smart ASCII interface, also supports popular parallel printers.
Choose the one right for you. Call or write today for the "best", then

REACH OUT and BYTE SOMEONEI

DISKLIST prints the file name/extension, notes whether the file is binary or ASCII, lists the number of granules used, and prints the start, end, and exec addresses for machinelanguage programs. Most important, it does this on a printout that is just the right size to fasten to the disk jacket. If the table contains more files than will fit on one side of the jacket, DISKLIST prints "continued on back" and finishes the listing with a new table that can be attached to the reverse side of the disk jacket.

The name/extension, file-type flag and ASCII flag, and the three addresses for machine-language files are saved in arrays; if you ever want to do anything
that are available commercially. We haven't seen any of them, so we aren't in a position to compare their features with ours, but we feel that what we have done is worth at least the price of this magazine.

We were going to tell you how to beat that intermittent contact problem, weren't we? Unfortunately, there probably isn't any way to cure it permanently, short of soldering everything together, but we think we have found the next best thing. There are products sold for just this purpose: that is, keeping contact fingers clean on circuit boards in critical commercial equipment. We use Gold-Wipes ${ }^{\bullet}$, made by the Texwipe Company, Upper Saddle River, NJ 07458 . These are small, foilsealed packets containing pads soaked in a solvent and contact-conditioning agent selling for about 25° apiece in boxes of 100 . Friends or members of a computer club could go together and buy a box, but even if you have to shell out the whole $\$ 25$ yourself, it's well worth it. A treatment every month or so with these pads has cured our dirtycontact blues, and until Radio Shack wakes up and puts gold-plated connectors on their disk equipment, it should be a good fix for your system too.

You may contact the authors at Dept. of Chemical \& Metallurgical Eng., U. of Alabama, P.O. Box 2662, University, AL 35486.

Listing 1

16 'DISKLOOKUTILITY
20 'by michail dudceon and bill clenents
25 'COPXRIGHT © 1983 by MICRO Ink
30 CLEAR20бण:DTM E(2Ø)
40 CLS3: PRINTE43, "DISKLOOK";
50 printe96, "enter grante no. in hex ";
:LINEINPUTG\$:IF G\$ < >"D" THEN 7ø
60 T=17:INPUT"SECTOR(1-18)";S:GOTO 96
$7 \sigma \mathrm{G}=\mathrm{VAL}\left(" 8 \mathrm{H}^{\prime \prime}+\mathrm{G} \$\right): \mathrm{IF} \mathrm{G}>33$ THEN $\mathrm{T}=\operatorname{INT}(\mathrm{G} / 2)+1$ ELSE T=INT($(\mathrm{G} / 2)$ ' TRACK NO.
$8 \varnothing \mathrm{~S}=\mathrm{G} / 2-\mathrm{INT}(\mathrm{G} / 2): \operatorname{IF} \mathrm{S} 1=\varnothing$ THEN $\operatorname{INPUT} " S E C T O R(1-9)$ "; S ELSE INPUT"SECTOR(16-18)";S
90 S1=ø:PRINT"TRACK"T"SECTOR"S:DSKIS $\varnothing, T, S, A \$(1)$, A\$(2)
10ø FOR $Y=1$ T0 $2: I F T=17$ AND S=2
THEN PRINT"BYTE NUMBERS=GRANULE NUMBERS"
110 IF $T=17$ THEN FOR $X=\varnothing$ to 127 ELSE FOR $X=1$ TO 128
120 IF T=17 THEN $P \$=M \operatorname{ID}(\operatorname{As}(Y), X+1,1)$
ELSE $\mathrm{P} \$=\mathrm{MID} \mathrm{\$}(\mathrm{~A}(\mathrm{Y}), \mathrm{X}, 1)$
138 PRINTUSING" $\%$ \% \% \% $\%$ ";
$\operatorname{HEX}(\mathrm{X}), \operatorname{HEX}(\operatorname{ASC}(\mathrm{P} \$)), \mathrm{P} \$$
$14 \varnothing$ IF $\mathrm{X}=\varnothing$ OR $\mathrm{X} / 14<>\operatorname{INT}(\mathrm{X} / 14)$ THEN $18 \varnothing$
15б' <e>: RETURN TO DISKLOOK
<D>: CREATE NEW DIRECTORY ENTRY
<C>: CHANGE BYTE IN FILE <F>: FILE ANALYSIS
16ø A\$=INKEY\$:IF A\$="1" THEN 16ø ELSE IF A\$=" 8 " THEN 40
178 IF A\$="D" THEN 2あб ELSE IF A\$="C" THEN 32Ø
ELSE IF A $\$=$ "F" THEN 356 ELSE IF $A \$=n \nmid "$ THEN $\mathrm{X}=\mathrm{X}-28$
186 NEXT X,Y:GOTO 46
19б ' CREATE NEW DIRECTORY LISTING
$2 \varnothing 6$ CIS2:PRINT"CREATE NEW DIRECTORY ENTRY"; :
FOR S=3 TO 9:DSKI\$ Ø, 17,S,A\$,B\$:C\$=A\$
+LEFT\$(B\$,127): FOR I=1 TO 225 STEP 32:
IF $\operatorname{ASC}(\operatorname{MIDs}(\operatorname{C\$ }, I, 1))<>\varnothing \operatorname{AND} \operatorname{ASC}(\operatorname{MDD}(C \$, I, 1))$
$<>255$ THEN NEXT I, S' FIND FIRST UNUSED SLOT
216 IF $1>128$ THEN L9-2:I=1-128 ELSE L9=1
22\% $\mathrm{A} \$(1)=\mathrm{A} \$: \mathrm{A} \$(2)=\mathrm{B} \$$
236 PRINTE96,"FILENAME.EXT: ";:LINEINPUTXXS:
XX=INSTR (XXS,".")+INSTR (XX8, "/"):XY=
$\operatorname{LEN}(X X \$): R \$=R T G H T \$(X X \$, 3): X X S=L E F T \$(X X \$, X Y-4)$
$+\operatorname{STRING}(12-X Y, "$ ") + R\$:IF R3\$="DAT"
THEN R2=255 ELSE R2=ø
 ELSE IF R3\$="DAT" THEN FT=1 ELSE IF R3s $=$ "BIN" THEN FT=2
256 XXS $=\mathrm{XX} \$+\mathrm{CHR} \mathrm{\$}(\mathrm{FT})+\mathrm{CHRS}(\mathrm{R} 2): \mathrm{X}=1:$
INPUT"SECTORS IN LAST GRANULE";DD
26あ LINE INPUT"ENTER GRaNULE NOS. IN GEX,
$<\ell>$ AFTER LAST ONE. "; K\$:E $(\mathrm{X})=1+$

GOTO 2661 INPUT GRANULE NOS. IN ORDER
$27 \varnothing$ DSKIs $\varnothing, 17,2, A \$, \mathrm{~B} \$$: POR $P=1$ TO $\mathrm{X}-1$:
$\operatorname{MTD\$ }(A \$, E(P), 1)=\operatorname{CHR}(\mathbb{E}(P+1)-1)$: NEXT P
$28 \varnothing$ MTD\$ $(A \$, E(X), 1)=C H R \$(\& H C \not \subset+D D):$
DSKO8 $\varnothing, 17,2, \mathrm{~A}, \mathrm{~B}$ ' ' INSERT GRANUIE NOS.
in pile allocation table
296 XX\$=XXX+CHRS (E (1)-1):INPUT"NCMBER OF BYTES
IN LAST SECTRR"; Z :XXS=XX $\$+C H R(\sigma)$
$+\operatorname{CHRS}(2)+\operatorname{STRING3}(16,6)$
$36 \varnothing \operatorname{MDD}(A \$(29), I, 32)=X X \$: D S K O \$ \varnothing, 17, S, 4 \$(1), A \$(2)$:
SOOND 5, 18:CLS2:GOTO 5ه
318 ' Change byte
326 IF $T=17$ THEN E $\varnothing=1$ ETSE E $\varnothing=\varnothing$

tho favest
 WORDPROCESSOR FOR THE COMMODORE 64"' ALSO CHECKS YOUR SPELLING!

Suggested Retail: \$139.95

"REALLY FOXY IS BEING LETTER PERFECT"

Contact Your Nearest Commodore Dealer Today ...

Listing 1 （continued）
33ø CIS4：PRINT＠8，＂CHANGE ONE BYTE＂；：PRTNT＠96， ＂BYTE NO．（HEX）TO CHANGE＂；：INPUTBB\＄：
INPUT＂NEW BYTE＂；NC $\$$ ：MID\＄（A\＄（Y），VAL（＂ $8 H$＂$+B B \$$ ）$+E \emptyset, 1$ ）
$=C H R \$($ VAL $(" \& H "+N C \$)$ ）：DSKO\＄\emptyset, T, S ，
A\＄（1），A\＄（2）：CLS2：GOTO 50
340 ．FILE ANALYSIS
350 CLS8：PRINTE41，＂FILE ANALYSIS＂；：PRINTE96，
＂FILE NAME：＂；：LINEINPUTF\＄：IF LEN（F\＄）＜ 8 THEN F\＄＝F\＄＋STRING\＄（8－LEN（F\＄），＂＂）
360 PRINTe128，＂EXTENSION：＂；：LINEINPUTE\＄：F\＄＝F\＄＋E\＄
$37 \emptyset$ FOR X＝3 TO 9：DSKI $\$ 0,17, \mathrm{X}, \mathrm{A} \$, \mathrm{~B} \$:$
IF INSTR（A\＄，F\＄）OR INSTR（B\＄，F\＄）THEN 380
ELSE NEXT X：PRINT＂ENTRY NOT FOUND＂：
FOR X＝1TO2øøø：NEXTX：GOT035ø
$38 \emptyset \mathrm{X}=\mathrm{INSTR}(\mathrm{A} \$, \mathrm{~F} \$): \mathrm{IF} \mathrm{X}=\emptyset \operatorname{THEN} \mathrm{X}=\mathrm{INSTR}(\mathrm{B} \$, \mathrm{~F} \$)$ ：
A $\$=\mathrm{B} \$$＇ $\mathrm{X}=\mathrm{BYTE}$ NO．FOR ENTRY LOCATED
$390 \mathrm{~A} \$=\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{X}, 32)$＇ $\mathrm{A} \$ \mathrm{NOW}=\mathrm{THAT}$ SINGLE ENTRY REQUESTED
$4 \emptyset \varnothing \mathrm{C}=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, 12,1)): \mathrm{IF} \mathrm{C}=\emptyset$
THEN PRINT＂BASIC＂ELSE IF C＝1 THEN PRINT＂DATA＂
EISE PRINT＂MaChINE LANGUAGE＂
410 IF ASC（ $\operatorname{MID} \$(A \$, 13,1))$ THEN PRINT＂ASCII＂ELSE PRINT＂BINARY＂
42бE（1）$=\operatorname{ASC}(\operatorname{MID} \$(A \$, 14,1))$
$430 \mathrm{~N}=\operatorname{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, 16,1))$
$44 \emptyset$ DSKI $\$ \emptyset, 17,2, A \$, B \$$
450 $\mathrm{X}=1$
$46 \mathrm{E}(\mathrm{X}+1)=\operatorname{ASC}(\mathrm{MIDS}(\mathrm{A} \$ \mathrm{E}(\mathrm{X})+1,1))$ ： IF $E(X+1)>\& H B F$ THEN $S C=E(X+1)-\& H C D$ EISE $\mathrm{X}=\mathrm{X}+1$ ：GOTO 46
47Ø PRINT＂GRANULES：＂：FOR P＝1 TO X：PRINT＂\＄＂ ＋HEX\＄（E（P））：NEXT P：PRINT＂SECTORS IN LAST
gRanule：＂SC：PRINT＂BYTES IN LAST SECTOR：＂；
＂\＄＂＋HEX\＄（N）：PRINT：PRINT＂HIT ANY KEY
TO CONTINUE＂；
48ø IF INKEY\＄＜＞＂＂THEN CLS3：GOTO4ø：ELSE $48 \emptyset$

Listing 2

10＇DIRDUPL UTILITY
$2 \varnothing^{\prime}$ DIRECTORY BACKUP AND RETRIEVAL
30 ＇BY MICHAEL DUDGEON AND BILL CLEMENTS
35 ＇COPYRIGHT © 1983 by MICRO Ink
40 CLEAR3ØØ冋：CLS3
$5 \varnothing$ PRINTE5，＂DISK DIRECTORY BACKUP＂：
PRINTE69，＂（1）BACK UP DIRECTORY＂：
PRINTE101，＂（2）RETRIEVE DIRECTORY＂：
PRINT10165，＂WHICH＂；：INPUTW
60 PRINTe229，＂DRIVE NO．＂；：INPUTDN
$7 \varnothing$ ON W GOTO 9ø，140
80 GOTO5ø
90 FOR X＝2 TO 8
1 1ø DSKI\＄DN，17，X，A\＄，B\＄：DSKO\＄DN，17，X＋1ø，A\＄， $\mathrm{B} \$$
110 NEXT X
$12 \varnothing$ DSKI\＄DN，17，9，A\＄，B\＄：DSKO\＄DN，17，1，A\＄， $\mathrm{B} \$$
130 END
140 FOR X＝2 TO 8
$15 \emptyset$ DSKI $\$ \mathrm{DN}, 17, \mathrm{X}+1 \varnothing, \mathrm{~A} \$, \mathrm{~B} \$: \mathrm{DSKO} \mathrm{DN}, 17, \mathrm{X}, \mathrm{A} \$, \mathrm{~B} \$$ 160 NEXT X
$17 \emptyset$ DSKI\＄DN，17，1，A\＄，B\＄：DSKO\＄DN，17，9，A\＄，B\＄ 180 END

Listing 3

1才＇DISKLIST－DIRECTORY PRINTING UTILITY
$2 \sigma^{\prime}$ BY BILL CLEMENTS
25 ＇COPYRIGFT © 1983 by MICRO Ink
30 CLS：CLEAR2ああり：C\＄＝CHR\＄（13）：
PRINTTAB（6）＂DIRECTORY PRINTER＂C\＄
$40 \operatorname{DIMGR}(67), \mathrm{N} \mathrm{\$}(68), \mathrm{SA}(68), \mathrm{EA}(68), \mathrm{XA}(68), \mathrm{T}(68), \mathrm{F}(68)$
50 INPUT＂DRIVE NO＂；DN：PRINT＂PRINTED OUTPUT（ Y / N ）＂：
LINEINPUT＂（DEFAULT IS＇N＇）：＂；Q\＄：
IFQ $\$=" Y "$ THEN $Q=-2$ ELSE $Q=\emptyset$
60 L＝Ø：LX＝25：LINEINPUT＂DISK NANE？＂；D\＄：IFQ＝ø THEN CLS
$7 \emptyset$ PRINT\＃Q，TAB（1Ø）＂DISK：＂D\＄C\＄：GOSUB37Ø
$8 \emptyset$ DSKI $\$ \mathrm{DN}, 17,2, \mathrm{~A} \$, \mathrm{~B} \$: \mathrm{B} \$=\operatorname{LEFT}(\mathrm{A} \$, 68):$
FORI $=1$ T068： $\operatorname{GR}(\mathrm{I}-1)=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{~B} \$, \mathrm{I}, 1)): \mathrm{NEXT}$
＇LINKED LIST OF FILE GRANULES
$9 \emptyset$ FORI＝3TO11：DSKI $\$ D N, 17, I, X \$, Y \$:$
X\＄＝X\＄＋LEFT\＄（Y\＄，116）＇GET DIRECTORY ENTRIES
$1 \emptyset \emptyset$ FORJ $=\varnothing T O 7: L=L+1: J J=32 * J: N \$(L)=M I D \$(X \$, J J+1,8)$
$+" .1+\operatorname{MID} \$(\mathrm{X} \$, \mathrm{JJ}+9,3): \mathrm{G}=\mathrm{ASC}(\mathrm{MID}(\mathrm{X} \$, \mathrm{JJ}+14,1)):$
FG＝G＇NAME，EXTENSION，FIRST GRANULE
$11 \varnothing \mathrm{~T}(\mathrm{~L})=\operatorname{ASC}(\mathrm{MID} \$(\mathrm{X} \$, \mathrm{JJ}+12,1)): \mathrm{F}(\mathrm{L})=$
ASC（MID\＄（X\＄，JJ＋13，1））＇FILE TYPE，ASCII FLAG
12Ø $\operatorname{IFF}(\mathrm{L})=\emptyset$ THEN $T \$=" B I N " E L S E T \$=" A S C "$
$13 \varnothing \mathrm{~B}=\operatorname{ASC}(\operatorname{LEFT} \$(\mathrm{~N} \$(\mathrm{~L}), 1)): \mathrm{IF} \mathrm{B}=\emptyset$ THEN $2 \emptyset \varnothing$
EISE IF B＝255 THEN 210＇SKIP IF KILLED OR UNUSED
140 FORK＝1T068：IF GR（G）＜ 68 THEN G＝GR（G）：
NEXTK＇SEARCH FOR LAST GRANULE
$15 \varnothing$ IF $T(L)=2$ THEN 230 GO FIND ML ADDRESSES
160 IFL＞LX THEN $35 \emptyset$＇COUNT FILES
$17 \emptyset$ PRINT\＃Q，TAB（3）N\＄（L）TAB（17）T\＄TAB（2Ø）K；
$18 \varnothing$ IF T（L）$=2$ THEN PRINT\＃G，TAB（22）＂\＄＂＋SA\＄＋＂，\＄＂＋EA\＄＋＂，\＄＂＋XA\＄；
196 PRINTHQ
200 NEXTJ，I
210 PRINT\＃Q，C\＄TAB（12）＂FREE GRANULES： 1 ；FREE（DN）
220 STOP
$23 \varnothing$ LS＝GR（G）AND31＇NO．SECTORS USED IN LAST GRaNuLE
240 LB＝ASC（MID\＄（X\＄，JJ＋16，1））＇BYTES IN LAST SECTOR
$250 \mathrm{~T}=\mathrm{INT}(\mathrm{FG} / 2)-(\mathrm{FG}>=34)$＇TRACK NO．OF FIRST GRANULE
$260 \mathrm{~S}=1+9 *$（FG AND1）＇FIRST SECTOR FOR
EvEN GRANULES $=1$ ，FOR ODD GRANULES $=1 \varnothing$
276 DSKI\＄DN，T，S，A§， $\mathrm{B} \$$＇GET ML ADDRESSES
$28 \varnothing \operatorname{SA}(\mathrm{~L})=256 * \operatorname{ASC}(\operatorname{MID} \$(\operatorname{A} \$, 4,1))+\operatorname{ASC}(\operatorname{MID} \$(A \$, 5,1)):$
SA\＄＝HEX\＄（SA（L））：SA\＄＝STRING\＄（4－
LEN（SA\＄），＂あ＂）＋SA\＄＇START ADDRESS
$29 \varnothing \mathrm{EA}(\mathrm{L})=\mathrm{SA}(\mathrm{L})+256 * \operatorname{ASC}(\mathrm{MID} \mathrm{\$}(\mathrm{~A} \$, 2,1))$
$+\operatorname{ASC}(\operatorname{MID} \$(A \$, 3,1))-1: \operatorname{EA} \$=\operatorname{HEX} \$(E A(L)): E A \$=S T R I N G \$$
（4－IEN（EA\＄），＂Ø＂）＋EA\＄＇END ADDRESS
$3 \varnothing \varnothing \mathrm{~T}=\mathrm{INT}(\mathrm{G} / 2)-(\mathrm{G}>=34)$＇TRACK NO．OF LAST GRANULE
$31 \varnothing$ S＝IS $+9 *$（G AND1）＇LAST SECTOR NO．
$32 \varnothing$ DSKI\＄DN，T，S，A\＄， B ：$: \mathrm{A} \$=\mathrm{A} \$+\mathrm{LEFT}(\mathrm{B} \$, 127)$
$33 \varnothing \mathrm{XA}(\mathrm{L})=256 * \operatorname{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{LB}-1,1))$
$+\mathrm{ASC}(\mathrm{MIDS}(\mathrm{A} \$, \mathrm{LB}, 1)): \mathrm{XA}=\mathrm{HEXS}(\mathrm{XA}(\mathrm{L})): \mathrm{XA}=\mathrm{STRING} \$$
（4－LEN（XA\＄），＂ø＂）＋XA\＄＇EXEC ADDRESS
34ø GOT016ø
350 PRINT\＃Q，C\＄TAB（9）＂CONTINUED ON BACK＂C\＄C\＄
$36 \varnothing$ GOSUB37Ø：LX＝68：GOT017Ø
$37 \varnothing$ PRINT\＃Q，TAB（7）＂NAME＂TAB（15）＂TYPE，GR．
START，END，EXEC＂：PRINT ${ }^{(1 Q, T A B(7) S T R I N G \$(32, " . ") ~}$
$38 \emptyset$ RETURN MRRO＂

$\$ 450.00$
$A D-121602$

－Simple Software Selection of Channels

－Range $\pm 10, \pm 5, \pm 2.5,+5,+10$
－Hight－Speed $25 \mu \mathrm{Sec}$ ．Conversion
－Full Software Support－Disk or Prom
－Adjustable Bipolar Reference

Powerful－Economical－Professional

Peripherals for your Apple II＊

Ultra Rom Board／Editor $\quad \$ 190.00$ aps－ 102

－Powerful G．P．L．E．［Giobal Program Line Editor］built in
－Includes：Search and Replace－Insert and Delete－and much more
－Edit programs 2 to 5 times faster
－ЭこK of Bank Switchable ROM Space
－Totally Transparent－Remove or Reload with a few keystrokes－without disk！
－Extensive Macro Table eliminates multiple keystrokes for common operations
－Useful Ampersand［ $\&$ ］Utilities all in one place
－Applesoft＂Extensions including＂IF，THEN，ELSE＂
－Support for other HOLLYWOOD HARDWARE Products in Rom
Circle No． 28

Products for Commodore, Atari, Apple, and others!

THE MONKEY WRENCH II A PROGRAMMERS AID FOR ATARI 800 NEW AND IMPROVED - 18 COMMANDS
 PLUGS INTO RIGHT CARTRIDGE SLOT

If you are a person who likes to monkey around with the ATARI 800, then THE MONKEY WRENCH II is for you!! Make your programming tasks easier, less time-consuming and more fun. Why spend extra hours working on a BASIC program when the MONKEY WRENCH can do it for you in seconds. It can also make backup copies of boot type cassette programs. Plugs into the right slot and works with ATARI BASIC cartridge.
The MONKEY WRENCH provides 18 direct mode commands. They are: AUTOLINE NUMBERING - Provides new line numbers when entering BASIC program lines. RENUMBER - Renumbers BASIC's line numbers including internal references. DELETE LINE NUMBERS

$\$ 59.95$

VARIABLES - Display all BASIC variables and their current value. Scrolling - Use the START \& SEL ECT keys to display BASIC lines automatically. Scroll up or down BASIC program. FIND STRING - Find every occurrence of a string, XCHANGE STRING - Find every occurrence of a string and replace it with another string. MOVE LINES - Move lines from one part of program to another part of program. COPY LINES - Copy lines trom one part of program to another part of program. FORMATTED LIST - Print BASIC program in special line format and automatic page numbering. DISK DIRECTORY - Display Disk Directory. CHANGE MARGINS - Provides the capability to easily change the screen margins. MEMORY TEST - Provides the capability to test RAM memory. CURSOR EXCHANGE - Allows usage of the cursor keys without holding down the CTRL key. UPPER CASE LOCK - Keeps the computer in the upper case character set. HEXCON VERSION - COnverts a hexadecimal number to a decimal number. DECIMAL CONVERSION - Converts a decimal number to a hexadecimal number. MONITOR - Enter the machine language monitor.
In addition to the BASIC commands, the Monkey Wrench also contains a machine language monitor with 16 commands used to interact with the powerful features of the 6502 microprocessor.

VIC RABBIT CARTRIDGE AND CBM 64 RABBIT CARTRIDGE

$\$ 39.95$
(includes Cartridge and Manual)
Expansion Connector on the VIC Cartridge

"Don't waste your Life away waiting to LOAD and SAVE programs on Cassete Deck.
Load or Save 8 K in approximately 30 seconds! Try it - your Un-Rabbitized VIC takes almost 3 minutes. It's not only Fast but VERY RELIABLE.
Almost as fast as VIC Disk Drive! Don't be foolish Why buy the disk when you can get the VIC Rabbit for much, much less!
Easy to install - it just plugs in. Expansion Connector on rear. Works with or without Expansion Memory. Works with VIC Cassette Deck. 12 Commands provide other neat features.
Also Available for 2001, 4001, and 8032

Specify 3.0 or 4.0 ROMS or 8032 Commodore Computer 4040 or 8050 or PEDISK II Disk or CBM64 on 1541.

Price: $\mathbf{\$ 1 2 9 . 9 5}$

ATARI AND PET EPROM PROGRAMMER

Programs 2716 and 2532 EPROMs. Includes hardware and sotware. PET $=\$ 75.00-$ ATARI lincludes sophisticated. macthine language monitor) $=$ $\$ 119.95$

Prownter Printer - Exceilent dot matrix print Paralleal $=\mathbf{\$ 4 8 9} 00$ Serial $=\$ 60000$ IEEE $=\$ 589.00$

PET BASIC SCROLL PROGRAM

Scroll thru Basic Programs using cursor up/down keys. Specify computer. $\$ 6.00$ on cassette, $\$ 9.00$ on diskette.

65 C 02 MAE

Same as our MAE but enhanced for the new 65 C 02 Opcodes. Turns your computer into a development system for the new ROCKWELL 65 C 02 Microprocessor. $\$ 200.00$ - Specify Computer.

6800 CROSS ASSEMBLER

A Cross Assembler based on the MAE that runs on the PET, Apple, or Ataribut assembles opcodes for the Motorola 6800 microprocessor. Turns your computer into a development system for the Motorola 6800 Microprocessor. $\$ 200.00$ - Specify Computer.

ATARI and VIC Cartridges

EHS can supply large quantities of ATARI and VIC Cartridges for software developers. If you need cartridges, call for pricing.

	TRAP 65 TRAP 65 is a hardware device that plugs into your 6502's socket. Prevents execution of unimplemented opcodes and provides capability to extend the machines' instruction set. For PET/APPLE/SYM. Reduced from $\$ 149.95$ to $\$ 69.95$
OC Hayes Smart Modern $=\$ 235.00$ OC Hayes Micro Modem II $=\$ 28900$	Rana Disk Drive - 375 4 Drive Controller - 114

More than just an Assembler/Editor!

Blast off with the software used on the space shuttle project!

- Designed to improve Programmer Productivity.
- Similar syntax and commands - No need to retearn peculiar syntaxes and commands when you go from PET to APPLE to ATARI.
Coresident Assembler/Editor - No need to load the Editior then the Assembler then the Editor, etc. Also inciudes Word Processor, Helocating bader. and much more.
Options: EPROM Programmer, unimplemented opcode circuitry.
SIILL NOT CONVINCED: Send for tree spec sheet!

5\% INCH SOFT SECTORED DISKETTES

Highest quality. We use them on our PETs, APPLEs, ATARIs, and other computers. $\$ 22.50110$ or $\$ 44.50120$
EPROMS 2716 $=\$ 4.502532=\$ 7.50$
Over 40 Commodore Programs by Baker (on 4040) $=\$ 25.00$

The 68000 Educational Computer Board

by Terry A. Jackson

0ne of the exciting items in the micro world these days is the Motorola 68000 16-bit microprocessor. A recent equipment item from Motorola, the MEX68KECB educational computer board, should also prove to be quite popular with those who want to learn how to use the 68000 . Recently I purchased one of these boards to help upgrade my skills as a microprocessor instructor, and I am quite pleased with its capabilities. In this article I outline what I feel to be the board's important features so that you can judge whether or not it suits your needs.

Hardware Highlights

The board contains a 4 MHz 68000 processor, 32 K of user-programmable dynamic RAM, a 16K ROM monitor, two EIA RS-232C serial ports, a cassette tape recorder port, a parallel printer port, a 24 -bit general-purpose programmable timer, and a very small
breadboard area (17/8' x $\left.23 / 8^{\prime \prime}\right)$. You must provide a CRT terminal or a teleprinter) and a power supply with +5 -volt and ± 12-volt outputs.
The 32 K RAM memory removes a major limitation possessed by most of the popular "evaluation kits" and allows you to do some very ambitious programming. You can graduate from games to mini-interpreters, multitasking experiments, and other more sophisticated diversions. One of the RS-232C ports is assigned to the system terminal, and the other to a host system. The ports are separately jumper-adjustable to baud rates from 110 to 9600 . The presence of a host is not required, since the system runs comfortably without it, but if such a luxury is available, the saving and reloading of programs is greatly enhanced. The cassette recorder port, operating at approximately 1300 baud, means economical mass storage for students with more limited resources.

The $7^{\prime \prime} \times 10.5^{\prime \prime}$ - board is not a kit; it comes assembled and tested. Sockets
are used for the 68000, the 68230, the 4116 RAMs, the monitor ROMs, the 6850 serial interface chips, and the 14411 baud-rate generator. An envelope of push-on jumpers is provided for selection of various options, and even a set of insulated spacers and screws is included for mounting the board. Two pushbuttons are mounted on the board; one restarts and reinitializes TUTOR, the ROM-resident monitor, and the other simply aborts any user program, saves registers, and returns control to TUTOR. The abort function is particularly useful for debugging if a user program is in an infinite loop.

Those who want to experiment with hardware add-ons may find the breadboard area adequate, but two connectors can be attached easily for more ambitious expansion. All data lines, fifteen address lines, and most control signals are brought to a 46 -pin connector pattern, and a $2 \times 25\left(0.1^{\prime \prime}\right.$ spacing uncommitted connector pattern allows access to the upper address bit decoder, other control signals, port

No. 61 - June 1983
connections, or the breadboard area. The 68000 is designed to interface easily not only with its own family of peripherals, but also with the 6800 family.

I would like to pass along some helpful hardware-related hints. First, although the set-up instructions are generally quite detailed, there's a point I did not find mentioned. Your terminal must support the DTR (data terminal ready) line or your system will just stare back at you when you power up. Second, the markings on the lines to the terminal and to the host seem at first glance to be mixed up. Pin 3 on the host connector carries outgoing data and is marked TX DATA. Pin 3 on the system terminal connector carries incoming data and is also marked TX DATA. The reason for this is that the board is intended to look like a modem to the system terminal, and to look like a data terminal to the modem communicating with the host. With this perspective, everything looks normal. Third, many cassette tape recorders do not have the low side of the microphone input tied to the same point in the circuit as the low side of the output jack. If your recorder is one of these, check to see what the effect is of tying these two points together. On my machine, it simply changes the output level. If your recorder cannot tolerate having these two points tied together, you will have to connect one cable at a time, depending on whether you are dumping or loading. (This problem is not unique to the educational computer board. Every tape-oriented system I own or have encountered makes the same assumption, and I have witnessed resultant problems more than once.)

Software Features

A wide variety of keyboard commands is available using TUTOR. The most significant of these, the singleline assembler and the disassembler, deserve a detailed description. All valid 68000 operations can be entered in source form, one line at a time, from the keyboard. The object code is generated by TUTOR and stored sequentially in memory; however, the source lines are not saved. If you want to make changes, the memory-modify command with the disassembly option can be used to review and change selected instructions. The object code
and disassembled equivalent source are displayed, one line at a time, with the option of entering a different source line or simply advancing to the next instruction. At any time, a printer-attach command can be given and the memory-display command with the disassembly option can be used to produce a disassembled hard copy of the entire program. Finally, the object code can be dumped to the host or to cassette tape for future reloading.

The inability to save source is not as much of a problem as it might seem at first. If further revisions are to be made, a program may be reloaded and the revise-disassemble-dump cycle repeated. The disadvantages of a lack of source storage capability and the inability to use symbolic addressing do not appear to me to be serious for small programming exercises suited to learning the instruction set, but the support of a host system with an editor and assembler would be needed to effectively utilize the 32 K of RAM. The equipment manual describes the object program storage format completely. This permits anyone with access to a fullblown assembler with an incompatible format to write a format conversion program. |This is typically a relatively easy job once the initial and target formats are known.)

One of the keyboard commands sets up a transparent mode. in which a direct path exists between the system terminal and the host. This mode allows you to do the entire program development task, editing, assembly, and debugging from a single operating position. A user-selectable exit character will return control to TUTOR.

Several keyboard commands are available to support program debugging. Trace and breakpoint capabilities are included. In trace mode, a program may be stepped through, one instruction at a time. After each step, current register contents are displayed, and the next instruction to be executed is disassembled and displayed. Tracing may be set to run continuously without operator intervention, or to pause after each step and wait for a go-ahead from the operator. If the trace command is preceded by a printer-attach command, a hard copy of the action can be obtained for later review. Up to eight breakpoints can be set at any one time. Each breakpoint may have an optional
count entered as well. If a count, N, is entered, the program will halt just before the Nth execution of the designated instruction (and at each subsequent encounter), but not before. Breakpoints may be combined with continuous tracing if desired.

The only software flaw I have encountered is in the ASCI string handling for DC directives in the single-line assembler. If a blank is imbedded in the string, the assembler thinks you did not complete the line properly. This problem is avoided easily, and I understand will be fixed in a subsequent revision of TUTOR. The avoidance procedure consists of substituting the memory set command with its ASCII string option, and targeting the command to the same memory location that the disassembler was at when the problem was encountered.

The version of TUTOR that I have is 1.0 ; revision 1.1 is being shipped as of this writing, and revision 1.2 will be ready to go soon. Motorola sources indicated that enhancements as well as problem corrections can be expected in this newest version. It is apparent to me that they are supporting this product solidly as part of a program to capture a big chunk of the 16 -bit market.

Conclusions

The educational computer board is an excellent choice for those who want to learn a lot about the 68000 . It is a learning tool, not a computer to get data processing jobs done. Connected to a host with good language tools, the MEX68KECB's power is tremendously magnified.

The board requires no knowledge of hardware for its use, but permits hardware-oriented users to have some fun, too. No clever gimmicks interfere with almost unlimited hardware addon projects.

Good software and thorough documentation, combined with a board that has lots of progran roem, make this an excellent buy at $\$ 495$.

Terry Jackson is a quality control engineer at Electro-Motive, a locomotive manufacturer in La Grange, IL. He is also an assistant professor at Midwest College of Engineering in Lombard, IL, teaching courses in microprocessor applications. You may contact him at 147 E . View St., Lombard, IL 60148.

MODEMS/CRTS/PRINTERS/SWITCHES/MICRO COMPUTERS/CABLES

0000	PRODUCT DESCRIPTION	LIST	YOUR cost
	UDS 103LP. 300 bps , Modem	145	130
	UDS 202LP. 1200 bps , Hait Duplex Modem	195	150
	UDS $212 \mathrm{LP}, 1200 \mathrm{hps}$, Full Duplex (212A) Modem	445	CALL
	U.S. Robotics Auto Dial 212A, 300/1200 Full Duplex Modem	599	475
	Incomm Auto Dial 212A, 300/1200 Full Duplex Modem	599	450
	Cermetec Auto Dial 212A, 300/1200 Full Duplex Modem	595	495
	Microband Auto Dial 212A, 300/1200 Full Duplex Modem	695	495
	Rixon Intelligent Modem, 300/1200 (10 Number)	495	CALL
	Rixon PC 212A (IBM PC Modem Card) 300/1200	495	CALL
	Incomm Multi Dial 300/1200 (10 Number)	795	550
	U.S. Robotics Password 300/1200 (Auto Dial) Modem	495	CALL
	U.S. Robotics Courier, Osborne, 300/1200 Modem	518	CALL
	U.S. Robotics S-100, 300/1200 Auto Dial Modem	495	CALL
0	Visual 50 CRT	695	550
5	Freedom 100 CRT, w/20 F, keys \& Editing	595	550
4	Incomm Remote Station I, w/Integrated 300/1200 Modem	1295	995
$\begin{aligned} & y \\ & \frac{y}{n} \\ & \frac{2}{2} \\ & i: 2 \end{aligned}$	Epson MX80/Grattrax +	650	399
	Epson MX80 FT/Grattrax +	700	498
	Epson MX100/Grattrax +	900	700
	Epson FX-80	750	656
	Star Micronics Gemini 10	399	350
	Star Micronics Gernini 15	649	548
	AJ Letter Quality Printer, 30 CPS (KSR)	1450	1250

ORDER TOLL FREE - 1-800-323-2666

TOUMAYAN \& ASSOCIATES

115 N . Wolf Rd. Wheeling, IL 60090 312-459-8866

We Welcome:
- Visa, Mastercharge
-Checks
-Company P.O.
C.O.D. (Add. \$1.50/Shipment)

EVER WONDER HOW YOUR APPLE II WORKS?

QUICK TRACE will show you! And it can show you WHY when it doesn't!

This relocatable program traces and displays the actual machine operations, while it is running and without interfering with those operations. Look at these FEATURES:

Single-8tep mode displays the last instruction, next instruction, registers, flags, stack contents, and six user-definable memory locations.
Trece mode gives a running display of the SingleStep information and can be made to stop upon encountering any of nine user.definable conditions.
Eackground mode permits tracing with no display until it is desired. Debugged routines run at near normal speed until one of the stopping cond itions is met, which causes the program to return to Single-Step.

QUICK TRACE allows changes to the stack registers, stopping conditions, addresses to be displayed, and output destinations for a/l this information. All this can be done in Single-Step mode whlle running.

Two optional d/sp/ay formats can show a sequence of operations at once. Usually, the information is given in four lines at the bottom of the screen.
QUICK TRACE is completely transparent to the program being traced. It will not interfere with the stack, program, of I/O.

QUICKTRACE is relocatable to any tree part of memory. Its output can be sent to any slot or to the screen.
QUICKTRACE is completely compatible with programs using Applesoft and Integer BA SICs, graphics, and DOS. (Time dependent DOS operations can be bypassed.) It will display the graphics on the screen while QUICKTRACE is alive.
QUICKTRACE is a beautiful way to show the incredibly complex sequence of operations that a computer goes through in executing a program

Price: $\$ 50$ QUICKTRACE requires 3548 ($\$ E 00$) bytes (14 pages) ot memory and some knowledge of machine language programming. quicktrace was written by John Rogers. It will run on any Apple II or Apple II Plus computer and can be loaded from disk or tape. It is supplied on disk with DOS 3.3. QUICKTRACE was written by John Rogers.
QUICKTRACE is a tradernark of Anthro-Digital, inc.

QUICKTRACE DEBUGGER

Anthro-Digital, Inc.
P.O. Box 1385

Pittsfield, MA 01202
413-448-8278

॥1m!

Play your 2600 games on your VIC-20

$$
\$ 7995
$$

Frogger

Write for FREE Catalog! VIC-20 or C-64

Shipping 8 Handling Charges:
First two (2) items - $\$ 2.00$ per ite
Three (3) or more items - $\$ 1.00$ per item
For orders over $\$ 100$ total, surface shipping will be paid by
CompuSense. Blue Label or special handling will be paid by the customer
Additional \$2.00 C.O.D. fee on all C.O.D. orders.
MasterCard and Visa accepted. Give card number and expiration
date on order form.
Allow three (3) weeks for personal checks
TO ORDER:
P.O. Box 18765

Wichita. KS 67218
(316) 263-1095

VISA

A UNIX-like
 Operating System

for 6809

MICROPROCESSORS

by Stephen L. Childaess

Unless you've been on sabbatical to Siberia of late you will have noticed the swell of interest in the Unix ${ }^{\text {TM }}$ operating system software. Most new and all the old popular 16-bit computers are supporting Unix or one of the numerous look-alikes. Why all the furor? It seems at last we've begun to rethink computer programming and usage. Recognizing that software development is expensive and timeconsuming, we must exploit the falling cost of today's hardware. In this article, I explain how a new operating system software philosphy is being applied to small microcomputers capable of supporting a MC6809 processor. This software is called "OS-9"' and iâ a good example of the rewards of rethinking system software.

This article is not so much to sing the praises of OS-9 as it is to point out the disappointing fact that most new computers being introduced today are a rehash of the disk operating systems of the 1970's /CP/M, PC-DOS, Apple DOS, etc. \mid There is a real catch- 22 here exemplified by the IBM PC, which has a large memory space; it is running an improved but non-the-less CP/M derivative and therefore does not take advantage of the memory size to make the system more cost-effective. Another good example is Apple DOS, which, when outfitted with a new inexpensive hard disk, must resort to treating it in BASIC with some 72 independent floppy disks.

To date, the 6809 has not found the
success of the Z-80, et. al., not because it is inferior, but because it was introduced too near in time to the 16-bit chips. The 8086 and 8088 are used in systems that are not much better, faster, or cheaper than good Z-80 systems. But for the hundreds of thousands of byte-wide (8-bit) computers, OS-9 and the 6809 can be retrofitted to bolster the capabilities of existing systems. OS-9 is, at the time this is written, some two years mature and running on all of the 'SS 50' computers, the Apple II, and several European computers. But lacking marketing giants like Tandy and IBM, the machines remain in the fringe areas and have a limited collection of off-theshelf applications software. Rumor has it that Tandy is developing OS-9 for the Color Computer.

Time for Change

The Unix supporters favor a switch from yesterday's system software philosophies, which have evolved into stubborn, unwiedly enemies of the programmer and, consequently, the enduser. Bell Labs launched the Unix philosophy, the bottom line which might be described as: "Since software is increasingly expensive to develop, let's change the priorities from frugality in hardware and to abstraction in software design."

The Unix philosophy is reflected in the jargon: "Shell," "Kernal," "Filter," "Pipe," "Tee,' and
"Socket" - each suggests a simple abstract idea about data processing. For example, Kernal and Shell simply refer to parts of the operating system that can be compared to layers. The concepts Filter, Pipe, and Tee deal with problems such as data base management more easily than the older "query, sort, merge, and report." General abstraction does cost more in terms of hardware, but in today's systems where hardware is a small part of a complete system price, the new priorities are encouraging.

OS-9 Evolution

While Unix was finding its way from DEC PDP-11/45's and 70's to other minicomputers, Motorla and Microware Systems Corporation teamed to produce software that would exploit the capabilities of the new MC6809 ''pseudo 16-bit"' microprocessor chip, which has all the memory addressing mode power of the minicomputers. The feature that distinguishes micros originally intended for use in industrial controllers from computers for general use is strength in addressing modes. The idea these two companies had was to develop an extremely modular set of reusable software. The benefits of modular software has been known for some time; but it has been realized only in limited terms, requiring the programmer to use monolithic compilers, assemblers, and linkers to effect a merger of modules. Although this works well, it is time consuming and far from ideal. Motorola wanted modularization to the extent of massproduced 'software-on-silicon'" (ROMs). Before processors of the 6809's power, such an idea was impractical because of the lack of addressing power.

What is the ideal format for modularization? Here is a wish list, with the scientific name of the species in brackets:

1. Software modules that can be placed anywhere in memory without reassembly or link-
loading - just copy it to memory verbatim from some media such as a disk. [Position-independence]
2. Modules that reside in EPROM or ROM already plugged into the address space of the machine. This would be good for modules that are used often. [ROM-able, Reentrant]
3. Modules that intercommunicate in a standard fashion without subtle sneak-paths that can get fouled up. Forbid fragile, spider-web arrangements of software interaction. [Stack-oriented]
4. The modules should contain "pure code" only and the variables used by a module should be in RAM supplied by the modules' parent (caller).
5. Allow programmer to "activate" modules coming from the software toolbox. These should have all the flexibility of old, stable modules. [Loadable]
6. For non-ROM modules (RAM), allow those not'needed for the job at hand to be removed from memory, making more space for other modules.
7. Since requirements change and mistakes do happen, allow a new module to temporarily supercede an old one without hassle.
[Precedence]
8. Allow modules to be shared among several users. [Reentrancy]
9. The system software should worry about which language is being used in a particular module assembly, BASIC, etc..
10. The modules should be able to perform I/O without any knowledge of who/what/how regarding the I/O devices.
11. And last but not least, KISS! That's "Keep It Simple, Stupid."

Simple means small, and don't forget that modularization is supposed to mean that a non-Ph.D. can understand the overall system by concentrating on one piece at a time.
This is a tall order. What would the user's benefit be? The idea is to eliminate the aggravations caused by the older system philosophy. Consider this list of nuisances the computerist must face every day:

1. He needs to run Program B while in A, but A is incompatible with B because they both use the same memory region for their code.
2. A jury-rigged version of program B is made up to let B hide from A, say in high memory.
3. But A and B still fight over the same memory cells for variables. The hide and seek continues with some successes, some hoakey fixes, and a few subtle disasters.
4. The programmer would like to swap A and B but he needs fast (expensive) disks.
5. Multiple users on a micro? There's not enough memory for two copies of the 20 K -byte language program let alone the 8 K or so for the programs.
6. The operating system doesn't support multiple terminals.
7. The operating system is too complex and will not allow changing I/O conditions without surgery, hacking, patching, and kludging.

Figure1 OS-9 Memory-Resident Module Directory

Module Directory at 21:28:13

Addr	Slza	Typ	Rev	Attr	Use	Modute	Name
F000	400	C1	1	r.	1	OS9p2	Kernal, part 2
F4D0	2 E	CO	1	r.	1	Init	System initialization module
F4FE	1BA	C1	1	r.	1	Boot	System Boot media fetcher
F800	7BF	C1	1	r.		OS9	Kernal, part 1
BAOO	7F	C1	1	r.	1	SysGo	Starts up main user on "TERM"
BATF	193	E1	1	r.	8	ACIA	Driver for RS232 serial devices
BC12	38	F1	1	r.	2	TERM	Device module for 1st CRT
BC4A	651	C1	1	r.	1	IOMAN	Chief executive for all I/O
C29B	BBC	D1	1	r.	1	RBF	Chief of all File IIO, any device
CE57	41.6	D1	1	r. .	8	SCF	Chief of all Character l/O device
D273	33A	E1	1	r...		DC3	Device driver for mini-floppy
D5AD	2 C	F1	1	r.		DO	Device module for minifloppy \#0
D5D9	2 F	F1	1	r. .	1	H0	Device module for hard disk \#0
D608	36	F1	1	r.	6	T1	Device module for 2nd CRT
D63E	216	E1	1	r.	1	WD1000	Device driver for hard disk
D854	CA	C1	1	r.	r	Clock	Device driver for 60 Hz line clock
D91E	472	11	1	r.	2	Shell	Unix-like user interface (CLI)
DD90	2 E	11	1	r.		Load	Utility to get module from disk
DDBE	48	11	1	r.		Unlink	Utility to remove module from mem
ACOO	1DA	11	1	r.	1	Mdir	Utility producing this report

which are, in turn, subordinate to IOMAN. In keeping with the module concept, device drivers and their device modules (e.g., WD1000 and H 0) are loadable from disk. Thus, to add another disk drive, one merely prepares a new device module (a 5 -minute job). To add a new type of peripheral, you merely write a new device driver (actually, paraphrase a similar old one), a one-day task. Note that these new modules do not affect the code within the existing modules in any manner whatsoever. Note also the small size of the peripheral drivers, which hints at their simplicity. Score one for the modular I/O goals in the wish list.

Now look at these modules from their kinship perspective rather than from the memory-map view (see figure 2). From this view these modules' functions are:

KERNAL - allocates and manages memory, time shares CPU among programs, coordinates inter-program signals, accepts and hands off jobs to appropriate I/O chiefs.
CLOCK - handles 60-per-second (power line) clock interrupts and keeps time of day and time-sharing slice intervals.
IOMAN - responsible for all requests for I/O, regardless of device. Interfaces programs in a uniform way to the various classes of I/O.
RBF - I/O control of random blockoriented devices such as disks. Takes care of directories, files, media allocation, etc. Calls upon various device drivers for physical I/O. Knows nothing about tracks or sectors; works with 32 -bit "logical" block numbers.
SCF - I/O control of sequential character-oriented devices like CRTs,
which are, to the user programs, files that may be read or written exactly as RBF (disk) files (except for lack of random access). Knows nothing of the device characteristics, leaving that to a subordinate driver such as ACIA.
DC3 and WD1000 - Device drivers for specific hardware. Converts RBF's logical block number to track, sector, cylinder, or whatever is appropriate for the device. Talks to the device's I/O registers using either polled or interrupt-driven methods. Knows nothing of file structures. Declares that RBF manages I/O for the driver.
DO - A device (descriptor) module for a mini-floppy. Supplies details of device; e.g., I/O register locations, number of tracks, sectors per track, drive number, seek time, double/single density/sided, etc. Contains data only, no code. D0 is the name programs use to refer to the peripheral for I/O activities on files on that device. This module states that its device is handled by the driver named DC3.
HO - Identical to D0, except values unique to the hard disk. Defines WD1000 as the driver for device HO .
ACLA - Driver for RS-232 UART peripherals. Handles the characters from/to serial channels. Buffers incoming data for type-ahead. Buffers outgoing data to allow calling program to get on with concurrent work. Allows editing of typos, recall of last line entered, etc. Using device modules, it adapts to the terminal for upper/lower case, auto-line feed, nulls, etc. Declares that SCF manages the I/O for the driver.
TERM and $T 1$ - Like D0 and H 0 , these device descriptor modules define the driver name for the TERM and T1 peripherals (CRTs) as ACIA, and the terminals' unique needs.

To perform I/O to a certain device, a program (in some language) says in effect: "READ from DO^{\prime} " or "WRITE to TERM' or whatever. If, for example, the desired device is HO (the hard disk) -the KERNAL catches the program's request and, since it is I/O, calls upon IOMAN. This module then looks for the device name (HO) in the module directory and finds the name of the driver (WD1000) within the H0 module. Within the WD1000 module is the name of the driver, RBF. Then IOMAN merely sends the programs I/O desires to the I/O chief, RBF, along with the addresses of the driver (WD1000) and device (HO) modules. From here, RBF takes care of the rest, with help from the driver WD1000.

Although it's not obvious, this maze-running has one simple advantage. The user's program requested I/O to some device HO, and OS-9 figured out that H0 with WD1000 and RBF could do the job. The beauty of the scheme is that the system handled the device I/O despite the fact that the device "H0" was unknown at the time the main system was written, assembled, and configured (and no "hacking and patching" was done). Indeed, WD1000 and H0 were merely loaded into memory just after booting from the floppy. The same is true for T1, the second CRT and, though not shown, for a printer attached as device " P ", managed by ACIA and SCF. Clearly, more printers, say P1, or more CRTs, say T2, or more disks, say D1 or H1 or X8580 may be added without affecting the rest of the system in any way whatsoever. Remember, these modules are just small pieces of data or code loaded from some disk into memory whenever a peripheral is added. Indeed, the printer module P is loaded only when that printer is being used!

This concludes part 1. See the July issue of MICRO for part 2.

Steve Childress has been involved with mini and micro systems for over 15 years. He developed a discrete logic microcomputer using shift-register memory and an IBM output writer for I/O in the days of the $\$ 3008008$ chip. Recently, he has contributed to the Apple II adaptation of the OS-9 system. You may contact him at 31220 La Baya Dr., Suite 110, Westlake Village, CA 91362.

Circle No. 33

Circle No. 34

Vervan utility programs require no sortware modifications and are must for all serious ATARI BASIC rogrammers

CASOUP 1.0 \& 2.0 To copy most 8OOT tapes and cassette data files 1.0 is a file copier. 2.0 is a sector copier. Cassette only $\$ 24.95$

CASDIS To transfer most BOOT tapes and cassette data files to disk Disk only $\$ 24.95$

FULMAP BASIC Utility Package MAP-variable cross-reference CMAP-constant cross-reference includes indirect address references), LMAP-line number cross-reference, FMAP-all of the bove. Will list "unlistable" programs. Also works with ditor/Assembler cartridge to allow diting of string packed machine language subroutines. All outputs may be dumped to printer. Cassett or Disk $\$ 39.95$

DISASM To disassemble machine language programs. Works with or without Editor/Assembler
cartridge. May be used to up or down load single boot files. All output can be dumped to printer. Cassette or Disk $\$ 24.95$

DISDUP For disk sector information copying. May specify ingle sector, range of sectors, or all Copies may be made without read varify. Disk $\$ 24.95$

IJG products are available at computer stores, B. Dalton Booksellers and independent dealers around the world. If IJG products are not available from your local dealer, order direct. Include $\$ 4.00$ for shipping and handling per item. Foreign residents add $\$ 11.00$ plus purchase price per item. U.S funds only please.

IJG, Inc. 1953 W. 11th Street Upland, California 91786 Phone: 714/946-5805

mang man flat T'S JUST CREAT:

- Lowest price quality tractor friction printer in the U.S.A. - Fast 80 characters per second - 40, 46, 66, 80, 96, or 132 characters per line spacing • Prints labels, letters. graphs, and tables
- List your programs • Print out data from modem services

Deluxe COMSTAR FIT PRINTER - $\$ 299.00$

The Comstar is an excellent addition to any micro-computer system. (Interfaces are available for Apple, VIC-20, Commodore-64, Pet, Atari 400 and B00, and Hewlett Packard) At only $\$ 299$. the Comstar gives you print quality and features found only on printers costing twice as much. Compare these features.

- BI-DIRECTIONAL PRINTING with a LOGIC SEEKING CARRIAGE CONTROL for higher through-put in actual text printing. 80 characters per second.
- Printing Versatility: standard 98 ascil character set plus block graphics and international scripts. An EPROM character generator includes up to 224 characters.
- INTERFACE FLEXIBILITY: Centronics is standard. Options Include EIA RS232C, 20 mA Current Loop. (Add \$20.00 for RS232)
- LONG LIFE PRINT hEAD: 100 million character life expectancy.
- THREE 8ELECTABLE CHARACTER PITCHES: - 10, 12 or 16.5 charmcters per inch. 132 columns maximum. Double-width font also is standard for each character pltch.
- THREE 8ELECTABLE LINE SPACINOS: 6, 8 or 12 lines per inch.
- PROGRAMMABLE LINE FEED: programmable length from $1 / 144$ to 255/144 inches.
- VERTICAL FORMAT CONTROL: programmable form length up to 127 lines, usetul for short or over-sized preprinted forms.
- FRICTION AND TRACTOR FEED: will accept single sheet paper.
- 224 TOTAL CHARACTERS
- USES STANDARD SIZE PAPER

If you want more try -
Premium Quality
COMSTAR FIT SUPER-10"
PRINTER - $\$ 389.00$

More Features Than MX-80

For $\$ 250$ Less

For $\$ 389.00$ you get all of the features of the Comstar plus $10^{\prime \prime}$ carriage, $100 \mathrm{cps}, 9 \times 9$ dot matrix with double strike capability for 18×18 dotmatrix. High resolution bit image (120×144 dot matrix), underlining, backspacing, 2.3K buffer, left and right margin settings, true lower descenders, with super and subscripts, and prints standard, Italic, Block Graphics, special characters, plus 2 K of user definable characters. For the ultimate in price performance the Comstar FTT Super 10"' leads the pack!

80 COLUMN PRINTER \$199

Super silent operation, 60 CPS, prints Hi resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal roll paper!

Double Immediate Replacement Warranty

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within "180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge via United Parcel Service, prepaid. This warranty, once again, proves that WE LOVE OUR CUSTOMERS!

15 DAY FREE TRIAL

 OTHER OPTIONSExtra Ribbons . \$ 5.95 Roll Paper Holder . 32.95 Roll Paper. 4.95 5000 Labels . 19.95 1100 Sheets Fan Fold Paper. 13.95
Add $\$ 20.00$ shipping, handling and insurance. illinois residents please add 6% tax. Add $\$ 40.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA orders. WE DO NOT EXPORT TO OTHER COUNTRIES. Enclose cashiers check money order or personal check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mall available!! Canada orders must be in U.S. dollars.

Pr DTEDE
 ENTERPRIZES (factorv-diaect)

BOX 550, BARAINGTON, ILLINOIS 60010
BOX 550 , BARAINGTON, ILL
Phone $312302-5244$ to order

COMSTAR FTT

AECDEFGHI JKLMNDFQRSTUUWKYZabcdef ghi jkimnonarstuvw:yz1234567890

Operating System Commands

Color Computer DOS

Disk Operating Commands
Disk directory Index
File copy
Disk copy
Assign I/O buffers

Delete disk file Execute binary file
Load file into memory
Merge file into memory file
Take input from disk flle
Output disk file in ASCII
Format disk
Rename disk file
Close open files
Save memory to disk flle
Error-check on disk writes
Select default drive

DIR <dn>
COPY <file specl> TO <file spec2>
BACKUP <dl> [TO <d2>]
OPEN "<mode>",\#<buff>,"<flle spec>", <reclen>
KILL "<file spec>"
EXEC (F1le must be in memory)
LOADM " < file spec>" [, <offsetadr>]
MERGE "<file spec>"
DSKI\$ <dn>,<trk>, <sec>,<strl>, <str2>
DSKO\$ <dn>,<trk>, <sec>, <strl>, <str2>
DSKINI<dn>
ReNAME "<file specl>" TO "<file spec2>"
UNLOAD [dn]
SAVEM "<file spec>", <strtadr>, <endadr>
<execadr>
VERIFY [ON or OFF]
DRIVE < dn>

BASIC Commends
Open new sequential file Open old sequential flle
Open randor array file
Close file channel(s)
Delete disk file
Rename disk file
Display free space on disk Write to sequential file

Read from sequential file

Write to random record flle
fead from random record file
Save a program on disk
Load a program from disk
Execute a BASIC program
from disk

OPEN "I",\#<buff>, <file spec>,<reclen>
Same
OPEN "D",\#<buff>, <file spec>,<reclen>
CLOSE \#<buff>[, <buff\# 11st>]
KILL "<file spec>"
RENAME "<file speci>" TO "<file spec2>
PRINT FREE (<dn>)
PRINT \#<buff>; <data>
WRITE \#<buff>; <data>
INPUT \#<buff>; <data>
LINE INPUT \#<buff>; <data>
PUT \#<buff> [, <recno>]
GET \#<buff> [, <recno>]
SAVE "<file spec>"[,A]
LOAD "<file spec>"
RUN " < file spec>"[,R]
LOAD "<file spec>",R
MERGE "<file spec>",R

$0 S-650$

Disk Operating Commands
Disk sector directory
List disk directory
Create new file
Delete disk file
Rename disk file
Copy disk or disk files
Copy data files
Compare disks or flles
Sort records in a disk file
Pack files to front of disk
Fill a file with nulls
File copy
Assign I/O buffers
Load file
Execute binary file
Execute binary file in BASIC workspace
Load file into memory
Load track into memory Take input from disk file

Format disk

Format single track
Send output to disk file
Save memory to disk file

DIR < $t t>$ ($t=00-76$)
RUN "DIR"
RUN "CREATE"
RUN "DELETE"
RUN "RENAME"
RUN "COPIER"
run "datran"
RUN "COMPAR"
RUN "GOSORT"
RUN "PEPACK"
RUN "ZERO"
LOAD <file speci>, PUT <file spec2>
RUN "Change"
LDAD <file spec>
CA <adr>=<trk>, <sec>, GO <adr>
XQT <file spec>
CA <adr>=<trk>,<sec>
EXAM <adr>=<tt>
INPUT \#<6 or 7>
INIT
INIT < tt>
PRINT \#<6 or $7>$
SA <trk>, <sec>=>adr>/<sec>=<adr>
/<pages>

Save BASIC Workspace Error-check on disk writes Select disk drive
\& < dev>
(0) channel IO, <channel no>

Direct input to I/O channel Io <channel no>

BASIC Commands :

Open new sequential file Open old sequential file Open random array file Close file channel Append disk files

Write to sequential file Read from sequential file

DISK OPEN, <dev>, <file spec>
Same
DISK OPEN, $6,\langle$ file spec >
DISK CLOSE <6 or $7>$
DISK!"LD <file spec1>", LIST[,]
DISK!"LO <file spec2>",CTRL-X
PRINT \#<dev>, <data>
INPUT \#<dev>,<var>
FIND "<string>"
Find string in seq'tial file
ere >, PRINT \#6, <var> Read from random record f1le DISK GET <rec>, INPUT \#6, <var>
Save a program on disk DISK!"PUT <file spec>"
Load a program from disk DISK!"LDAD <file spec>"
Send control to new program RUN "<file spec>"
Execute a BASIC progran RON "<file spec>"
from disk

APPLEDOS

Disk Operating Comrands :

Disk directory index
File copy
D1sk copy
Assign I/O buffers
Delete disk file
Execute disk-input commend
Execute binary file
Load file into memory
Format disk
Protect disk files
Unprotect disk files
Rename disk file
Save memory to disk file
Error-check on disk writes Monitor I/O channel
Turn off Monitor
Direct output to I/O channel PR\# $\langle x\rangle$
Direct input to $I / 0$ channel IN\# $\langle x\rangle$

NOMON [C,I, O]
CATALOG
BRUN FID
RUN COPYA
MAXFILES $<x>$ (default 3)
DELETE <file spec>
EXEC <file spec>
BRUN < file spec>[,A[\$]<adr>]
BLOAD <file spec>[,A[\$]<adr>]
INIT < flle spec>
LOCK <file spec>
UNLOCK <file spec>
RENAME <file spec>
BSAVE <file spec>, A[\$]<adr>,L[\$]
<len>
VERIFY <file spec>
MON $[C, I, 0]$
PR\# $\langle x>$

BASIC Commands
Open new sequential file
Open old sequential file

PRINT CIRR(4)"OPEN <file spec>"
Same

Open random record file
Close file channel
Send control to new program
Send control to new program
saving variables
Delete disk ille
Rename disk file
Write to sequential file
Write to the end of sequential file
Read from sequential file
Read from a specifle polnt
in a sequential file
Write to random record flle

PRINT CHR\$(4)"OPEN < file spec>, L<len>" PRINT CHRT(4)"CLDSE [<file spec>]"
PRINT CHRS(4)"RUN <file spec>
PRINT CHR\$ (4) "BLOAD CHAIN, A520"
CALL 520 <file spec>"
PRINT CHR\$(4)"DELETE <flle spec>"
PRINT CHRS(4)"RENAME <file spec1>,
<file spec 2>"
PRINT CHR (4)"WRITE <file spec>"
PRINT <data>
PRINT CHR\$(4)"APPEND <file spec>"
PRINT <data>
PRINT CHRS(4)"READ <file spec>"
INPUT [or GET] <data>
PRINT CHR\$(4)"POSITION <file spec>,R<x>"
PRINT CHRS(4)"WRITE <file spec>,R<x>"
PRINT <data>
Read from random record file PRINT CHR\$(4)"READ <file spec>,R<x>"
INPUT [or GET] <data>
Save a program on disk
Load a program from disk
Execute a BASIC program
from disk

SAVE <file spec>
LOAD <file spec>
RUN < file spec>

Operating System Commands

6809 FLEX

Disk Operating Commands :
Assign system \& work drives ASN [,W=<drv>][,S=<drv>]
Append disk files
Create new text file
Disk directory index File copy

Delete disk file
Execute disk-input command
Execute binary file
Load file into memory Take input from disk file Output disk file

Format disk
Send output to disk file Protect disk files Rename disk file
Save memory to disk file
Error-check on disk writes Check disk file version Direct output to printer Install new boot program

APPEND <file spec> $[,<$ file list>] , <file spec>
BUILD <file spec>
CAT [<drv list>][, <match list>]
COPY <file spec>, <file spec>
COPY <file spec>, <drv>
COPY <drv>, <drv> [, <match list>]
DELETE <file spec>[,<file list>]
EXEC < file spec>
<file spec>[.CMD] (default)
GET <file spec>[,<file list>]
I, <file spec>, <command>
LIST <flle spec> $[,<11$ ne range>]
[, +N(or P)]
NEWDISK <drv>
$0,\langle$ file spec>, <command>
PROT <file spec>[, (opts)]
RENAME <file spec1>, <file spec2>
SAVE <file spec>, <begadr>,
<endadr>[, <transadr>]
VERIFY [,ON (or OFF)]
VERSION <file spec>
$\mathrm{P},<$ command>
LINK <file spec>

BASIC Commands
Open new sequential file Open old sequential file Open random array file

Oper random record file

Close file channel
Send control to new program
Delete disk file
Rename disk file
Write to sequential file
Read from sequential file
Write to random record file
head from random record file
Save a program on disk
Load a program from disk
Execute a BASIC proram
from disk
Compile a Basic program

OPEN NEW "<file spec>" AS <I/O Channel> OPEN OLD "<file spec>" AS <I/O Channel> OPEN [NEW or OLD] "<file spec>" AS <I/O Channel> DIM \#<I/O Channel>,v[\$] ($\langle x\rangle$) [=<length \rangle]
OPEN "<file spec>" AS <I/O Channel> FIELD \#<I/O channel>, <len> AS <v\$> [, <fieldlst>]
CLOSE <I/0 channel>
CHAIN " < file spec> ' $\times\left(\left.1\right|^{\prime \prime \prime}\right.$ " (default)
KILL "<file spec>"
RENAME "<file specl>","<file spec2>"
PRINT \#<I/O channel>[,USING <v\$>], <data>
INPUT \#<I/O channel>[,USING <v\$>], <data>
PUT \# <I/O channel> [,RECORD $\langle x\rangle$]
GET \# < I/0 channel> [,RECORD < x\rangle]
SAVE "<file spec> [.BAS]" (default)
LOAD "<file spec> [.BAS]" (default)
RUN "<file spec> [.BAC]" (default)
COMPILE "<file spec> [.BAC]" (default)

Disk Operating Commands
Append disk files
Create new text file
Create a new directory Disk directory index Module directory Index Change working data dir Change working exec dir File copy
Delete disk file
Execute binary file
Load flle into memory
Output disk file in ASCII
Output disk file in Hex
Format disk
Protect disk files
Unprotect disk files Rename disk file
Save memory to disk file Error-check on disk writes Install current boot program Install new boot program Echo input to output path Free space remaining Log user onto system Abort process
Display procdures \& status Set process priorities Display memory free

MERGE <path> [<path>]
BUILD <path>
MAKDIR <path>
DIR [e][< path>]
MDIR [e]
CHD <pathlist>
CHX <pathlist>
COPY <path><path>
DELETE <path> [<path>]
EX <modname> [<modifiers>]
[<parameters>]
LOAD <path>
LIST <path> [<path>]
DUMP <path< [<path>]
FORMAT <devname>[<opts>]
ATTR <path> [<opts>]
Same
RENAME <path> <newname>
SAVE <modname> [<modname>]
VERIFY [U]
COBBLER / <devname >
OSGGEN / < devname >
ECHO <text>
FREE < demame>
LOGIN
KILL <procID>
PROCS [e]
SETPR <procID> <number>
MFREE [e]

Free memory module
Print errors in English
Time share monitor

BASIC Commands :
Open new flle
Open old sequential file and old random file Close file channel Send control to new program Delete disk file
Rename disk file
Write to sequential file Read from sequential file
Read from a specific point in a sequential file
Write to random record file
Read from random record file
Read from random record file SEEK \#<I/O Channel>, <expr>
Save a program on disk
Load a program from disk
Execute a BASIC program from disk
Compile a BASIC program

GET \#<I/O Channel>, <data struc>
UNLINK <modname> [<modname>] PRINTERR
TSMON [<pathlist>]

CREATE \#<I/O Channel>, <name>
[: <access mode>]
OPEN \#<I/O Channel>, <name> [: <access mode>]
CLOSE \#<I/O Channel > [, <I/O Channel>]
CHAIN <filename>
DELETE <filename>
RENAME <procname>, <newprocname>
WRITE \#<I/O Channel>, <date>
READ \#<I/O Channel>, <data>
SEEK \#<I/O Channel>, <expr>
SEEK \#<I/O Channel>, <expr>
PUT \#<I/O Channel>, <data strue>

SAVE [<procname>][, <procname>]
LOAD <pathlist>
RUN [<procname>] [<erpr> [,<expr>]]
PACK [<procname>][, <procname>]

Disk Operating Commands
Append disk files
Create new text flle
Edit old file
Disk directory index
Disk sector read
File copy
Delete disk file
Execute binary file
Load file into memory
Protect disk files Unprotect disk files Rename disk file Save memory to disk file Select disk drive Select default drive Select volume
Free space remaining Abort process

APPEND <file spec>		
NEW	Display memory free	FREF
EDIT	Check disk file version	EXPAND
CATALOG	Reset version number	RESET
PEEK	Print file in memory	PRINT
COPY	Set printer lef't margin	MARGIN <x>
DELETE <file spec>	Boot new disk	DOS [$<$ s >]
BRUN <file spec>	Complle file	COMPILE [<opts>]
LOAD <file spec>	Assemble file	ASSEMBLE [<opts>]
LOCK <file spec>	Lisk bad sector check	CHECK
UNLOCK <file spec>	Alphabetize catalog	COMPRESS A
RENAME <file spec1>, <file spec2>	Compress catalog	COMPRESS C
SAVE [<file spec>]	Set disk volume number	VOLUME < v >
any command [, $S<s>, D<d>$]	Restore deleted file	RESTORE <file spec>
(derault)	Assemble, Link and Execute	RUN <file spec>
any command [, $\mathrm{v}<\mathrm{v}>$]	Change catalog order	SWITCH <file spec1>, <file spec2>
(default on Catalog)	Set tab stops	TAB
ESCape	Print current time	TIME

Operating System Commands

Disk Operating Coramands :
Create new text file Disk directory index Volume directory index Zero direstory index
File copy
D1sk copy
Delete disk file
Make EXEC file
Delete disk file
Rename disk file
Pack flles to front of disk
Format disk
Save a program on disk
Load a program from disk Execute a PASCAL program from disk Abort process
E(dit
F(iler L(ist or E(xtended list
F(1ler V(olumes
F(1ler Z(ero dir
F(1ler T(ransfer
F(iler T(ransfer
F(1ler R(emove
M(ake exec
F(1ler D(elete
F(iler C(hange
F(1ler K(runch
X(ecute FORMATER
F(1ler S(ave
F(iler G(et
X(ecute
CTRL-e

Check for bad disk blocks Compile a PASCAL program Pascal Commands :

Open new file	REWRITE (<id>, <file spec>)
Open old file	RESET (<id> [, <file spec>])
Close file channel(s)	CLOSE (<1d> [, <opts >])
Write to sequential file	$\begin{aligned} & \text { WRITE }([<\text { id }>,]<\text { data }>) \\ & \quad \text { WRITEIN }([<\text { id }>,]<\text { data }>) \end{aligned}$
Read from sequential file	$\operatorname{READIN}([<1 \mathrm{~d}>$, \ll data> $)$
Write to random record file	$\begin{gathered} \operatorname{SEEK}(<1 d\rangle,<r>) \\ \operatorname{PUT}(<1 d\rangle) \end{gathered}$
Read from random record file	$\begin{gathered} \operatorname{SEEK}(<1 d\rangle,<r>) \\ \operatorname{GET}(\langle 1 d>) \end{gathered}$
Load block into memory	UNITREAD $(\langle v\rangle$, <array \rangle, <l \langle [, <block \rangle, <mode \rangle])
Save block to disk	

PET BASIC 4 and BASIC 1 and 2

Disk Operating Commands :
Append disk files
CONCAT [D<drive>,]"<file spec>"TO[D<drive>,]
"<file >" [ON U<dev>]
Disk directory index
File copy
DIR[ECIORY][D<drive>][ON U<dev>
*LDAD "\$ < drive> [: <file spec>]",[<dev>]
COPY [D<drive>]["<file spec1>"]TO[D<drive>]
[" < file spec2>"][ON U<dev>]
Disk copy \quad BACKUP $D<d r i v e>$ TO $D<d r i v e>[O N U<d e v>]$
*PRINTH<I/0 Channel>, "D[UPLICATE]<drive>=<drive>"
SCRATCH [D<drive>],"<file spec>"[ON U<dev>]
*PRINT\#<I/O Channel>,"S<drive>:<file spec>
[<drive>: <file spec>"]
Load file into memory
Format disk
DLOAD "<file spec>"[,D<drive>][ONU<dev>]
HEADER "<disk name>",D<drive>, $\mathrm{I}<\mathrm{v}>$
*PRINT\#<I/0 Channel>, "N<drive>:<disk name>,<v>"
RENAME [D<drive>,]"<file spec1>"T0"<file spec2>"
[$O N \mathrm{U}$ < dev>]
DCLOSE [$\#<\mathrm{I} / \mathrm{O}$ Channel>][ON U<dev>]
*CLOSE [< I/O Channel>]
Default on DIRECTORY
Free space remaining
PRINT DS\$,DS,ST
Display procedures \& status
Direct output to I/O Channel OPEN <I/O Channel>, <dev>:CMD<I/O Channel>
Update block map
COLIECT [D < drive >] [ON U < dev>]
*PRINT\#<I/O Channel>, "V[ALIDATE][D<drive>]
Initialize disk
PRINT\#<I/O Channel>,"I[NITIALIZE][D<drive>]

BASIC Commands :
Open new sequential file DOPEN\#<I/O Channel>,"<file spec>"[,D<drive>]
[$\mathrm{ON} \mathrm{U}<\mathrm{dev}>$] [, <access>]
*OPEN <I/O Channel>, <dev>,<sa>"<drive>:
<file spec>SEQ[, <access>]
Same
Open old sequential file Open relative record flle

Close file channel(s)
$[, D<$ drive $>]$
[,D<drive>]
DCLOSE [\#<I/O Channel>][ON U<dev>]
*CLOSE [<I/O Channel>]
Send control to new program DLOAD "<file spec>"[,D<drive>][ON U<dev>]
List disk directory
Delete disk file
Rename disk file
Copy disk or disk files COPY [D<drive>,]["<file spec1>"]TO[D<drive>,]
[" < Pile spec $2>$ "] [ON U < dev >]
Append disk files APPEND $<$ I/O Channel>,"<file spec>"[D<drive>]
[$O N \mathrm{U}<\mathrm{dev}>$]
*OPEN <I/O Channel>, <dev>,<sa>"<drive>:
<file spec>, A"
Write to sequential file Read from sequential file Write to relative rec file

PRINT\# < I/0 Channel>, <data>
INPUT: <I/O Channe1>, <data>
RECORD\# <I/O Channel>, <recno> [, <byteno>]
PRINT\#<I/0 Channel>, <data>
Read from relative rec file RECORD\#<I/O Channel>, <recno> [, <byteno>]
INPUT\#<I/O Channel>, <data>
Save a program on disk DSAVE "<flle spec>"[,D<drive>][ONU<dev>]
SAVE "[<drive>:]<file spec>",<dev>
DLOAD "<file spec>"[,D<drive>][ON U<dev>]
LOAD ["<drive>:]<file spec>",<dev>
PRINT\#<I/O Channel>,"BLOCK-READ: <sa>,<drive>,
<trk>, <sec>"
PRINT\#<I/0 Channel>,"BLOCK-wRITE:<sa>,<drive>,
<trk>, <sec>"

Calibration by

Least Squares

Polynomials on the Atari

by Mike Dougherty

Homebrew computer sensors are often plagued by calibration problems. The following program allows a set of calibration data points to be fitted with a least squares polynomial, allowing for efficient and compact interpolation of data.

Acommon problem encountered while building remote sensors for the personal computer is the calibration of these homebrew sensors. In a few cases, the calibration can be computed by a mathematical analysis of the hardware, often tedious and difficult. An easier approach is to take a set of calibration data points and fit a "best" curve through this data. Usually the functional form of the curve is known a priori from the hardware being used and only the parameters of the curve need be determined. LSQPOLY is an Atari 800 BASIC program designed to take a set of calibration data points, perform a polynomial least squares regression upon the calibration data, and visually plot the results. The output of LSQPOLY consists of a set of polynomial coefficients, COEF $_{1}$, $\operatorname{COEF}_{2}, \ldots \operatorname{COEF}_{m+1}$ where m is the highest degree of the polynomial. A point, V, within the range of the interpolation is computed by the polynomial evaluation:

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~V})=\mathrm{COEF}_{1}+\mathrm{COEF}_{2} \times \mathrm{V}+ \\
& \mathrm{COEF}_{3} \times \mathrm{V}^{2}+\ldots+\mathrm{COEF}_{\mathrm{m}+1} \mathrm{~V}^{\mathrm{m}} \\
& \text { or } \\
& \mathrm{F}(\mathrm{~V})=\sum_{\mathrm{i}=1}^{\mathrm{m}+1} \mathrm{COEF}_{\mathrm{i}} \times \mathrm{V}_{\mathrm{i}-1}
\end{aligned}
$$

The numerical methods used in LSQPOLY have been adapted from Numerical Methods with Fortran Case Studies by W.S. Dorn and D.D. McCracken and may be found in most texts on numerical analysis. While the methods used may fit a polynomial of any degree to the calibration data, I chose to limit LSQPOLY to polynomials of the fifth degree or less. From my experience with polynomial approximation, the higher order polynomials fit the calibration data better by "wiggling," instead of finding a


```
1007 REM DF CALIERATION DATA FOINTS.
1008 REM ALLOW THE USER TO GRAFHICALLY
1009 REM JUDGE THE RESULTING LSQ FIT.
1010 REM
1011 REM -----------------------------------
1012 REM
1013 REM
1050 DIM X(50),Y(50),OFTION$(1),FAUSE$(1)
1060 DIM SUM(10), RIGHT(6),MATRIX(6,7)
1070 DIM COEF (6),YFIT(159)
1090 FEM
1091 REM
1092 REM
1093 REM
1094 REM -- FRESENT THE LSQPOLY USEF
1095 FEM -- OFTIONS VIA MENU FORMAT.
1096 REM
1097 REM -----------------------------------
1098 REM
1099 REM
1100 FOR FOREVER=0 TO 1 STEF O
1110 GRAFHICS O
1120 FOSITION S,5:FRINT "Select Option"
1130 POSITION 5,7:PRINT "D - Enter calibration Data"
1140 FOSITION 5,8:FRINT "S - Show calibration data"
1150 FOSITION 5,9:FRINT "R - Regression up to order 5"
1160 FOSITION 5,10:FRINT "C - Frint Coefficients"
1170 FDSITION 5, 11:PRINT "I - Interpolate Y values"
1180 FOSITION 5, 12:FRINT "G - Generate polynomial plot data"
1190 FOSITION 5,13:FFINT "F - Flot polynomial data"
1200 FOSITION 18,5
1210 INFUT OFTION&
```



```
1320 IF OFTION$="S" THEN GOSUE 3000
1330 IF OFTION }$=\mathrm{ "R" THEN GOSUE 4000
1340 IF OFTION }=="C"\mathrm{ THEN GOSUE 5000
1.550 IF OFTION$="F" THEN GOSUE 6000
1360 IF OFTION$="I" THEN GOSUE 7000
```



```
1390 NEXT FOREVER
1500 REM
1501 FEM
1502 REM
1503 REM
1504 REM EACH OFTION IS HANDLED AS A
1505 REM SEFARATE SUBRDUTINE, EACH
1506 REM STARTING ON AN EVEN THOUSAND
1507 REM LINE NUMEER.
1508 REM
1509 REM
1510 FEM
1511 REM
1512 REM
2000 REM
2001 REM -- ENTER THE CALIERATION DATA.
2002 REM
2110 GFAFHICS O
2120 FRINT "Number of data points ";
2130 INFUT N
2210 FOR NUMEEF=1 TO N
2220 FRINT "X(";NUMEER;") ";:INFUT VALUE:X(NUMEER)=VALUE
2230 FRINT "Y(":NUMEEF;") "::INFUT VALUE:Y(NUMEEF)=UALUE
2240 FRINT
2250 NEXT NUMEER
2250 FETURN
3000 FEM
SOO1 FEM -- SHOW THE CALIERATION DATA
3002 FEM -- FOR VERIFICATIDN.
SO0S REM
Z100 GRAFHICS O:FOKE 752,1
single smooth curve. As a rule of thumb, I choose the lowest order polynomial that gives a uniformly smooth curve reasonably close to the calibration data.

Instead of computing a numerical measure of error, LSQPOLY allows the user to visually compare the raw calibration data to data generated from the polynomial. In my opinion, this visual comparison allows a more meaningful evaluation of the least squares fit. The object is not to see how close the curve can be bent to pass near each calibration datum, but rather to pick a smooth "best" curve which will represent the functional relationship of the physical quantity being measured.

As a word of caution, LSQPOLY should be used to interpolate only within the range of the calibration data - do not try to extrapolate outside of the calibration data range. When using high order polynomials, a smooth monotonic curve within the limits of the calibration data can rapidly change direction outside of that range. In practice, the calibration data should include points at the extremes of the sensor range to properly "nail down" the curve.

\section*{Numerical Methods}

A full discussion of polynomial regression may be found in the Dorn and McCracken text previously cited. As a summary, minimizing the sum of the square of the \(Y\) deviation yields the following matrix equation for a fit of \(n\) data points by a polynomial of order \(m\) :
\([\) MATRIX \(] \times[\) COEF \(]=[\) RIGHT \(]\) where
\[
\begin{aligned}
& \operatorname{MATRIX}_{i j}=\left\{\begin{array}{l}
n \text { for } i=j=1 \\
\sum_{k=1}^{n} X_{k}^{i+j-2}
\end{array}\right. \\
& \text { RIGHT i }=\sum_{k=1}^{n} X_{k}^{i-1} \times Y_{k}
\end{aligned}
\]

Note: LSQPOLY uses the FORTRAN convention of beginning subscripts with 1 .

LSQPOLY solves the above matrix equation for the coefficients, COEF, by Gaussian Elimination.

The resulting coefficients, \(C O E F_{1}\), \(\ldots\), COEF \(_{m+1}\) are used to interpolate the functional value of any point within the calibration data range. The
polynomial total of a specific abscissa value is:

TOTAL \(=\sum_{i=1}^{m+1}\) COEF \(_{i} \times\) VALUE \(^{i-1}\)

This may be evaluated in BASIC by the following methods:
```

TOTAL = COEF(1)
FOR I = 2 TO M + 1
TOTAL = TOTAL + COEF(I) }
(VALUE ¢ (I-1)]
NEXT I

```
- or -

TOTAL \(=0\)
FOR \(\mathrm{I}=\mathrm{M}+1\) TO 1 STEP -1
TOTAL \(=\) TOTAL \(\times\) VALUE + COEF(I)
NEXT I
The second method, requiring no exponentiation, is Horner's method of polynomial evaluation. This method is particularly suited to small computer use.

As a rule, polynomial regression should be applied to the variable without error. That is, if \(X_{i}\) is an error free value, but \(Y_{i}\) contains error due to measurement, then the regression should express \(Y\) in terms of \(X\) :
\(\mathrm{Y}=\mathrm{COEF}_{1}+\mathrm{COEF}_{2} \times \mathrm{X}+\ldots+\) \(\operatorname{COEF}_{\mathrm{m}+1} \times \mathrm{X}^{\mathrm{m}}\)

This regression allows for the interpolated value of \(Y\) to be computed, given any value of \(X\). However, for \(M>1\), the interpolated value of \(X\) cannot be easily computed, given a value of \(Y\). In this case, the polynomial regression must be applied on the \(Y\) values, even though they contain measurement errors:
\[
\begin{aligned}
& \mathrm{X}=\mathrm{COEF}_{1}+\mathrm{COEF}_{2} \times \mathrm{Y}+\ldots+ \\
& \mathrm{COEF}_{\mathrm{m}+1} \times \mathrm{Y}^{\mathrm{m}}
\end{aligned}
\]

If the visual fit is reasonable then the regression should pose no serious problem.

Finally, note that the matrix formed by this method may be quite illconditioned and subject to severe numerical errors. Such errors are easily detected by the visual comparison of the fit data and the calibration data. Thus far, no numerical difficulties have been encountered through ordinary use of LSQPOLY.
```

Z110 FOF NUMEEF=1 TO N
Z120 FRINT " X(";NUMEER:"): ":X(NUMEEF'),
3122 FFIINT "Y(";NUMEER;"): ";Y(NUMEER)
S1SO NEXT NUMEEF
S140 FRINT :FRINT "Fress RETURN to continue":
S150 INFUT FAUSEG
3160 RETUFN
4000 REM
40O1 REM -- FEFFORM THE LSO FOLYNOMIAL
4002 FEM -- REGRESSION ON THE DATA.
400S REM
40O4 REM -- REFEF TO "NUMEFICAL METHODS
4005 FEM -- WITH FORTFAN EASE STUDIES"
4 0 0 6 ~ R E M ~ - - ~ E Y ~ D O F N ~ \& ~ M C C F A C K E N ~
4 0 0 7 ~ F E M
4110 GRAFHICS O
4120 FFINT "Order of regression,";
4130 INFUT ORDER:IF ORDER`S THEN RETUFN
4150 FOF I=1 TO 2*DRDEF
4160 SUM(I)=0
4170 NEXT I
4180 FOR I=1 TO ORDEF+1
4190 FIIGHT (I) =0
4200 NEXT I
4210 FOF: FOINT=1 TO N
4220 FOF I=1 TO ORDEF*2
4230 SUM(I)=SUM(I)+X(FOINT)*I
4240 NEXT I
4250 FOF I=1 TO ORDEF+1
4255 IF I=1 THEN FIGHT (I)=FIGHT(I)+Y(FOINT)
4260 IF I< <1 THEN FIGHT(I)=RIGHT(I)+Y(FOINT)* (X (FOINT) =(I-1))
4270 NEXT I
42g0 NEXT FOINT
4290 MATRIX(1,1)=N
4SO0 FOF I = 1 TO ORDEF+1
4J10 MATRIX(I,ORDEF+2)=FIGHT(I)
4.320 FOR J=1 TO ORDEF+1
4SO IF I+J<% THEN MATRIX (I,J)=SUM(I+J-2)
4\Xi40 NEXT J
4SSO NEXT I
4410 FOR K=1 TO ORDER
4420 kKF1=k+1
4430 L=k:
4440 FDR I=KF1 TC ORDEF+1
445O IF AES (MATFIX(I,K)) \AES (MATFIX(L,K)) THEN L=I
) THEN L=I
44GO NEXT I
4470 IF L=K THEN 45.30
4480 FOF J=k: TO DRDEF'+?
4470 TEMF=MATRI X (K,J)
4500 MATFIIX(K,J)=MATRIX (L,J)
4510 MATFIX(L,J)=TEMF
4520 NEXT J
45SO FOF I=KF1 TO ORDER+1
4540 FACTOR=MATFI X{I,K},MATRIX{K,K}
4550 FOR J=KF1 TO ORDER+2
4560 MATFIX(I,J)=MATFIX (I,J)-FACTOF*MATFIX (K,J)
4570 NEXT J
4580 NEXT I
45%O NEXT K
46OO COEF (OFDER+1)=MATRIX (OFDEF + 1; ORDEF+2);MATFIX(ORDER+1,
OFDEF+1)
4610 I =OFDEF
4620 IF 1=I +1
46SO TOTAL=0
4640 FOR J=IF1 TO ORDER+1
4650 TOTAL=TOTAL +MATFIX(I,J)*COEF(J)
4660 NEXT J
4670 CGEF (I) =(MATRIX(I,OFDER+Z)-TGTAL)/MATRIX(I,I)
4680 I= I-1
4690 IF I }>=1\mathrm{ THEN 4620
4700 RETUFN
5000 REM
5OO1 FEM -- DISFLAY THE LSO FOLYNOMIAL
5OO2 REM -- COEFFICIENTS.
500% FEM
5110 GFAFHICS O:FOKE 752,1
5120 FOF NUMBEF=1 TO OFDEF+1
5130 FFINT "COEF(";NUMEEF;"):",CDEF(NLIMEEF)
(continued)

```

\section*{A unique experience for those who love a challenge . . . SPITFIRE SIMULATOR...}

Fly a 360 mph Spitfire fighter • Pursue and attack 3-D target aircraft • Eight target types (Me 109, Fw 190, etc.) • Scores for targets hit and successful mission completion.
- Aerobatic (loops, rolls, stalls, etc)
- AIRSIM-I pilots: SPITFIRE SIMUMAIOR

Mass. residents add \(5 \%\) sales tax. Overseas shipping add \(\$ 3.00\) For Apple II or ! I + with 48 K RAM. Applesoft ROM or equivalent. One disk Gome paddles or joystick See your dealer or contact us direcily

\section*{059} APPLICATION SOFTWARE


COMPLETE DOCUMENTATION \$19.95
OS9 \& BASIC 09 ARE TRADEMARK OF MICROWARE, INC. \& MOTOROLA CORP.


SPECIALTY ELECTRONICS
(405) 233-5564

2110 W. WILLOW - ENID, OK 73701
Circle No. 39


\section*{Variables in LSQPOLY}

The following major variables and arrays are used in LSQPOLY.
\begin{tabular}{|c|c|}
\hline N & The number of calibration data points. \\
\hline \(\mathrm{X}(50)\) & The abscissa values of the calibration data. \\
\hline \(\mathrm{Y}(50)\) & The ordinate values of the calibration data. \\
\hline ORDER & The highest degree, \(m\), of the polynomial. \\
\hline MATRIX \([6,7]\) & The intermediate matrix of X values. \\
\hline RIGHT(6) & The intermediate vector of XY values. \\
\hline SUM \({ }^{\text {10 }}\) ] & The intermediate vector of X values used to fill MATRIX for Gaussian Elimination. \\
\hline COEF (6) & The polynomial coefficients. \\
\hline XMIN & The minimum abscissa limit for plotting. \\
\hline XMAX & The maximum abscissa limit for plotting. \\
\hline YMIN & The minimum ordinate limit for plotting. \\
\hline YMAX & The maximum ordinate limit for plotting. \\
\hline XINC & The data frequency of the plot, i.e. every XINCth fit data point will be plotted. \\
\hline YFIT(159) & The least squares interpolated values between XMIN and XMAX to be plotted. \\
\hline
\end{tabular}

LSQPOLY allows the homebrew designer to visually analyze calibration data for trends and functional relationships. This tool is capable of generating a compact functional description of the data, allowing easy and accurate interpolation - even if the calibration data contains error.

Although the plot routines are specific to the Atari 800, LSQPOLY should require little modification to execute the numerical routines on other BASIC systems. Computer systems supporting graphics resolutions of 160 \(\times 80\) or higher (such as Atari GRAPHICS 7 and 8) will allow LSQPOLY to be used most effectively.

\footnotetext{
Mike Dougherty has an M.S. degree in computer science, and is currently working at Martin Marietta Aerospace in Denver, CO. You may contact him at 7659 W. Fremont Ave., Littleon, CO 80123.
}
```

5140 NEXT NUMEER
S150 PRINT :FRINT "Fress FETUFN to continue";
5160 INFUT FAUSE\$
5170 RETURN
6O0O REM
GOO1 FEM -- FLOT THE GENERATED LSQ FIT.
6002 REM
6010 GRAFHICS O
6020 FRINT "Minimum y "::INFUT YMIN
60SO FRINT "Maximum y "::INFUT YMAX
6040 FRINT "Data Frequency "::INFUT XINC
6050 XFANGE=XMAX-XMIN
6060 YRANGE=YMAX-YMIN
6070 GRAFHICS 7
6080 SETCOLDR 2.0.0
6100 REM
6101 REM -- FLOT THE CALIBRATION DATA.
6102 REM
6110 COLOR 2
6120 FOR I=1 TC N
61S0 IF (X(I)<XMIN) OR (X(I) \XMAX) THEN 6190
6140 IF (Y(I)<YMIN) OR (Y(I) >YMAX) THEN 6190
6150 XFLDT=INT(159*(X(I) -XMIN)/XRANGE)
6160 YFLOT=79-INT(79*(Y(I)-YMIN)/YRANGE)
6170 FLOT XFLOT,YFLOT
6190 NEXT I
6210 FRINT "Frese RETURN to cantinue";
6220 INFUT FAUSE\$
6230 FEM
G2\Xi1 REM -- FLOT THE LSQ FIT DATA.
6 2 3 2 ~ R E M
6S0O COLOR 1
6 S10 FOR I=0 TO 159 STEF XINC
6S20 IF (YFIT(I)<YMIN) OF (YFIT(I)\YMAX) THEN 6S90
GSEO YFLOT=79-INT(79*(YFIT(I)-YMIN)/YRANGE)
6S4O FLOT I,YFLOT
6S90 NEXT I
6900 FRINT "PrESS RETURN to continue";
6910 INFUT FAUSE=
6920 RETURN
7000 REM
7001 REM -- FORM INTERFOLATION VALUES
7002 REM -- FFOM THE LSQ FOLYNOMIAL
700S REM -- COEFFICIENTS. TERMINATE
7004 REM -- WITH AN X VALUE OF -9999.
7005 REM
7110 GRAFHICS O
7120 FRINT "X (-9999 to FETURN) ":
7130 INFUT VALUE
7140 IF VALUE=-9999 THEN RETURN
7150 GOSUE 7900
7180 FRINT "Y: ";TOTAL:FRINT
7190 GOTO 7120
7900 REM
7901 REM -- COMPUTE THE FOLYNOMIAL
7902 REM -- TOTAL FROM THE X VALUE.
7903 REM
7910 TOTAL=0
7920 FOR F=ORDER+1 TO 1 STEF - 1
7950 TOTAL=TOTAL*VALUE+COEF (F)
7 9 4 0 ~ N E X T ~ F '
7950 RETURN
8000 REM
8OO1 REM -- GENERATE THE LSQ FIT DATA
8002 REM -- FOR THE VISUAL FLOT.
800S FEM
8010 GRAPHICS O
8020 FRINT "Minimum x ";:INFUT XMIN
8030 FRINT "Maximum x "::INFUT XMAX
8040 XINC= (XMAX-XMIN)/160
BOSO GRAFHICS O:POKE 752,1
8100 FOR XOFFSET=0 TO 159
8110 VALUE=XMIN+XOFFSET*XINC
8120 GOSUB 7900
8130 YFIT (XOFFSET)=TOTAL
8135 FRINT " Y(":VALUE;")=",YFIT(XOFFSET)
8140 NEXT XOFFSET
8150 FETURN

```

NICRO

\section*{MAROONED! \\ And you're the quarry for the Questers!}

You're marooned in a derelict space station trapped between the stars. Waiting for rescue.

But, you may never make it. The deadly space Questers have located you and are ready to attack. Your first line of defense is to close the space ports on A Deck before you're overrun, then use the Teleportation chamber to head them off on the other decks.
As you navigate the lonely corridors . . . turning here, hiding there, attacking or retreating, the swarms of Questers get faster and smarter!

There's no other game like Spectre. Deck after deck, you'll find the most challenging and original 3-D maze action ever!

Get SPECTRE now, only \(\mathbf{S} 29.95\) for the Apple II* at your computer store. or


8943 Fullbright Ave..
Chatsworth. CA 91311 (213) 709-1202

In A



























號

\section*{The Sctut}

\section*{}





\section*{Pine nuroul buite}

\section*{Richuale Telecommunications}

10610 BAYVIEW (Bayview Plaza)
RICHMOND HILL, ONTARIO, CANADA L4C 3N8

(416) 884-4165

C64-LINK
The Smart 64


Call or write payments by VISA, MASTERCARD or BANK TRANSFER. Mail orders also by certified check, etc.



Give These Expanded,

\(\star\) The ability to transter data from any type of device to another (IEEE, Serial, Parallel)
- BASIC 40 which allows you to rut more PET BASIC programs and gives you extended disk and \(1 / 0\) commands.
- The ability to bave several 64 s on fine togethertzosharing common IEEE devices such as disks or printers with spooling capability

- Built-in machine language monitor
- A built-ín terminal or modem program which allows the cate throughta modem to many bulletin board systems and other computer mainframes.
\(\star\) Compatibility with \(\mathrm{CP} / \mathrm{M}^{2}\)

Contact your local Commodore dealer or RTC.

Copyrights and Trademarks
C64 is a copyright of Commodore Business Machines, nc. 664-LINiK is a copyright of Richvale Telecommunications. CP/M is a registered trademark of Digital Research. POWER is a trademark of Professional Software. PAL is a copyright of Brad Templeton
has been counted previously.
3. If the car has not been counted before, the lane number and time are stored in a buffer.
4. Control is returned to the BASIC program when all four cars have crossed the finish line or if a key is depressed on the AIM 65 keyboard; otherwise the routine loops back to the polling step above.
The running time (from the start of the race) is accumulated using the 16-bit timer of the 6522 VIA chip. Each time the VIA times out (. 065 second), the value of CLOCK is incremented. This gives about 16 seconds timer capacity before the timer rolls over.

Three bytes are needed in the buffer to record the CLOCK value and the 16 -bit timer value for each car or lane. This value is converted back to decimal in the BASIC program.

\section*{Conclusions}

The electronic monitoring of a Pinewood Derby race is relatively easy and inexpensive for anyone owning an AIM 65 or similar microcomputer. This approach is software-oriented, since the only electronic components required are the optosensors. Although the AIM 65 was used here, with minor modifications the code could be used on the PET, KIM, or any 6502-based
machine that has four or five free 6522 VIA ports.

Sydney S. Koegler is a chemical engineer specializing in pilot-plant design and operation. You may reach Mr. Koegler at 2339 Carriage Ave., Richland, WA 99352.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Listing 1: BASIC Program for} \\
\hline & Pinewood Derby \\
\hline 100 & REM...Finewdod derby \\
\hline 110 & REM. . . 4-2.3-82 \\
\hline 115 & V=40961: REM. . .UIA FORT A \\
\hline 120 & REM... data muffer sffo-sfff \\
\hline 125 & \(\mathrm{BS}=4080: \mathrm{BT}=\mathrm{BS}+4: \mathrm{BU}=\mathrm{BT}+4: \mathrm{EV}=\mathrm{RU}+4\) \\
\hline & kem...set pointers for scan routine \\
\hline & PaKE 04,0:FOKE 05,15 \\
\hline & Infut'entek heat no. ',ht \\
\hline & infuttlane no. '; il \\
\hline & IF L=0 THEN 190 \\
\hline & Infut'Caf no. ';C(L) \\
\hline & IF LO4 THEN 160 \\
\hline 190 &  \\
\hline 195 & S=PEEK(U) OK 16 \\
\hline 200 & get ks \\
\hline & IF \(\mathrm{ks}=\) ' \({ }^{\text {and }} \mathrm{SOO}\) then 195 \\
\hline & PRINT' \({ }^{\text {t I M I N G }}\) ' \\
\hline 215 & \(x \mathrm{x}=\mathrm{USR}(0):\) REM., , Call scan routine \\
\hline & FOR I=1 T0 4 \\
\hline 225 & \(T M(I)=.065536 *\) PEEK \((B T+1)+.000256 *\) (255-FEEK(BU+I)) \\
\hline 226 & Th(I) \(=\) Th( I\()+(255-\mathrm{PEEK}(\mathrm{EVU}+\mathrm{I}) * 1 \mathrm{E}-\mathrm{b}\) \\
\hline 227 & Th(I) =INT(1000*TM(L) )/1000 \\
\hline 230 & M=PEEX (BS+L) \\
\hline & IF \(\mathrm{C}<=0\) THEN \(\mathrm{P}(\mathrm{I})=0: G 0 T 0250\) \\
\hline 235 & \(\mathrm{P}(\mathrm{I})=\mathrm{INT}(1.1+\mathrm{LOG}(\mathrm{H}) / \mathrm{LOG}(2) \mathrm{l}\) \\
\hline 240 & NEXT \\
\hline 250 &  \\
\hline 270 & print!' plac lane car time' \\
\hline 310 & FORJ=1 TO 4 \\
\hline 320 & IF \(\mathrm{F}(\mathrm{J})=0\) THEN 350 \\
\hline 330 &  \\
\hline 340 & next J \\
\hline & 60t0 140 \\
\hline
\end{tabular}

Listing 2: Assembly Listing of Timing Routine
 IN FINEWOOD DERBY MODIFIED FOR TIMER FCTN

\section*{NO POWER SPIKES WITH SUPER FAN II.}

Super Fan II's Zener Ray \({ }^{\text {m" }}\) Transient Voltage Suppressor and Power Filter squelches spikes up to 6000 amps - even those caused by lightning - while responding up to 100 times faster than Apple II's


Super Fan II, in black or tan \(\$ 109\).
Without Zener Ray \(\$ 7495\)
Adatlional ar Ray, 87495
Avariable in \(240 \mathrm{~V} / 50 \mathrm{~Hz}\)
built-in suppressor.
In addition, Super Fan II cools your Apple, removing heat buildup at a remarkable 17 cubic feet of air per minute. Yet it's the quietest fan of its kind on the market. Super Fan II also positions a lighted on/off computer switch and two accessory plugs at your fingertips. It's warranted for two years and simply clips to your Apple II, IIe or monitor stand. See your R.H. Electronics dealer today about Super Fan II*, or contact us at 566 Irelan Street, Buellton, CA 93427, (805) 688-2047.
RHELECTRONICS, INC.

Dealer/OEM inquines invited -U.S. Patent \#0268283 \#4383286

France, call BIP 1-255-4463 Australia, call tmagineering (02)212-1411

Circle No. 42


\title{
Take off and fly with the MACH-9
}

\section*{lhe 68,99adaptor for filM-65*}

Tust ficleosed"
MACH:Q Control Pascal
H superset of standard póscól
\(\$ 93900\) plos 6.00 Skirt" US ond Congeto
No rom expanston board necessary
Sieve* Bendimarl
\begin{tabular}{|c|c|c|c|}
\hline Complled Bytes & Total Bytes & Comp + lood & Erecute \\
\hline 154 & 154 & 12 sec & 264 sec \\
\hline
\end{tabular}

Introductory fice \(\$ 69,00\) plus \(\$ 5.00\) SEH usand fanodo J TUU13 0/10 \(001-8983275\).
for more Infornation contoct:
Modubr Mining Systems, ITo<6 1110 E Rennsyivorilast.
fucson, Atzionc - 85714 • (602) 746-0418.
In the In contore
BCS Microsustems to e Gresham House Tütekertion Rd, Feleham Middesex:

Mnaig Peatures:
*ailat 65 is a trodentinfy of Rochueflinternotional


Microsoft BASIC is a good language for doing numerical calculations when you want the result of an arithmetic computation to be in decimal notation. Sometimes, however, when working with fractions you would like the result of a computation to be a fraction. Often it is hard to convert the decimal result that is generated by BASIC into the fraction that it represents. For example, 0.23076923 is not easily recognized as the fraction \(3 / 13\). The fractions program I describe does all of its computations using fractions. That is, numbers are input as fractions and are output as fractions that have been reduced to their lowest common denominator.

Included in the program is an interpreter for the evaluation of one-line equations. The syntax for all equations in this interpreter is: (Variable Name) \(=\) (Algebraic Expression). The algebraic expression may contain numerical fractions, previously defined variables, or the symbols \((),,+,-, *\), and /. Hierarchy for the mathematical operations is the same as in BASIC. An example of a valid expression is: VARIABLE \(=3 / 4+\mathrm{X} /(2 / 3)\) when X as been defined previously. After this equation has been typed into the computer and return is pressed, the value of

VARIABLE is calculated, stored in memory under that name, and the value is printed on the next line. Variable names can be any length and all characters are significant

Interpretation of the equation is accomplished by using two stacks - one for operators (OP\$| and one for numeric values of the fraction (ST and SB). When a number is encountered in the equation it is put on the number stack with the numerator in ST and the denominator in SB . If a variable name is encountered, then the variable is first looked up in the variable name table (VN\$) before the numeric value associated with that variable is transferred to the number stack. Finally, when an operator is encountered the precedence is compared with the precedence of the operator on the top of the operator stack. If the precedence of the new operator is higher, then the operator is placed on the operator stack; otherwise the top operator on the stack is used and the operator stack is reduced by one. This continues until the end of the equation at which time all remaining operations on the stack are completed and the results are printed out.

The listing of the program is commented extensively, but none of the

REM statements are used as references and so they can be eliminated to make the program shorter and faster. The program logically starts at line 1000 , which initializes the arrays. An equation is input as a string ( \(\mathrm{LN} \$\) ) at line 1100. First, the defined variable (VS\$) is separated out of \(\mathrm{LN} \$\) in line 1150 by looking for a blank space or an equal \([=\mid\) sign. The subroutine starting at line 1700 then checks to see if there is a unary minus sign. If a minus sign is found, the symbol ] is put on the operator stack and used only inside the program. Any symbol will work but this particular symbol is not used commonly on the Apple, for which this program was originally written. From this point, the program steps through the rest of the line \([\mathrm{LN} \$ \mid\) checking to see if the next part of the equation is a variable (line 1240), a number (line 1250), or a symbol (line 1260). If it is one of these types of items, the program then goes to lines 1500,1400 , or 1300 , respectively, for each type.

The section of the program starting at line 1300 handles the symbols in the equation. First it checks to see if the symbol was a ( since this has the highest precedence. If it is, the program
(continued on page 67)

\section*{Listing 1：Applesoft Listing for Fractionated BASIC}

1б GOTO 1øбб
95 REM ADDITION／SUBTRACTION
\(100 \mathrm{~T}=\mathrm{T} 1 * \mathrm{~B} 2+\mathrm{T} 2 * \mathrm{~B} 1: \mathrm{B}=\mathrm{B} 1 * \mathrm{~B} 2:\) GOTO \(13 \varnothing\)
165 REM MULTIPLICATION
11ø \(\mathrm{T}=\mathrm{T} 1\)＊ \(\mathrm{T} 2: \mathrm{B}=\mathrm{B} 1\)＊B2：GOTO 130
115 REM DIVISION
\(120 \mathrm{~T}=\mathrm{T} 1 * \mathrm{~B} 2: \mathrm{B}=\mathrm{T} 2 * \mathrm{~B} 1\)
125 REM REDUCE THE FRACTION T／B TO LOWEST TERMS
130 IF T \(=\emptyset\) THEN \(\mathrm{B}=1\) ：RETURN
\(14 \varnothing\) IF \(\mathrm{B}=\emptyset\) THEN PRINT＂DIVISION BY ZERO＂： POP：GOTO 11øø
\(15 \varnothing \mathrm{TA}=\mathrm{ABS}(\mathrm{T}): \mathrm{TB}=\mathrm{ABS}(\mathrm{B}): \mathrm{IF} \mathrm{TA}<\mathrm{TB}\) THEN \(T M=T A: T A=T B: T B=T M\)
\(160 \mathrm{DV}=\mathrm{INT}(\mathrm{TA} / \mathrm{TB}): \mathrm{R}=\mathrm{TA}-\mathrm{TB} * \mathrm{DV}\)
170 IF \(\emptyset=\mathrm{R}\) THEN 19Ø
\(180 \mathrm{TA}=\mathrm{TB}: T B=\mathrm{R}:\) GOTO 160
19ø \(\mathrm{T}=\mathrm{SGN}(\mathrm{B}) * \mathrm{~T} / \mathrm{TB}: \mathrm{B}=\mathrm{ABS}(\mathrm{B}) / \mathrm{TB}:\) RETURN
395 REM DO THE LAST OPERATION ON THE OPERATOR STACK
396 rem If NO OPERaTORS YET THEN PUT THE OPERATOR ON THE STACK
LØØ IF NP＝THEN NP＝1：OP\＄（NP）\(=\) TS\＄：RETURN
\(41 \varnothing\) IF \(O P \$(N P)="<"\) THEN NP \(=N P+1: O P \$(N P)=T S \$\) ：RETURN
415 REM CHECK FOR A UNARY MINUS AND DO IF ON OPERATOR STACK
\(42 \varnothing\) IF \(\operatorname{OP\$ (NP)="]"\text {THEN}ST(NS)=-ST(NS):~}\) OP\＄（NP）＝TS\＄：RETURN
425 REM PULL TOP TWO NJMBERS OFF OF STACK FOR OPERATION
\(430 \mathrm{~T} 1=\mathrm{ST}(\mathrm{NS}-1): \mathrm{B} 1=\mathrm{SB}(\mathrm{NS}-1): \mathrm{T} 2=\mathrm{ST}(\mathrm{NS}):\) \(\mathrm{B} 2=\mathrm{SB}(\mathrm{NS})\)
435 REM PICK THE PROPER SUBROUTINE TO GO TO
\(44 \varnothing\) IF OP\＄\((N P)=\)＂＊＂THEN GOSUB 11ø：GOTO \(48 \varnothing\)
\(45 \varnothing\) IF OPS（NP）\(=" / "\) THEN GOSUB 12б：GOTO \(48 \varnothing\)
460 IF OP\＄（NP）\(=4+"\) THEN GOSUB 100：GOTO 480
47б T2＝－T2：GOSUB 1øø
475 REM STORE THE RESULT BACK ON THE NUMBER STACK
\(48 \varnothing \mathrm{NS}=\mathrm{NS}-1: \mathrm{ST}(\mathrm{NS})=\mathrm{T}: \mathrm{SB}(\mathrm{NS})=\mathrm{B}: \mathrm{OP} \mathrm{\$}(\mathrm{NP})=\mathrm{TS} \$\) ：RETURN
995 rem start of the program
106 DIM \(\operatorname{WN\$ (260),\operatorname {VT}(200),\mathrm {VB}(260),~}\) OP\＄（5才）， \(\mathrm{ST}(1 \not 1 \varnothing), \mathrm{SB}(1 \varnothing \varnothing)\)
1ø1Ø NV＝\(\emptyset\)
1695 REM READ IN A LINE TO BE EVALUATED
11 Øø INPUT＂\＃＂；LN\＄
1165 REM CHECK TO SEE IF variables are to be printed out
1110 IF LEFT \(\$(\) LN \(\$, 1)=" ? "\) THEN FOR \(2=1\) TO NV： PRINT VN\＄（Z）；＂＝＂；VT（Z）；＂／＂；VB（Z）：NEXT Z：GOTO11øø
\(112 \emptyset L G=L E N(L N \$): C N=1: N P=\emptyset: N S=\varnothing\)
1125 REM SKIP LETTERS UNTIL A BLANK OR＝SIGN ARE FOUND
1130 IF MID\＄（LN\＄，CN，1）\(="\)＂OR MID\＄（LN\＄，CN，1） ＝＂\(=\)＂THEN 1160
1140 IF CN＜LG THEN CN \(=\mathrm{CN}+1\) ：GOTO 1130
1150 PRINT＂SWNTAX ERROR＂：GOTO 11øø
1155 REM THE VARIABLE BEING DEFINED IS VS \(\$\)
1160 VS\＄＝LEFTS（LN\＄，CN－1）
\(117 \varnothing\) IF MID（ \(\mathrm{LN} \$, \mathrm{CN}, 1\) ）\(=1=1\) THEN \(12 \not 00\)
\(118 \varnothing\) IF CN＜LG AND MID\＄（LN\＄，CN，1）\(=" 1\) THEN \(\mathrm{CN}=\mathrm{CN}+1\) ：GOTO 1176
119の GOTO 115ø
1195 REM CHECK FOR A UNARY MINUS SIGN
\(12 \not{ }^{12}\) GOSUB \(17 \varnothing \varnothing\)
\(1210 \mathrm{CN}=\mathrm{CN}+1\)
1220 IF MID\＄（LNS，CN，1）＝＂＂AND CN＜LG THEN 1210
1236 IF ON \(>\) LG THEN 16øø
1235 REM FIND THE FIRST CHARACTER AFTER THE \(=\)
1240 TS\＄\(=\) MID\＄（LN\＄，CN，1）：IF TS\＄\(=>" A " A N D^{\text {A }}\) TS \(\$<=\)＂Z＂THEN \(15 ø 0\)
1245 REM IF A NUMBER－GOTO 14 Øø TO GET NUMEER
1250 IF TS\＄＜＝＂9＂AND TS\＄＝＞＂ฤ＂THEN \(14 \varnothing 0\)
1255 REM IF A SYMBOL－GOTO 13øø TO EVALUATE
1266 IF TS\＄\(=\)＂（＂OR TS\＄＝＂）＂OR TS\＄\(="+"\) OR TS\＄ ＂－＂OR TS\＄＝＂＊＂OR TS\＄＝＂／＂THEN 13øø
127 GOTO 115Ø
1295 REM THIS SECTION CHECKS THE PRECEDENCE OF THE OPERATORS
1296 REM IF A（－PUT IT ON THE STACK AND CHECK FOR A UNARY－
\(13 \varnothing 6\) IF TS\＄＝＂（＂THEN NP \(=N P+1: O P \$(N P)="(":\) GOSUB 17ø日：GOTO 1210
1305 REM CHECK FOR＋OR－．IF FOUND DO THE PREVIOUS OPERATOR
1310 IF TS\＄＜＞＂＋＂AND TS\＄＜＞＂－＂THEN 1330
1320 GOSUB 4ø0：GOTO \(121 \varnothing\)
1325 REM IF PRESENT OP IS＊OR／AND PREVIOUS OP IS＊OR／THEN DO

1330 IF TS\＄＜＞＂）＂AND（OPS（NP）＜＞＂＋＂AND OP\＄\((\mathrm{NP})\)＜＞＂－＂THEN 1320
1335 REM OPERATION IS NOT TO BE DONE SO PUT IT ON STACK
134 （ IF TS\＄＜＞＂）＂THEN NP＝NP＋1：OP\＄（NP）\(=\) TS\＄： GOTO 1210
1345 REM WOBK BACK TO NEXT（TO COMPLete A（） EXPRESSION
\(135 \emptyset\) IF \(\operatorname{OPS}(N P)="("\) THEN NP \(=N P-1:\) GOTO 121б
\(136 \emptyset\) GOSUB 40ø：IF NP \(>\emptyset\) THEN NP \(=\mathrm{NP}-1\) ：GOTO 1350
\(137 \varnothing\) PRINT＂STACK ERROR＂：GOTO 11бб
1395 REM EVALUATE A NUMBER
1396 REM GET THE FIRST NUMBER
\(140 \mathrm{~T}=\operatorname{VAL}(\operatorname{MID}(\operatorname{LN\$ }, \mathrm{CN})): C N=C N+\operatorname{LEN}(\operatorname{STRS}(T))\)
\(141 \varnothing\) IF CN \(=>\) LG THEN B＝1：GOTO 1450
\(142 \sigma\) IF MID\＄（LN\＄，CN，1）\(="\)＂THEN CN \(=C N+1\) ： GOTO \(141 \varnothing\)
1425 REM IF THE NEXT SMMBOL IS NOT A／THEN NOT A FRACTION
1436 IF MID\＄（LNS，CN，1）＜＞＂／＂THEN B \(=1: C N=\) CN－1：GOTO 145б
\(1440 \mathrm{CN}=\mathrm{CN}+1: \mathrm{B}=\operatorname{VAL}(\mathrm{MID} \mathrm{\$}(\mathrm{LN} \mathrm{\$}, \mathrm{CN})): \mathrm{CN}=\mathrm{CN}\) + LEN（STRS（B））：IF \(B=\emptyset\) THEN PRINT＂DIVISION BY Ø＂：COTO 11øø
1445 REM PUT NIMBER ON THE STACK
\(1450 \mathrm{NS}=\mathrm{NS}+1: \operatorname{ST}(\mathrm{NS})=\mathrm{T}: \mathrm{SB}(\mathrm{NS})=\mathrm{B}:\) GOTO \(121 \varnothing\)
1495 REM FIND THE NAME AND VALUES OF a VARIABLE
\(15 \varnothing \mathrm{CS}=\mathrm{CN}\)
1510 TS \(\$=\mathrm{MID} \mathrm{\$}\)（LN\＄，CN，1）
1515 REM LOOK FOR A CHARACTER THAT IS NOT IN THE VARIABLE
152Ø IF TS\＄＝＂＂OR TS\＄＝＂）＂OR TS\＄＝＂＋＂OR TS\＄ \(=\)＂－＂OR TSS＝＂＊＂OR TS\＄＝＂／＂THEN CN＝CN－ 1 ：GOTO 154
1530 IF CN＜LG THEN CN＝CN＋1：GOTO 151б
1535 REM FOUND THE NAME OF THE VARIABLE TS\＄
1540 TS \(\$=\mathrm{MID} \$(\mathrm{LN} \$, \mathrm{CS}, \mathrm{CN}-\mathrm{CS}+1\) ）： \(\mathrm{I}=1\)
155ø IF NV \(=\varnothing\) THEN \(158 \varnothing\)
1555 rem if variable found put its value on the stack
1560 IF TS\＄\(=\mathrm{VNS}(\mathrm{I})\) THEN NS \(=\mathrm{NS}+1: \mathrm{ST}(\mathrm{NS})=\mathrm{VT}(\mathrm{I}):\) \(\mathrm{SB}(\mathrm{NS})=\mathrm{VB}(\mathrm{I}):\) GOTO 121 万
1570 IF \(I<N V\) THEN \(I=I+1\) ：GOTO 1560
1575 REM IF VARIABLE NOT FOUND IN LIST qUIT
\(158 \emptyset\) PRINT＂VARIABLE＂；TS\＄；＂NOT DEFINED＂：GOTO 11 øø
1595 REM END OF EQUATION REACH－DO REST OF OPERATORS ON STACK
16あぁ IF NP＞Ø AND OP\＄（NP）\(="("\) THEN NP \(=N P-1\) ：GOTO \(16 \not \approx\)
161Ø IF NS \(>1\) AND NP \(>\) THEN TSS \(=\)＂\＃＂： GOSUB 4øø：NP \(=N P-1\) ：GOTO 160
1615 IF NP＝ 1 AND OP\＄（NP）\(=\)＂J＂THEN TS \(\$=" \# ":\) GOSUB \(4 \sigma \sigma\) ：GOTO 1630
\(162 \emptyset\) IF NP＜＞ø THEN PRINT＂STACK DISJOINT＂： GOTO 11øб
1625 REM PRINT OUT THE RESULTS
1636 PRINT VS\＄；＂＝＂；ST（1）；：IF SB（1）＜＞ 1 THEN PRINT＂／＂；SB（1）；
1640 PRINT ：I \(=1\)
1645 REM SEE IF VARTABLE HAS BEEN USED BEFORE
1646 REM IF IT HAS PUT NEM VALUES IN
1650 IF NV \(=\varnothing\) THEN NV \(=1: W N \$(N V)=V S \$: V T(N V)=\) \(\mathrm{ST}(1): \mathrm{VB}(\mathrm{NV})=\mathrm{SB}(1): \mathrm{GOTO} 11 \varnothing \square\)
\(1660 \mathrm{IF} \mathrm{VS} \$=\mathrm{VN}(\mathrm{I}) \mathrm{THEN} \mathrm{VT}(\mathrm{I})=\mathrm{ST}(1): \mathrm{VB}(\mathrm{I})=\mathrm{SB}(1)\) ：GOTO 11øø
167Ø IF I＜NV THEN I＝I＋1：GOTO 1660
1675 REM IF VARTABLE NOT USED BEFORE DEFINE A NEW VARIABLE
\(1680 \mathrm{NV}=\mathrm{NV}+1: \mathrm{VN} \$(\mathrm{NV})=\mathrm{VS} \$: \mathrm{VT}(\mathrm{NV})=\mathrm{ST}(1): \mathrm{VB}(\mathrm{NV})\) \(=\mathrm{SB}(1)\) ：GOTO 11øø
1695 REM SEARCH FOR THE NEXT CHARACTER TO SEE IF－
\(17 \emptyset \emptyset \mathrm{CN}=\mathrm{CN}+1\) ：IF \(\operatorname{MID} \$(\mathrm{LN} \$, \mathrm{CN}, 1)=\mathrm{n}\)＂THEN \(17 \varnothing 0\)
1716 IF MID\＄（LN\＄，CN，1）＜＞＂－＂THEN \(C N=C N-1\) ： RETURN
1715 REM IF MINUS PUT SPECIAL SMMBOL ON OPERATOR STACK
\(1720 \mathrm{NP}=\mathrm{NP}+1: \mathrm{OP} \mathrm{\$}(\mathrm{NP})=" 3 ":\) RETVRN

\section*{OSI - OSI - OSI - OSI}

\section*{192K RAM}

\section*{BOARD}

\section*{ONLY} \$895

The CCS - 192K is divided into 4-48K bank partitions.
Each board can be dip switch selected for 1 of 4 192K banks.

When combined with our CPU the 192K RAM Board implements a four user computer system at a logic cost of \(\$ 1595\) (special package price).

\section*{Combine this logic package} with our Tilios Operating System and you have a multi-user computer with throughput that has to be seen to be believed.
puts a ( on the operator stack, checks for a unary minus sign, and then returns to line 1210 for the next item in the equation. In line 1310 the program checks to see if a + or - sign was the symbol encountered. If it was, this implies that the precedence was such that the last operation on the stack should be done since these are the lowest precedence. The program accomplishes this by jumping to the subroutine starting at line 400 , which checks the symbol on the top of the operator stack and then does the required operation. if the operation is,,\(+- *\), or / then the appropriate subroutine starting at line 100,110 , or 120 is called. These routines for binary operations in lines 100 to 120 in turn feed into line 130 , which reduces the fraction to the lowest common denominator. Upon return to the subroutine starting at line 400 , the result of the operation is placed on the number stack and the program returns to get the next part of the equation.

The next check (line 1330) is to see if the present symbol is a* or / and the operator on the top of the operator stack is also a * or /. If this is true, then the operation is done by jumping to the subroutine at line 400; otherwise (line 1340 ) the symbol * or / is put onto the operator stack since it has a higher precedence and is not to be done yet. Finally if a ) is encountered, the program unfolds the operator stack until a (is encountered.

Starting at line 1400 the program interprets a number by using the VAL function. If the first number is not followed by a / then the number is assumed to be a whole number and the denominator is set to 1 . The numerator and denominator are put on the number stack in line 1450.

In the section of the program starting at line 1500 , we parse out the name of a variable used in the equation to be evaluated. This is accomplished by stepping through the characters in LN\$ until a character is found that cannot be part of the variable name. After this name is found in line 1540 the list of previously defined variable names is searched. If the name is not found in the list then an error message is printed; otherwise the value associated with that variable, stored in VT and VB, is put on the stack.

Eventually the program comes to the end of the equation it is evaluating and must complete all of the operations that are left on the stack. This is accomplished by the code starting at line 1600 . The value calculated is then
printed on the screen along with the variable name in line 1630. A search of the variable name list is made to see if this variable has been defined before. If the variable has been defined, then the values are substituted in, and if it has not been defined, then a new variable is created. The program then jumps to line 1100 to get another equation to evaluate.

Fairly complex calculations with fractions are made easier by using this program. It is possible, however, to expand the program to make it even easier to use. For example, with the addition of an editor and a few control commands, the program could be expanded to enable you to write programs
that work in fractions similar to the way BASIC works with decimals. Another possible way to change the program is to redefine the arithmetic so that the two numbers now representing the numerator and denominator are interpreted to be the real and imaginary parts of a complex number; then one could have a calculator that does complex number arithmetic.

LeRoy Moyer is a physicist for the Army and teaches computer programming part time at Piedmont Virginia Community
College. You may contact him at Rt. 9, Box 236, Charlottesville, VA 22901.


\section*{The Avant-Garde Programmer's Series:}


Most of these programs are unprotected or 3 completely listable and may be used in all your creations, with no royalties required. They turn novices into ptofessionals and professionals into


\section*{The}


\section*{Atari 800}

- Four-Color Hi-Res Graphics for the VIC-20
by Brian S. Zupke
Use the joystick to draw pictures in four different colors.
- VIC Player
by Phil Daley and Bob Tripp
A five-octave keyboard program.

- An Inexpensive Joystick for the VIC-20, C64, and Atari
by David A. Bryson
For only \(\$ 15.00\) and two hours time, you can have a lightpen for all three machines.


Many VIC-20 programmers know how highresolution graphics are done - but with only two colors (screen color and character color). The VIC is capable of displaying four-color hi-res graphics using the multicolor mode. The question is how is it done?

In order for the VIC to distinguish among four colors within one character, a sacrifice has to be made. First, with two-color graphics each pixel in a character has only two states: on or off. One bit is needed to address each pixel. Using the multicolor mode, there are four states in which a pixel can be. Two bits are necessary for describing each pixel. This means that the VIC either must use twice as much memory for the character-bit map to have the same resolution, or it must have half the normal resolution. The VIC is incapable of the first alternative, so you are stuck with a lower resolution. Each color pixel is twice as wide (two regular pixels) as it is high. The entire screen has a total resolution of 16,192 pixels in this mode, and each character becomes 4 pixels wide and 8 or 16 pixels high.

The four colors available in the multicolor mode are screen color, border color, character color, and auxiliary color. Whether the multicolor mode for a character is used or not is determined
by the value of the corresponding color memory location. If bit 3 is set, or if the value of the location is from 8 to 15 , then the computer views that character as multicolored. It is possible to have regular graphics and multicolored graphics on the screen at the same time by setting the color memory locations accordingly.

Screen color is designated by a 00 (binary) value. If a pixel in a multicolored character has this value, then it will be the same color as the screen. Border color is designated by 01, character color by 10 , and auxiliary color by 11 . The value of the auxiliary color is located in the four most significant bits of location 36878 . It can have a value of from 0 to 15 and is set by

POKE 36878, 16 * COLOR
or, if you are also using sound,
POKE 36878,PEEK(36878) AND 15 OR
(16 * COLOR)
Although only four colors can exist in a character at one time, the colors can be changed easily by changing the color of the screen, border, character, or auxiliary color.

To address multicolor graphics on the screen, a method similar to the one used in two-color plotting is used. The double characters \((8 \times 16\) pix-
els) are used, and plotting is done by ANDing and ORing bytes in the character memory, except now you have two bits to change at the same time.

First you must determine which character contains the pixel to be changed. The grid will be 20 characters wide ( 80 color pixels) and eight characters high ( 128 color pixels). Finding the correct character is done by
\[
\text { CHAR }=20 * \operatorname{INT}(Y / 16)+\operatorname{INT}(X / 4)
\]
where \(X\) and \(Y\) are the coordinates of the point. \(Y\) is divided by 16 since each character is 16 pixels high, and it is multiplied by 20 for the 20 characters in each row. X is divided by 4 since there are only four pixels across each character. To determine which byte is to be changed, you must use

BYTELOC \(=\) BASE +16 * CHAR \(+Y\). INT(Y/16) * 16
where BASE is the base address of the character bit map. CHAR is multiplied by 16 to skip over the 16 bytes of each character preceeding it in the table. The remainder of \(Y\) divided by 16 gives the correct byte in the character to be changed. Sounds all too familiar, right? Now for the hard part. You must leave six of the eight bits unchanged and change the two correct bits to the color you want. First determine which of the four pairs of bits to change:

PAIR \(=4 \uparrow(3-(X-\operatorname{INT}(X / 4) * 4))\)
The remainder of X divided by 4 determines which pair of bits is to be changed. It has a value of from 0 to 3 . By raising 4 to the reverse-of-thisremainder'th power ( \(3,2,1,0\) instead of \(0,1,2,3\) ),
the base value of the pair is known. It is the value of the least significant of the two bits in each of the four pairs. Now the color value to be plotted must be replaced with the value that already exists in the bit pair. These two bits must be cleared first. This is done by ANDing the pair with zeros and the remaining six bits with ones:
BYTE \(=\) BYTE AND ( \(255-\) PAIR * 3 )
Now that the bit pair has been cleared, you can add the color you want by ORing the cleared bit pair with the value of that color (from 0 to 3): BYTE \(=\) BYTE OR (PAIR * COLOR)
When the value of BYTE is placed back into the bit map, the added color will be displayed.

The program COLOR DRAW runs on an unexpanded VIC and requires a joystick. Adding the 3 K expander will allow you to add more features, but adding 8 K or more will, surprisingly, result in not enough memory for the program! By moving the start of BASIC to the beginning of the expansion RAM, you can avoid this problem. The screen, border, character (all characters have the same color in this program), and auxiliary colors may be changed at any time by pressing " C ". The computer will ask for their values. The auxiliary and screen colors can be from 0 to 15 while the border and character colors are from 0 to 7 . Table 1 shows which color corresponds to each number.

The four function keys are used to switch between the colors (screen, border, etc.): F1 is the screen color, F3 is the border color, F5 is the character color, and F7 is the auxiliary color. The joystick is used to direct the blinking cursor. If you wish to move the cursor without disturbing the screen then hold the fire button down when you move it, which allows you to cross over different colors.



Convert your VIC into a simulated organ with vic player: The keys of the organ are represented by the koys on the VIC keyboard.

\author{
by Phil Daley and \\ Bob Tripp
}

With the VIC Player installed in your computer you can make your VIC an entertaining and instructive device. Each note you play can be heard on the VIC sound registers. The keyboard spans three complete octaves, and the range can be extended by selecting among three overlapping registers for a total range of five octaves! Each note that is played is stored in memory so that it can be instantaneously replayed or saved on cassette tape for later use. Then you can load your song from cassette tape and replay it.

We have included a feature in VIC Player that allows you to stop playing, go back to correct mistakes, replay the song from the beginning to the current note, and then continue playing additional notes.

\section*{Using the VIC Player}

After choosing the 'PLAY SONG' option from the menu, a representation of the VIC keyboard is
printed on the screen in the format of a twokeyboard organ. The bottom row of keys represents the lowest notes starting with ' C ' and ascending alphabetically. The second row of keys represents the sharps and flats (black keys) that correspond to the first row. Note that there are inbetween keys on the second row of the VIC for every pair of first row notes. This is different than the normal organ keyboard and means that some of the second row keys do not sound when pressed ( \(\mathrm{A}, \mathrm{F}\), and K ). These keys can be used to introduce rests into your song.

The third row of keys represents the second keyboard of the organ starting at middle ' B ' and ascending to high ' C '. ' C ' is not listed on the screen display due to space limitations, but is available by pressing the \({ }^{\text {'*' }}\) key. The top row of keys represents the sharps and flats corresponding to this second keyboard. When you have mastered the keyboard, you are well on your way to composing your own music. Read on.

At the beginning, the program waits for you to start the song. This is one of the few times when a pause doesn't count. Once you start playing, the computer keeps track of every note and its length and register exactly as you play it. Practice a little bit to get the feel of the keyboard. It is not as simple as a piano, especially with the letters on the keys distracting you from what the true note is. The white keys on the display have the actual name of the note printed over the keyboard name of the key to help keep you oriented.

After you start a song, you may discover that you didn't mean to play a particular note. Fortunately there is a mistake-recovery method. As soon as you realize that you have made an error (sometimes the first note is an error), press the space bar to pause momentarily. You will be presented with several options.
1. CONTINUE allows you to start playing the song at exactly the point where you stopped. This is a useful technique for the times when you become confused as to which note you want to play next; press the space bar to pause, regather your wits, and press ' C ' for continue, continuing from where you stopped.
2. REPLAY will play the song up through the current note so that you can inspect your masterpiece as you input and make corrections if necessary. This option can be chosen as many times as you need it.
3. BACKUP is the option for which you've been waiting. This allows you to remove one note at a time from the current song, all the way back to the beginning, if you want. When you make a mistake and press the space bar to pause, press the ' \(B\) ' option and the note you are erasing will sound. Another ' \(B\) ' will erase the next note, and so on. Then pressing ' C ' will allow you to continue your song from the point to which you have backed up.
If, no matter how hard you try, you can't seem to get the song perfect, then the next step is to use the 'SONG EDITOR' program. This program is described in detail later in the article.

\section*{Other Menu Options}

There are five additional menu options that allow you to hear your song, load a song from or save a song to the tape player, change the tempo of the song, or quit.

Choosing option number two, 'REPLAY SONG', will play the song currently in memory over the television speaker. The routine uses the current tempo for the speed at which to play the song. If there are no notes in the song, then 'NO SONG IN MEMORY' is printed and you are returned to the menu.

The 'SAVE' and 'LOAD' options are numbered three and four, respectively. To save the current song, choose ' 3 ' and answer the 'WHAT IS THE NAME OF THE SONG?' question with the name that you want to call the song. After you press
< return > you are prompted to press RECORD and PLAY on the tape player. When the song is saved, you are returned to the menu and the tape player will stop. If there are no notes in the song, you will be so informed and returned to the menu.

Option number four is similar in operation to option number three. Remember that when you LOAD a new song, you will erase any song currently in memory; you must SAVE the current song (if you want to keep it for later use) before loading a new one. The 'WHAT IS THE NAME OF THE SONG?' prompt will appear. If you don't know the name of the song, or you want the next song on the tape, press \(<\) return \(>\) and the next song will be loaded. If you have several songs on the tape, type the specific name of the song you want and the VIC will search through the tape until it finds the correct song. If the song isn't on the tape, you will have to press the RUN/STOP key to recover.

To change the current tempo setting, choose option five. The minimum (fastest) setting allowed is ' 1 '. There is no restriction on the maximum (slowest) setting, except the limits of the VIC. However, a setting of over one hundred will result in extremely long notes.

When you are finished with VIC PLAYER and want to return to BASIC, choose option six. Always remember to save any song that you are currently working on before choosing this option. If you forget this rule, typing 'GOTO20' might enable you to return to the program without losing your song.

\section*{The Program}

The VIC Player program contains six major functions, which are selected from a menu, three minor functions used during the playing of a song from the keyboard, and some support subroutines.

The main program (lines 10-50) calls subroutines to initialize program, turn off the sound generators, and print the menu on the display. It waits for a character in the range of the menu ( 1 to 6 ) then goes to the appropriate subroutine to service the selected function.

The PLAY SONG subroutine (lines 1000-1120) calls a subroutine to print the music keyboard, gets input from the keyboard, calls a subroutine to pack information about the current note and store it in memory, and then, depending on which key you press, will do one of the following things:

Space goes to the 'Continue, Replay, Back Up' subroutine;
Cursor Up or Cursor Right terminates the song by putting a 0 in the next song location and returning to the main menu;
' \(f 7\) ', ' \(f 5\) ', or ' \(f 3\) ' sets the register number and the current sound register pointer, calls a subroutine to turn off all sound registers, and continues in the

PLAY SONG routine；
An undefined key is converted to a＇musical rest＇； and，
A defined key（i．e．，a＇music \(\mathrm{key}^{\prime}\) ）is converted to its sound generator．

The REPLAY SONG subroutine（lines 2000－ 2070 prints the message＇PLAYING＇and the song title，if there is one．If there is no song in memory，it prints the message＇NO SONG IN MEMORY＇，goes to a subroutine that produces a delay to enable the message to be read，and then returns to the main program．

If there is a song in memory，REPLAY calls a subroutine to unpack the register number，note pointer value，and duration for the next note from the song table．It uses a subroutine to output the note to the sound generator for the specified dura－ tion．The sound generator is then turned off and the song pointer incremented to the next note．If the maximum song length has been exceeded， then a return is made to the main program；other－ wise the keyboard is checked and if any key is pressed a return is made to the main program．

If no key is pressed，the next note of the song is unpacked and tested．If it is not the＇end of song＇indicator（a zero value）the program con－ tinues playing the song．At the end of the song， REPLAY uses a subroutine to generate a brief delay and then goes to the main program．

The SAVE SONG subroutine（lines 3000－3030） uses a subroutine to print the message＇WHAT IS THE NAME OF THE SONG？＇and inputs a song name．It opens the cassette device for saving infor－ mation and outputs the song information one note at a time．When it detects the zero note that signals the end of the song it closes the cassette device，prints the message＇SAVED＇，and exits through the delay routine．

The LOAD SONG subroutine（lines 4000－4030） uses a subroutine to print the message＇WHAT IS THE NAME OF THE SONG？＇and inputs a song name．It opens the cassette device for loading in－ formation and inputs the song information one note at a time．When it detects an empty note it closes the cassette device，prints the message ＇LOADED＇，and exits through the delay routine．

The CHANGE TEMPO subroutine（lines 5000－ 5020）prints the current value of the tempo
（continued）

\section*{VIC Player Listing}
```

16 FOKES6ETG, 27:ODEIE 1204G

```


```

40%=WALGA:O:IFWG1ORVOSTHENSO

```



```

10.4 [=0

```

```

1040 IFF=1 THEHH105G
1045, GGGLIEGFEQ:FOUECF, E

```

```

1日⿱二小⿱⿰㇒一十凵人

```


```

 \OTG1的咟
 1000 HN=TF-4ق:IFNW5ETHEN WX=3

```


```

11EG GOTO14天G
206G FFIHT"FFLFTING":FRIHTE*:U/=1

```

```

z0%G Gusuegcem
cosu Gom|E=SNG
2046 FOKECF,G:ण=%+1 : IFYLTHEHFETLIFH
ZWS6 GETAま:IFF:\&"""THETHETURH

```

```

2076 501%%%40%

```

```

3日16 FEEIHT\#1 .WEGUO,CRE:

```

```

76E4 %=%+1 = OOTOG616

```

```

4E1E INFUT\#\# 1 HEOU

```

```

4036 %=%+1 :GOTG4610
EGME1 FR:INT"TEFMFO=":S
5010 FFIHT"HEW TEMFO=": IHFUITE:IFSG1THEHEG1G
Sac® FEETURH
Gund FRIHT"3":EFH[

```

```

eg10 FRIHT"TatigHOILES:'

```

```

EOSG FRIHT" FF:TEFLH'T"
GO4E FEIHT"汭贾FEK HF 1 HOTE"
GESG FFIHT:FRINT"WHIEH*

```




```

810G IF

```

```

E12E GOEMEFGGEA:GOTHEG50

```

```

GIE4 FRIHT"JNHAT IS THE HARME":PRIHT"OF THE SOHG"

```
\(3110 \quad \%=1\) ：IMFUTEA：RETLIFH



\(9230 \mathrm{HP}=\mathrm{IHT}, \mathrm{T}\) 164


ESEA FOFI＝
G76 IFOGGTHEHO＝37

9T2日 RETIAN
GEG RETILEN






1 GE5日 FFIHT＂2E QUIT＂
10LE FRIHT＂BCHOUSE＂：RETURH
11 Gan FEINT＂FFLA＇t HHEN REH［＇r＂＂
 ：PRIHT＂A．\(F\) ，OR \(K=R E\) ET 回＂
11 它的 FPINT＂




11600 FRINT＂DIQIWIEIRITI＇rIUIKIFIE＂：
11 Ge日 FRIHT


11116 FRINT＂ 1


11150 RETUFW


12020 FG1E E 6375.15
12030 RESTOFE



12GEG \(\mathrm{F}=1: \mathrm{CR}=\mathrm{RG}+\mathrm{R}:\) RE TURH


13620 ARTA2日 \(269,212,215,217,219,221,22\)


\(1406 \mathrm{GATAEE}, 54,12,38,14,16,32,36,18,2 \mathrm{~B}\)
14010 OATAC2，38， \(25,27,36,34,15,36,36,36\)
14620 ［1ATA \(14,16,35,35,7,4,3,21,36, E, 5,29\)



\section*{Perry Peripherals Repairs KIMs!! (SYMs and AIMs Too)}
- We will Diagnose, Repair, and Completely Test your Single Board Computer
- We Socket all replaced Integrated Circuits
- You receive a 30-day Parts and Labor Warranty
- Your repaired S.B.C. returned via U.P.S. - C.O.D., Cash

Don't delay! Send us your S.B.C. for repair today
Ship To: (Preferably via U.P.S.)

\author{
Perry Peripherals \\ 6 Brookhaven Drive \\ Rocky Point, NY 11778
}

Kim-1 Replacement Modules
- Exact replacement for MOS/Commodore KIM-1 S.B.C.
- Original KIM-1 firmware - 1 K and 4 K RAM versions

Replacement KIM-1 Keyboards
- Identical to those on early KIMS - SST switch in top right corner
- Easily installed in later model KIMs

Perry Peripherals is an authorized HDE factory service center.
Perry Peripherals carries a full line of the acclaimed HDE expansion components for you KIM, SYM, and AIM, including RAM boards, Disk Systems, and Software like HDE Disk BASIC V1.1. Yes, we also have diskettes. For more information write to: P.O Box 924, Miller Place, NY 11764, or Phone (516) 744-6462.

variable, then requests and inputs a new value. If the value is less than 1 , it is ignored. When a valid value is input, the routine returns to the main program.

The QUIT routine (line 6000) clears the screen and executes an END to return to BASIC.

The PLAY SONG MENU routine (lines 80008120) provides three additional commands for use while playing a song. When called by pressing the space bar, it first uses a subroutine to turn off all sound generators and another to unpack the current note. It prints its own menu and waits for a keyboard selection. On receipt of a ' C ' it backs up the song pointer to the current note, unpacks the note, and turns off the sound generators before returning to the PLAY SONG routine.

The letter ' R ' calls the REPLAY SONG subroutine, which plays the current song from the beginning to the current note, and then waits for another menu selection.

The letter ' B ' causes the song note pointer to back up one position, unless it is already at the start of the song, and then go to the subroutines to unpack the note's values, output the note for the correct duration, turn off the sound generators when the note is done, and wait for another menu selection.

The support subroutines (lines 9000-13020) provide support for the main program and major subroutines.

Line 9000 provides a several-second delay to permit you to view messages.

Line 9100 prints 'WHAT IS THE NAME OF THE SONG?' and accepts a name from the keyboard.

Line 9200 unpacks the stored note information into its three components: the song register ' R ', the note pointer ' \(\mathrm{NP}^{\prime}\) ', and the duration of the note ' D '. It also sets the correct song register and looks up the actual note from the note table. See 'packing information' in the section headed 'Numeric Variables."

Line 9500 turns all three song registers off by setting them to 0 .

Line 9700 makes sure that the note duration is not greater than 99 and packs the three components of the note (the song register ' \(R\) ', the note pointer ' \(N P^{\prime}\), and the duration of the note ' \(\mathrm{D}^{\prime}\) ' into a single integer value in the song array. See 'packing information' under the heading "Numeric Variables."

Line 9800 outputs a note by placing its value in the current sound generator. It waits for the duration of the note, which is calculated as the tempo ' S ' times the note duration ' D ' divided by 8 , times the length of the BASIC FOR...NEXT loop.

Line 10000 prints the main menu.
Line 11000 prints the keyboard display.
Line 12000 performs a series of initialization functions. It sets the tempo ' S ' to 50 and the length of the song ' \(L\) ' to 260 notes; it dimensions three integer arrays - \((\mathrm{W} \%(\mathrm{~L})\) to hold the song note information, and A\% (38) and NP\%(50),
which associate the keyboard characters with the notes; it turns off all three sound generators and sets the sound volume to its maximum value of 15; it restores the DATA statement pointer and reads the DATA into the A\%(I) array and the \(\mathrm{NP} \%(\mathrm{I})\) array; and it sets the middle sound register as the current register and returns to the main program.

Line 13000 contains the data for the values of each of the notes [three octaves plus two notes, C through C\#). The zero at the end is the entry for a rest. These values correspond to the values in the VIC programming manual. Note that they vary slightly from the values in the VIC reference manual.

Line 14000: This data table has the pointers for the keyboard playing routine. Since the keyboard is not in note order and the note table values are in note order, it is necessary to convert from the keyboard code to the position in the note table. For example, ' \(Z\) ', which is a ' C ', has the keycode 90. This number is called the ASCII value and is a standard form of encoding the keys for a computer. Line 1090 subtracts 42 from 90, resulting in 48 as the keyboard position. (The first 42 keycodes are unused, and so we throw them away.) If you look at the table of pointers, you will see that the 48th entry is ' 0 '. Therefore, the note pointer for Z is 0 . If you look at the note table data, you will see that the zeroth (first) entry in this table is 135. This is the value to be POKEd to make the sound ' C '.

\section*{Programming Concepts}

\section*{Using a Menu to Make a Choice}
1. Selecting by Number

When you run the PLAYER program, the first display that you see is a list (or menu) that tells you what actions are available. Each item on the menu is selected by pressing the number associated with it. The BASIC program steps required to make the choice are in lines 40 and 50.
\(40 \mathrm{~V}=\mathrm{VAL}(\mathrm{A} \$): \mathrm{IFV}<10 R \mathrm{~V}>6\) THEN30
50 ONVGOSUB \(1000,2000,3000,4000,5000,6000\) : GOTO20

Line 40 converts the keyboard character in \(\mathrm{A} \$\) to its numeric value in variable V . If V is less than 1 or greater than 6 , then the number is ignored and the program returns to line 30 to get another choice from the keyboard.

Line 50 uses ON V GOSUB to go to the subroutine whose position matches the number: the first subroutine address for a 1 (subroutine 1000), the second subroutine address for a 2 (subroutine 2000), and so forth for numeric values of 1 through 6.
2. Selecting by First Letter

If the space bar is pressed during the 'PLAY SONG', then another menu is displayed.
(continued)


\title{
THE MICRO COMPUTER BUSINESS WILL GROW FROM \$10 TO \$100 BILLION IN THE NEXT EIGHT YEARS! ARE YOU READY TO CASH IN?
}

The micro computer business is predicted to grow from its present \(\$ 10\) billion to \(\$ 100\) billion before 1990 ! Imagine the possibilities this opens for you! No matter where you live, if you're starting up or presently in business, no other industry offers you more opportunities!

Now, finally, all the inside information you need to secure a prosperous future in this dynamic industry is available in one place - THE COMPUTER ENTREPRENEUR MANUAL! - An immense information source, compiled by our inquisItive research team, aided by a panel of experts and business people from all areas of the computer industry!

We present the inside story of more than 100 lucrative computer businesses you can enter, where you'll find the real opportunities for the eighties: from one man operations like Programming Author, Word Processing Center or Consulting, to Systems House, Service Bureau, Computer Store etc! Many at little or no investment! All the invaluable facts and figures How to start, Capital needs, Profit estimates and Margins, How to Sell and Market, How missing technical or business experience need not stand in your way, Source of Suppliers, etc! Details that could take years to find out on your own!

We'll show you inside tricks, like how to never again pay retail for computer products and consumer electronics, even for one item - right now, while you're starting your business! How to get free merchandise and trade show invitations, etc. This alone will more than pay for the manual! You'll read actual case histories of other computer entrepreneurs, so you can learn from their mistakes, and profit from their success stories! Where you'll be one year from now depends on your actions today! Let us show you how to take the first crucial steps!

Order now and take advantage of our limited introduction special, THE COMPUTER ENTREPRENEUR MANUAL, and a six month subscription to THE COMPUTER ENTREPRENEUR REPORT/NEWSLETTER ( so you're always up-to-date with the industry ), both for only \(\$ 29.95\) ! You must be convinced on how easy you can strike it rich in the micro computer business - or you may return the manual for a full refund within thirty days! USE OUR TOLL FREE NUMBER TO ORDER!


\section*{EVERYTHING YOU NEED TO KNOW TO SUCCEED IN THE COMPUTER BUSINESS IS ALL IN THIS MANUAL!}

THE COMPUTER ENTREPRENEUR MANUAL has the answers to all your questions about selecting, starting and succesfully running a computer business! There has never been such a comprehensive collection of know-how and information about this business in one place! All the facts you need to plan and acheive your goals in easy-to-follow, step-by-step instructions!

These are some of the 100 -plus businesses covered in PART ONE of the manual. with the facts on How to start and run, Start-up Cost ( Even how to operate on a shoestring ), What profits to expect. Wholesale prices, Mark-ups, Suppliers, luture outlook, case histories for each, etc:

Systems House, Sottware Author (who to sell to and who to avoid), Service Bureau, Soft ware Publisher (How to 'ind programs that sell, Word Processing Service, Consulting and Consultant Broker ( use your skills or those of others, make \(\$ 150-\$ 1000\) a day!), The incredible Games Business, Computer Store (Franchises: Pro and Contra or a low inventory store in your home! ), OEM, Hardware Mfg, Data base and Teletext Service (big prospects! ). Used Computers, Repairs, Rent-A-Computer, Promote Fests and Trade Shows, Turnkey Systems,
Bartering, Mail Order, Compile and rent mailing lists, Specialized Data Headhunting and Temp Help Service, Tech Writer Shop, Custom Engineering, The highly profitable Seminars and Training Business, and many more!

Many new ideas and ground floor opportunities! Interviews and success stories on companies of all sizes! Privy info on the profits made: How some computer store operators net \(\$ 100-\$ 250,000\) ! Little known outtits that made their owners millionaires, one of these low-key companies, making simple boards went from nil to \(\$ 20,000,000\) and 100 employees in four years! Programmers that make \(\$ 300,000\), Thousands of micro millionaires in the making, etc!

Whatever your goal is - Silicon Valley Tycoon, or just a business at home - we guarantee you'll find a business to suit you - or your money back!
PART TWO of the manual is loaded with the know-how and "streetfighting" savvy you need. both as a novice or business veteran, to get started. to stay and to prosper in the micro computer business! A goldmine of information in clear and easy-to-use instructions: How to prepare your Business Plan, Outside financing, The mistakes you must avoid, How to hire and manage employees, Incorporation (when, and how to do it cheaply), Surviving bad times, Record Keeping, how to estimate your market before you start, Use multiple locations to maximize profits, how to promote and stay steps ahead of the competition! How to get free advertising, free merchandise, free advice, Power negotiating with suppliers to double your profit margins, etc! Even how to keep a present job while starting a business part time!

Don't miss this opportunity to be part of this great industry - the next success story could be your own! Order the manual today! Part one and two bound in a deluxe ring binder, where you can also collect our newsletter ( free for six months with the manual - a \(\$ 32.50\) value!) - all for only \(\$ 29.95\) !


THE COMPUTER ENTREPRENEUR NEWSLETTER all the latest inside business news! NOW! SIX MONTHS FREE WITH YOUR MANUAL!

You're always attuned to the industry, and your manual kept up-to-date, with our newsletter! Each issue has the latest business news, ideas, new suppliers, our indispensible ''watchdog" column on profits, discounts ( don't miss mfg's promos, like recently, when top video monitor sold at \(\$ 80\) - that's half wholesale. one third of the retail price! ), the competition, the big deals, etc! Feature stories with start-up info and case histories on new micro businesses!

You'll get invitations to trade shows and conventions. the usage of our advisory service and our discount buying service for your purchases!

You'll find many items in our newsletter that will save you the cost of your manual many times over!
win save


CALL TOLL FREE! CHARGE IT! Credit Card Orders ( MC, VISA only ) accepted 24 hours/day 1-800-227-3800 Ask for extension 1135 In California call 1-800-792-0990

(c) 1982, THE COMPUTER ENTREPRENEUR

\section*{Order by phone (Credit cards only), or use the coupon:}


The first character of each item is displayed in reversed video to indicate that the letter is to be pressed on the keyboard to select that choice. Each letter is serviced by its own IF...THEN statement.
```

8070 IFA\$ = "C"'THEN V = V-1 :GOSUB9200: GOTO9500
8080 IFA\$ = "R"THENGOSUB2000:GOTO8010 8090 IFA\$ < > "B"THEN8060

```

If there are only a few choices, as in this example, that is not a lot of code. If there were many choices, then the amount of code to service the letters could be significant.

\section*{Numeric Variables}

VIC BASIC handles two kinds of numbers integer and floating point. An integer number is a number without a decimal ( \(123,9999,0,-4387\) and so forth]. A floating-point number has a decimal point (12.34, \(98765.1,0.0,-435.678\) and so forth). Often it does not matter which type of number is being used, but it can make a significant difference in some programs.

\section*{Integers}

An integer number in the VIC may be as large as +32767 or -32768 . Each integer number that the program stores requires two bytes of memory. An unexpanded VIC has only about 5000 bytes of user memory, so the number of bytes available is limited. Most BASICs identify which information is stored in integer form by using a \(\%\) after the one- or two-character symbol name. Examples in VIC PLAYER are \(\mathrm{F} 1 \%, \mathrm{~F} 2 \%, \mathrm{~T} \%, \mathrm{~W} \%\), and \(\mathrm{A} \%\). In VIC PLAYER, W\% and A \% are arrays - a large number of related values with a common reference. W\%, for example, is the memory reserved to save the note, register, and duration of each note of the song. To allow enough memory for a reasonably long song, we found it necessary to perform a few tricks. First, let's examine how not to program the storage area.

Each note of the song that you play produces three pieces of information that must be saved by VIC PLAYER:
the register of the note
the number of the note

We could define a two-dimensional array that contains a floating-point number for each of the three parts of each note: DIM W(299,2) would reserve space for 300 notes, three floating-point numbers per note. How much memory do you think this would take? Well, 300 times 3 is 900 . Is that the total number of bytes required? No! Each floating-point number requires five (5) bytes of memory. Therefore, it would take \(5 * 900\) or 4500 bytes of memory! There is barely enough space in your basic VIC for the song, and that's not counting the space required for the program itself.

One obvious way to save space would be to store the three parts of each note as integer values instead of floating-point values. Since each integer value requires only two ( 2 ) bytes of memory for storage, the total requirement for the 300 -byte song would be \(2 * 900\) or 1800 bytes. That is better, but it still uses almost half of the memory in your basic VIC, which does not leave much room for the program.

You have to get a bit tricky to squeeze much more out of the song space; but there is nothing wrong with getting tricky when writing programs. In fact, that can be half the fun! To really squeeze the memory in VIC PLAYER we took advantage of the size of the number that a single integer value might hold. An integer requires two (2) bytes of memory, whether it contains \(0,32335,-32334\), or whatever. The three values that we need to keep for each note played are: the register number (1,2 or 3 ); the note number ( 0 to 38 ); and the duration (which is limited to 0 to 99 units). If only we could pack all three of these individual values into a single integer number for storage and then unpack them when we needed to use them. Well, good news - we can!

The technique to pack the numbers is shown in line 9710.
\[
9710 \mathrm{~W} \%(\mathrm{~V})=\operatorname{INT}\left(\mathrm{R}^{\star} 10000+\mathrm{NP}^{\star} 100+\mathrm{D}\right)
\]

This equation is not as difficult as it may at first appear.
\(\mathrm{W} \%(\mathrm{~V})\) is the address of the integer where V is the number of the note in the song;

INT is the BASIC function that converts a floating point (five bytes, remember) into an integer number (only two bytes);

R * 10000 multiplies the register value ( 1 to 3 ) by 10000;
+ NP * 100 multiplies the note number ( 0 to 38 ) by 100 ;
+D adds the duration value ( 0 to 99 ).


THE MIRROR FIRMWARE FOR NOVATION APPIE CAT II®
The Data Communication Handler ROM Emulates syntax of an other popular Apple Modem product with improvements. Plugs directly on Apple CAT II Board. Supports Videx and Smarterm 80 column cards. touch tone and rotary dial, remote terminal, voice toggle, easy printer access and much more. List \(\$ 39.00\)

Introductory Price \(\$ \mathbf{\$ 9 . 0 0}\)

\section*{MINI ROM BOARDS}

Flace your 2K program on our Mini Rom Board. Room for one 2716 EPROM. Use in any slot but zero.

Circle No. 50

\section*{DOUBLE DOS Plus}

A piggy-back board that plugs into the diskcontroller card so that you can switch select between DOS 3.2 and OOS 3.3 OOUBLE OOS Plus requires APPLE DOS ROMS. \(\quad \$ 39.00\)

Super Pix
Hires screendump sottware for the Epson, OKI, C. Itoh and Nec 8023. Use with Tymac PPC-100. Special \(\$ 19.95\) (Specity Printer)
Mr. Lister - Customer Contact Profiler \& Mailer
A Super Mail List Plus more - up to 1000 Entries on single 3.3 Disk (only 1 Drive required) - 2 second access time to any name - full sort capabilities - Oual Index Modes - supports new 9 digit Zip. Easy to follow manual - Not Copy Protected - 4 user defined tables with 26 sort selections per table - Beta tested for 6 months - user defined label generation. Introductory Price \(\$ 135\).
\(\$ 99.00\) Dealer \&: Dist. Inquiries Invited.

\section*{APPLE UNK}

A communications system for the Apple (Requires Hayes Micro Modem). Transmit and receive any type of file between APPLES®. Automatic multi- File transter, real time clock indicating file transter time. Complete error check. Plus conversation mode. Oniy one package needed for full transters. Compatable with all DOS file types. (requires Hayes Micro Modem)
\(\$ 59.00\)

\section*{THE APPLE CARD/ATARI CARD}

Two sided \(100 \%\) plastic reference card Loaded with information of interest to all Apple and Atari owners.
53.98

\section*{NIBBLES AWAY II \\ AGAIN! Ahead of all others.}
- AUTO-LOAD PARAMETERS . . . Free's the user from having to Manually Key in Param values used with the more popular software packages available for the Apple II.
- EXPANDED USER MANUAL . . . incorporates new Tutorials for all levels of expertice; Beginners Flowchart for 'where do I begin' to 'Advanced Disk Analysis' is included.
- TRACK/SECTOR EDITOR . . . An all new Track/Sector Editor, including the following features: Read, Write, Insert, Delete Search, and impressive Print capabilities!
- DISK DIAGNOSTICS . . Checks such things as: Drive Speed, Diskette Media Reliability, and Erasing Diskettes.
- HIGHEST RATED . . . Best back up Program in Softalk Poll (Rated 8.25 out of 10 ). - CONTINUAL UPDATES . . . Available from Computer Applications and new listings on the source.

\section*{Dealer and Distributor Inquiries Invited.}

\section*{MICRO-WARE DIST. INC. \\ P.O. BOX 113 \\ POMPTON PLAINS, N.J. 07444 201-838-9027}

\section*{VIC-20}

SOFTWARE SPECIALS

\section*{NEW! \\ CARTRIDGE GAMES FROM TRONIX \\ SCORPION \\ \(\qquad\) \(\$ 34.95\) \\ Full 4-way scrolling. fast actıon predator game where it's you against killer frogs. slimy worms, stalker filies. dragons and ratcher pods With 32 levels or play}

\section*{GOLD FEVER .. \$29.95}

Explore a deadly mine searching for valuable goid deposits. Avoid roaming mine carts. rolling boukders and a crazy claim jumper! With 9 levels of play.

\section*{DEADLY SKIES}
\(\$ 29.95\)
Frenetic. fast paced. action-packed game where you are the Rebel fighter attacking the hostile military base. Avoid S.A.M. s, smart bombs and deadiy radioactive clouds! Over 10 levels of play.

From Interesting Software
Cassette .... SiL
ALS musir and colorful graphics.

\section*{CBM-64 \& VIC-20 MINI-MONITOR}

All machine code monitor which will disassemble code, do text dump. move memory, hex to decimal and decimal to hex conversion as well as a mini-assembler!
VIC-20 version requires 8 K expansion. Cassette ................................. S24.95 Disk ......................................... S29.95

\section*{CREATIVE SOFTWARE} GAMES ON CARTRIDGE

CHOPLIFTER
\(\$ 39.95\)
SERPENTINE
\(\$ 39.95\)
APPLE PANIC
ASTROBLITZ
TRASHMAN

\section*{Stellar Triumph}

Great new all machine code game for your CBM-64 One or two player game with all the arcade sound and graphics' Fantastic space war game with many options
From H.AL. Labs .. tape or disk . \(\$ 24.95\)

\section*{Dust Covers} Water resistant Attractive brown canvas \(\$ 7.95\)

\section*{KIDS \& THE VIC}

Great new book to add to your library. only
\(\$ 14.95\) \(+\) INTERESTING SOFTWARE

At Last! Two new ways to expand the usefulness of your Rockwell AIM or Cubit CPU computer are available for immediate, off-the-shelf delivery.

To discover how two new, state-of-the-art circuit cards from Design Dynamics can expand the use you get from your AIM or Cubit computer by providing bus compatible Analog to Digital Interface and Full Color Graphics, please read on.
Until now, if you needed a complete Analog to Digital Interface or Full Color Graphics display for your AIM or Cubit computer, you had to design and build it yourself.

But today, Design Dynamics fills each need on \(41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}\) cards. Just look at the features packed into each card:

\section*{A total control interface}

The AIM/Cubit-compatible interface has been designed to provide you with a flexible, total control interface which includes A to D functions, D to A functions, a clock with user ports section and a User Prototyping Area. Circuit Card with all functions, \(\$ 1,100\).
Boards with selected functions
Analog to digital input is handled on 16 channels with 12 bit resolution. Maximum conversion time is \(35 \mu \mathrm{sec}\). per channel. Card with only A to D function, \(\$ 375\).

Digital to analog output provides control of 0 to 10 Volts. 8 \(\mu \mathrm{sec}\). conversion is provided by double-buffered, 4 channel, 12 bit D/A converters. Card with only D to A function, \(\$ 675\).

A 24 -hour time of day clock, with independent crystal timebase, includes an alarm mode for scheduling events. Two 16 bit timers, each with 16 bit prescaler and start/stop control can count multiple source pulses.
And, a User Prototyping Area provides power, ground bus and grid area for custom signal conditioning. Clock with Prototyping Area Card, \$275.

Start-up software for each circuit card is provided.

\section*{Full Color Graphics}

Now you can expand your system display from limited alphanumerics to a full color CRT display which includes two graphic modes, multicolor mode and text mode, viewed on your own color CRT.
Design Dynamics Full Color Graphics uses no system RAM, and includes it's own 16 K dynamic RAM memory. It provides 35 planes of vertically stacked display, 32 sprites in front of graphic plane and internal anticollision management.

Graphics I provides pattern graphics in 15 colors, \(256 \times 192\) pixels; while Graphics II offers more complex colors and patterns. The Multicolor mode displays in positions of \(64 \times 48\), with four colors per \(8 \times 8\) pattern. The Text mode pattern plane is broken into \(40 \times 24\) positions for text-only display. Full Color Graphics Card, \(\$ 175\).
Startup software included assists the user in becoming familiar with the extensive capacities of this board.

\section*{Full documentation included}

A Data Pack which includes full documentation for each board makes it simple to put the A to D Interface and Full-Color Graphics to immediate use. Or, if you need to be sure these boards will fit your applications, you may order the Data Pack separately for only \(\$ 15\) per card.

\section*{Motherboard available}

A fully buffered Motherboard for system expansion of eight cards allows convenient placement of boards for prototyping. Expansion Motherboard is \(\$ 175\). Save time, money; call today
Get these AIM and CUBIT function-expanding cards right now, or call Jack Schnabel for complete information.

\section*{VIC Player (continued)}

All we have done is multiply two of the three parts that we need to save by enough to make sure they do not overlap. This insures that we will be able to unpack the separate parts later. The unpacking is a bit more difficult than the packing, but conceptually it is simple. All we need to do is reverse the packing process. This is accomplished in the following lines:
\[
\begin{aligned}
& 9200 X=W \%(V) \\
& 9210 \mathrm{R}=\mathrm{INT}(\mathrm{X} / 10000): \\
& \mathrm{CR}=\mathrm{RG}+\mathrm{R} \\
& 9220 \mathrm{Y}=\operatorname{INT}\left(\mathrm{X}-\mathrm{R}^{\star} 10000\right) \\
& 9230 \mathrm{NP}=\operatorname{INT}(\mathrm{Y} / 100) \\
& 9240 \mathrm{D}=\operatorname{INT}\left(\mathrm{Y}-\mathrm{N}^{\star} \mathrm{P}^{*} 100\right) \\
& 9250 \mathrm{~N}=\mathrm{A} \%(\mathrm{NP}): \\
& \text { RETURN }
\end{aligned}
\]

Line 9200 simply copies the packed value of the note into \(X\).

Line 9210 restores the register number by dividing the packed value by 10000, reversing the original saving process. It also sets the current register (CR) to the new register number.

Line 9220 restores the note number and duration combined value that was 'thrown away' in the previous step.

Line 9230 restores the note number by dividing by 100 .

Line 9240 restores the duration by subtracting the note number component.

Line 9250 restores the value of the note by looking it up in the note table, \(\mathrm{A} \%(\mathrm{X}\}\), using the calculated note pointer, NP.

The above lines of program have taken the single integer value and converted it back into three separate parts. The savings of this method result in a 300 -note song requiring only 300 integer numbers to store it, at two bytes per number, for a total storage of 600 bytes. Quite a reduction from the original 4500 bytes!

\section*{MCRO"}

\section*{NEW for the VIC and ' 64}


\section*{DISCOUNT COMPUTER \{ fotemsins}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline APPLE & Histail & Discoun & & Filaik Dis & count & ATARI & Aatail & Dissount & & Aatail Dis & \\
\hline 0 & & & Zork I & 39.95 & 29.00 & Threshold (d) & \$39.95 & 29.00 & T=Cassette & & \\
\hline GPPE & & & Zork II & 39.95 & 29.00 & Snake Byte (d) & 29.95 & 21.00 & \(1=\) Cassette
\(\mathrm{D}=\) Disk & & \\
\hline crere & & & Deadline & 49.95 & 36.00 & Space Eggs (d) & 29.95 & 21.00 & \(\mathrm{C}=\) Cartridge & & \\
\hline Eliminator & \$29.95 & 21.00 & Mastertype & 39.95 & 29.00 & Bandits (d) & 34.95 & 29.00 & & & \\
\hline War & 24.95 & 18.00 & Castle Wolfenstein & 29.95 & 21.00 & Color Print (d) & 39.95 & 29.00 & Rear Guard (d) & 24.95 & 18.00 \\
\hline Adventureland & 29.95 & 21.00 & Supertext II & 150.00 & 108.00 & Canyon Climber (d) & 29.95 & 21.00 & Rear Guard (t) & 19.95 & 15.00 \\
\hline Pirates Adventure & 29.95 & 21.00 & Softcard Premium System & 775.00 & 600.00 & Shooting Arcade (d) (t) & 29.95 & 21.00 & Caverns of Mars (d) & 39.95 & 29.00 \\
\hline Golden Voyage & 29.95 & 21.00 & Wizard and the Princess & 32.95 & 24.00
72.00 & Pacific Coast Highway (d) (t) & 29.95 & 21.00 & Alari Basic (c) & 59.95 & 45.00 \\
\hline Magic Window & 99.95 & 72.00 & Time Zone \({ }^{\text {Cranston Manor }}\) & 99.95
34.95 & 72.00
25.00 & Clowns And Balloons (d) (t) & 29.95 & 21.00
18.00 & Star Raiders (c) & 44.95 & 33.00 \\
\hline Temple of Apshai & 39.95 & 29.00 & Cranston Manor
Threshold & 34.95
39.95 & 25.00
29.00 & Wordrace (d) & 24.95
34.95 & 18.00
2500 & Centipede (c) & 44.95 & 33.00 \\
\hline Upper Reaches of Apshai & 19.95 & 15.00 & Threshold
Softporn Adventure & 39.95
29.95 & 29.00
21.00 & Andromeda (d)
Deadline (d) & 34.95
49.95 & 25.00
36.00 & Pac Man (c) & 44.95 & 33.00 \\
\hline Curse of Ha & 19.95 & 15.00 & Softporn Adventure
Crosstire & 29.95
29.95 & 21.00
21.00 & Deadline (d) & 49.95 & 36.00
29.00 & Pilot (c) & 79.95 & 60.00 \\
\hline Midway Campaign & 16.00 & 12.00 & Crossfire & 29.95
34.95 & 21.00
25.00 & Zork I (d) & 39.95 & 29.00
29.00 & Temple of Apshai (d) (t) & 39.95 & 29.00 \\
\hline Hi-Res Computer Golf & 29.95 & 21.00 & Frogger & 34.95
34.95 & 25.00
25.00 & Cork in (d) \({ }_{\text {Alien }}\) & 39.95 & 29.00
25.00 & Upper Reaches of Apshai (t) & 19.95 & 15.00 \\
\hline DOS Boss & 24.00 & 18.00 & Latf Pak & 34.95
59.95 & 25.00
44.00 & Alien Swarm (d)
Action Quest (d) (t) & 34.95
29.95 & 25.00 & Curse of Ra (d) & 19.95 & 15.00 \\
\hline The Arcade Machine & 44.95 & 33.00 & Screenwriter II & 129.95 & 44.00
94.00 & Action Quest ( d ( (t)
Ghost Encounters ( d ) (t) & 29.95
29.95 & 21.00 & Midway Campaign (t) & 16.00 & 12.00 \\
\hline Star Blazer & 31.95 & 23.00 & Screenwriter ii
Graphics Magician & 129.95
59.95 & 94.00
44.00 & K-Razy Shootout (c) & 29.95
49.95 & 21.00
36.00 & Apple Panic (d) & 29.95 & 21.00 \\
\hline Choplifter & 34.95 & 25.00 & Graphics Magician
Pie Man & 29.95 & 21.00 & K-hazy Kritters (c) & 49.95 & 36.00
36.00 & Track Attack (d) & 29.95 & 21.00 \\
\hline Serpentine & 34.95
34.95 & 25.00 & Pie Man
Fastgammon & 24.95 & 21.00
18.00 & K-Raz K Kitters (c)
Ultima ( \({ }^{\text {d }}\) ( & 49.95 & 36.00
29.00 & Choplifter (d) & 34.95 & 25.00 \\
\hline Deadly Secrets & 34.95 & 25.00 & Congo & 34.95 & 25.00 & Ali Baba and Forty Thieves (d) & 32.95 & 24.00 & Star Blazer (d) & 31.95 & 24.00 \\
\hline Raster Blaster
Bug Attack & 29.95
29.95 & 21.00
21.00 & Goldrush & 34.95 & 25.00 & Deluxe Invaders (c) & 39.95 & 29.00 & Wizard and the Princess (d) & 32.95 & 24.00 \\
\hline The Home Accountant & 74.95 & 54.00 & Gorgon & 39.95 & 29.00 & Gort (c) & 49.95 & 36.00 & Jawbreaker (d) ( & 29.95 & 21.00
21.00 \\
\hline Snack Attack & 29.95 & 21.00 & Beer Run & 29.95 & 21.00 & Wizard of Wor (c) & 49.95 & 36.00 & Frogger (d) (t) & 29.95
34.95 & 21.00
25.00 \\
\hline Pig Pen & 29.95 & 21.00 & Snake Byte & 29.95 & 21.00 & Preppie (d) (t) & 29.95 & \[
21.00
\] & The Shattered Alliance (d) & 39.95 & 29.00 \\
\hline Wordrace & 24.95 & 18.00 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Intec 32K Board \(\$ 75.00\) \\
APPLE Compalible Disk Drive \(\$ 265.00\)
\end{tabular}}} & & Tigers in The Snow (d) (t) Ghostly Maner (d) & 39.95
24.95 & 29.00
18.00 & Battle of Shiloh (d) & 39.95 & 29.00 \\
\hline Rendevous & 39.95 & 29.00 & & & & Ghostly Manor (d) & 24.95 & 18.00 & Submarine Commander (c) & 49.95 & 39.00 \\
\hline Russki Duck & 34.95 & 25.00 & & & & Raster Blaster (d) & 29.95 & 21.00 & & & \\
\hline Horizon V & 34.95 & 25.00 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{VERBATIM/DATALIFE Disks \$26.00 SPECIAL OFFERS}} & & & & & \\
\hline Sargon II & 34.95 & 25.00 & & & & & & & & & \\
\hline
\end{tabular}

\section*{MANY mORE PROGAAMS AVAILABLE}

Van VISA AND MASTERCARD ACEEPTED

TERMS: Send check or money order for total purchase price, plus \(\$ 2.00\) for shipping. Ml residents add 4\% tax. C.O.D. accepted.
© mfgs. tracemark

\section*{STROM \(\approx\)}
P.O. Box 197 systems inc.

Plymouth, Mi. 48170
(313) 455-8022

WRITE OR CALL FOR FREE CATALOG
PHONE ORDER HOURS
4 PM - 9 PM MON. - FRI.
INCLUDE CARD NUMBER
AND EXPIRATION DATE WITH
CREDIT CARD ORDERS.
INCLUDE TYPE OF COMPUTER.

\title{
An Inexpensive Lightpen
} for the

\section*{VIC-20, C 64, and Atari}

\author{
by David Bryson
}

\section*{What is a light pen?}

A light pen is a simple device that connects to your computer with a wire. With an appropriate program in memory, you can use your light pen for a wide variety of applications. Possibilities include drawing lines or more complicated pictures and selecting items displayed on the screen by simply pointing at them. For instance, you could have a questionnaire with a box displayed next to each possible answer. By pointing the light pen at the appropriate box and pressing the light pen's button you would select that answer. There is an endless variety of game applications.

A light pen works on a very simple principle. The tip contains a light-sensitive phototransistor that senses the light of a TV's beam. The VIC, VIC

II, and ANTIC chips included with VIC-20, Commodore 64, and Atari 400/800/1200 computers (as well as a number of other CRT controllers) continually keep track of the horizontal and vertical position of the TV beam. When the phototransistor detects the passing beam, it sends a signal to the CRT controller, and the current \(X, Y\) position is locked into registers that can be read by a program.

Both Commodore and Atari have light pens available. However, if you have very basic soldering and mechanical skills you can construct the inexpensive light pen described by David Bryson in this article. For further help with software, consult the references listed.



edges of the connector, the internal halfs hinge open to allow access and switching of the pins. An easier but more expensive alternative is to purchase a Radio Shack D-Subminiature 25 -pin female connector (\#276-1565) and reshape the connector to fit the VIC receptacle by removing a 16 -pin section of the plug body. If this operation is carefully performed, a second 9 -pin D-Subminiature connector can be produced from the remnant 16 -pin plug section.

Make the required solder connections between cable conductors and connector. Install and solder the 100 K ohm resistor between pins \(7(+5 \mathrm{~V})\) and pin 6 (light pen) within the connector body. Secure and insulate the connector assembly with electrical tape if necessary.

A photograph of the assembled light pen is presented in figure 3.

\section*{Light Pen Application}

Plug the completed light pen into the VIC and type in the following program:
\(10 \mathrm{X}=\mathrm{PEEK}(36870)\)
\(20 \mathrm{Y}=\mathrm{PEEK}(36871)\)
30 SW \(=\cdot((\) PEEK \((37151)\) AND 4\()=0\)
40 PRINT"CLEAR'’X;Y;SW
50 FORT \(=1\) TO50:NEXT
60 GOTO10
The run should produce a group of three numbers displayed at the top left corner of the monitor screen. The left value is the contents of the X or horizontal register, the middle number is the contents of Y or vertical register, and the number on the right is either a 0 or a 1 depending on the state of the switch at the tip of the light pen. Note that some adjustment may be required to the brightness and/or contrast controls on the monitor to produce the desired results.

The expression in statement \(30, \mathrm{SW}=\|\) (PEEK (37151)AND4) \(=0\) ), instructs the computer to
monitor the state of the port B output register to determine the position of the switch at the light pen tip. By using a compound statement such as
\[
\begin{aligned}
& 100 \text { SW }=-((\operatorname{PEEK}(37151) \text { AND } 4)=0): \text { IF SW }=0 \\
& \text { THEN } 100
\end{aligned}
\]
the system can be put into a loop awaiting the activation of the light pen switch before proceding with the next step in the program. One obvious advantage of this scheme is to reduce false input or "noise" caused by ambient light (other than from the CRT screen! producing a light pen signal. With this statement in the program, the pen location registers will only be examined when the switch is depressed. It is also possible to leave this statement out and provide real time screen position monitoring without switch activation, as evident in the six-line light-pen test program presented earlier.

\section*{Further Reading}
1. Hale, William. "A Light Pen For Under \$10," Compute!, \#27 (August, 1982), 141.
2. Loomis, Sumner S. "Let There Be Light Pens," The Best of BYTE, Vol. 1, 153-157.
3. Malmberg, David. 'Using The VIC Joystick,'" Home and Educational Computing, Vol. 1, Issue 1, 18-24.
4. Malmberg, David. "VIC Light Pen-Manship," MICRO, \#41 (October, 1981), 54-59.
5. Peck, Robert A. 'Basics Of Light Pen Operation," Compute!, \#10 (March, 1981), 36-41.

David Bryson is presently employed as a senior materials engineer-nondestructive testing-with the Pratt and Whitney Aircraft Commercial Engineering Division of United Technologies Corporation. You may contact the author at 9 Luster Lane, Enfield, CT 06082.


\section*{Thunder 'Tector \\ uninterruptible power supply}


Quit Playing Games . . .
Disk Based Software to Make Your Computer Get Down to Business

Disk Data Manager-Create and manage your own data base. Allows you to create, add, change, delete, search, sort, print, etc. Up to 1200 records on a single disk. VIC 20. . . 59.95 CBM 64 . . 89.95 Payroll System-Full featured, complete payroll system. Even prints checks.

VIC 20. . \(89.95 \quad\) CBM 64 . . . 99.95
Mailing List-Up to 1200 records on a single disk. Presorts by Zip code. Prints on stock up to four labels wide.

VIC 20 . . . 44.95 CBM 64 . . 54.95
Inventory Package-Maintains quantity on mand, cost. sales price, reorder point, etc. Generates suggested reorder, sales report, and sales analysis.

VIC 20. . 89.95 CBM 64 . . 99.95
General Ledger-Up to 75 accounts! Generates Balance Sheet, Income Statement, Update Report, etc.

VIC 20. . 89.95 CBM \(64 \ldots 99.95\)
Checkbook Manager-Up to 25 expense categories. Tracks all outstanding checks until they are paid

VIC 20. . 49.95 CBM 64 ... 69.95 Commodore 64 and VIC 20
are registered trademarks of Commodore
CONTAËT YOUR DEALER FOR COMPLETE INFORMATION ON ALL YOUR DISK-BASED SOFTWARE NEEDS Send Self-Addressed Stamped Envelope for Catalogue of Games and other Applications DEALER INQUIRIES WELCOME
P.O. Box 863085

VSA \({ }^{\circ}\) Plano, Texas 75086 (214) 867-1333

VISA and MASTERCARD Accepted Circle No. 57

\section*{DON'T BE LEFT IN THE DARK! \\ For \$295, you can protect YOUR Data, Time and Computer.}

Protect your computer operation from loss of data files, lost keyboard input, and questionable integrity of stored information due to power failure. Operation is completely automatic, just attach your own 12 V battery, or purchase below.

\section*{Available for:}

Apple, Radio Shack, IBM, Olivetta, and most other personal and business computers. Specify equipment to be attached when ordering.
If not completely delighted, return in original condition within 30 days for refund. Ten percent restocking fee will be charged. Ninety-day factory warranty.

Gel battery pack available with cables: 1-amp. computers - \(\$ 65\); 2-amp. computers - \(\$ 111\).

For fastest delivery, send certified check or money order payable to "Thunderhawk." Send 10\% with C.O.D. orders. Sent FOB, Texas. Price subject to change without notice. Texas residents add \(5 \%\) sales tax. Broad selection of power ranges available for larger computers - call for prices.
DEALER INQUIRIES INVITED - send on letterhead.
Thunderhawk Manufacturing (214) 586-6256
A Division of Thunderhawk Corporation
P.O. Box 573

Jacksonville, TX 75766

\section*{SOPHISTICATED TELE-COMMUNICATION IS HERE THE COMMUNICATOR for 4.0 Commodore Computers}

\section*{JIM STRASMA'S REVIEW:}
"THE BEST TERMINAL PACKAGE I'VE SEEN YET'"
By April 1 (maybe sooner) It Will Be Even Better

\section*{SPEEDS UP TO 9600 BAUD}

XON - XOFF
TRUE CTRL KEY (we do our own keyboard scan)
THE HARDWARE - A printed circuit board; easily installed in the CBM. It uses no CBM connectors; gives a serial port with true RS232C standard.
THE SOFTWARE -
- Emulates the ADDS Regent 100, ADM 31 and/or the TeleVideo 950.1 Or choose the VT100 model for use with DEC and VAX computers.
- Runs coresident with BASIC programs; lets BASIC programs and program on host computer communicate to develop reatly sophisticated communication and control capabilities.
- The program is on ROM at either address; no disk loading required. Uses onty 512 bytes of PAM; will relocate itsef around any other machine language program at top of memory.
- Will upload and downioad and run BASIC programs. With BASIC program will upload and downicad standard data files. 100 page manual gives program listing for BASIC programs.
Excellent text editor designed to work with THE COMMUNICATOA THE COMMUNICATOR \(\$ 200\) Text Editor \$40
1200 baud modems beginning at low, low \$385, and even less when purchased with THE COMMUNICATOR

AMPLIFY, INC.
2325 Macbride, lowa City, lowa 52240 319-337-8378
1 trademarks Adds Regent, Inc., Lear Liegler, Inc., Televideo Systems, Inc.

THE NEWEST RELEASE FROM ARTISAN SYSTEMS CORP.


6809 BASED SINGLE BOARD SYSTEM
\(12^{\circ} \times 9^{\circ}\)
FEATURES:

由 68BO9E ADVANCED 8/16 BIT SYSTEM PROCESSOR WITH
MEMORY MANAGEMENT HARDWARE ALLOWS FOR

ONE MEGABYTE ADDRESS SPACE

4 \(64 \mathrm{~K}-256 \mathrm{~KB}\) YTE DRAM
Ф 8 EACH 28-PIN SOCKETS FOR UP TO \(128 K B Y T E E P R O M\)

EPROMS CAN BE 2732, 2764 OR 27128
IN ADOITION \(2 K X G\) OR \(8 K X 8\) STATIC RAMS MAY BE USED
© SIX RS-232 SERIAL PORTS WITH FULL MODEM HANDSHAKE
ADVANCED 6551A ACIAS WITH SOFTWARE BAUD RATE

SELECT OF 110 TO 19.2 KBAUD
(1) 6522A INTERFACE CHIP PROVIDES TWO 16-BIT TIMERS

PLUS TWO 8-BIT PARALLEL PORTS (UNBUFFERED)
ว 8 AUTO-VECTORED INTERRUPTS FOR HIGH SPEED I/O HANDLING
- 5O-PIN EXPANSION SOCKET

TERMS:
all orders prepald, visa, or mastercard
ALLOW 3 TO 4 WEEKS FOR DELIVERY

ADD 2 WEEKS FOR PERSONAL CHECKS
- INDEPENDENT \(68 B O 9 E\) SUBSYSTEM FOR DISK CONTROL 1-4 FLOPPYS \(5^{*}\) OR \(8^{*}\) SS DS SD DD

SASI INTERFACE ALLOWS 5-45MBYTE WINCHESTERS TO BE CONNECTED USING EXTERNAL CONTROLLER THE SUBSYSTEM USES A PROPRIETARY DMA TECHNIQUE FOR HIGH SPEED OPERATION
- FLEX OPERATING SYSTEM IS AVAILABLE

\section*{PRICES:}
```

DP-09 A\&T 64K 4 SERIAL PORTS \$795(1-9
FLEX FOR OP-09 \$150
OS-09 LEVEL ONE TWO CALL
FORTH
CALL

```

\section*{ARTISAN SYSTEMS CORP}

410 CROSS ST.
WINCHESTER, MA 01890
(617) 721-2109

\title{
68000 ADDRESSING MODES by Joe Hootman
}

\section*{Immediate Addressing}

\(\mathbf{I}_{a}^{1}\)mmediate addressing is used to load a constant into a register. As an example, to load the data register D0 with the hexadecimal 55, the instruction that would load D0 immediately with 0055 is given below:

Move.W \#\$55,D0. The equivalent opword code which is entered into memory is 303 C . The \# sign indicates immediate addressing, and the \(\$\) indicates a hexadecimal number.

It is worthwhile at this point to examine the format of the MOVE instruction in the previous example as the format is typical of all the 68000 instructions. The mnemonic MOVE expresses the intention, in this example, of moving data into the data register. The \(W\) following the MOVE instruction indicates that it is intended that 16 bits of data be moved into D0. In this particular example the high order byte was zero filled. If the letter following the instruction is a \(\mathbf{B}\), one byte of data would have been moved into D0. If the letter following the instruction is an L , a long word ( 32 bits) would be moved into D0. The size field in the opword designates the length of the data. For each of the different lengths of data to be moved there will be a different opword.

The general format of the MOVE instructions is represented in the following format:
\begin{tabular}{llll} 
Instruction & Word Size & Source, & Destination. \\
Mnemonic & B,W,L & \begin{tabular}{l} 
Defined \\
by the
\end{tabular} & \begin{tabular}{l} 
Defined by \\
the Addressing
\end{tabular} \\
& & \begin{tabular}{l} 
Addressing \\
Mode
\end{tabular} & Mode.
\end{tabular}

The MOVE instruction moves data from a designated source, in this case the source being the immediate Hex data 0055. The destination of data in this case would be the data register D0. The bit pattern for the instruction opword is (0011 000000111100 ).

Note that the destination field as defined by the opword for MOVE does not allow for movement of data into the address register. The movement of data to the address registers is accomplished by using the instruction MOVEA. MOVE and MOVEA are identical except that MOVEA uses a fixed code for the mode of the destination. When loading data into the address register using the MOVEA instruction, the sign bit is extended.

The addressing modes clearly cannot be used to implement instructions that make no sense. For example, MOVE instructions cannot be used with addressing modes that have no way to designate the register or memory to be the destination. These addressing modes would include the PC offset, PC indexed, and immediate addressing modes for the destination effective address.

If only a byte is to be loaded into a register, the MOVEQ instruction should be used. The byte of data is included as a part of the opword; the low order 8 bits \((0-7)\) are the data bits of the word.

To load DO using the MOVEQ instruction the following opcode and opword would be used:

\section*{MOVEQ \#\$55,D0 (7055 opword code).}

Many cross assemblers automatically use MOVEQ for the instruction to MOVE an immediate byte.

\section*{Direct Addressing}

Two different direct addressing modes make use of either the address register or a data register. Direct addressing can be used to copy a data register into another data register or an address register. For the MOVE instruction this addressing mode requires that one of the registers be previously loaded with the appropriate data.

For example, if you want to move the contents of A0 to D0, the proper mnemonic is MOVE.L A0,D0. The opword for this instruction is 2008. Note that when dealing with register-to-register transfer of data, byte moves are not allowed. The EXG instruction exchanges the contents of the specified registers.

\section*{Implied Addressing}

Many instructions do not need to have the addressing modes specified. This type of addressing is called implied addressing. For example, the Branch always (BRA) instruction always uses the PC register and the PC need not be designated each time.

\section*{Indirect Addressing}

Many variations of the indirect addressing modes are implemented in the 68000:
1. Address register Indirect
2. Address register Indirect with Postincrement
3. Address register Indirect with Predecrement
4. Address register Indirect with Displacement
5. Address register Indirect with Index

When using indirect addressing it is assumed that the address register contains the address where the data is located and/or where the data are to be placed. If you want to load the D0 register with the contents of memory locations \(\$ 1500\) and \(\$ 1501\), the assumption is made that AO is loaded with \(\$ 1500\). To use address register indirect the following mnemonic is used.
MOVE.W (AO),DO
If the address location \(\$ 1500\) has stored in it AA, then bits \(15-8\) of D0 will be loaded with AA. Note that the contents of address \(\$ 1501\) will be loaded into bits \(7-0\) of D0.

\section*{Address Register Indirect with Postincrement and Predecrement}

Many times it is important in a program that an address be either incremented or decremented from a
previously established value. This is particularly true when tables of numbers or other types of tabular data are being searched. In either the post-increment mode or predecrement mode the value of the designated address register is considered to be the base value.

When using the postincrement mode of addressing the base address register is incremented after the base address is used. The predecrement mode decrements the base address register and then uses it to point to the desired address. The amount the register is incremented or decremented depends on the size of the operand. Byte increments/decrements by 1 , word by 2 , and long word by 4 . The stack pointer is always incremented/decremented by 2 or 4 to insure that stack pointer stays on a word boundary.

The examples below illustrate the use of the postincrement addressing mode to load data when the size of the word changes from word length data, to byte length data and finally to long word data.
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{A. MOVE.W \((A 0)+, D 0\) (3018) Opword} & Memory \\
\hline & Address Data \\
\hline Before execution After execution & 1500 OF \\
\hline AO 00001500 A0 00001502 & \(1501-01\) \\
\hline D0 00000000 DO 00000F01 & 150202 \\
\hline B. MOVE.B \((\mathrm{AO})+\), D0 (1018) Opword & 1503 03 \\
\hline Before execution After execution & 150404 \\
\hline \begin{tabular}{l}
AO 00001500 A0 00001501 \\
D0 00000000 D0 0000000F
\end{tabular} & 150505 \\
\hline & 150606 \\
\hline C. MOVE.L \([\mathrm{AO}]+, \mathrm{DO}\) (2018) Opword & 1507 07 \\
\hline Before execution After execution & \(1508-08\) \\
\hline \begin{tabular}{lllll} 
AO & 00001500 & AO & 00001504 \\
DO & 00000000 & DO & \(0 F 010203\)
\end{tabular} & \(1509 \quad 09\) \\
\hline
\end{tabular}

Note from this example that the base register \(A\) is incremented once for a byte transfer, twice for a word transfer, and four times for a long word transfer. The base register for the predecrement mode is handled in a manner similar to the postincrement mode in that the base register is decremented once for byte data, twice for word data, and four times for long word data.

To illustrate the nature of the predecrement mode of operation, consider an example similar to the previous one.


The automatic incrementing and decrementing features of the 68000 make the movement of data tables in the memory of the 68000 a relatively straightforward problem. For example, if you want to move data from a table, AO would be set to the low address of the original table and A1 would be set to the low address of the new table, an instruction MOVE.W (A0) +, (A1) + would be executed in a loop until the appropriate number of data words were moved. Note the data of the table can be reordered relatively easily by allowing one of the base address registers to predecrement.

\section*{Address Register Indirect with Displacement}

Many times it is necessary to retrieve data from a fixed location in a table. The address of beginning or end of the table is loaded into an address register. The fixed displacement, either positive or negative, into the table from the address register is incorporated in the opcode for the address register indirect with displacement.

The displacement is expressed in two's complement form, and thus the effective address can be displaced either up or down from the address established in the base address register. At the end of the execution of this statement the base address register is left unchanged.

The example below illustrates the use of address register indirect with displacement. In this example D0 is to be loaded with data located six locations away from the base address register A0.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{Memory} \\
\hline & Address & Data \\
\hline MOVE.W 6[A0),D0 (3028) Opword & 1504 & 04 \\
\hline (0006) Postword & 1505 & 05 \\
\hline Before execution After execution & 1506 & 06 \\
\hline D0 000000000 D0 00000607 & & \\
\hline AO 00001500 A0 00001500 & 1507 & 07 \\
\hline & 1508 & 08 \\
\hline
\end{tabular}

If the data was to be found in a location 6 less than the base register ( \(\$ 1500\) ), the instruction would have been written with the displacement in two's complement form.
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{MOVE.W - \(6(A 0), \mathrm{DO}\)} & \multicolumn{2}{|r|}{Memory} \\
\hline & Address & Data \\
\hline & 14F7 & E7 \\
\hline & 14F8 & F8. \\
\hline Before execution & 14F9 & F9 \\
\hline D0 00000000 D0 a000FAFB & 14FA & FA \\
\hline A0 00001500 A0 00001500 & 14 FB & FB \\
\hline & 14 FC & FC \\
\hline & 14 FD & FD \\
\hline
\end{tabular}

The offset cannot place the memory at an odd address. For example, the offset cannot be \(\$ 5\) in the previous example.

\section*{This information was compiled with the assistance of Motorola, Inc.}

Addressing Modes will be continued next month.

\footnotetext{
You may contact Professor Hootman at the University of North Dakota, Dept. of Electrical Engineering, University Station, Grand Forks, ND 58202.
}

\section*{HEXPAD:} UTILITY FIT
MACHine LaNGLIEE KEy-INS

This utility redesigns the PET calculator keypad. Use it when you need to type in a published machine-language program.

\author{
by Bob Sullivan
}

\section*{VIC-20 USERS: Gat Serious With A PRITMQUEEN}
- A cartridge development system
- Comprehensive manuals
- Program from Commodore VIC-20 keyboard into built-in 4K ROM emulator - Jumper to target ROM socket
- Test programs in circuit - Fits EXPANSION PORT
- Includes Hexkit 1. \(\varnothing\), a powerful \(100 \%\) machine code editor/debugger utility program that makes coding for 8-bit Micros a snap.
- Built-in EPROM programmer and power supply
- Burns \& runs EPROMS for the Commodore VIC-20, too

Programs 2716, 2732, 2732A, 27C16, 27C32, adaptable to 2532 \& 2764


PRGMQUEEN CARTRIDGE COMPLETE ONLY \$199
\begin{tabular}{lrr} 
& \multicolumn{1}{c}{ US } & Canada \\
Promqueen 64 & \(\$ 299.00\) & \(\$ 399.00\) \\
8K board with 1 EPROM & \(\$ 29.95\) & \(\$ 39.95\) \\
16 board with 1 EPROM & \(\$ 39.95\) & \(\$ 49.95\) \\
8K board with 1 EPROM, C64 & \(\$ 39.95\) & \(\$ 49.95\)
\end{tabular}

Send for Free Brochure

\section*{GLIUCESTER CZMPUTER,sic.}

\section*{ROCKWELL Microcomputers from Excert, Inc.}
```

- • SPECIALS • •

```

A65-1 (1K RAM) . . . . . . . . . . . . . . . \$435
A65-4 (4K RAM) . . . . . . . . . . . . . . . \(\$ 455\)
A65-4B,4F ( 4 K, BASIC or FORTH*) . \(\$ 495\)
A65-4AB (4K, BASIC \& Assembler) . \(\$ 525\)
A65/40-5000 (32K RAM) . . . . . . . . . \(\$ 1250\)

\section*{LANGUAGES for AIM-65 \({ }^{\text {® }}\) \& AIM 65/40}
Assembler .....  35
BASIC ROMs ..... \$65
FORTH* ROMs ..... \$65
ENCLOSURES \& POWER SUPPLIES
A65-006 ..... \$175
ENC4A ..... \$115
ENC5A ..... \$130
ENC6A ..... \$140
Educational Computer Division EXCERT INCORPORATED
- sates
- SERVIEE
- histallation
- CONSULINGP.O. Box 8600
P.O. Box 8600 White Bear Lake Minnesota 55110 (612) 426-4114

\section*{RM 65 SERIES}

Deduct 5\% from list if ordered with AIM \(65^{\circledR}\) or AIM 65/40.

\section*{REPAIR SERVICE}
(out of warranty only) \(\$ 25 / \mathrm{hr}\). plus parts - \(\$ 25 \mathrm{~min}\).

SPARE PARTS are available


CASH DISCOUNT •Deduct 5\% for Prepaid Orders (we pay shipping)

TERMS:
Net 30 from approved Companies \& Institutions - otherwise COD. Shipping will be added to order. Minnesota residents add \(6 \%\) sales tax. Prices subject to change without notice.

Authorized Dealers for:
ROCKWELL INTERNATIONAL CORP.,
CUBIT, MTU, FORETHOUGHT PRODUCTS, GORDOS, SEAWELL, DYNATEM, APPLIED BUSINESS COMPUTER

AIM-65 is a registered trademark of Rockwell International Corp. -FORTH is a registered trademark of Forth, Inc.

Enter 00 and 10 (the starting address of HEXPAD) and press RETURN.

Unless you have a different IRQ address, you are now ready to use HEXPAD. Each time you use the program, you must change the contents of \(\$ 90, \$ 91\) to contain the starting address of the HEXPAD routine. Each time you switch back to BASIC you must disable HEXPAD by replacing the IRQ vector. (If you don't, you'll continue to get ' A ' when you type a period, etc.)

If the current IRQ address is not \(\$ E 455\), then line 260 or the object code in line 450 must be changed to aim at the current IRQ address - or else crash:

Line 260 IRQ
.DE \$E455 (4032) (\$E62E-3.0 ROMS) JMP IRQ (4C 55 E4)

\section*{Locating HEXPAD}

Relocating HEXPAD by changing the object code in lines 470 and 480 relative to the new address:

Line 470 JSR KEYCHK2 (20 1C 10) Line 480 JMP IRQ.JMP (4C 13 10)

Or change the beginning assembly address in line 210:

Line 210 . BA \(\$ 1000\)

\section*{The Program}

\section*{Conditions}

Lines 330 to 470 include three conditions that must be met before a key image is checked. First, the program checks the column variable in zero page address \$C9. If the cursor is not yet in the tenth column then an image change is not needed. Also, this eliminates problems with those periods that the monitor types in column one. Next, if any keys other than 0 to 9 have not been pressed then the program jumps to the KeyCheck subroutine.

\section*{KeyCheck}

Lines 520 to 580 compare the last key entered /the ASCII code is kept as a
variable in zero page address: \$D9) with the values in 'Table' (lines 740 to 790 ). A match causes a branch to the NewKey subroutine.

\section*{NewKey}

Lines 610 to 670 print a cursor left. Next, the table is set up so that the Y-register increment plus \#\$3F gives the ASCII value for the desired replacement image. With this value in the accumulator, a JSR to @WRT (\$FFD2) will print the replacement image. The program concludes each time by jumping to the normal IRQ address.

Special thanks to Brent Anderson for helping me get started with ASSM/TED and MAE, and to Jim Strasma for initiating ATUG, which provides assembly-language examples.

The author may be contacted at P.O. Box 2247, Oak Park, Illinois, 60301.

NORO"

\section*{GRANITE COMPUTER SYSTEMS}

\section*{THE DISASSEMBLER FAMILY}

Source listings identical with TSC 6809 EDITOR - User symbol tables - Local and global labels and expressions - Occurance numbered local labels - Easy identification of Data Areas - FCB FDB - FCC - Step (optional) disassembly one program or data statement at a time-Source code disc or tape for TSC EDITOR input - Run TSC ASSEMBLER with no or minimal editing Monitor and FLEX references are named. Equate table for all external references - Problem codes flagged ( \(6800 \& 6502\) )
Convenient menu driven options carry out tedious error prone disassembly operations - rapidly and accurately.
6809 to 6809 DISASSEMBLER \(\$ 75.00\)
6800 to 6809 DISASSEMBLER \(\$ 75.00\)
6502 to 6809 DISASSEMBLER \(\$ 75.00\)
TEXTWRITER II - A complete Text Processor to use with the TSC TEXT EDITOR - The two programs run as one - All features you expect in a full text editing and processing system - (For example: Embed print control characters) - Menu driven Disk only
\(\$ 75.00\)
TEXTWRITER I-A basic Text Processor program to use with the TSC TEXT EDITOR - with most of the features of TEXTWRITER II Specifically for tape systems

Cassette only
\(\$ 50.00\)
EPROMMER-Use with the SWTPC MP-R Programmer \(\$ 40.00\)
FILEMANAGER - Use with the JPC TC-3 high speed I/O board comprehensive cassette oriented operating system. \(\$ 40.00\)

All efficient - well documented - and - VERY FRIENDLY Run on any SS50 6809 with No or Minimal changes - Provided Object (Binary) programs on 5 \& 8 FLEX discs or KC cassette Inquire about Color Computer availability - Non-FLEX

GRANITE COMPUTER SYSTEMS
Route 2 Box 445
Hillsboro, NH 03244
M/C VISA (603)464-3850
Circle No. 62

Expanded offering of Educational Software

\section*{for the COMMODORE 64}
- Touch Typing Tutor (TTT64). . diskette \(\$ 24.9\) cassette \(\$ 19.95\)
Ideal for typing students or computer users. Learn to type with all fingers on your computer's keyboard by following the keyboard and finger placement pictured on your TV screen. 19 lessons fully described in 12-page manual. Select PRACTICE and type computer generated pseudo words for your rate and list of errors. Select TEXT and practice English words for timed test of any duration.

\section*{for the VIC-20}
- Touch Typing Tutor 3.0 (TTT5K).
.cassette \$19.95 Has same features as TT64 above. Will run on basic VIC. Four separate programs. Enhanced version now provides practice typing English words. Includes 12 -page manual. Selected by Denver Public Schoois to train 700 elementary students in keyboard skills.
- Fun Fractions (FF +8 K ). \(\qquad\) diskette \(\$ 24.95\) cassette \(\$ 19.95\)
The fun way to learn addition, subtraction, multiplication, and division of fractions for grades 4-9 with sound, color, and graphics. Watch VIC show you all the intermediate steps on the screen blackboard. Then take a turn and see if you can answer before the parachute jumper crashes. Three levels of difficulty. Help is given for incorrect answers; learn your score. Requires 8 K (or more) memory expansion. Includes 16 -page manual.
Foreign orders payable U.S. dollars plus \(\$ 3.00\) shipping/handling

\section*{TAYLORMADE SOFTWARE}


\section*{P.O. Box 5574 Lincoln, NE 68505 \\ (402) 464-9051}


Circle No. 63
Commodore 64 and VIC-20 are trademarks of Commodore Business Machines. Inc.

\section*{PUT PRICES INCHECK}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
CARTRIDGE RIBBONS FOR APPLE PRINTERS NEC 8023A C. ITOH PROWRITER \\
\({ }^{5} 9.95_{\text {en }}{ }^{5} 107.46{ }^{\text {oe }}\)
\end{tabular} &  &  \\
\hline  &  &  \\
\hline OKIDATA PRINTERS
\[
\begin{array}{lcc}
80,82,83 & { }^{\text {EA }} & \text { Doz } \\
92,93 & { }^{\text {S. }}{ }^{77} & { }^{\text {D } 29.92} \\
84 & 55 .{ }^{99} & { }^{5} 64 .{ }^{69}
\end{array}
\] & MEMOREX DISKETTES \$24. 99 &  \\
\hline  & \begin{tabular}{l}
CARTRIDGE RIBBONS FOR \\
COMREX \\
DAISYWRITER 2000 \\
\(24^{49}\). \({ }^{5} 266^{89}\)
\end{tabular} & LABEL SPECIAL \$2. 99 sאMM \\
\hline
\end{tabular}

MOST RIBBONS AVAILABLE IN COLORS TOO!
CALL OR WRITE FOR OUR SUPPLIES CATALOGUE
ON ORDERS UNDER \(\$ 14 . .^{00}\) PLEASE ADD \(\$ 3.00\) FOR SHIPPING
MINIMUM RIBBON ORDER \(\$ 30.00\) OR 1 DOZEN

\title{
Parameter Passing in Assembly Language Part 2
}

\author{
by Randall Hyde
}

\section*{Passing Parameters via the Return Address}

The most convenient way to pass constants to a subroutine is to follow the JSR instruction with the parameters. A prime example is the PRINT subroutine, which prints a string to the output device. On the 6502, PRINT is usually called in the following manner:

\section*{JSR PRINT}

BYT "PRINT THIS STRING', 0
The PRINT subroutine would send each character that follows the JSR PRINT statement to the console output device. Normally such a construct would not be allowed in assembly language. After all, on return the 6502 microprocessor would attempt to execute the ASCII character " P " as an instruction code. With a certain amount of trickery this problem can be avoided. Consider the following 6502 subroutine:

```

; Zero byte detected. Use this address as the
; new return address
;
ALLDONE LDA ZPAGE + 1
PHA
LDA ZPAGE
PHA
LDA ASAVE ;Restore acc
LDY YSAVE ;Restore Y reg
RTS ;Return to loc
;just past zero
;byte

```

Whenever you jump to a 6502 subroutine, the return address left on the stack is the address of the next instruction, minus one. By POPping the return address off the stack and adding one to it you have a pointer to the data that follows the JSR statement. In the previous example this pointer was used to fetch the characters one at a time until a zero-terminating byte was encountered. Once the zero byte is encountered the pointer to the zero byte is pushed back onto the 6502 stack to be used as the new return address. Since the 6502 expects the true return address minus one to appear on the stack, upon executing the RTS instruction the 6502 continues processing at the instruction immediately past the zero byte.

The PRINT subroutine uses variable length parameters. In this case the end of the parameter list was specified by a special zero byte. Actually, any value can be used to terminate the parameter list as long as that value doesn't appear in the parameter list. Any time a parameter list contains a variable number of parameters, the subroutine being called must be informed as to how many parameters appear on the list. This can be done in one of several ways: you can use a terminating byte (like the PRINT subroutine does) or you can pass to the subroutine some indication of how many parameters are present on the line.

Sometimes a fixed number of parameters will be passed after a JSR instruction. These types of parameters are handled easily. For example, consider the subroutine used to transfer one zero-page location to another:
```

ZTRANS STA ASAVE
STY YSAVE
STX XSAVE
PLA
STA ZPAGE
PLA
STA ZPAGE + 1
; Get data pointed at by first parameter ; and store in second.

```
\begin{tabular}{ll} 
LDY \#1 & \\
LDA (ZPAGE), Y & \\
TAX \\
INY & \\
LDA (ZPAGE), Y & \\
TAY & \\
LDA \$O,X & \\
STA \$O,Y & \\
CLC & \\
LDA ZPAGE & \\
ADC \#2 & \\
TAY & \\
LDA ZPAGE + 1 & \\
ADC \#O & \\
PHA & ;Push HI rtn adrs \\
TYA & \\
PHA & ;Push LO rtn adrs \\
LDA ASAVE & \\
LDY YSAVE & \\
LDX XSAVE & \\
RTS
\end{tabular}

To use this subroutine simply enter the code:
```

 JSR ZTRANS
 BYT ZPG1,ZPG2

```
and ZTRANS will copy the zero-page memory location pointed at by ZPG1 into the memory location pointed at by ZPG2. |Note: This particular routine is for educational purposes only. The 'LDA ZPG1/STA ZPG2" instruction sequence is both faster and shorter and performs the same function.) While ZTRANS isn't a very useful subroutine, it certainly demonstrates how you would pass a fixed number of parameters after the JSR statement.

The 6809, 68000, and 16032 offer additional addressing modes that make picking up parameters after the JSR extremely easy. PRINT coded in 6809 code would look like this:
PRINT PSHS A,X ;Save 6809 regs
PRTLOOP LDA [3,S]
BEQ ALLDONE ;Done yet?
JSR PUTC iff not, output it
INC 3,S ;Increment to
;the next char
BNE PRTLOOP
INC 4,S
BRA PRTLOOP

ALLDONE INC 3,S ;Increment to BNE RTN ;the true rtn INC 4,S ;adrs
RTN
RTS
The PRINT subroutine coded in 68000 code is

PRINT MOVEM.L DOIA1, ;Save DO and -(SP) ;A1
MOVE.L 12(SP), ;Get rtn adrs A1
PRTLOOP MOVE.B (A1) + , ;Get char to


The 16032's stack architecture makes performing the PRINT subroutine a relatively simple task. The code for the 16032 PRINT routine is
\begin{tabular}{llll} 
PRINT & SAVE & {\([R 0]\)} & \begin{tabular}{l}
;Save affected \\
;registers
\end{tabular} \\
PRTLOOP
\end{tabular}

The MOVB 0[4[SP]],RO instruction takes the value in the stack pointer and adds four to it. This sum points at the return address for the PRINT subroutine (pushing R0 onto the stack added four bytes to the top of the stack]. The data at this address (the PRINT return address) is added to the first value, zero, and the byte at this address is fetched and moved to R0. The ACBD instruction adds one to the return address and then branches to the beginning of the PRTLOOP loop.

Passing parameters of fixed length after the JSR on the 6809, 68000, and 16032 is simple; this exercise will be left to the interested reader.

\section*{Different Methods of Passing Data}

Once the mechanics of parameter transfer are mastered, learning how to pass different types of parameters becomes important. Most of the examples presented thus far (with the noted exception of passing the address of a parameter block) passed their parameters by value; i.e., the actual data to be used was passed to the subroutine. Three other forms of parameter transfer are pass by value returned, pass by reference, and pass by name.

Passing parameters by value is easy, fast, and doesn't affect variables in the calling procedure. Most pass-by-value parameters are stored in a temporary memory location (or some processor register) during execution of the subroutine. After execution of the subroutine the memory location used to store the parameter often is used for some other purpose. The value contained in the parameter after the execution of the subroutine is lost and cannot be passed back to the calling subroutine. When a subroutine needs to return data to the calling procedure within one of the parameter variables passed to it, then pass-by-value parameters are inadequate.

To return data within a parameter variable you must pass the address of the variable to the subroutine instead of the value it contains. In one of the previous examples where the address of a parameter block was passed, we did just that. The address was used as a pointer to access data in the parameter. Some sort of indirect addressing mode was used to read data from the parameter block for usage within the subroutine. By storing data into this parameter block (again using an indirect addressing mode of some type| data can be passed back to the calling procedure.

There is one problem with passing variables by reference. As an example, consider the following Pascal procedure:

PROCEDURE MIXEDUP(VAR I,J:INTEGER); BEGIN
\[
\begin{aligned}
& l:=5 ; \\
& \jmath:=6 ; \\
& \text { WRITELN(‘ } \left.I+J={ }^{\prime}, I+J\right) ;
\end{aligned}
\]

\section*{END'}

Regardless of the input data, you would expect this routine to print " \(\mathrm{I}+\mathrm{J}=11\) " out to the console device. Since I and J are passed by reference (because of the VAR reserved word in the parameter list) the variables I and J actually contain addresses, not data. So any time you access I or \(I\) within the procedure MIXEDUP you are actually accessing the memory location pointed at by I or J.

Now suppose you invoke the procedure MIXEDUP with the call "MIXEDUP(L,L)". The parameter I would contain the address of \(L\) in the calling procedure as would the parameter I. Upon executing the statement " \(\mathrm{I}=5\);" the procedure MIXEDUP would store the value five in the memory location pointed at by I, which
is the variable L in the calling program. Upon executing the statement " \(\mathrm{J}=6\); ' the procedure MIXEDUP would store the value six in the memory location pointed at by J, which is also the variable \(L\) in the calling procedure. Now the variable \(L\) contains the value six.

When the expression ' \(\mathrm{I}+\mathrm{J}\) " is evaluated, the Pascal procedure will read the value from the memory location pointed at by I which is \(L\) in the calling program), add in the value contained in the memory location pointed at by J (which is also L in the calling program), and print the sum. Since both I and J point at L and the variable L
currently contains six, the sum will be twelve. So " \(\mathrm{I}+\mathrm{J}=12\) '" will be printed instead of " \(\mathrm{I}+\mathrm{J}=11\) "! This is one of the major drawbacks to passing parameters by reference.

To overcome the problem demonstrated in this example, many highlevel languages (such as FORTRAN) use a parameter-passing technique known as pass by value returned. This parameter-passing technique is a combination of the pass-by-value and pass-by-reference methods. In a pass by value returned, the address of a parameter is passed to the procedure and then the procedure copies the data


PRINTERS


FOR APPLE \& FRANKLIN


MODEMS
\begin{tabular}{|c|c|}
\hline Hayes Smartimodem 300. & 5215 \\
\hline Hayes Smartmodem 1200 - oulsels the rest & 5150 \\
\hline Novaicon J.CAT & 51100 \\
\hline Novaion 103212 SMART (direct connect) & 53850 \\
\hline Hovation [03 SMAAT (direct connect) & 1790 \\
\hline RIXON R212A - 300 2000 SMART & 23650 \\
\hline
\end{tabular}

custom order handing, trained more technicians. and doubled and tripled inventory levels on popular items. Comparisons are welcome.


Customer ServiceProduct Selection Advice (213) 344-3563 ORDERS (800) 528-9537 18905 Sherman Way Reseda, CA 91355

S-100 THINLINE COMPUTER SYSTEM


CORONA DATA SYSTEMS


WABASH DISKETTES


Chameleon 'The Compatible Computer"

at that location into some temporary storage location. During the execution of the procedure, any references to such parameters use the temporary storage locations. After the execution of the procedure (but before control is returned to the calling procedure) the value in the temporary location is copied back into the parameter variable whose address is passed. While this method solves the problem found when passing parameters by reference, it is quite inefficient in terms of storage and execution time. Pass by value returned should be used only when absolutely necessary.

The last method discussed here for passing parameters to a subroutine is the pass-by-name method. When using the pass-by-name parameter access method, you pass a string containing the name of the variable you wish to access. To retrieve the data stored in the variable you must look up the variable name in a table. Once the variable name is found, some auxiliary information is obtained that provides you with the data you are interested in or tells you where you can find it.

Pass-by-name parameters are used by assemblers, BASIC interpreters, and compilers for symbol-table manipulation. They rarely would be used in a typical assembly-language program, but the method is presented here for the sake of completeness, since the more advanced assembly-language programmers are likely to come across this type of parameter passing now and then.

\section*{Passing Parameters in Your Assembly-Language Programs}

As lengthy as this article is, it's only a small treatise on the subject of parameter passing. A considerable amount of time could be spend discussing in more detail the parameter passing techniques mentioned here. Additional topics, like returning function values, could also be discussed. For more information on passing parameters a good reference book of data structures (like Knuth, Vol. 1) is highly recommended. Beyond that, only a lot of experimentation will help you to nail down all the techniques involved in passing parameters to assemblylanguage subroutines.

You may contact the author at Lazer
MicroSystems, Inc., 1791 Capital Unit \(G\), Corona, CA 91720.

\section*{VIDEO TERMINAL BOARD 82-018}

This is a complete stand alone Video Terminal board. All that is needed besides this board is a parallel ASCII keyboard, standard NTSC monitor, and a power supply. It displays 80 columns by 25 lines of UPPER and lower case characters. Data is transferred by RS232 at rates of 110 baud to 9600 baud switch selectable. The UART is controlled (parity etc.) by a 5 pos. dip switch.

Complete source listing is included in the documentation. Both the character generator and the CRT program are in 2716 EPROMS to allow easy modification to your needs.

This board uses a 6502 Microprocessor and a 6545-1 CRT controller. The 6502 runs during the horz. and vert. blanking ( \(45 \%\) of the time). The serial input port is interrupt driven. A 1500 character silo is used to store data until the 6502 can display it.


\section*{Features}
- 6502 Microprocessor
- 6545-1 CRT controller
- 2716 EPROM char. gen.
- 2716 EPROM program
- 4K RAM (6116)
- 2K EPROM 2716
- RS232 I/O for direct connection to computer or modem.
- 80 columns \(\times 25\) line display
- Size 6.2" x 7.2"
- Output for speaker (bell)
- Power +5 700Ma.
+1250 Ma .
-1250 Ma .


This board is available assembled and tested, or bare board with the two EPROMS and crystal.
Assembled and tested \#82-018A \$199.95
Bare board with EPROMS and crystal \#82-018B \$89.95
Both versions come with complete documentation.

\section*{JOHN BELL ENGINEERING, INC.}


Interface Clinic

\author{
by Ralph Tenny
}

An interface component that was mentioned only briefly in an earlier column is the latch. A latch was shown in a circuit designed to capture microprocessor bus data "on the fly" - directly from the bus. Latches have certain special features you need to know. First, there are two kinds of latches: edge-triggered and transparent latches. An edge-triggered latch will capture data only when a positive-going clock signal is applied to the part; transparent latches have a data input and an enable line. When the enable line is active, the latch output copies the logic state on the data line. When the enable line goes inactive, the latch locks up or captures the data present on the data line. The read/write memory in your computer works the same way; when the \(\mathrm{R} / \mathrm{W}^{*}\) line is low, data from the bus is gated through to the memory cells and the data is captured when R/W* goes high.

All latches have certain critical timing parameters in common: setup time, hold time, and width of clock pulse or enable strobe. Setup time specifies how long the data must be present before the clock or enable strobe changes state and ranges from .2 microseconds for CMOS latches to .02 microseconds for TTL latches. Hold time specifies how long the data must remain valid after the strobe changes state. CMOS hold times are about .12 microseconds and TTL times are about .005 microseconds. Clock or enable pulse widths range from .2 microseconds for CMOS to .04 microseconds for TTL. Generally, setup and hold times must be taken into account only when parts are driven directly by the microprocessor bus; if the parts are driven by a PIA, timing limits are met easily since the PIA cannot be programmed to change quickly enough to cause timing problems. Figure 1 shows the typical timing waveforms for edge-triggered and transparent latches with the critical timing parameters identified.

Another interface component I have ignored so far is the shift register. Figure 2 shows the simplest form of shift register; it is a collection of latches connected in series so that the data output of the first stage drives the


Figure 1: A comparison of edge-triggered and transparent latches showing waveforms and critical timing parameters.
data input of the second stage and so on to the end of the chain. All stages are clocked at the same time, so a logic one clocked into the first stage comes true in the second stage after the second clock pulse. With this kind of logic block it is possible to convert a serial data stream into a collection of parallel bits or data word.

The serial (printer) port on most computers works with a communications protocol known as asynchronous ASCII, which means that the individual groups of bits known as words can be sent and received on an irregular schedule. This is accomplished by the scheme illustrated in figure 3, which defines a single serial word as it might be sent to a printer. In the illustration, a data word has been divided into eleven segments or bits. All words start with the RS-232 Out line low (RS-232 logic one). The first bit is always logic zero, and is called the start bit. The start bit serves as a timing mark for the receiving circuit so it can know when the data word is coming. The receiving circuit begins counting time and tests
the input line \(1 \frac{1}{2}\) bit times later, recording whether this bit is logic one or zero. Seven more tests or samples are made at one bit-time intervals, with the logic value of each being recorded. Bits 10 and 11 are called stop bits and are always logic ones. In continuous transmission, the last stop bit will be followed immediately by a start bit for the next word; during asynchronous transmission, the next word can be sent anytime.

What I have discussed is one common version of an asynchronous ASCII word; some versions will have only one stop bit, usually at the higher transmission rates. In order for an asynchronous scheme to work properly, both the sending and receiving circuits must be set for the same transmission rate, which normally is expressed as a baud rate. The definition of baud rate is that one baud is equal to one bit per second. Typical transmission rates are 300 baud, 600 baud, and 1200 baud; the Radio Shack standard is 600 baud to match Radio Shack printers.

In contrast to asynchronous transmission, some computer communication uses synchronous transmission, where special data-bit patterns signal start of data, end of data, etc. Inherent in synchronous transmission is a clock signal that signals the receiving circuit when to sample to read a bit's logic value.

Last month I used the printer port to send and receive single-bit information. The output level was held steady

Figure 2: A simple shift reglster can be constructed by connecting a series of edgetriggered latches and using a common clock input.


Figure 3: Asynchronous serial transmission must use start and stop bits to allow the receiver to tell when each word starts and stops.
\[
\text { START BIT }\left[\begin{array}{ccccccc}
- & - & - & -1 & -1 & -1 & -1
\end{array}\right)
\]
to indicate a logic one or zero, and the computer sampled the input line to determine if an external switch was open or closed. Since not much can be accomplished with single input and output bits, I have designed a scheme to handle more bits.

For this month's experiment I developed a scheme to output multiples of four bits, depending on how many sections I want to hook up. The first hurdle to face on the Color Computer is that there is only one output line; this limitation will probably apply on any computer that uses software to generate a serial data stream. Although it is possible to generate "home brew" circuitry that will receive standard asynchronous signals, I use somewhat simpler circuitry to implement a self-clocking scheme working in four-bit data blocks.

The circuit in figure 4 uses a delay scheme to encode both data and clock on the RS- 232 Out signal, and a fourstage shift register captures the data. The circuit shows how to make a shift register from the CD4042 4-bit latch.

Ula and Ulb work together to produce very fast signal transitions from the somewhat slower RS-232 Out signal as shown in figure 5 . With the input low, Ula's output is high and Ulb's output is low. As the input signal rises, R1 and R2 reduce the signal change at the input of Ula, but eventually Ula's input will reach the IC's signal threshold and U1a's output will begin to change, forcing Ulb to change also. As the input continues to rise, U1b's output will go high until U2 is helping pull up on Ula's input rather than slowing the input rise. The graph in figure 5 shows the result - a slow level change at the input gives a fast change at the output. This type of cir-
cuit is called a Schmitt Trigger and is useful for interfacing slow signals to computers. Ulc inverts the clock signal to provide the proper clock timing.

The network consisting of R3 and Cl acts to delay signal transitions reaching Uld and Ule, which are also connected as a Schmitt Trigger. If the RS- 232 line goes high for only a short time, the RS/C1 delay into U1d and Ule prevents the data line from changing, but when the signal stays high long enough, the data line goes high. In either case, when the RS-232 line goes low again, Cl is discharged by R 3 and a new cycle can begin. If a latch is connected to both the data and clock lines as shown in figure 4, it will capture either a logic one or a logic zero, depending on whether the RS-232 line stays high a long or short time. This is shown in figure 6 , which shows the response of the circuitry in figure 4. The top line is an input from the RS- 232 port, and the responses of the data and clock circuits are shown in the next two lines. Only the second input pulse is wide enough for Uld/Ule to change state, and this is reflected by the short period of logic one in the data signal. Meanwhile, the transitions of the clock signal marked with an arrow show when U2 will sample the data line. Assuming that Q1 of the shift register was high at the start, the logic zero of the input signal causes a transition to zero on the first clock pulse. The next data bit sent was a one (long positive pulse), and the second clock pulse captures a one. The third bit sent was a zero, which is captured by the third clock pulse. In order for this circuit to be useful, the RS- 232 line must send four bits and stop until the next time data has to be sent. Also, you may

Figure 4: This circuit can be driven by a computer's printer port and will capture four bits of output data. Additionai shift register sections can be added to handle more bits.

need driver circuitry such as the LED driver used last month, one driver for each bit stored in the shift register.

\section*{Parts List for Experiment \#2}

U1 - CD4049 (Radio Shack
\#276-24491
U2, U3 - CD4013 (Radio Shack
\#276-2442)
R1, R4-82K ohm, 1/4-watt resistor
R2, R4 - 330 K ohm, \(1 / 4\)-watt resistor
R3 - 22 K ohm, \(1 / 4\)-watt resistor
\(\mathrm{C} 1-1 \mu \mathrm{~F}, 16\)-volt capacitor (Radio
Shack \#272-1419)
Power Supply -+5 volts to +10 volts (battery-suitable)

The circuitry in figure 4 can be exercised with the short subroutines shown below. These routines should be called by a program that breaks an output pattern into individual bits, counts the bits as they are output, and then stops transmission.

After a bit of reflection, I renege on one comment I made last month: I said that I would specify parts and materials to be used in projects only as the need arose. I now believe our purposes can be better served by listing materials that you can watch for, possibly saving money by finding items on sale. In particular, Radio Shack often has sales that allow good savings if you can anticipate future needs. When I choose parts for an experiment, you might already have the needed parts and can proceed immediately. The following listed items will be useful for various hardware experiments. You can collect these items gradually or get them as needed (Radio Shack part numbers shown).

\section*{Discrete Components}

Aluminum Electrolytic assortment: 272-604 or 272-605
1/4-watt resistor assortment: 271-602
Prototyping boards: 276-170, 276-158, 276-153
Transistor assortments: 276-1603, 276-1604
LED assortment: 276-1622
Silicon signal diodes: 276-1620 or
276-1122
Silicon rectifiers: 276-1101

\section*{CSE means OSI}

Software and Hardware Introducing 5 new disk programs

From DMP Systems:
Superdefender . . . . . . . . . . \(\$ 14.95\)
Universe . . . . . . . . . . . . \(\$ 14.95\)
Edit-all. . . . . . . . . . . . . . . \(\$ 12.95\)
De-bug. . . . . .

From Dwo Quong Fok Lok Sow:
WP-6502 Word processor. Available in three versions.
5", disk . . . . . . . . . . . . . . . \(\$ 200.00\)
8', disk . . . . . . . . . . . . . . . . \(\$ 234.95\)
Cassette . . . . .

Training Manual . . . . . . . . . . . . . . . . . . . . . . . . . \(\$ 20.00\)
CSE's Rom Source Code Listing 100 Pages! . . \(\$ 15.95\)
NEW! NEW! NEW!
ANCHOR SIGNALMAN MODEMS \(\$ 89.50\)

Please write for more info on new disk programs or send \(\$ 2.00\) for catalog. Please include \(\$ 2.00\) shipping ( \(\$ 3.00\) for modems).


COMEUTER SCIENCEENGINEEAINE
Box 50•291 Huntington Ave. Boston 02115 617-423-9501

\section*{Boulder Logical Testing, Inc. is now offering a new EPROM Programmer FOR \$195.00}

- Microprocessor based
- Programs 2716, 2732, 2732A and 2532 EPROMS
- Zero Insertion Force (ZIF) sockets are standard
- 25 or 22 volt programming voltage option
- Copy from EPROM to EPROM automatically
- RS 232 interface with selectable baud rates
- Thorough user documentation includes example software drivers for popular computer systems, including Apple*, IBM PC*, and CP/M*
- Command set can be used from host computer or terminal
- Comes complete with power supply

To order, or for more information write:
Boulder Logical Testing, Inc. PO Box 902
Boulder, CO 80306
Ordering information: send money order or check only, no CODs. Price includes shipping costs and documentation. Colorado residents include \(3 \%\) sales tax.
*Apple is trademark of Apple, Inc. IBM PC is trademark of IBM, CP/M is trademark of Digital Research.

Circle No. 68

Interface Clinic

\section*{Measurement Instruments}
(Optional, but useful)
Volt-ohmmeter: 22-204, or Digital
VOM: 22-197
Logic probe: 22-301
Figure 5: Two resistors and two CMOS inverters make a circuit that generates fast logic transitions from a slow input signal.


Figure 6: Timing diagram for circuit in figure 4. The input signal encodes both data and clock by varying width of output pulses.


Please forward questions and suggestions for discussion topics to Mr. Tenny at P.O. Box 545, Richardson, TX 75080.

\section*{Annual Index}

The following two pages are a continuation of MICRO's Annual Index (see MICRO 60:105 for the first installment). The list is comprised of articles that have appeared in MICRO over the past year and are placed under specific headings for easy reference. The first number indicates the issue and the second number the page of that issue.

\section*{LANGUAGES}

\section*{FORTH}

BASIC, FORTH, and RPL Timothy Stryker
Microcomputer Interfacing: FORTH vs. BASIC

\section*{Mark Bernstein}

EDIT: An Atari FORTH Screen-Oriented Editor
Mike Dougherty
FORTH for the 6809
Ronald W. Anderson
An Introduction to FORTH
Ronald W. Anderson

\section*{LISP}

The World According to LISP
Steven Cherry

\section*{LOGO}

Three Faces of Apple LOGO
Edward H. Carlson (also see Education)
PASCAL
Low-Resolution Graphics for Apple Pascal Richard C. Vile Jr.
Introduction to Turtle Graphics in Apple Pascal John R. Raines
Discrete Event Simulation in Pascal
Anita and Bill Walker
Apple Math Editor
Robert D. Walker
Using Long Integers for BCD Numbers in Pascal David C. Oshel
Apple Pascal Hi-Res Screen Dump Robert D. Walker
Raising Numbers to a Power with Pascal
Robert D. Walker

\section*{PILOT}

Tiny PILOT for the PET
Jim Strasma and John O'Hare
More on Tiny PILOT for the PET Arthur Hunkins

RPL
BASIC, FORTH, and RPL
Timothy Stryker
APL
SuperPET APL
Terry Peterson

\section*{MATH}

Extending Newton-Raphson's Method to Evaluate
\(\quad\) Complex Roots
P.P. Ong


Let Unique Data Systems help you raise your sights on AIM 65 applications with our versatile family of AIM support products.
- Go for high quality with our ACE-100 Enclosure. It accommodates the AIM 65 perfectly, without modification, and features easy access two board add-on space, plus a \(3^{\prime \prime} \times 5^{\prime \prime} \times 17^{\prime \prime}\) and a \(4^{\prime \prime} \times 5^{\prime \prime} \times 15.5^{\prime \prime}\) area for power supplies and other components. \(\$ 186.00\).
- Get high capability with Unique Data System's add-on boards. The UDS-100 Series Memory-I/O boards add up to 16 K bytes of RAM memory or up to 48 K bytes ROM/PROM/EPROM to your Rockwell AIM 65 . You also get 20 independently programmable parallel I/O lines with an additional user-dedicated 6522 VIA, two independent RS-232 channels with 16 switch-selectable baud rates ( 50 to 19.2 K baud), and a large on-board prototyping area. Prices start at \(\$ 259.00\)
- If you need to protect against RAM data loss, the UDS-100B offers an on-board battery and charger/switchover circuit. \$296.00.
- Heighten your AIM 65's communications range by adding the UDS-200 Modem board. It features full compatibility with Bell System 103 type modems and can be plugged directly into a home telephone jack via a permissive mode DAA. No need for a data jack or acoustic coupler. The UDS-200 also has softwareselectable Autoanswer and Autodial capability with dial tone detector. The modem interfaces via the AIM 65 expansion bus with the on-board UART and baud rate generator eliminating the need for an RS-232 channel. \$278.00.
- The UDS-300 Wire Wrap board accepts all .300/.600/.900 IC sockets from 8 to 64 pins. Its features include an intermeshed power distribution system and dual 44 -pin card edge connectors for bus and V/O signal connections. \(\$ 45.00\).
- Get high performance with the ACE-100-07 compact \(4^{\prime \prime} \times 5^{\prime \prime} \times\) \(1.7^{\prime \prime}\) switching power supply, delivering +5V@6A, +12V@1A, and +24 V for the AlM printer. \(\$ 118.00\).
Installation kits and other related accessories are also available to implement your AIM expansion plans. Custom hardware design, programming, and assembled systems are also available. High quality, high capability, high performance, with high reliability . . . all from Unique Data Systems. Call or write for additional information.

Unique Data Systems Inc.
1600 Miraloma Avenue, Placentia, CA 92670


Annual Index (continued)
It's All Relative-CBM Disk Techniques, Part \(1 \quad\) 55:37
Jim Strasma
Utilizing the 6502 Undefined Operation Code 55:93 Curt Nelson, Richard Villarreal and Rod Neisler
VIC Hi-Res Graphics Explained
Nicholas J. Vrtis
It's All Relative-Using CBM Disk Techniques, Part \(2 \quad\) 56:52
Jim Strasma
Extending Newton-Raphson's Method to Evaluate
Complex Roots
P.P.Ong

It's All Relative-Using CBM Relative Records, Part 3 57:33 Jim Strasma
SuperPET APL
Terry Peterson
Hi-Res Plotting with the VIC \(58: 19\)
Fred Wallace
It's All Relative-Using Commodore's Relative Records, \(\quad{ }_{58: 85}\)
Jim Strasma
Using Long Integers for BCD Numbers in Pascal 58:12 David C. Oshel
Raising Numbers to a Power with Pascal \(58: 12\)
Robert D. Walker
Disk ID for Printed OSI Directories 58:36
Robert A. Paul
Apple Print-Using Routine 58:39
Celestino R. Monclova
A Full Byte for Your Apple Printer \(58: 42\) Mark J. Boyd
\(\begin{array}{ll}\text { Apple Disk Track Copy for Non-Matching } & \\ \text { Volume Numbers }\end{array}\)
Volume Numbers
Roland E. Guilbault
Unleash the AIM A Block 59:61 Tom Lillevig

\section*{UTILITIES}

Breakpoint Utility for OSI C1P 49:84 John S. Seybold
Symbol Table Lister for the OSI 49:93
Rolf Johannssen
Auto Entry for the C1P 50:93
Allen J. Zadiraka
SURCHANGE for the OSI 51:76 Kerry Lourash
POWER-Aid for the PET 51:71
F. Arthur Cochrane

OSI Extended I/O Processor 51:99
Michael J. Keryan
Delete on the OSI 51:106
Earl Morris and Yasuo Morishita
COMPRESS-An Applesoft Optimizer 52:89 Barton M. Bauers
Screen Editor for the OSI 65D Assembler \(\quad 53: 19\) Les Cain
Apple ILISZI for Integer BASIC Programs \(55: 13\) Leonard Anderson
BASIC Macro Function for Cursor Control 55:19 Kerry Lourash
Programmable Character Generator for OSI 55:88 Colin Macauley
PROM BASIC for the C1P 57:22
David A. Jones
Indirect Files Under OS-65D
Richard L. Tretheway
BASIC Renumber for OSI 57:40 Paul Krieger
Improved IEEE-488 Control for PET/CBM

\section*{©MMANDER}

\section*{THE MONTHLY JOURNAL FOR COMMODORE COMPUTER USERS}


VIC-20


\section*{GET YOUR MONEY'S WORTH}

You've probably made a sizeable investment in your computer equipment. COMMANDER can help you make the most of it.
 stay field. COMMANDER will be your reference to the world of computers . . . with the best, most comprehensive coverage you can get!!

Subscribe now and take advantage of our limited offer of \(\$ 4\) off the one year subscription. \(\lceil 1\) YR. U.S. \(\$ 22 \square 2\) YR. U.S. \(\$ 40 \square 3\) YR. U.S. \(\$ 58\) 'Prices do not include \(\$ 4\) Discount)Prices in U S. Fund Washington residents please add \(7.8 \%\) sales tax -Subscription Orders OnlyToll Free Number: 1-800-426-1830 (except WA, HI, AK)

\section*{COMMANDER}
P.O. BOX 98827 TACOMA, WASHINGTON 98498
Circle No. 70
(206) 565-6816

32K CMOS STATIC RAM BOARD for SYM/ AIM 4H14

Models MB-132/32K, \$299 /16K \$241,/8K \$197


Features
- 200ns Low Power CMOS. STATIC RAM
- Extends your expansion connector
- Plug compatible with 2716 EPROMS
- First 8 K are jumper selectable
- Entire board may be bank-switched
- G-10 Glass epoxy. Full solder mask, Gold fingers
- Full 1 -year limited wacranty

I/O EXPANSION BOARD for the SYM/AIM
and other microcomputers inat use 6522 VIAs for \(1 / 0 \quad 1 / O X-122 \$ 60\) and do not provide full address decoding on board 1/OX-222 \$72 This soard has physical space for four additional 6522
VIAs, and provides addinonal decoding for a total of IIIIIIIIII!II! 16 devices. Connectors for all \(1 / 0\) lines. and further expansion are included. All 6522 functions are availabie. with no interference with previous
functions of the original VIA Two versions of this tunctions of the original VIA. Two versions of this
board are avallable The VOX- 122 mounts above and directly plugs into, an on board 6522 socket and relocates the original VIA to the expansion. board Where there are space limutations, the \(\downarrow\) OX- 222 uses a dip header and an \(8^{\prime \prime}\) cable for remote installation

REAL-TIME CLOCK/CALENDAR \$60 Write for Info. P.O. Box 1019 - Whittier, CA 90609 - (213) 941-1383


\section*{Speed,}

Speed with the PASCAL SPEEDUP SYSTEM, our best seller. Features complete ease of use with all APPLE PASCAL; UCSD PASCAL 1.1; APPLE RUNTIME ENVIRONMENT; \& FORTRAN applications. From 40 to \(150 \%\) speed boost on most programs (some even faster). All with no programming and with only one extra watt of power from your power supply.

\section*{Power,}

Power with the cost efficient 6809 coprocessor; the 8 bit chip with a 16 bit "personality". Enough power to drive multitasking OS-9 / BASIC 09, the "Unix-like" operating system with a Pascal-like BASIC for the Apple. It's all in a days work for THE MILL

\section*{Efficiency.}

Efficiency with the ASSEMBLER DEVELOPMENT SYSTEM; Heavyweights write state of the art programs on the 6809 for DOS 3.3 or even stand alone. Utilities include M.A.P. (McMill Adaptor for Pascal).
"The Stellation Two people have earned my highest respect for assembling an impressive collection of software for their board."
- Michael Coffey/

Creative Computing Magazine
"I feel my software output has been greater in the six months I have used OS-9 than it was in the \(31 / 2\) years previous combined. It has a rakish logical simplicity that nearly defies description... I bill OS-9 as a programmers dream operating system."

> - Brian Capouch MICRO Magazine

Call today or write for more information on this inexpensive Apple II, Ile enhancement.

:


The Lobero Building P.O. Box 2342 Santa Barbara, Ca. 93120
(805) 966-1140 Telex 658439


In a few millionths of a second, common electrical surges and spikes can enter your data processing equipment and cause memory loss, false logic and misregistration. Surges very often do permanent damage to microcircuitry.
FLEXIDUCT Surge Suppressors catch surges and spikes before they have a chance to enter your equipment. In billionths of a second (Nanoseconds), FLEXIDUCT Surge Suppressors dissipate surges and spikes from any side of the line (most protect only one side).
Model FS-P plugs into the wall outlet to protect that outlet and all other outicts on that circuit. For safety, it is fused to protect from overloads.
No computer should be without the protection of a FIEXIDuCT Surge Suppressor...especially yours! Write or call for further information. Available from office products retailers.

\title{
D\&N MICRO PRODUCTS, INC.
}

\section*{COMPUTER}

MICRO-80 COMPUTER
Z-80A CPU with 4 Mhz clock and CP/M 2.2 operating system. 64 K low power static memory. Centronics parallel printer port. 3 serial ports. 4" cooling fan. Two 8 " single or double sided floppy disk drives. IBM single density 3740 format for 243K or storage, double density format for 604 K of storage. Double sided drives allow 1.2 meg on each drive. Satin finish extruded aluminum with vinyl woodgrain decorative finish. 8 slot backplane, 48 pin buss compatible with OSI boards.
```

MODEL 80-1200
2"'Single sided drives
MODEL80-2400
$28^{\prime \prime}$ Double sided drives

```

\section*{MICRO-65 COMPUTER}

6502 CPU with 2 Mhz clock and DOS-65 operating system. 48 K of low power static memory. 2 serial ports and 1 Centronics parallel port. \(28^{\prime \prime}\) single or double sided drives. Satin finish extruded aluminum with vinyl woodgrain finish. 8 slot backplane, 48 pin buss compatible with OSI. Will run OSI 65 D and 65 U software. Includes Basic E/65 a compiled BASIC for 6502 CPU.

\footnotetext{
MODEL65-1
\(28^{\prime \prime}\) Single sided drives
MODEL65-2
\$2995
\(28^{\prime \prime}\) Double sided drives
BP-5808Slot Backplane. . . . \$ 47
OSI 48 pin Buss compatible MEM-CM9 MEMORYI
FLOPPY CONTROLLER
24K memory/floppy controller card uses 2114 memory chips, 18 K and 1 16K partition. Supports OSI type disk interface
24MEM-CM9
\$325
16MEM-CM9 . . . . . . . . . . . . . . \(\$ 260\)
8MEM-CM9 . . . . . . . . . . . . . . \(\$ 180\)
BARE MEM-CM9 . . . . . . . . . . . \$ 50
Controller on assembled unit
add.
. 90
BIO-1600 Bare IO card . . . . . . . \$ 50 Supports 8K of memory, 216 bit parallel ports, 5 serial ports, with manual and Molex
connectors.
}

\section*{PRINTERS}

\section*{Okidata}

ML82A, \(120 \mathrm{cps}, 10^{\prime \prime}\). \(\$ 409\)
ML83A, \(120 \mathrm{cps}, 15^{\prime \prime}\). \(\$ 895\)
ML84Parallel, 200 caps, 15". \(\$ 1150\) C. loth

8510AP Prowriter, parallel . . . \(\$ 419\) 120 cps , correspondence quality 8510APD Prowriter, serial . . . \(\$ 585\)
F10-40PU Starwriter, parallel \(\$ 1319\) Letter quality daisy wheel
F10-40RU Starwriter, serial. . \$1319
F10-55PU Printmaster ..... \(\$ 1610\) parallel, Letter quality daisy wheel
F10-55RU Printmaster, serial \(\$ 1610\) DISK DRIVES AND CABLES
8"Shugart SA801 . . . . . . . . . . \(\$ 385\) single sided
8"ShugartSA851
\$585 double sided
FLC-66 ft cable from D\&N ... . \(\$ 69\) or OSI disk controller to 8" drive
51/4"MPI B51 disk drive with . . \(\$ 450\) cable, power supply and cabinet. Specify computer type.
FLC-5 \(1 / 4\) cable for connection . \(\$ 75\) to \(51 / 4\) drive and D\&N or OSI controller, with data separator and disk switch. Specify computer type

\section*{HARDWARE OSI COMPATIBLE \\ IO-CA10X Serial Printer Port. . \(\$ 125\) Specify Device \#3 or \#8 \\ IO-CA9 Parallel Printer Port . . \(\$ 150\) CMOS-MEM}

64K CMOS static memory board, uses 6116 chips, \(316 \mathrm{~K}, 18 \mathrm{~K}\) and 2 4 K blocks, Partitionable for multiuser, OSI type disk controller, 210 mapped serial ports for use with D\&N-80 CPU. Ideal way to upgrade from cassette to disk.
64K CMOS-MEM . . . . . . . . . . . \(\$ 500\)
48K CMOS-MEM . . . . . . . . . . . \(\$ 405\)
24K CMOS-MEM . . . . . . . . . . . \(\$ 260\)
16K CMOS-MEM . . . . . . . . . . . \(\$ 210\)
BARECMOS-MEM . . . . . . . . \(\$ 50\)
Controller add. \(\$ 90\)
210 mapped serial ports add. \(\$ 125\) on assembled memory board
Z80-IO2 IO mapped serial .... \$160 ports for use with D\&N-80 CPU card
FL470 Disk Controller . . . . . .
\$155
\(51 / 4\) or \(8^{\prime \prime}\) drive


\section*{STANDARD CPIM FOR OSI}

\section*{D\&N-80 CPU CARD}

The D\&N-80 CPU allows the owner of an OSI static memory computer to convert to Industrial Standard IBM 3740 single density disk format and CP/M operating system. Double density disk operation is also supported for 608 K of storage on an \(8^{\prime \prime}\) diskette. When used with a \(51 / 4\) " disk system 200K of storage is provided. Optional parallel printer and real time clock. Also available for polled keyboard and video systems. Compatible with C2, C3, C4 and 200 series OSI computers.

INCLUDES CP/M 2.2
D\&N-80-1 Serial 8" disk \(\$ 595\)
D\&N-80-2 Video 51/4" disk \$595
D\&N-80-3 Video 8" disk \$595 Option 001
\$ 60
Parallel printer and real time clock.

HARD DISK DRIVER \(\$ 140\)
Allows D\&N-80 CPU board to control OSI 40 or 80 meg hard disk unit. Will not destroy OSI files. Will also allow for a true 56K CP/M system. Specify 40 or 80 meg drive.
BUSS TRANSFER
\$135
Allows for D\&N-80 and OSI CPU to be in the computer at the same time. Toggle switch provides for alternate CPU operation.
DISK TRANSFER
\(\$ 100\)
Utility program to transfer OSI CP/M format disk to IBM 3740 single density format. Will also transfer IBM to OSI format.

\section*{SYSTEM HARDWARE REQUIREMENTS}

D\&N-80 CPU, D\&N FL470 or OSI 470 controller, 48 K memory at \(0000-\mathrm{BFFF}, 4 \mathrm{~K}\) memory at D000-DFFF, two disk drive cables.
FORMATTRANSFER
\(\$ 15\)
You supply software on 8' \(^{\prime \prime}\) diskette D\&N will transfer OSI CP/M format to IBM 3740 CP/M format. Can also transfer IBM 3740 CP/M format to OSI CP/M format. Original diskette returned.

\section*{Software Catalog}

\begin{abstract}
Commodore Five new programs are Operates in 16 K . 32 K . avallable for CBM/PET and Commodore 64 com puters. Script Ease (\$39.50) is a 40 column word processor designed for all levels of word processing needs. Text can be output to the printer without any format commands; These commands can be added in subsequent lessons. Re quires disk drive, printer, and 32 K in the CBM/PET. A \(\$ 5.00\) demo is available (refundable)

Datalog \((\$ 39.50)\) lets you define up to 12 of your own fields and creates up to 1000 records on a 4040 disk, each record being over 200 characters long. Interfaces to popular word processors for printing form letters or labels. Multiple sort and search capabilities. Same requirements as Script Ease A \(\$ 5.00\) demo is available (refundable)

Date Due (\$39.50) manages overdue items in libraries. It prints reports by name, date, call number, title, or room number.

Operates in \(16 \mathrm{~K}, 32 \mathrm{~K}\), dr the \(\quad 64\) : Requires drisk drive and a pphter is pre ferred. Multigle Chrice: (\$29.50) creates nip to 150 : question and answer sets: per disk flle, Any number of questions can be slected: from the bank and random:ized if desired. The anizwer choices are always in tane dom onder. A test ean be taken on screen of printed on paper. An answer key is printed down theileft cide of the paper. Supglied on disk only but can be saved and used on tape Provides high. security far teacher: made tests. Runs. 11 16k, 32 K, and the \(64 \times 2\)

Ledger \((22.50)=3\), 4 financial package for pert sonal finance or sehigel revolving accounts th prints reports sorted \(b y\). jourail, ledget or check register and hamdles uptog 300 transactions may number of accounts. It rens. in \(16 \mathrm{~K}, 32 \mathrm{~K}\), orentree 64 For more infomations contact Midwest Soltwate, Box 214 , Famingion, MT 48024 . \(313-477\)-0897.
\end{abstract}

\section*{Atari 800 Utility Cartridge}

Monkey Wrench II is a ROM cartridge that plugs into the right-hand slot of your Atari 800. It provides 18 new BASIC commands and 16 machine-language commands. The new BASIC commands include auto line numbering, renumber lines, delete range of lines, display all BASIC variables and values, scrolling up or down, find string, exchange string, copy lines, move lines, display disk directory, cursor exchange (no shift key needed), upper case lock, hex conversion, decimal conversion, and format program list (separates and prints to the screen or printer each command appearing on a BASIC multiple command line).

Price is \(\$ 59.95\). For more information contact Eastern House Software, 3239 Linda Drive, Winston-Salem, NC 27106; (919) 924-2889.

\section*{Inventory Management for the Commodore 8032}

NFOTORY, an inven tory management system now available for the Commodore 8032 Professional Computer, offers an item capacity of 4 , 000 wiventory items with 38 fields of information for each tem, including three pricing levels. INFOTORY provides users with information reporting capabilities through its data management sub-system, ANY: REPORT: ANYREPORT allows users to design reports based on informa tion associated with their inventory and the option to save those reports for future use.

Suggested retail price is \(\$ 425.00\). For more imformat tion contact S.S.R. Corp, 1600 I yell Ave., Rochester, NY 14606; \(1716 \mid 2543200\)

\section*{ATTENTION PROGRAMMERS!}

At last! Microscreens, a screen generator package lets you produce clear, uncluttered, professional quality monitor screen formats . . for only \(\$ 119.00\). Just a few lines of code in your BASIC is all it takes. Develop selection menus, dataentry, inquiry display and more . . quickly and easily . . . because Microscreens:
- provides configuration routines for monitor control characters. Permits use on any monitor
- provides a "DRAW" program. Enables programmer to create any screen format on a blank screen.
- provides protected, unprotected and variable use fields.
- provides editing of input to data-entry screens and full data validity checking.
- provides highlighting and ieverse video features usage (when available on your monitor).
- lets you position the cursor at the begin-
ning of any dota input field. - provides six different escape codes for help. emergency stop or any other abnomal complication of input. - can be NCLUDE'd in CP/M \({ }^{c}\) BASC compied progroms or MERGE'd with the MICROSOFT BASC interpreter for Apple II with Softcard \({ }^{\text {© }}\).
- 3 K memory for screen handling routines: frequently less than your own code for monitor input/output.
- is a maximum flexibility screen generator. Reduces your programming time as much as \(40 \%\).

ORDER NOW. \$119.00

Programmer Utilities for Atari

AiDE (Absolute Disk Editor) for the Atari is a menu-driven system to simplify the disk managemant task. Telecom is a communications package that allows the Atari \(400 / 800\) to communicate with any and all other computers.

AiDE is \$29.95; Telecom is \(\$ 69.95\). Both systems run on the Atari 400/800 home computer. Available from Roklan Corporation, 3335 N. Arlington Heights Road, Arlington Heights, IL 60004.

\section*{In Search of the Most Amazing Thing}

In Search of the Most Amazing Thing a combination adventure, stras tegy and arcade game, is designed to create an en vironment in which chillien are expcriment and discover. The game places the child into a fantasy adventure where hef she milst employ strategy and Jearning, skilss to discover the location and Menity of the Most Amazing Thing:

Chidren will heand decision nikking and organ 12ing notethaing and witings map reading trading wind bargamingt matic whimg arid lyawing and expleralion:

In Search of the Most Amazing Thing is compatity ble with Appie Atan wM, and Comimodore 64 eom puters Price is 339 35: \({ }^{2}\).
(Commateror pisty


The single most important telecommunications program available today...
"The most satisfying feature of HELLO CENTRAL! is its user-friendliness. . . offers some features that have been longed for in a terminal program. . .HELLO CENTRAL! is a great terminal program. . .consider this one."
-SOFTALK (December, 1982)
"The manual is relatively easy to read. . .Most directions, choices, and commands are either easy to remember or are displayed on the screen. . In my opinion, the best feature. . is the text editor. It allows you to write, insert, delete, and copy blocks of text in a very efficient manner. . .can receive and store text files written in Integer. . .Applesoft \({ }^{\circledR}\) BASIC and in Binary Code. .."

\section*{-DESKTOP COMPUTING (December, 1982)}

Here are a few of the features standard with HELLO CENTRAL!
- 18,000 character buffer to store an unlimited number of lines, regardless of length
- No need for 80 -column hardware, because internal wordwrap eliminates split words
- Auto dial/answer and take-a-message
- Accepts any ASCII file
- Upper and lower case input and output
- Multiple user-defined directories
- Powerful text editor lets you modify incoming and outgoing information
- Not copy-protected, allowing for easy back-up
- Completely menu-driven
- Program updates (when available) via modem

Ask for No. 26081 ................. only \$99.00
Only HELLO CENTRAL! has all of these features for \$99.00! Call 800-428-3696 or 317-298-5566 and ask for Operator 402.

Available for Apple \(\|^{(1)}\) series computers, including the new Ite \({ }^{(\pi)}\).
Apple II, II.PLUS, IIe, and Applesoft are registered trademarks, of Apple Computer, inc


SAMS BOOKS \& SOFTWARE
HOWARD W. SAMS \& CO., INC.
4300 West 62nd Street P.O. Box 7092
Indianapolis, IN 46206

\title{
computer mail order
}

\section*{Televideo \\  2000 （Lemer Ouality）．．．．． 31049.00 Trector feed．．．．．．．．．．
DIABLロ
}
！\(\quad\) li



Call on Eagle 8 Bit \＆ 16 Bit Computers \＆Software

\section*{MOOEME}
smar．
Smer 1200 ．．．．．．．．．．．．．．．． 3219.00 Chronograph．．．．
Micromodem 100
Mieromadem II．
icromodem II ．．．．．．．．．．．．． 8309.00
Micromodem il（with lerm）．． \(\mathbf{\$ 2 9 9 . 0 0}\)
Smart Com II．．．．．．．．．．．．．．．
NOVATION
J．Cat
cat．．．
103 Smart Cat
Appie Cat II
03／212 Smart Cal
212 Apple Cat II．
\(\$ 119.00\)

\section*{ANCHOR}

Mark I（RS－232）．
Mark II（Atari）．
Mark IV（CBM．PET） Mark \(V\)（Onborne）． Mark VI（IBM－PC） Mark vilaumans …．．．．．．．．\(\$ 179.00\) Mark VII（Ause Ans．／Auto Dial）．．．\(\$ 119.00\)
Trs－80 Color Computer ．．．．．\(\$ 99.00\) 9 Volt Power Supply ．．．．．．．．．．．．sa．00
Merk VIII．．．．．．．．．．．．．．．．．．．．．．．．CALL
\begin{tabular}{|c|c|}
\hline & \\
\hline AMOEK & BANYO \\
\hline 3006 ．．．．．．．．．．． \(\mathbf{\$ 1 5 9 . 0 0}\) & MB1000 Computer ．．．．．．． 51599.00 \\
\hline 300A．．．．．．．．．．．．．．．． 3189.00 & includes free software！ \\
\hline \(310 \mathrm{G} . .\). ．．．．．．．．．．．．．．\(\$ 179.00\) & MicroPro．WordStar．Calestar， \\
\hline 3104 …i．．．．．．．．．．．．．．ste900 & Mail Merge a Report Star \\
\hline Color 1 ．．．．．．．．．．．．．．．． \(\mathbf{\$ 2 9 9 . 0 0}\) & MB180 Add on Drive ．．．．．．\(\$ 539.00\) \\
\hline Color II ．．．．．． \(\mathbf{\$ 5 9 8 0 0}\) & 5500 Letter Quality Printer ．． 3689.00 \\
\hline Cotor 114．．．．．．．．．．．．．． 3798.00 & TIM \\
\hline Color III ．．．．．．．．．．．．．．．． \(\mathbf{3 4 4 9 . 0 0}\) & TMEX \\
\hline BMC & SINCLAIP \\
\hline 12AU12＂Green．．．．．．．．．．．． 379.99 & \\
\hline 140：13＂Color（Mid－Res）．． 3369.00 & 1000 \\
\hline \[
\begin{gathered}
9191 \text { U } 13^{*} \text { Composita ..... } 3329.00 \\
\text { TAXAN }
\end{gathered}
\] & \\
\hline RGB 1 （Hi－Re日）．．．．．．．．．．．． 3280.00 & \\
\hline RGB III ．．．．．．．．．．．．．．． \(\mathbf{\$ 4 9 9 . 0 0}\) & 4888 \\
\hline 12 N Green．．．．．．．．．．． 3119.00 & \\
\hline 12AAmber ．．．．．．．．．．．．． 3125.00 & \\
\hline
\end{tabular}

53 옹
\begin{tabular}{|c|c|}
\hline 18K Memory Modute． & 95 \\
\hline Vu－Calc & 317.95 \\
\hline Chack Book Manager & ． 313.95 \\
\hline The Organizer & 314.95 \\
\hline The Eudgeter & 313.95 \\
\hline Stock Option & 314.0 \\
\hline Lonna Mortgageamo & er ．．． 312.93 \\
\hline Mindwere Printer & \[
\text { ...... } \$ 109.00
\] \\
\hline Graphice & 312.99 \\
\hline Home Budgeter & ．\(\$ 12.99\) \\
\hline Home Inventory & \＄12．99 \\
\hline income tax & ． 314.98 \\
\hline Mega Mind & 315.99 \\
\hline Saivo & \＄12．99 \\
\hline The Quir & \＄12．99 \\
\hline Worde & \＄12．98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline s camm &  \\
\hline \multicolumn{2}{|l|}{1520 Color Printer／Plotter ．． \(\mathbf{5 1 6 9 . 0 0}\)} \\
\hline \multicolumn{2}{|l|}{152580 Column Printor．．．． 3339.00} \\
\hline \multicolumn{2}{|l|}{1530 Dataette ．．．．．．．．．．．．．． 388.00} \\
\hline \multicolumn{2}{|l|}{1541 Single Disk Drive ．．．．． 3339.00} \\
\hline 1600 VIC Modem ．．．．．．．．．． 395.00
1610 VIC Term 40 & EBMES \\
\hline 1610 VIC Term 40．．．．．．．．．． 249.00
1850 AD／AM Modem ．．．．．．． 3159.00 & \\
\hline \begin{tabular}{l}
1650 AD／MA Modem ．．．．．．．．． 3150.00 \\
170 ＂\(^{14 \text {＂Color Monitor ．．．．} 3269.00}\)
\end{tabular} & 5393 \\
\hline 1311 Joysticke（eseh）．．．．．．．．．35．00 & \\
\hline 1312 Paddias．．．．．．．．．．．．．．．． 311.08 & \multirow[b]{2}{*}{V120} \\
\hline 1110 vic 8k．．．．．．．．．．．．．．． 342.00 & \\
\hline 1111 VIC 18k．．．．．．．．．．．．．．．389．00 & \multirow[t]{2}{*}{\＄99．} \\
\hline 1011 RS232 Intortace ．．．．．．． 342.00 & \\
\hline 1211 Super Expander ．．．．．．．353．00 & 4064．．．．．．．．．．．．．．．．．．．．．． 3569.00 \\
\hline 1908 Super Allen ．．．．．．．．．．． 323.00 & 12840 ．．．．．．．．．．．．．．．．．．．．． 3849.00 \\
\hline 1910 Redar Aat Race ．．．．．．． \(\mathbf{3 2 3 . 0 0}\) & 12880 ．．．．．．．．．．．．．．．．．．．．．． 5749.00 \\
\hline 1917 Voodoo Ceatla ．．．．．．．． 329.00 & 8032 ．．．．．．．．．．．．．．．．．．．．．\(\$ 1039.00\) \\
\hline 1922 Coamie Cruncher ．．．．．． 335.00 & 4032 ．．．．．．．．．．．．．．． 5738.00 \\
\hline 1923 Gort．．．．．．．．．．．．．．．．．．． 329.00 & 8098 Upgrade Kit ．．．．．．．． \(\mathbf{3 3 6 9 . 0 0}\) \\
\hline 1924 Omege Rect．．．．．．．．．． 330.00 & 9000 ．．．．．．．．．．．．．．．．．．．．． 31489.00 \\
\hline 110 VIC 20 Relarance Guide ．．． 315.00 & 2031 ．．．．．．．．．．．．．．．． 3 ． 3449.00 \\
\hline CBEA 84 Reterence Guide．．．． 318.00 & 4040．．．．．．．．．．．．．．．．．．．．．．． 3949.00 \\
\hline EABYBUBINEEB &  \\
\hline GEPIES E4 & 9080（ 5 Meg．HD）．．．．．．．．\(\$ 1999.00\) \\
\hline Esay Flle．．．．．．．．．．．．．．．．．．． \(\mathbf{8 7 9 . 0 0}\) & 9090 （7．5 Meg HD）．．．．． \(\mathbf{\$ 2 1 9 9 . 0 0}\) \\
\hline Easy Finance ．．．．．．．．．．．． \(\mathbf{\$ 3 9 . 0 0}\) & 4022．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{3 8 9}\) ． 00 \\
\hline Eany Mail ．．．．．．．．．．．．．．．． \(\mathbf{3 3 9 . 0 0}\) & 8023．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{8 5 8 9 . 0 0}\) \\
\hline Easy Script ．．．．．．．．．．．．．．．．． 379.00 & e400 Letter Quality Printer ．．．．CALL \\
\hline WordMuchine／Name Mechine．． 323.00 & Spell Master ．．．．．．．．．．．．．．．． \(\mathbf{5 9 9 . 0 0}\) \\
\hline PROGRAMMER & Z Ramadde CP／M＊ 8 84K ．．． \(\mathbf{5 5 4 9 . 0 0}\) \\
\hline BEPIEB B4 & Silicon Office ．．．．．．．．．．．．．． \(\mathbf{5 7 4 9 . 0 0}\) \\
\hline Assambler ．．．．．．．．．．．．．．．．．． \(\mathbf{3 3 9}\) ．00 & Csic Result．．．．．．．．．．．．．．． 3159.00 \\
\hline L090 ．．．．．．．．．．．．．．．．．．．．．．．．． 379.00 & The Meneger．．．．．．．．．．．．．．．． \(\mathbf{8 2 0 9 . 0 0}\) \\
\hline Pilot ．．．．．．．．．．．．．．．．．． \(\mathbf{8 7 9 . 0 0}\) & The Sott Rom ．．．．．．．．．．．．．．\(\$ 129.00\) \\
\hline Par Emulator ．．．．．．．．．．．． \(\mathbf{s 2 5 . 0 0}\) & Jinsam．．．．．．．．．．．．．．．．．．．．．．．．CALL \\
\hline Screen Editor ．．．．．．．．．．．．．．． \(\mathbf{\$ 2 5 . 0 0}\) & ADA \(\mathbf{6 0 0 C ~ B ~ B M ~ t o ~ P a r l . ~ I n t . ~ . . . ~} \mathbf{\$ 8 9 . 0 0}\) \\
\hline Video／Music Support ．．．．．．． \(\mathbf{8 3 9 . 0 0}\) & ADA 1450 CBM to Seriellint．．．． 389.00 \\
\hline ART ANO MUBIC & PROFESEIONAL \\
\hline BERIEEB4 & 8 C \\
\hline Music Machine．．．．．．．．．．．．．． 525.00 & ＇Powor．．．．．．．．．．．．．．．．．．．．．．． 879.00 \\
\hline Music Componer ．．．．．．．．．．．． 325.00 & Into Pro ．．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 2 1 9 . 0 0}\) \\
\hline Mate Music 1 ．．．．．．．．．．．． \(\mathbf{\$ 7 9 . 0 0}\) & Word Pro 2 Pius．．．．．．．．．．．． 3159.00 \\
\hline & Word Pro 3 Ptus ．．．．．．．．．．．． 3199.00 \\
\hline COMMERCIAL OATA & Word Pro 4 Plus．．．．．．．．．．．．． \(\mathbf{\$ 2 9 9 . 0 0}\) \\
\hline Motor Mouse／20 ．．．．．．．．．．．． \(\mathbf{2 3 . 0 0}\) & Word Pro 5 Plus．．．．．．．．．．．． 3298.00 \\
\hline Cantipode／20 ．．．．．．．．．．．．．．． \(\mathbf{3 2 3 . 0 0}\) & Admlnistator ．．．．．．．．．．．．．． 3379.00 \\
\hline Frogges／20．．．．．．．．．．．．．．．．． \(\mathbf{3 2 3 . 0 0}\) & Word Pro \(84 . . . . \ldots \ldots . . . . . .379 .95\) \\
\hline Froggea／64 ．．．．．．．．．．．．．．． \(\mathbf{5 2 3 . 0 0}\) & CAROCO \\
\hline CREATIVE BOFTWARE & vic eq／cem 34 \\
\hline Autro Blitz ．．．．．．．．．．．．．．．．． 332.00 & Light Pen ．．．．．．．．．．．．．．．．．．． 332.00 \\
\hline Black Hole．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 3 2 . 0 0}\) & Cessorte Interface ．．．．．．．．．． 329.00 \\
\hline Thashman．．．．．．．．．．．．．．．．．．． \(\mathbf{8 3 2 . 0 0}\) & Paralial Printer Intertace．．．． 384.00 \\
\hline Home Financs ．．．．．．．．．．．．．． \(\mathbf{\$ 2 7 . 0 0}\) &  \\
\hline Home Inventory ．．．．．．．．．．．．．\(\$ 13.00\) & ESiot Expane．Interfacaz 200 nly ）． 379.00 \\
\hline UMI & HEB \\
\hline Amok ．．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{\$ 3 0 . 0 0}\) & Shamus（ROM）．．．．．．．．．．．． \(\mathbf{3 2 9 . 0 0}\) \\
\hline Mateor Aun ．．．．．．．．．．．．．．．．． \(\mathbf{5 4 0 . 0 0}\) & Protector（ROM）．．．．．．．．．． 332.00 \\
\hline Alien Blitz ．．．．．．．．．．．．．．．．．． \(\mathbf{3 3 0 . 0 0}\) & Robot Panic（ROM）．．．．．．．．． 329.00 \\
\hline viserm A．．．．．．．．．．．．．．．．．．． 310.00 & Pirates（ROM）．．．．．．．．．．．．．．． 329.00 \\
\hline The Allan ．．．．．．．．．．．．．．．．．．．． 316.00 & HES Writer（ROM）．．．．．．．．．．． 329.00 \\
\hline Call on our Lar & Selection of \\
\hline VIC 20 \＆CBM 64 & ftware，such as： \\
\hline EpYX，Microspec & and Kansae City \\
\hline \multicolumn{2}{|c|}{Eoftware．} \\
\hline HARP &  \\
\hline PC－1500 & CEiso Printer，Plotter and \\
\hline POCKET COMPUTEA & CE 132 Cescerte Recorder ．．． 382.00 \\
\hline 16. & \multirow[t]{2}{*}{CE 155 8K Ram Expans．Mod．．．． 594.00} \\
\hline & \\
\hline PC1850．．．．seg．00 & Statistics Pack ．．．．．．．．．．．．． \(\mathbf{5 4 9 . 0 0}\) \\
\hline
\end{tabular}

\section*{computer mail order west} 800－648－3311

IN PA．CALL（717）3E7－857E
OEPT． 615,477 E．THIRD 日T．，WILLIAMBPORT，PA 17701
No risk，no deposit on C．O．D．orders．Pre－paid orders receive free shipping within the UPS Continental United States with no waiting period for certified checks or money orders．Add \(3 \%\)（minimum \(\$ 3.00\) ）shipping and handling on all C．O．D．and credit card orders．Larger shipments may require additional charges．NV and PA residents add sales tax．All items subject to availability and price change．NOTE：We stock manufacturer＇s and third party software for most all computers on the market．Call today for our new catalog．



\section*{A six-pack of tasty Apple** posters!}


\section*{Look for this poster display at your computer store.}


Here's your chance to get any or all of these beau-
tiful \(16 \times 24\) posters Free! except for just a small postage/handling charge! Commissioned by Datamost, and painted by well-known computer artist, Art Huff, each is a unique experience in design that will grace your home or office.
To get your posters, visit your favorite computer store and pick up a coupon where you see the counter display shown below. Fill out the coupon and mail it to Datamost. For each individual poster you want Free, include a registration card from any Datamost software package. Send only \(\$ 1.75\) postage/ handling fee with each order. (Note. Without a Datamost registration card, the Posters are available at only \(\$ 5.95\) each, plu: same postage/handling charge.)

Be the first to collect the entire series of these magnificent exclusive, and FREE Apple*posters from Datamost!

\section*{© DATAMOST}

8943 Fullbright Ave., Chatsworth, CA 91311. (213) 709-1202
Copyright 1983 Datamost Inc.

*The posters are exclusive products of Datamost, Inc. and are not connected with, or authorized by Apple Computer, Inc. **Apple is a trademark of Apple Computer, Inc.

\section*{YES! I Want To Participate in the Datamost FREE APPLE* POSTER OFFER}

Please sign us up and send me a complimentary set of the Six full color Apple Posters.
I would like: \(\qquad\) window banners. counter cards w/coupons.
Name: \(\qquad\) Title \(\qquad\)
Store/Business Name
Address:
City:
\(\qquad\) State \(\qquad\) Zip
Mastercard \(\qquad\) Visa \(\qquad\) No.

\section*{(1) DATAMOST}

\section*{Electronic Report Card}

The Report Card, for the Apple, tracks the progress of up to 300 students per diskette. The program calculates student and class averages and ranks students within their class. Exercises, quizzes and tests can be individually weighted for their effect on the final grade. The manual includes a reference section and a tutorial for ease of use.

Price is \(\mathbf{\$ 6 0 . 0 0}\) available from Sensible Software, 6619 Perham Drive, W. Bloomfield, MI 48033; (313) 399-8877.

\section*{Physics Paclages. for the Apple}

Harmonic Motion Workshop, Profectie Mo tion Workshop and Charg: ed Particle. Workshop ate the first three in a series of packages being developed by a fommer college Physics: professor. The Harmonic Motion Workshop visually presents the coniceprs. associated with barmonic: motion by use of high resolution graphics: Thes student can alter such variables as the phase, amplitude, and dampins? factor and immediately see the effect Projectile Motion Woxtshop is designet to (1ustrite profectie med
 a uniforni force of gravily?

In this program, the user max eantrol the profectile's initiat velocity and itsangle of fire: Charged Particle Workshop simulates the motion of a charged particle under the influence of various combinations of electric Sand magnetic fields uniform electric field, uniform magnetic field and crossed electricmagneticktield tire il tustrated:
- The packages require a 48K Anple with Applesoft in ROM and Disk 11 . Price is \(\$ 75.00\) each Svailable from our local computer retrilerem 4ight Fecminalogy Sortware Pradicts tric:

 C1ty 004311564051

\section*{Serpent Game for Atari}

In Serpentine for the Atari \(400 / 800\), giant serpents set forth to slay their slithery cousins. The snakes lay eggs and fight ferociously to protect their young. A fast arcade-style game with five maze configurations and many levels of play.

Price is \$39.95. Available from Broderbund Software, Inc., 1938 4th St., San Rafael, CA 94901; (415) 456-6424

\section*{Apple Tax Planner}

Tax Planner helps minimize personal tax liability through yearround planning. The pro-
(continued on page 112)

\section*{RIM + POWER from COMPUTECH}

All prices Postpaid (Continental U.S. otherwise \$2 credit)


Check the outstanding documentation
supplied with AIM65

Top quality power supply designed to Rockwell's specs for fully populated AIM 65 - includes overvoltage protection, transient suppression, metal case and power cable:
PSSBC-A (5V 2A Reg; 24V .5A Avg, 2.5A Peak, Unreg) ... \(\$ 64.95\)
Same but an extra AMP at 5 volts to drive your extra boards:
PSSBC-3 (5V 3A Reg; 24V .5A Avg, 2.5A Peak, unreg)
...\$74.95
The professional's choice in microcomputers:
AIM65/1K RAM . . . . . . . \$429.95 BASIC (2 ROMS) . . . . . \(\$ 59.95\)
AIM65/4K RAM . . . . . . \(\$ 464.95\) ASSEMBLER (1 ROM) . . \(\$ 32.95\)
FORTH (2 ROMS)
...........\$59.95.
SAVE EVEN MORE ON COMBINATIONS
AlM65/1K + PSSBC-A . \$479.95 AlM65/4K + PSSBC-3 . \$524.95
We gladly quote on all AIM65/40 and RM65 items as well.

\section*{ORDERS: (714) 369-1084}
P.O. Box 20054 • Riverside, CA 92516

California residents add \(6 \%\) sales tax
Circle No. 79


Software Catalog (continued)
gram is designed for tax practitioners, estate planners and attorneys, plus banks and trusts who do income tax projections for clients. The Planner helps build client data bases for use during subsequent tax seasons and in serving more clients. Individuals who do their own financial planning will also find the Planner helpful.

User-modifiable parameter files for each year permit long-range taxplanning options. Up to four client data files can be handled at once - the first to hold current data, additional files to reflect assumed data changes. Up to four different assumption data
files for a given year and tax calculations for four different years can be programmed.

Tax Planner cost is \(\$ 300.00\) available from CPAids, 1061 Fraternity Circle Drive, Kent, OH 44240; (216) 678-9015.

\section*{Commodore Products}

The 64-RABBIT is a high-speed cassette interface on ROM cartridge that adds 12 commands to BASIC. The new RABBIT save, load, and verify commands operate five times faster than the normal BASIC commands Other commands include loadf
run test meniory, decimal to hexidecimal conversion, hex to decimal conversion, and more.

RABBITS are also available for the VIC -20 and PET 4001,8001, and 8032. Price is \(\$ 39.95\).

MAE /Macro Assembler and Text Editorl is a professional development tool based on the well known Apple: PET- afid ATAR1MAE, Features include: 38 crror cedes, 27 commands, 26 pseudo ops, and 5 conniftional assembly operators; buittin software UART 1110-9600 band 5 and macro, conditional assembly fand interactive assembly capability: Text editor features in-
clude autoline numbering, find, exchange string, copy, move, renumber, delete lines, and append. Word processor features include right and left justify, center, set margins, define text body shape, headers, and footers.

AII MAEs are priced at \(\$ 99,95\).

Our Software and hardware catalogs list the newest and most pertinent products on the market. The easy-to-read entries offer quick information for our readers. Use these catalogs to present your products. Send your press releases to:
MICRO INK
P.O. Box 6502

Amherst, NH 03031


C COMPILERS-COMMON FEATURES:
- C COMPILERS-COMMON FEATURES: and source - fast compilation and execution - full language.

AZTEC C IICP/M (MP/M) \$199
- produces relocatable 8080 source code - assembler and linker supplied - optional M80 interface SID/ZSID debugger interface - library utility - APPLE requires 280 and 16 K card

AZTEC C][ APPLE DOS \(\$ 199\)
- relocating assembler supplied • APPLE SHELL VED © \(\mathbf{~} 199\) - litor • library and other utilities - requires 16 K card

C86 IBMPC MSDOS CP/M-86 \$249
- directly produces 8088/8086 object code - linker supplied



\section*{3519595959595959}

\section*{ITmTOMPU SENSEI:,'}

\section*{CARDBOARD 3}

An Economy Expansion Interface (Motherboard)

\section*{For the VIC-20@ Personal} Computer
The "CARDBOARD/3" is an expansion interface designed to allow the user to access more than one of the plug-in-type memory or utility cartridges now available. It will accept up to 3 RAM or ROM cartridges at once. For example.
- 16k RAM + 16k RAM + 3k RAM
- 16k RAM + 8k RAM + Super Expander
- 16k RAM + 8k RAM + Vic-Mon
- 16k RAM + 3k RAM + Programmer's Aid
- High quality T.R.W. gold plated connectors
- This board is fused
- 90 day free replacement warranty covering everything except the fuse

\section*{\(\$ 39.95\)}

\section*{CARDBOARD 6}

An Expansion Interface for VIC-20 \({ }^{\circ}\)
- Allows memory expansion up to 40 K
- Accepts up to six games
- Includes a system reset button
- All slots are switch selectable
- Daisy chain several units for even more versatility
\(\$ 87.95\)

\section*{TO ORDER:}
P. O. BOX 18765

WICHITA, KS 67218
(316) 263-1095

Personal checks accepted
(Allow 3 weeks) or
C.O.D. (Add \$2)

Handling charge \(\$ 2.00\)
Circle No. 82
VIC-20 is a registered trademark of Commodore

\section*{New Publications}

The Small Computer Connection; by 992 pages, hard cover
 McGraw-Hill Copublication, 1221
 NY 10020, 1983,190 pages, paper bate \(4, \operatorname{man}, 6\), FidiN. Fernandez, Donna N:
 soms, hrce 605 third Ave 2 New work, andbrok; NY \(10158,1983,277\) pages, paperback: by David L. Heiserman. Howard W Sams \& Co, Inc, 4300 West 62 md St. Indianapolis, IN 46268 , 1983 , 324 pages, paperback.
1SBNO-672-21889-5 \(\quad \$ 16.95\)
The World Connection, by Timnthy Orr Knight. Howard W. Sams \& Co. Inc., 4300 West 62 nd St, Indianapolis; IN \(46268,1983,142\) pages, paperback ISBN 0-672-22042-3
\(\$ 9.95\) The McGraw-Hill Computer Hand- CA 94710 in book, by Harty Helms. McGraw-HII ISBN0-89599-091-1 Ftwe \$15.95 Book Company, 1221 Avenue of the Americas, New York, NY 10020,1983 ,
plus \(\$ 150\) S/H
Doing Rasiness wilh PASCAI, by
Richard Hergert \& Douglas Hergert: SYBEX, 2344 Sixth Street, Berkeley:
3 Aric Exercised for the A wari, by lP. Lamoiticr SYBEX, 2344 Sixth Strect, Berkeley, CA 94710,1983 , 25 I pages. paperback.
ISBN O-89599101-2 \(2=\$ 12.95\)
pluss \(1.505 / 4\)

nuaro


Announcing the NEW, Summer 1983 Moore Computer Forms and Supplies Catalog


Now with a NEW 34-page computer forms section!
- Our new, 80-page Summer Catalog features more than 800 quality, brand-name productsall guaranteed to meet your \(100 \%\) satisfaction or your money back
- For all your computer or word processor needs, a wide selection of magnetic media, disk storage, binders, ribbons and furniture
- Over 40 pages of multi-purpose computer forms and labels at low prices, including an ALLNEW 34 -page section of imprinted forms
- Unmatched customer services, like fast order processing, custom imprinting, emergency overnight delivery, plus exclusive toll-free Technical Product Assistance

 high-resolution graphics for your Rockwell

AIM computer.

\section*{You get:}
- 16 colors
- Text
- \(192 \times 256\) Pixels

AIM Graphics includes its own 16 K dynamic RAM memory, and uses no system RAM.

You get AIM Graphics, start-up software and data pack for \(\$ 175.00\).

Call or write today to order or get more information.

Rockwell AIM is a trademark of Rockwell, International

\section*{DEEIGIGN DYNAMICS}

1830 Soscol A venue
Napa, California 94559
Yes! I want AIM Graphics!

Name: \(\qquad\)
Firm: \(\qquad\)
Address:
City: \(\qquad\) St \(\qquad\) Zip \(\qquad\)
For immediate response, call now:
(707) 257-6000

\section*{Atari Speech Synthesizer}

VOICE BOX II for ATARI 400/800 computers requires a 32 K disk system. It offers many features, including the abilities to speak with inflection, to speak in foreign languages with correct foreign spelling as input, and to sing with voice and 3-part music.

VOICE BOX II contains a library of 30 famous songs and a comprehensive music system that allows you to enter new songs easily.

Software provided can convert the bottom two rows of the Atari keyboard into a piano with a range of \(31 / 2\) octaves using the shift and control keys. You can also have programmable musical sound effects such as tremolo, vibrato, and glissando.

Price is \(\$ \mathbf{1 6 9 . 0 0}\). For more information, contact The Alien Group, 27 West 23rd Street, New York, NY 10010; [212) 741-1770.


Voice Box II for ATARI Speech Synthesizer with Singing and Inflection

\begin{abstract}







The 280 based card comess wht me (EDHN 86
\end{abstract} operating sxstem, giving usersaccess tod the biond rangerit applications programs available for the sobitmictocomis: puter world. It will also give access to sotwatedevelopet ment tools not developed specifically to work witheyple DOS. Once installed, the user will specify fhich operating system by booting the appropinte 260 or 6502 A disks

The card features 64 K of randon aceess membry doubling the amount of menory standard with the Apple Ile. In addition, the card allows for an 80 colmmn display

Two versions of Microsoft's 3 ASIC. language ninterpreter are included: MBASIC supports the lowfresolution graphics and GBASIC supports both the low- and high resolution graphics

\section*{Color Computer Keyboard}

SUPER-PRO replacement keyboard kit for TDP-100 and Radio Shack Color Computers offers complete compatibility and operator convenience.

Price is \(\$ 69.95\). An additional plug adapter, priced at \(\$ 4.95\), is required when upgrading computers manufactured after approximately October, 1982.

Available from dealer or Mark Data Products, 24001 Alicia Parkway, No. 226, Mission Viejo, CA 92691.

\section*{Epson FX-80 Printer}

The Epson FX-80, a high-performance bi-directional printer, combines a printing speed of 160 characters-persecond with features that provide sophisticated printing for a wide range of applications.

The FX-80 offers a software-selectable choice of elite ( 12 cpi ) or pica ( 10 cpi ) print spacing. In addition, users can send their own special fonts from their computer system to the printer, downloading the font into the printer's memory.

Other features include a one-to-one graphics ratio and a 2 K -byte buffer, which allows buffered printing on longer productions. The FX-80 provides 9 x 9 dot-matrix characters with full descenders and is downward compatible with the Epson MX Series of printers. It offers proportional spacing, pin- and friction-feeds, and a standard parallel communications interface, with serial or IEEE 488 interfaces also available as options.

Normal, emphasized, bold and double-emphasized printing densities provide flexibility.

Price is \(\$ 699.00\). Available through Epson retailers. For more information contact Epson America, 3415 Kashiwa Street, Torrance, CA 90505; (213) 539-9140.

\section*{Atari I/O Package}

The MOSAIC I/O Package can help give the ATARI computer direct ties to the real world. The four ports on the front of the ATARI computer connect directly to a PIA for use as output as well as input ports. Now ATARI owners can build custom program controllers, interface to home control circuits, or use any hardware the imagination can devise.

The I/O Package comes with four, nine-pin connectors, four, twenty-four-inch lengths of nine conductor ribbon cable, and complete documentation for their use.

Order number H-309, Price \(\$ 18\). Available from Mosaic Electronics, P.O. Box 748, Oregon City, OR 97045.






 Apple He, with or withoot ant Appemaminot stind ht


The Tasman Turtle, a programmable robot, is available for the Apple II or other parallel interface micros as well as those with an RS-232 interface. All turtles can move and turn, toot their horn, blink their eyes, draw with a pen and "feel" through touch sensors.

A talking version of Tasman comes with a basic vocabulary of 150 words, expandable to more than 600 words. Another option is an electronic compass that indicates directional change.

Prices begin at \(\$ 999.95\). For more information contact Harvard Associates, Inc., 260 Beacon Street, Somerville, MA 02143; (617) 492-0660.

The Tasman Turtle
interfaced to an Apple II


THE PROFESSIONAL'S CHOICE
FORTH - A Tool for Craftsmen!
It has been said that if Chippendale had made programs he would have used FORTH as his tool. If you want to learn how to program, use a teaching language-PASCAL or BASIC. If you know how to program, use a language designed for craftsmen-FORTH.

\section*{FORTH Systems}

For all FLEX systems: \(6800 \& 6809\). Specify \(5^{\prime \prime}\) or \(8^{\prime \prime}\) diskette and hardware configuration. For standalone versions, write or call.
** tFORTH-extended fig-FORTH (1 disk)
\(\$ 100(\$ 15)\)
* * tFORTH + -extended more! (35'* or \(28^{\prime \prime}\) disks) \(\$ 250\) ( \(\$ 25\) ) tFORTH + includes 2nd screen editor, assembler, extended data types and utility vocabularies, GOING FORTH CAl course on FORTH, games, and debugging aids.

TRS-80 COLORFORTH - 10K ROM Pack
Full screen editor. Will work on \(4 \mathrm{~K}, 16 \mathrm{~K}\), or 32 K systems \(\$ 110(\$ 20)\). Disk versions available.

\section*{Applications Programs}
** firmFORTH 6809 tFORTH + only For target compilations to rommable code. Deletes unused code and unneeded dictionary heads. Requires IFORTH +
* * TINY PASCAL compiler in FORTH. 6800/09
\$75 (\$20)
* * FORTH PROGRAMMING AIDS: Extensive debugging, decompiling, and program analysis tools.
\$150 (\$10)
Manuals alone, price in (). Add \(\$ 5 /\) system for shipping. \(\$ 12\) for foreign air

Talbot Microsystems
1927 Curtis Ave., Redondo Beach, CA 90278
(213) 376-9941
(TM) tfORTH, COLORFORTH and firmFORTH are trademarks of Talbot Microsystems. (TM) FLEX is a trademark of Technical Systems Consultants.

Circle No. 85

\section*{RAM}

For ATARI with Lifetime Warranty
\begin{tabular}{lcc} 
64K Board & \((400)\) & \(\$ 150\) \\
48K Board & \((400)\) & \(\$ 115\) \\
32K Board & \((400 / 800)\) & \(\$ 90\) \\
Real Time Clock & \((800)\) & \(\$ 50\) \\
16K Board & \((\) VIC-20) & \(\$ 80\)
\end{tabular}

FREE SHIPPING ANYWHERE IN U.S.A. Intec

Peripherals Corp
906 E. Highland Ave. San Bernardino, CA 92404 (714) 881-1533

VIC-20 is a Trademark of Commodore. Inc.
ATARI, 400, 800 are Trademarks of ATARI, Inc

\section*{}

Many new finctions suchas systery commands for catalog controt, 10 active files, end of fie tend of volume processing,
 command hic pracessing long sering redu cominand Many
 Grafton, 0154044

\section*{}

Fast Assembly langutge wory heocessorifor Bk, Cassetie.

 supports 8322 K wifitidilional featires price \(\$ 35\).
 92ad Gircle, fancotiver, Ma 9866 .

\section*{}







\section*{Frantin Edow therort}

There is ro 12 ER methd, 9 ut assembed bioards are an abo solute mist for four fraikit ice 1000, Nócuting whing of

 13827

\section*{osi proverant}

 C2. C4 spstems. Wrietor catiog A tailable hom DMP Systems or pur many distribitos: DMPSystems, 319 Hampton Blid, Rochester; Ny \(=4612\)

\section*{Payroll}

Compatible with 64 \& Apple Eompaters. Features, 100 employees per disk, Trime carif gading, autphatic overtime. User changeabic taxtables, five miscellaneaus deductions fixed or percentage amounts, tips, antomatic printing of
 42, Poland, O1444514, 1416 7751-2143.

\section*{ost - Came soll}

Two arcade ganies Machine language (disk only and Basic. Lunar Pro. (Lmaz Lerndet with multiple screens, craft rotation, excellent graphics Squeeze (zAP) qefend your starcastle: Fuistratilg Argide eraphics, Clpanf, C4pmi, C1p 6.5 K : \(\$ 5\) cassecte/ \(\$ 12\) disk pph Fhware, Surte \(15 \mathrm{c}, 1150\) fifth Ave New: Xork, NX 10028

\section*{AMMG5 Roal simo crock:}

Provides hour, minute, seconid, day of weel, day, month; year: 12 or 24 hour format: Pin compaithe with AMM expansion con nectotifalso SYM, KMM Foun switch selectahle frterrupts: Nicad battery backup, Industial quality board 4.5 x 6 AlIC's socketed Single 5 y styply 22 page mamal. All software in. cluded Buye board \$19 Complete A\&T \$ \(\$\), hatudes batteries Add \$4 ship and handing, Calif xesidents add \(6 \%\) DATA. DESIGNGROUP, P O. BOX 3318 , la lolla, CA 92038 ,
(619) 2656949


Basic Aid
＂An excellent program and fine utility．＂ Rainbow Review－Aug． 82
Single control key input of BASIC commands．\＄34．95

\author{
Colorcom／E \\ ＂Out of thousands of programs， this program．．．SUPER！＂ 80．US Review－Nov． 82 A smart communications package． Disk or Rompack \(\$ 49.95\)
}

\section*{Spectrum Stick}
＂More like arcade joysticks than anything we＇ve yet encountered．＂
Rainbow Review－Oct． 82
Response and control put the joy bach in color computing．\＄39．95

> CoCO／EAD
> Color Computer Editor， Assembler and Debugger

\section*{Spectrum Paddle \(\begin{gathered}\text { For quicker side－to－side action } \\ \text { bigher scores．} \\ \text { sig9 }\end{gathered}\)}

\author{
CALL MOW \\ 212．441－2807 for fast delivery All orders plus \(\$ 2\) shipping
}

SEND TO DEPT．C2 93－15 86TH DRIVE WOODHAVEN，N．Y．

11421 NY residents add sales tax Circle No． 87

\section*{OSI Disk Users}

\section*{Double your disk storage capacity Without adding disk drives}

Now you can more than double your usable floppy disk storage capacity－for a fraction of the cost of additional disk drives．Modular Systems＇DiskDoubler \({ }^{\text {TM }}\) is adouble－ density adapter that doubles the storage capacity of each disk track．The DiskDoubler plugs directly into an OSI disk interface board．No changes to hardware or software are required．

The DiskDoubler increases total disk space under OS－ 65U to 550K；under OS－65D to 473K for 8－inch floppies， to 163 K for mini－floppies．With the DiskDoubler，each drive does the work of two．You can have more and larger programs，related files，and disk utilities on the same disk－for easier operation without constant disk changes．

Your OSI system is an investment in computing power． Get the full value from the disk hardware and software that you already own．Just write to us，and we＇ll send you the full story on the DiskDoubler，along with the rest of our growing family of products for OSI disk systems．

TMDiskDoubler is a trademark of Modular Systems．

Modular Systems
Post Office Box 16 C
Oradell，NJ 07649.0016
Telephone 201262.0093

ZAP！Climbing the corporate ladder could be fun except for all that falling paperwork．This Hires arcade type game altows up to 4 players to advance through each floor to scale the corporate ranks．Be careful， it＇s easy to be ZAPPED！CARTRIDGE for VIC \(20^{\circ}\)

ATEPAK Eight graphic games on tape with complete manual to explan gaming techinques．For VIC \(20^{\circ}\) ONLY \(\$ \mathbf{2 4 . 9 5}\)
Word Wizard For The VIC \(20^{\circ}\) ．（Requires at least \(8 K\) memory expansion）A uses friendly WORD PROCESSOR with optional joystick control Easy edit and string manipulation commands．Full use of function keys， Delete Word．Search functions and Full hustification．Use VIC \(20^{\circ}\) printer，or any Centronics compatible printer connected to the user port．On Tape（supports dish）．
\(\$ 34.95\)
Bomber Word－A unique graphic word game on cartridge that provides the full thrill of arcade action． Complete with six modes of play options for added enjoyment．Play against the computer or another player． 6 to adult．For VIC \(20^{\circ}\)
\(\$ 29.95\)
Tic Attack．A fast action arcade game on Cartridge that challenges all of your dexterity．Written in machine ianguage for special audio \＆visual effects．Over 100 levels of play．High score indication．For VIC \(20^{\circ}\)
\(\$ 29.95\)
Dot－A．Lot－As you wander through life collecting Berries，you happen upon some magical fruit．Pick one and the treasures appear，but the Meanies are out today looking to spoil your fun．Defeat them and con－ tinue on to a higher level．An ever changing maze plus arcade type animation to provide a real winning CARTRIDGE for the VIC \(20^{\circ}\)
\(\$ 29.95\)
Triple Play．Three games that are both fun and educational CROSSWORDS frequires at least 8 K expan sion）．Five complete puzzles are included．CRYPTOSOLVE will help you solve those cryptic messages found in newspapers，and magazines with a systematic computer technique．Included are approximately 50 dif－ ferent puzzles．You can even enter your own cryptic messages．HIDDEN WORDS will display a matrix of seemingly random letters on the screen．You should be able to find many words．Included are approx－ imately 25 different puzzies．For VIC \(20^{\circ}\)

ONLY \＄29．95 for all 3
KEYQUEST－Our exciting new Arcade type game that takes you through the many levels of an ancient dungeon while gathering treasures and gaining experience points．Monsters，magical keys，and hidden passages all add to the excitement．ON CARTRIDGE for VIC \(20^{\circ}\)

ONLY \(\$ 34.95\)
SKETCH PAD \＆CHAR．GEN－A high resolution drawing program that will aliow you to save your pictures to tape．Also included is a simple to use character generator that will allow you to design a different character for every printable key．Create game creatures，foreign alphabets，secret symbols or other special characters．One set is included．On tape for the VIC \(20^{\circ}\)


\section*{Hardvare}

Expand－0．Ram－16K Expansion Board for the VIC \(20^{\circ}\) with reset，memory write protect，full memory allocation，plus WWO slots．Like having 2 products in 1 ．Can be used as a cartridge development system too．
\(\$ 119.10\)
Universal Tape Interface \＆Duplicator－（Use on the Commodore 64＊and VIC 20 \({ }^{\circ}\) ）．With this device，you can easily load，save or even duplicate tapes with your standard recorder．Full 3 LED indication of Data transfer．A reliable way to Load，Save and Duplicate．NOTE：Duplication requires 2 standard casselte recorders

Only \＄49．50
TYMAC BUFFERED PARALLEL CABLE WITH DRIVER－For the VIC \(20^{\circ}\) \＆Commodore \(64^{\circ}\) ．This cable assembly plugs into the USER Port and provides a simple and inexpensive way to connect a PARALLEL Printer to your computer．

ONLY \(\$ 19.95\)
DRIVER CARTRIDGE for VIC \(20^{\circ}\) ．Take full advantage of the capabilities of your Paraliel Printer including full Commodore graphics and formatting．Available for SEIKOSHA，C．IIOH，OKIDATA，and others．Specify printer．

ONLY\＄29．95
TYMAC＂CONNECTION＂－A truly intelligent parallel interface for the VIC \(20^{\circ}\) and Commodore 64．It will make your printer operate like the COMMODORE Printer including graphics，text symbols，tab＇s，and virtually every other printer function．Plugs into the senal socket．Available for most popular parallel printer．
\(\$ 119.00\)


Deater and Oistributor Inquiries Invited 201838－9027


IU
DISTRIBUTING INC．

13428 Route 23，Butter，NJ． 07405
MOTE：We solicit hardware and software items tor the VC 20 and Commodore 64 Royalties．license fees，or outright purchases can be negotiated．Commodore \(64^{\oplus}\) \＆VIC \(20^{ \pm}\)are Registered Trademarks of Commodore Business Machnes，Inc．

\section*{The \\ MIDNITE \\ SOFTWARE gazette}

\author{
A Bi-Monthly Journal of Notes, Reviews and Articles Five Years of Service to the PET'Community
}


The Independent U.S. Magazine for Users of Commodore Brand Computers

EDITORS: Jim and Ellen Strasma \(\$ 20\) US / YEAR Sample Issue free on request, from: 635 MAPLE, MT. ZION, IL 62549 USA 217/864-5320

\section*{OHIO COMPUTER CAMP}

\section*{"GIVE YOUR CHILD A BETTER CHANCE IN A CHANGING WORLD!'}


One of the finest computer summer camps in the nation! Now in our third season, Atari Learning Center this year will offer complete recreational, cultural and social camaraderie in conjunction with Denison University. Full motel-resort facilities (swimming, sauna, tennis, atc.) and at least 6 hours every day of hands-on computer learning.
Spacious, comfortable rooms and meals at the college dorms. PLUS....mid-course weekend break at Kings Island and the fabulous Kings Island Resort Inn!

COMPARE OUR LOWER COST FEE structure before you send your child to any other camp. Reservations accepted now for two and four week sessions June 13 through August 5. Restricted to \(\mathbf{4 0}\) co-ed students, ages 9-18, per session.

For Free information packet call:
614-454-6408 or 349-8448 or write to:

Circle No. 91
Mitey Byte Corporation
1325 Maple Ave.. Zanesville, Ohio 43701

IAICRO

\section*{Reviews in Brief}

\section*{Product Name: Disk Data Handler}

Equip. req'd: TRS-80 Color Computer 32K Disk
Price:
Manufacturer:
\(\$ 44.95\) + \$1.00 Shipping
Custom Software Engineering, Inc. (D-8)
807 Minutemen Causeway
Cocoa Beach, FL 32931
Description: Disk Data Handler is a database management system for the Color Computer. On-screen editing and high-speed record sort and selection is featured. The BASIC program with machine-language subroutines allows you to create fields and records that will fit your specific needs.

Pluses: The program is easy to learn and has powerful sort and select features. Both quick and extended files are available. Extended files are stored on disk and are retrieved by keyed quick files. Reports are easy to generate and report command files can be read that will format and print any desired report. The program will create files of selected data for additional processing by your BASIC programs.

Minuses: The disk-handling routines are not error trapped. Care must be used to specify correct file specifications otherwise the program will crash. The documentation does warn where this will happen. The report feature has many powerful aspects, but it lacks the ability to generate headings or pagination. No computation is possible in files.

Documentation: A 12-page instruction sheet is included that explains the operation of the program. Techniques of accessing and computing numeric data are included as is a Stock Tracker program.

Skill level required: A knowledge of data handling and filecreation techniques is helpful but not required.

Reviewer: John Steiner
\begin{tabular}{ll} 
Product Name: & Ultra 80CC \\
Equip. Req'd: & Color Computer with 32K memory \\
Price: & \(\$ 49.95\) (Disk only) \\
Manufacturer: & Spectral Associates \\
& 141 Harvard Ave. \\
& Tacoma, WA 98466
\end{tabular}

Description: Ultra 80CC is an old friend in disguise for many 6809 users; it is TSC's editor and 6809 mnemonic assembler, adapted for the Color Computer. This software is used on most 6809 systems running Flex, and this adaptation makes fully professional software available for Color Computer owners. The adaptation includes tape read and write from the editor and printer output for both modules. ( \(\mathrm{I} / \mathrm{O}\) is normally furnished by Flex.) Both modules operate from command lines similar to those
used by most DOS packages, so the user who later upgrades to a DOS will already be familiar with this type of operator communication. The Editor is an exceptionally powerful content-oriented line editor with a full complement of edit, search, copy, and delete functions.. Full mastery of the editor's capabilities will take some time, but simple editing is quickly learned. The assembler has full macro and conditional assembly capability and ten assembly-time options including print-format options. Source files should be produced by the editor, but tape files probably can be read by the editor and written to disk. Object code is returned to disk and then the file can be accessed by the Radio Shack DOS.

Pluses: Exceptional quality at a very low cost. Short learning curve to get started, with reserve power as the user learns more about the programs. Very smooth operation with Radio Shack DOS and various debugger programs.

Minuses: None noted; some similar products offer a debug monitor at the same price, but the quality in this package makes it a bargain.

Documentation: The manual includes over 100 pages devoted to use of the two programs, 6809 assemblylanguages procedures, and addenda detailing the special features in the CoCo adaptation.

Experience level required: Some assembly language experience will ease the learning process, but a diligent beginner should be able to use this package to good advantage.

\section*{Reviewer: Ralph Tenny}

Product Name: Apple Mechanic
Equip. req'd: Apple II, 48K
Price: \(\quad \$ 29.50\)
Manufacturer: Beagle Bros.
4315 Sierra Vista
San Diego, CA 92103
Description: This new Apple utility contains a shapedefining/manipulating program, a disk zap program, and a collection of "two liners."

Pluses: The shape program includes several character set fonts that do not require any extra drawing code. The Applesoft DRAW command is entirely sufficient. The program for modifying fonts is without question the best available.
Minuses: Not many. Perhaps the manufacturer should have used examples of greater educational value in the "Byte Zap" program user's manual.

Documentation: Well written, informative, and entertaining. (continued)
LIFETIME
GUARANTEE HUB-RINGED

\section*{C64-FORTH for the Commodore 64} FORTH SOFTWARE FOR THE COMMODORE 64
C64-FORTH (TM) for the Commodore 64-\$99.95
- Fig Forth-79 implementation with extensions
- Full feature screen editor and macro assembler
- Trace feature for easy debugging
- \(320 \times 200,2\) color bit mapped graphics
- 16 color sprite and character graphics
- Compatible with VIC peripherals including disks, data set, modem, printer and cartridges
- Extensive 144 page manual with examples and application screens
- "SAVETURNKEY" normally allows application program distribution without licensing or royalties
C64-XTEND (TM) FORTH Extension for C64-FORTH - \(\$ 59.95\) (Requires original C64-FORTH copy)
- Fully compatible floating point package including arithmetic, relational, logical and transcendental functions
- Floating point range of \(1 \mathrm{E}+38\) to \(2 \mathrm{E}-39\)
- String extensions including LEFT\$, RIGHT\$, and MID\$
- BCD functions for 10 digit numbers including multiply, divide, and percentage. BCD numbers may by used for DOLLAR.CENTS calculations without the round-off error inherent in BASIC real numbers.
- Special words are provided for inputting and outputting DOLLAR.CENTS values
- Detailed manual with examples and applications screens (Commodore 64 is a trademark of Commodore)
TO ORDER - Specify disk or cassette version
- Check, money order, bank card, COD's add \(\$ 1.50\) - Add \(\$ 4.00\) postage and handling in USA and Canada - Mass. orders add 5\% sales tax - Foreign orders add 20\% shipping and handling - Dealer inquiries welcome

PERFORMANCE MICRO PRODUCTS


770 Dedham Street. S-2
Canton, MA 02021
(617) 828-1209


Ver. 2 For your APPLE II/II+
The complete professional software system, that meets ALL provisions of the FORTH-79 Standard (adopted Oct. 1980). Compare the many advanced features of FORTH79 with the FORTH you are now using, or plan to buy! features

OURS OTHERS
79-Standard system gives source portability Screen editor with user -definable controis.
Macro-assembler with local labels
Virtual memory.
Both 13 \& 16-sector format.
Multiple disk drives.
Double-number Standard \& String extensions.
Upper/lower case keyboard input.
LO-Res graphics.
80 column display capability
Z.80 CP/M Ver. 2.x \& Northstar also available Affordable!
Low cost enhancement option Hi-Res turtle-graphics.
Floating-point mathematics.
Powerful package with own manual,
50 functions in all.
AM9511 compatible.
FORTH-79 V. 2 (requires \(48 \mathrm{~K} \& 1\) disk drive) \(\$ 99.95\)
ENHANCEMENT PACKAGE FOR V. 2
Floating point \& Hi-Res turtle-graphics
COMBINATION PACKAGE
\(\$ 139.95\)
(CA res. add 6\% tax: COD accepted)

\section*{MicroMotion \\ 12077 Wilshire Blvd. \#. 506}
L.A., CA 90025 (213) \(821-4340\)

Specify APPLE. CP/M or Northstar
Dealer inquiries invited

\section*{ATTENTION PROGRAMMERS!!}

DATASOFT is currently seeking programs and programmers to add to their rapidly growing and expanding operation. A leading marketer and developer of personal computer software, DATASOFT offers experienced assemblylanguage programmers the opportunity to join their staff to develop and translate arcade games such as \(\mathrm{ZAXXON}{ }^{\text {rN }}\), as well as to author original material for their games, education and home management product lines. DATASOFT pays competitive salaries, plus bonuses based on product performance. Relocation assistance is available, if needed.

If you have working knowledge of Atari, Apple, TI , or Commodore operating systems, graphics, animation and sound, call or write Melinda Storch at:


9421 Winnetka Ave.
Chatsworth CA 9†311
(213) \(701 \cdot 5161 /(800) 423-5916\)

Circle No. 95

ZAXXON and SEGA are registered trademarks of Sega Enterprises. DATASOFT is a registered trademark of Datasoft, inc

Skill level required: Both the novice and the expert can benefit from this product.

Reviewer: Chris Williams

Product Name: Semi-Draw
Equip. req'd: TRS-80C 32 K Extended BASIC
Price:
\$21.95
Manufacturer: Computerware
Box 668
Encinitas, CA 92024
Description: Semi-Draw is a graphics development and sketching program for the Color Computer. Pictures can be drawn in three resolutions - Semigraphics 8, 12, or 24. Text can be placed anywhere on the graphics screen. Up to eight colors plus black are allowed, and drawings can be animated by paging through up to six available screens.

Pluses: Allows drawings to be made using the joystick or keyboard. Pictures can be stored or retrieved on tape for use with other software or transferred to a Line Printer VII, Line printer VIII, or NEC 8023 printer. Colors are simulated by dot-pattern densities.

Minuses: The program is not compatible with the RS disk system.

Documentation: A six-page manual is included that describes the operation of the program.

Skill level requires: No special skills required.
Reviewer: John Steiner

Product Name: Earl's Word Power: Horrible Homonyms Equip. req'd: Apple II or Apple II + Price: \(\quad \$ 29.95\)
Manufacturer: George Earl
1302 South General McMullen
San Antonio, TX 78237
Author: Karen Knudson
Description: This is an educational program that enables the student to practice the most abused homonyms (their/there/they're, its/it's, too/to/two, etc.. Each homonym is defined and used in an example. Then a sentence missing a word is shown, with the homonyms listed below. Paraphrased Shakespearian plays are used for review tests.
Pluses: The program provides instant feedback with the score shown after each problem. When a mistake is made, the program reviews the material and then presents the problem again. The program is completely error-trapped (ignores spurious key entry), and the screen shows large, easy-to-read type. I would recommend this program for school and home.
Minuses: The 13 sets of homonyms are fixed; so a teacher cannot insert her own words. The program does not automatically send low scorers back for another review. Also, there is no provision for saving student scores on disk.
Documentation: One sheet on loading the disk; all necessary instructions are built into the program.
(continued)

\section*{COMPUTER ACGESSORIES}

\section*{ERRORS-DOWNTINE-SERYICE}

A speck of dust, dit, or magnetic oxide on the read/write head of your floppy disk can cause data transfer erors, a disk crash, or even a costly disk drive failure. Regular use of Perfectdata head cleaning diskettes can keep your drive heads clean and your system up and running. The Perfectdata system can be used on single or dual-sided floppy disk drives. (Comes complete with 2 cleaning diskettes, a4 oz. bottle of Cs 85 cleaning solution and full instructions.)
5.25" Disk Drive Cleaning Kit \(\$ 22.75\)

8" \(^{\prime \prime}\) Disk Drive Cleaning Kit \(\$ 22.75\)

\section*{ORGANIZE AND PROTECT YOUR DISKETTES}

Organize your diskettes with an Innovative Concepts Flip ' N' File from Mercury Micro. Holds up to 50 diskettes in a handsome smoke-colored transparent plastic case.

Case for 5.25" Diskettes \(\$ 23.75\)
Case for 8" Diskettes \(\$ 29.75\)

\section*{WHATS YOUR FAVORITE NUMBER?}

New for spring. Top quality shitts with " 64 " or " 20 " printed in large numerals on both front and back. \(50 / 50\) blend will not shrink. Specify color and size and number choice. Available in red or blue. S-M-L-XL
\(\$ 7.50\) each
ORDERING INFORMATION
Phone (301) 994-1122 SHIPPING
Add \(\$ 1.50\) to all orders for shipping. We pay balance for UPS service on all orders. Add \(\$ 2.00\) for COD. Maryland residents please add \(5 \%\) state sales tax
WRITE OR CALL FOR FREE COMPUTER ACCESSORY CATALOG: SURGE PROTECTORS, DUST COVERS, BOOKS, DISK MAINTENANCE BLANK MEDIA AND MUCH MORE.

mom SUPER SALE

\section*{Bulk Diskettes* with envelopes}
*Now Get High Quality at a Low Price Manutactured by a Major Disc Company For MDS Without Their Name on Diskettes "Minimum order 20 diskettes with Tyak envelope and storage shipping box *Quantity Disiounts - 100 deduct \(3 \%\) 1000 deduct \(5 \% 10000\) deduct \(10-100 \cdot\) Centified 1 Year Warranty

\section*{5 \(1 / 4\) " Soft Sectors}
\begin{tabular}{l} 
SINGE SIOE \\
SINGE DENSITY \\
W/HUB RING \\
\begin{tabular}{l} 
SINGE SIDE \\
DOUBLE DENSITY \\
W/HUE RING
\end{tabular} \\
\begin{tabular}{l} 
DOUBLE SIDE \\
DOUBLY DENSITY \\
W/HUB RING
\end{tabular} \\
\hline
\end{tabular}

\section*{PRINTERS}

All EPSONS available ......... Scall GEMINI 10 by Star Micronics \(\$ 35900\) GEMINI 15 dy Star Micronics \(\$ 549.00\) Okrdata Microline 80 .......... \$call Okidata Microline \(82 \ldots .\). . \(\$ 469.00\) Okidata Microline 83A........ Scall Okidata Microline \(84 \ldots . .\). ... Scall
\(8^{\prime \prime}\) Soft or 32 Sectors


\section*{TANDON DISK DRIVE ENCLOSURES}

Compiete with Chassis \& Power Supply: Fuliy assembled silver or beige chassis with external card edge connector for easy cable installation for \(514 "\) drives. With MDS 120 days warranty
\(\$ 59.00\)


BARE DRIVES
TM100 140 Tin
TM100 40.40 Trk
\(\$ 19900\)
TMiOO 480.80 Trk
\(\$ 26900\)
SIEMANS FDDIOO 8 SS DD 8 in
TM50 SS DD 40 Trk Thinline
\(\$ 33900\) \(\$ 27900\) \(\$ 19900\) TM84B 1 SS/OD 8" 77 Trk Thinline. \(\$ 36900\)
IM84B \(200 / 00 B^{\prime \prime} 77\) Trk Thindine \(\$ 47900\) Add \(\$ 59.00\) For Complete \(51 / 4\) " Drive System



\author{
southuestern deta susterns" 10761 Woodside Ave., Suite E • P.O. Box 582 - Santee, CA 92071
}

Circle No. 99

\section*{(2) Dysan}

\section*{better from inside out}


\section*{at the lowest price!}

Call our Modem Hotline (anytime) - 619.268.4488 for exclusive monthly specials. Our free catalog contains more than 600 tantastic values.

\section*{ABC Data Products \\ tormerty ABM}

8868 CLAIREMONT MESA BLVD.
SAN DIEGO, CALIFORNIA 92123
ORDERS ONLY ITT TELEX INFORMATION
800-850-1555
4992217
619-268-3537

Skill level required: This program is good for anyone with fourth grade-to adult-level English. No programming required.

Reviewer: Mary Gasiorowski

Product Name: HEXDOS 4.0
Equip. req'd: OSI C1P or Superboard with BASIC-inROM and disk drive
Price:
Manufacturer:
\(\$ 49.50\) includes diskette and manual The 6502 Program Exchange 2920 West Moana Reno, NV 89509
Author: Steven P. Hendrix

Description: HEXDOS is a disk-operating system for the OSI CIP system that requires only one disk track and 2 K of memory for the DOS. It uses BASIC-in-ROM routines where possible to keep the DOS small.
Pluses: A real DOS is possible with as little as 8 K of RAM. The user has 38 disk tracks available for storage and approximately 12 K more memory than OS65D. The USR routine has been substantially expanded to do many things in addition to calling user-written routines. The "SAVE" command will create a disk file if none exists. File names may be of any length and are allowed to contain embedded blanks. Assembly-language files are uniquely identified and stored with load and execution addresses. Data files may be written and read from BASIC - up to 22 files may be open simultaneously. Opening the file automatically creates the necessary buffer space. The rubout key is now a non-destructive back space. HEXDOS will operate with CEGMON as well as the standard OSI monitor chip Several hardware enhancements are supported (real time clock, tone generator, etc.). The program appears to be well supported by its author, with updates offered from time to time. Consultation is provided willingly in case of user problems.
Minuses: Lack of compatibility with OS65D. Disks created by \(H E X D O S\) and OS65D are mutually unreadable. I have an assembly-language routine to read OS65D sectors under HEXDOS, and a BASIC program for copying OS65D files to HEXDOS disks, that I will publish in the next issue of the HEXDOS Newsletter for current users, and include with future purchases of HEXDOS. The changes in the USR mentioned above require that any existing program using USR must be revised to run with HEXDOS. HEXDOS retains most of the features of BASIC-in-ROM, including 7 -digit floating-point precision OS65D now has \(91 / 2\)-digit f.p., - but 7 -digit f.p. is faster and uses less memory if the precision is adequate for your work). The notorious garbage collection bug has not been fixed. (In fairness I must point out that a corrected BASIC ROM3 chip is available elsewhere at modest cost.) The smallest unit on disk is a track (i.e., one sector of 2 K bytes per track).
Documentation: Newly revised 40-page manual, including demonstration programs and appendices. Terse, but apparently complete and error-free.
Skill level required: Ability to program in BASIC. No assembly-language experience is needed.

Reviewer: Rolf B. Johannesen
MICRO

\section*{IAVE YOU FLOWN down, but watch it, you're pulling} right! Brakes, brakes! Left more! You've stopped safely! Good job. The first real-time flight simulator for ATARI is now available from MMG Micro Software. Written entirely in machine language, there are four levels of difficulty, landings in clear or fossy weather, landings with or without instruments, and with or without the real-time view from the cockpit. Final Flight! requires Atari 400/800, 24K, 1 joy stick, and is offered on tape or disk for the same suggested retail price of \(\$ 29.95\).

Imasine yourself at the controls of a small, singleengine plane, 10,000 feet in the air, on your approach to the runway and safety. You're running low on fuel, but your instruments show that you're on the glide path, and ined up with the runNay. It's a beautiful, sunly day, and you can see he airport in the distance, across the grassy fields. But the crosswind is tricky, and it will take all your skill to land safely. You're coming down now, and the runway is getting loser. A bit left, OK, now lower the power, fine, now put down the flaps. . Pull the nose up a bit more you're a little low. Watch the power! Jon't stall. OK. Here comes the unway. You hear the squeal of tires on No. 61 - June 1983
from MMG local dealer or direct send check or money order to P.O. Box
131, Marlboro, N.J. 07746 or for Mastercard,
Visa, and C.O.D. deliveries call (201)431-3472. Please
add \(\$ 3.00\) for postage and handling. New Jersey residents add \(6 \%\) sales tax.

Atari is a registered trademark of Atarı, Inc.

\section*{6809 Bibliography}
136. Color Computer News, Issue 14 (November, 1982)

Sias, Bill, "REMarks," pg. 3.
Remarks on the 6809 -based color computer of Tandy versus other Tandy micros.
Kelment, George E., "HEX/DEC Conversion," pg. 10. A listing for the TRS-80 Color Computer.
Benenson, Alexander, "Screen Print Program for the Color Computer," pg. 13.
A listing and notes on a utility for the Color Computer
Perry, Thomas, "CW Send/Receive Program," pg 14-21. An amateur radio utility for the Color Computer.
Degler, Roger L., "Flex Corner," pg. 24-27
A discussion of operating systems for the 6809 -based color computer.
Steiner, John, "Morse Code Instruction: Part 2," pg- 30-32. Programmed CW instruction for the IRS-80 Color Computer.
Hogg, Frank, " 64 K Korner," pg. 34-36. Telewriter and FLEX and use of an external terminal.
Norris, Danny, "Chromaledger," pg. 38-45.
Chromaledger is an easy-to-use expense account program written for the 32 K Extended BASIC Color Computer.
Pakerski, Andrew, "Tumble," pg. 46-48.
A game program for the Color Computer.
McGarry, Donald L., "Slither," pg. 49-52.
A programming game for the 6809 -based Color Computer.
Aker, Jack L., "Care and Feeding of RS Disk Drives,"
pg. 54-56.
Discussion and diagnostic test program for Radio Shack Color Computer disk drives.
Kelty, John R., "A 'Cheap Talker' for the Radio Shack
Color Computer," pg 58-63.
Hardware and software for a speech program for the Color Computer.
Trepal, George, "POKE and String Graphics for the 4 K
Color Computer," pg. 64-67.
POKE and string graphics are much faster than SET and RESET graphics.
Sullivan, Steve, "Slope and Linear Graphing," pg. 68-70. A program for graphing various algebraic equations.
Giovanoni, Richard, "Estimating On My Color Computer," pg. 73-77.
A program for proposal estimates.
Anon., "Learning ASCII Codes," pg. 82-83.
A learning program intended to burn the ASCII codes into your subeonscious.
Knight, Glen B, "How I leamed to Soundex Code and Love My Color Computer," pg 89-91.
Family names are often spelled various ways. A Soundex code assists in retrieving these names in a computer file.
137. System-68, No. 2 (August, 1982)

Pass, Edgar M., "A Comparison of FLEX and UNIFLEX," pg. 7-19.

A detailed discussion and comparison of two operating systems for 6800 and 6809 systems.
Hughes, James, "Dynamic Address Translator," pg. 21-26. An explanation of how the 6809 Dynamic Address Translation and Extended Memory Addressing software (SWTPC) work in order to be able to program them for correct operation.
138. System-68, No. 4 (November, 1982)

Pentecost, Joe, 'Beginning Assembly Language Programming," pg. 8-28.
A tutorial to machine-language for the 6800 - and 6809 based systems.
139. '68' Micro Joumal 4 Issue 12 (December, 1982)

Reitzel, Norman L., " 6809 Problems," pg. 10-11.

Discussion of some bugs in the 6809 with low mask numbers, and fixes available.
Anderson, Ronald W., "FLEX User Notes," pg. 11-14 Discussion of the use of 6800 and 6809 programs.
Nay, Robert L., "Color User Notes," pg. 14-18. Discussion of needs filled by the TRS-80 Color Computer; as an advanced system, as an excellent educational tool, and as a very good tool for control systems.
Kelty, John R., "Cheap Talker," pg. 18-19.
A speech program for the 6809 -based Color Computer.
Hunt, Thomas H., "Hi-Res Color Graphics," pg. 19-22. Arcade graphics by adding a special TMS-9918A and some other chips to your 6809 -based system.
Lyon, Stewart D., "Adapting the Microworks SDS80C to
FLEX09 DOS," pg. 22-24.
Detailed instruetions for system modification, including an assembly-language listing.
140. The Rainbow 1, No. 6 (December, 1982)

Nolan, Sara, "Micro-Maestro," pg. 10-28.
Using the 6809 -based Color Computer's PLAY statement.
How to program music on the micro.
Schrag, Roger, "Patch EDTASMplus to Disk to End Those
Cassette Blues, "pg. 29-32.
How to modify the EDTASMplus package to support disk drives on the Color Computer
Stumpf, Peter, "You'll Log This Program for Holiday
Merriment' pg. 34-36.
Graphics for a fireplace complete with glowing flame and stockings hung with care.
Inman, Don, "High-Resolution Graphies Techniques Are
Explained," pg. 41-48. A tutorial with several demo listings for the 6809 -based Color Computer.
Nolan, Bill, "Pressed for Time? Paint a Dungeon!"
pg. 50-52.
How to speed up the actual play of a fantasy game by properly using the 6809 graphics ability.
Hands, Lester, "Memory Exam: Where Does it Start?"
pg. 54-55.
A machine-language utility routine that allows you to rapidly examine memory and determine the address of items of interest.
Blyn, Steve, "Sustain Children's Interest By Expanding Relevance, " pg. 56-60.

Motivating the young computer user to go beyond games and learning programs. A sample listing is included.
Kolar, loseph, "On Printing Alphanumerics in Eight
Directions," pg. 62-64.
A program to allow printing in any of the eight motion directions as used in the Color Computer's DRAW command.
Benenson, Alexander, "Screen Print Program for the Color Computer," pg. 13.
A listing and notes on a utility for the Color Computer.
Konecky, Larry, "This Is Just Like Music to Your
Eyes," pg 66-72
In this Color Computer program music can be written and presented on a music staff on a black background.
Bennett, J.E. and Laidlaw, "From Out of the Blue Comes
This Dexterity Test," pg. 76-80.
A parachute drop game for the Color Computer.
Roslund, Charles I., "Format Your LLISTings with FLIST," pg. 86.
A formatting utility machine-language routine for the 6809 - based Color Computer.
Wells, Geoff, "Go Adventuring with GAPAD," pg. 98-104.
A game-writing utility for the TRS-80 Color Computer.

\section*{MEGAFLEX ABILITY}

\section*{You Pick The Disk System, MegaFlex Controls It!}

\section*{WITH SOFTDRIVERS FOR A FLEXIBLE FUTURE!}

MEGAFLEX-a universal floppy disk controller and modern alternative to the Apple drive system offering increased storage, improved reliability and ... FLEXIBILITY.

Enjoy megabytes of online storage with your choice of micro, mini, or maxi drives-or even 6Mb with the Amlyn cartridge pack! Ideal for highcapacity storage now, winchester-disk backup later.

The MEGAFLEX secret is to autoboot softdrivers that match the needs of your drive system. All hardware functions are software-controlled. MEGAFLEX can match new drive capabilities without hardware changes. Drive-dependent ROMs have been eliminated.

\section*{APPLE III? OF COURSE!!}

MEGAFLEX is compatible with BASIC, CP/M, Pascal, VISICALC, SOS and DOS-emulation on the Apple III, Apple II, Franklin Ace and Basis. All language features and operating system commands (LOAD, BRUN, etc.) are standard. If you can operate Apple drives you can operate MEGAFLEX! Your Apple software will run without modification too.


\section*{BRIDGE THE APPLE FORMAT BARRIER!}

The MEGAFLEX diskette does what Apple's cannot-read and write diskettes from other computers! Softwarecontrolled industry-standard IBM 3740 or System 34 type formats allow the MEGAFLEX library of reformatting software to read and write Altos, Radio Shack, Osborne, and IBM PC diskettes. (Call for the latest software details.)
MORE STORAGE, MORE
UNIVERSAL FEATURES, LOWEST COST
MEGAFLEX with \(8^{\prime \prime}\) maxi or high density \(5.25^{\prime \prime}\) minis gives you 1.2 Megabyte of formatted data per diskette for 8 times the file and data size!

MEGAFLEX offers flexible software choices:
- data rate ( \(250 / 500\) Kbits per second),
- single and double density recording, and
- single/double sided drive operation (max 4 drives).
MEGAFLEX has the lowest chip count of any controller today! This means less power, a cooler Apple and better reliability.

Lowest price, highest performance, that's


\section*{NEW PC-POWER PACK \({ }^{\text {TM }}\) FOR IBM-PC \({ }^{\text {TM }}\)}

Two microcomputer industry leaders, Digital Research Inc. and Percom Data Corp. has agreed to produce "PC-POWER PACK"TM, a complete package consisting of a Percom Data Winchester \(51 / 4^{\prime \prime}\) Hard Disk Drive, a 256K RAM board and controller, and Digital Research's Concurrent CPM \(M-86^{\text {™ }}\), the single-user, multitasking operating system. The PHD \({ }^{\text {TM }}\) System provides plug-in compatibility to the "IBM-PC", and speed and accuracy many times that of floppy systems. Storage capacity of the Percom Data Hard Disk ranges from 5 to 30 megabytes. CALl FOR PRICE.

\section*{Access Unlimited Hard Disk Drives \\ For TRS-80", "IBM-PC", ‘APPLE II" \\ - 5, 10, 15 Megabyte and larger drive units. \\ - Lets controller handle up to 4 drives. \\ - Works along with existing floppy disk drives. \\ - Includes host system support software. \\ From \\ \(\$ 1395.00\) \\ (5MB) \\ For TRS-80}

\section*{Your present system too small?}

Take advantage of the iBEX company business system and stand alone word processing-systems - overbuild mistake-
model No. 7202 Regular retail \(\$ 9070.00\) with software
Now for a limited time only \(\$ 2595.00\) - while
Look what you get for \$2595
- 280 - CP/M compatible
- 64 kilobyte RAM 4KB RAM
- Dual \(8^{\prime \prime}\) floppies (total 2.4

Million Characters)
- Switchable to IBM 3740 format
- \(12^{\prime \prime}\) green phosphor monitor \((80 \times 24,40 \times 24\),
\(32 \times 14\) characters)
- Centronics compatible printer interface
F.0.B. Dallas, TX
- Serial interface
- Full function keyboard
- Clock timer and calendar w/battery
- Over \(\$ 2200\) in Free software: CP/M Operating System, M/Basic interpreter, Perfect Writer, Perfect Speller, Perfect Calc, Perfect Filer

\section*{- SPECIALS OF THE MONTH:}
- NEW "Star Gemini" Printer

Dot Matrix Model 10 - Reg. \(\$ 499.00\) Sale \(\$ 369.90\) 100 CPS Model 15 - Reeg. Retail \(\$ 699.00\) Sale \(\$ 525.00\)
- NEW "C-ITOH F-10 Starwriter" Printer

Reg. Retail \$2295.00 Sale \(\$ 1595.00\)
CLOSEOUT: "Brother" HR1 Daisywheel Printer
Serial - Closeout Sale \(\mathbf{\$ 7 9 9 . 0 0} \quad\) Parallel - Closeout Sale \(\mathbf{\$ 7 4 5 . 0 0}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular} All Four Fully Integrated Reg. Retail \(\$ 1680.00\)
```

New! Dual Headed Drives for the Price of Flippies!
Now you can have a *dual headed "PERCOM" Drive System for your
TRS 80 Model II!!
TFD344N1 One Drive dual headed double-density \$560.00
TFD344N2 Two disk dual headed double-density \$860.00

* completely compatible with programs existing on single sided or
double sided diskettes.

```

\section*{"Percom Data" Drives For "Atari"}

Access single density drives. 102k storage but much cooler, quieter and more efficient than the 810 ! Our flexible drives let you cable your first-drive system directly into your computer. Or go through an 810 drive. And our Access controllers automatically handle single-and double-density drives in the same system.
AT88-S1 First drive single density
\(\$ 478.00\)
AT88-A1 Add on drive single density
478.

RFD40-S1 First drive double density
\(\$ 399.00\)
\(\$ 59.00\)
RFD40-A1 Add on drive double density
\(\$ 349.00\)
RFD44-S1 First drive double sided
\(\$ 729.00\)
ATARISEP Data separator for 810 drive

\section*{bUY OUAL UNITS - FOR EVEN BIGGER SAVINGS!}

Bare Drives for "IBM-PC"" - Internal
Single Head 160K \(-\$ 279.95\)
Dual Head 320K - \(\$ 354.95\)
"Percom" Drives For "IBM-PC" External
Single Head 160 K - \(\$ 415.95\) Includes Case
Dual Head 320K - \(\$ 510.95\) \& Power Supply
MODEMS
"U.S. Robotics" Auto Dial 212A Reg. \$599.00 - Now \$549.00
300/1200 baud, totally "Hayes" compatible
"U.S. Aobatics" Auto Link 300 Reg. \(\$ 219.00\) - Now \(\$ 169.00\)
"Signalman" Auto Answer 0-300 baud \(\quad\) From \(\$ 99.00\)
MEDIA FOR LESS - Save \$\$
BASF \(51 / 4^{"}\) Lifetime Limited Warranty
Single sided Double density \(\quad\) Reg. \(\$ 44.95 \mathbf{\$ 2 4 . 9 0}\) bx of 10
Double sided Double density \(\quad \mathbf{\$ 3 1 . 9 0}\) bx of 10
SENTINAL complete with hub rings \& lifetime warranty
Single sides Single density \(\quad \mathbf{\$ 1 8 . 8 0}\) bx of 10
Single sided Double density \(\quad \$ 20.70 \mathrm{bx}\) of 10
Double sided Double density \(\quad \$ 27.80\) bx of 10
MAXELL
Single sided Single density \(51 /{ }^{1 / 4}{ }^{\prime \prime} \quad \$ \mathbf{\$ 3 6 . 9 5}\) bx of 10
Doutle sided Double density \(51 / 4^{\prime \prime} \quad \boldsymbol{\$ 4 9 . 9 5} \mathrm{bx}\) of 10
MEMOREX
Single sided Single density \(51 / 4^{\prime \prime}\)
\(\$ 32.95 \mathrm{bx}\) of 10
Double sided Double density \(51 / 4^{\prime \prime} \quad \$ \mathbf{S 4 8 . 9 5}\) bx of 10
Buy Diskettes In Bulk \& SAVE !! . . .
Single sided Single density
Only \(\mathbf{\$ 1 7 9 . 9 5}\) /case of 100 Envelopes Available At \(\mathbf{\$ . 1 5}\) Each
. Reg Trademarks - Limited Time Ofter/Limited Quantities - Prices subject to change without notice - Prices do not include state laxes

\section*{VISA \(1(810) 527.3475\) \\ master charge}

Order by phone or by mail. We accept Visa, MasterCard, cashier's checks, certified checks, and money orders. With personal checks, allow additional time for bank clearance. Your bankcard will not be charged until your order is shipped. On orders over \(\$ 1,000\), we pay freight (surface only) and insurance; please add \(\$ 3.00\) shipping and handling under 50 ibs . Over 50 lbs ., add \(\$ 5.00\) for orders under \(\$ 1,000.00\). Texas residents add \(5 \%\) sales tax. Allow 2 to 4 weeks for delivery.

\section*{-en}

\section*{YES. I'm taking advantage of your Sales Prices.}

Please send me a FREE catalog. I'm not ready to order at this time.
Name
Company Name
Address


DEPT. N-7/401 N. Central Expwy./Richardson, Texas 75080
Tei. 1-800/527-3475 214/340-5366
214/690-0207 - Sat. and Evenings Only


\section*{Advertiser's Index}
AB Computers ..... 30
ABC Data Products ..... 122
Access Unlimited ..... 126
Acorn Software Systems . ..... 14
Alternative Energy Products ..... 103
Amdek ..... 6
Amplify ..... 86
Anthro-Digital Software ..... 44
Apple Tree Electronics ..... 111
Arbutus Total Soft ..... 91
Ark Computers ..... 22
Armadillo Software .....  2
Artisan Software ..... 87
Aurora Software ..... 11
Avant-Garde ..... 68
Boulder Logical Testing Inc ..... 108
Check-Mate ..... 93
Commander Magazine ..... 103
Compu\$ense ..... \(11,12,13,31,45,112\)
CompuTech ..... 111
Compu-Way ..... 75
Computer Case Co ..... 7
Computer Entrepenuer ..... 77
Computer Mail Order ..... 108,109
Computer Marketing ..... 39
Computer Science Engineering ..... 100
Custom Computer Systems ..... 66
Datamost, Inc ..... 59,110
DataSoft, Inc. ..... 120
Design Dynamics ..... 80, 113
D \& N Micro ..... 105
Don't Ask Software ..... 25
Eastern House Software ..... 41
Excert ..... 91
Execom, Inc. ..... 15
Foxfire Systems ..... 13
Granite Computer Sales ..... 92
Hollywood Software ..... 40
Howard Sams ..... 07
I J G ..... 49
In Home Software ..... 1
Intec Peripherals. ..... 116
Interesting Software ..... 79
Ironside Computer ..... 96
I \& M Software ..... 49
John Bell Engineering. ..... 97
Leading Edge ..... Cover IV
Logical Devices . ..... 121
Manx Software ..... 112
Mercury Micro Inc. ..... 121
Micro Data Supplies ..... 121
Micro House ..... 3
Micro Motion ..... 120
Micro Spec. ..... 86
Microware Distributing ..... 79,117
Midnight Software. ..... 118
Midwest Micro ..... 37
Mind Systems Corporation ..... 57
MMG ..... 123
Modular Mining Systems ..... 63
Modular Systems. ..... 117
Monarch Data Systems ..... 49
Moore Business Centers ..... 113
Ohio Computer Camp. ..... 118
Omega Sales ..... 21
Performance Micro Products ..... 119
Perry Peripherals ..... 75
P M I Associates ..... 106
Protecto Enterprises ..... 50
Pterodactyl Software ..... 14
RH Electronics. ..... 62,67
Richvale ..... 61
Rock Roy ..... Cover II
Sage Computer Technology ..... 9
Scientific Software ..... 15
S G C. ..... 127
S J B Distributors. ..... 17
Skyles Electric Works ..... 19
Software T' Boot ..... 119
Sorrento Valley Assoc ..... 125
Southwestern Data Systems. ..... 122
Speciality Electronics ..... 57
Spectrum Projects ..... 117
Stellation II. ..... 103
Strom Systems Inc. ..... 81
Talbot Microsystems ..... 116
Taylormade Software ..... 92
Thunderhawk ..... 86
Toumayan \& Assoc ..... 44
Unique Data Systems ..... 102
Victory Software. ..... 85
Vista Computing ..... Cover III
Winders \& Geist Inc ..... 104
Zytrex ..... 12
MICRO AdvertisingWhat's Where in the Apple48
MICRO INK is not responsible for claims made by its advertisers. Any complaint should be submitted directly to the advertiser. Please also send written notification to MICRO

\section*{National Advertising Representatives}

\author{
Middle Atlantic and Southeastern States: Dick Busch Inc. \\ Richard V. Busch \\ 6 Douglass Dr., R.D. \#4, \\ Princeton, NJ 08540 (201) 329-2424 \\ Dick Busch, Inc. \\ Eleanor M. Angone \\ 74 Brookline,
}
E. Atlantic Beach, NY 11561 (516) 432-1955
serving: New York, Pennsylvania, New Jersey, Delaware, Maryland, West Virginia, Virginia, D.C., North Carolina, South Carolina, Louisianna, Tennessee, Mississippi, Alabama, Georgia, and Florida

\section*{West Coast:}

The R.W. Walker Co., Inc.

\section*{Gordon Carnie}

\section*{2716 Ocean Park Boulevard, Suite 1010, Santa Monica, California 90405 (213) 450-9001}
serving: Washington, Oregon, Idaho, Montana, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, California, Alaska, and Hawaii (also British Columbia and Alberta, Canada)

\section*{Mid-West Territory:}

Thomas Knorr \& Associates
Thomas H. Knorr, Jr.
33 N. Michigan Avenue, Suite 403
Chicago, Illinois 60601 (312) 726-2633
serving: Ohio, Oklahoma, Arkansas, Texas, North Dakota, South Dakota, Nebraska, Kansas, Missouri, Indiana, Illinois, lowa, Michigan, Wisconsin, and Minnesota.

tributed an inexhaustible collection of inventions and ideas to solve the world's problems. These ideas were centuries ahead of their time. The studies on this page deal withexperiments in manned flight.
Like Leonardo, Vista Computer is answering many of today's complex computer storage problems. The Vista V1200 is a great solution to Apple \(11^{T M}\) storage. Mass storage for your Apple II \({ }^{\text {TM }}\) Computer has always been a problem. on one hand, there were the exotic, expensive hard disks with no cost efficient means of backup. On the other hand, the Apple floppy drive lacked the speed and storage demanded by today's professionals.
Vista's V1200 offers both at an incredibly attractive price. The removable Vistapak cartridges offer 6 Megebytes of removable storage each and can be backed up like a floppy

Now hard disk storage and speed can be yours with the added capability of interchangeable media. The v 1200 eliminates


 technolgsy.




 and capabint





Yista Yysoro```


[^0]:    You may contact Phil at MICRO, P.O. Box 6502, Chelmsford, MA 01824.

[^1]:    Dr. Boyd teaches chemistry, physics, and computer science at a small liberal arts college. He may be contacted at St. Mary of the Plains College, Dodge City, KS 67801.

