

CAD/CAM! DONT SPEND 25k, 50k or $\mathbf{\$ 5 0 0 , 0 0 0}$ BEFORE YOU SPEND $\$ 79^{00}$

OBJECTIVES

This book will provide managers, engineers, manufacturing personnel and any interested persons an understanding of the fundamentals of Computer Aided Design [CAD] and Computer Aided manufacturing [CAM] applications and technology.

PROGRAM DESCRIPTION

The program will expose you to the various CAD/CAM terminologies used. Hardware and software comparisons will be explored with heavy emphasis on their advantages and disadvantages. Cost justification and implementation are presented using case studies.

WHO SHOULD PARTICIPATE

The course is designed for but not limited to:

- Those managers, engineers and research professionals associated with the manufacturing industry.
- Personnel from Product, Tool Design, Plant Layout and Plant Engineering who are interested in CAD/CAM.

ADVANTAGESEND RESULT

This program will enable participants to:

1. Learn basic CAD/CAM Vocabulary.
2. Better understand the various hardware and software components used in a typical CAD work station.
3. Select the existing CAD/CAM system most appropriate for current and projected needs.
4. Make an effective cost justification as to Why they SHOULD or SHOULD NOT implement a CAD/CAM system.
5. Apply and use computer graphics as a productivity tool.

PROGRAM CONTENT

1. Introduction
a. History of CAD/CAM
b. Importance of CAD/CAM
2. Graphics work station peripherals a. Input
b. Output
c. Advantages and disadvantages of input and output devices.
3. Computer Graphics Systems
[Hardware]
a. Micros
b. Minis
c. Main Frames
d. Turnkey Graphics systems
4. Software
a. Operating systems
b. Graphics Packages
c. Graphics Modules
5. Computer Aided Design
a. Geometric Definitions
[Points, Lines, Circles, ETC..]
b. Control functions
c. Graphics Manipulations
d. Drafting Functions
e. Filing functions
f. Applications

6. Implementation
a. Determining needs
b. Purchasing and Installing
c. Getting Started
7. Cost Justification and Survey
a. Cost comparisons of two and four work station systems.
b. Presentation of recent survey of CAD system users

ZANIMSYSTEMSMAKESTHISSPECIAL OFFER: IF YOU BUY CAD/CAM: A PRODUCTIVITY ENHANCEMENT TOOL BEFORE APRIL 15TH, WE WILL INCLUDE FREEOFCHARGETHESETWO PAPERS PUBLISHED NATIONALLY BY ZANIM SYSTEMS CAD/CAM EXPERT.
^. "Creation of a Large Data Base for a Small Graphics System"
c.. 'Shortest Path Algorithm Using Computer Graphics'

Of course you could spend as much as $\$ 495, \$ 595$ or $\$ 695$ for a similar 3 day serninar even though this book is not a cornputer program.
We tell you April 15th for a special reason...this product may be tax decluctible depending on your field or needs. This 170 page course will satisfy any of your CAD/CAM needs. We guarantee it.

Please send $\$ 79$ to:

ZANIM SYSTEMS CAD/CAM GROUP P.O. BOX 4364 FLINT, MI 48504 [313] 233-5731

QUIANTITY DISCOUNTS AVAILABLE FOR COLLEGES, UNIVERSITIES AND/OR SEMINAR USE.

There are three ways to learn 6502 Assembly Language on your Apple Computer:

Hard Easy Easiest

Introducing the Easiest Way: The LISA Ed Pac ${ }^{\text {T}}$

> You can't deny that learning assembly is extremely important for you if you want to make the most of your work. If assembly language wasn't so important, why are almost all of the top selling programs available for the Apple If written in assembiy language? But let's face it, learning 6502 assembly language isn't a piece of cake. At least not until now. Because now there's the LISA Education Package" from Lazerware. It'll have you up to speed with assembly language in a fraction of the time it would otherwise take.

The LISA Ed Pac begins with LISA v2.6, the favorite assembler of beginners and professionals alike. More Apple owners have learned $\mathbf{8 5 0 2}$ assembly language using LISA than all the other assemblers combined. More tutorial material is available for LISA, including books by D. Fudge, R. Hyde, W. Maurer. and R. Mottola. Randy Hyde's 300 -page Using 6502 Assembly Language is included in the LISA Ed Pac*.

Next we threw in SPEED/ASM", a set of 6502 subroutines that make programing in assembly language as easy as BASIC. And for those who want to see how it's done. the SPEED/ASM source listings are also included. We also included the LUD \# 1 (L isa Utility Disk \#1) which includes an extended editor for LISA and a LISA source file listing utility. Finally, we added MAXWELL'S Debugger" to the LISA Ed Pac. This ultra-powerful debugger/monitor makes learning and debugging 6502 assembly language a breeze.

LISA Ed Pac Price $\$ 14 \mathrm{~S} 95$. A $\$ 229.75$ Value isuggested retall)
Available at dealers everywhere, or directly from:
Eracrequra

[^0]

for the Serious Computerist

COMPUTER MAIL ORDER

NEC PRINTERS			
NEC 3550 ．．．．．．．．．．．．．．．．．．．＊1679．00			
PERCOM／TANDOM			
DISK DRIVES	VISICORP		
51／2 320K Foppy ．．．．．．．．．．． 229.00		旧	APPLE
5 Meg Hard w／Cincroulter．．．．．．．．．．．．．．．CALL	VisiCalc		－159．00
10 Meg Hard w／Controller ．．．．．．．．．．．．CALL	VisiCalc 4	\＄159．00	
$15 \mathrm{Meg} \mathrm{Hard} \mathrm{w/Controller} \mathrm{...........}$.	VisiCalc Advanced		＇269．00
$20 \mathrm{Meg} \mathrm{Hard} \mathrm{w/Controller..}. \mathrm{}. \mathrm{..}. \mathrm{.}. \mathrm{.}. \mathrm{}$.	VisiWord／Spell	249．00	
AMDEK	Visitrend／Piot	${ }^{4} \uparrow 99.00$	－199．00
310A Amber Monitar ．169．00	VisiLnk		＊169．00
OXY 100 Plotter ．．．．i．．．．．．．． 559900	Visifile	＇199．00	＊169．00
Coior 11 ．．．．．．．．．．．．．．． 399.00	VisiSchedule	＊99900	＊ 199.00
AST RESEARCH	Visidex		＇159．00
Six Pak Plus from ．．．．．．．．．．．．279．00	Visflat		－135．00
Combo Plus il from．．．．．．．．．．．． 279.00	Desktop Pian	＊19900	－169．00
Mega Pus from．．．．．．．．．．．＊309．00	Bus Forecast Model	． 7500	－75．00
1／O Pus．．from ．．．．．．．．．．．．．．．．．． 139.00	StretchCaic	－7500	775.00
QUADRAM	Visitutar Calc	－59．00	39．00
Guadlink．．．．．．．．．．．．．．． 4779.00	Visitutar Advanced	－75．00	37500
Quadboard ．．as low as ．．．．．．．．．．．．．．． 288.00	Visitutar Word	－259．00	59.00
Guad 512 Rus as low as ．．．．． 3249.00	Visi－On Caic	2299．00	
Quadcolor as low as．．．．．．．．． 219.00	Visi－On Graph	＊17900	
Chronograph ．．．．．．．．．．．． 89.00	Visi－Dn Word	＇275．00	
Parailel Interface Board．．．．．．．． 99.00	Visi－On Mouse	\＄15900	
64K RAM Chips Kic ．．．．．．．．．．．．．．． 59.00	$V \mathrm{Visi}$－On Host	31900	
MICPOPRO			
WordStar／MalMerge．．．．．．．．．．．．． 349.00	pfs		
infoStar．．．．．．．．．．．．．．．．．． 29900		18 M	$\triangle P P L E$
SoellStar ．．．．．．．．．．．．．．．．．．．．．． 1159.00	Wince	＊99．00	－79．00
CacStar ．．．i．．．．．．．．．．．．．．． 9900	Graph	－89．00	79.00
MICROSTUF	Fleport	79.00	$\cdot 79.00$
	File	${ }^{89} 9.00$	179.00
	Solutions＊as low as	＊1600	＊16．00
MICROSOFT	＊Calf On Tities		
Multiplan．		MONOGRAM	
ASHTON－TATE	MON		
dBASE ॥ ．．． 3 ． 38900	Dollars and Sense		－09 00
Friday ．．．．．．．．．．．＇18500	LOTUS		
IUS	1－2－3 ．．．．．．．．．．．．．．．．．．．．．．． 399.00		
	PROFESSIONAL SOFTWARE		
	PC Plus／The Boss．．．	SOF	349.00
	SYNAPSE		
1st Class Mel／Form Letter	File Manager．．．．．．．．．．．．．．．．．．．．．．．．．s日9 00		
Home Accountant Pus ．．．．．．． 888.00	SOFTWARE ARTS		
	TK Solver ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．189．00		

\section*{MBC－550
 MBC－555

 MEC 1150.
 MBC 1200 ．
FOO $6400-6$
 FOO 6400－64Cik Orive
 PR 5500 Panteir
 APPLE／FRANKLIN DISK DRIVES MICRO－SCI
 $\Delta 2$
$A 40$ ．
$\Delta 70$
$C 2 C$
$C 47$

Bire
Ere
Bite
 RTER PACK}

夋SANYO

COMPLETE ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．CaL

TIERMINALS 914 s569.00	－atcrico
924 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． B 69900	
925 ．．．．．．．．．．．．．．．．．．．．．．．． 73900	－
$950 . .$. ．．．．．．．．．．．．．．．．．．．． 929.00	
970．．．．．．．．．．．．．．．．．．．．．．＇1039．00	\leq
COMPUTERS	
800А ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1099． 00 日02．．．．．．．．．．．．．．．．．．．．．．269900	1
803．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．＇1949．00	－
802H ．．．．．．．．．．．．．．．．．．．．．．．4695．00	
806／20 ．．．．．．．．．．．．．．．．．．． 4999.00	
916／40 ．．．．．．．．．．．．．．．．．．．．．．．．．9199．00	
$1602 \ldots \quad . .3399 .00$	

PRINTERS

AT－100 ALary interface．． AT－84E Interface

401 Letrer Quality．．．．．．．．．．． 589.00
Ex． 80 Dot Matmx CENTRONICS
122 Parallel
739－1 Parailel
$739-3$ Serial
C．ITOH
Gorilla Banana
Prownter 8510
Prownter 8510 F
Prowriter 1550
A10［18 cos）

A10［16
8600 p

F10－55

COMAEX ComWriter II Letter Guality．
 D20 Lerrer DABLO

630 Letter Quaity
DAISYWRITER
2000
Tractor Fe
Tractor Fee

EPSON

MX－80FT．MX－100．AX－80．RX－BDFT
FX－BC，FX－700

IDS

Phsm 80 Far Cons
Pansm 80 For Configurations．
Pmsm 32 for Configurations
MANNESMAN TALLY
160L
180 L
Somt 80

east

cenade

Ontario／Cuebac

MODEMS

י59．00	NOVATION	
179．00	J－Cat．	＇9999
119．00	SmartCat 103.	－179．00
． 299.00	Smarchat 103／212	． 399.00
． 99.00	AutaCat	221900
．．． 9.00	212 AuroCat	． 5449.00
	Apple Cat ${ }^{\text {d }}$	2249．00
	212 Apple Cat	．569．00
1490	Apple Cat 212 Upgrade	． 309.00
－499．00	Cat	＊13999
.449 .00 .26900	ZENITH	
－299．00	ZT－1	－339．00
＊89．00	टT－10	＇309 0c
．．499．00	2T－11．．．	＇369．00
MONITORS		
＊149．00	PRINCETON GRAPHICS	
－159．00	H） 12 PGGE	＊51900
．．${ }^{\text {¢ } 969.00}$	SAKATA	
． 279.00	100	226900
．299．00	TAXAN	
． 399.00	210 Color FGg．	5299．00
4419．00	400 Med－fes RGB	．319．00
＇349．00	415 Hi－Res RGE	＊439．00
＇699．00	420 Ht－Res RG8［18M）．	＊489．00
	$10012{ }^{\prime \prime}$ Green	．12500
188.99	10512 ＂Amber	－13500
1119.99	USI	
－24900	P1 १，9＂Green．．．	199.99
	A 2，12＂Green．．．	－11999
198．99	Pi 3，12＂Amber ．．．．	5149．99
195.99	Fi 4．9＂Amber．	513999
	1400 Color．	－269．99
$\cdot 109.00$	QUADRAM	
－149．99	Quadchrome 9400	4549．0c
＊159．99	ZENITH	
．269．00	ZVM 122 Amber	4109.00
． 429.00	ZVM 123 Green．	899．99
．359．00	TVM 135 Cotor／RG8．	369．99

/mICRO

Once Upon a MICRO

Once upon a time, MICRO began as a magazine to promote the 6502 microprocessor. At that time, back in the murky mists of microcomputing, 1977, no one was giving this marvelous chip any attention. You could read many issues of Byte without even encountering it. We felt that this chip, and the KIM-1 microcomputer that MOS Technology had produced to demonstrate the abilities of the 6502, deserved better treatment. The rapid growth of MICRO showed that we were right!

Once upon a time, MICRO was more a 'community' of 6502 users than it was a 'publication'. MICRO's readers were willing to tackle the new micros, solve the many problems that were encountered, and share their information with other readers. It was an exciting time of exploration and experimentation. Many important features were discovered, problems solved and projects generated by the MICRO reader/author.

Once upon a time, MICRO helped lead its readers into new areas by systematically exposing them to other microcomputers, microprocessors, languages, techniques, hardware projects, and so forth.

Once upon a time, MICRO provided very rapid turnaround on material submitted for publication. Articles were typically published within two or three months of initial receipt. This rapid turn-around was satisfying to the authors and useful to the readers.

Once upon a time, MICRO was a small, over-worked but happy staff that took pride in producing a top quality product.

Once upon a time, MICRO was directed by an individual who had experience in software - from operating system design through applications, and hardware knowledge - from simple interfacing up to designing a complete disk-oriented microcomputer system.

Once upon a time, MICRO provided an up-to-date catalog of important hardware and software products, in a standardized format that made it easy to use.

Once upon a time, MICRO had a panel of expert reviewers who provided accurate, unbiased, and timely reviews of new products.

Well, "Once Upon A Time"' is now! While MICRO has tried a lot of different ideas, particularly during the past year, it has now returned to its 'roots'. We have worked hard to get MICRO back on track as the premier magazine for people who are serious about all aspects of the 6502/6809/68000 family of microcomputers. Some of the obvious changes have included moving MICRO back to Chelmsford, MA where it began, my reassuming the active role of Publisher and Editor-in-Chief, and numerous

Editorial

changes in the staff to streamline and improve our overall operation. In the past few months we have cleared the queue of all ou:-of-date articles and reviews that had been accumulated, Eave re-established active dialog with many key authors, lave worked out internal procedures to insure rapid response to all submissions, have developed improved listing methods for both assembly and BASIC listings, and much more. Other changes are underway, some of which will take time to develop, all of which are aimed at making MICRO work for you.

One new way in which MICRO will work is to present material on diskette. Many program/articles are received that are 'too long' to print or to key in but are 'too good' not to use. Rather than ignore this significant material, or hold it for an eventual book/disk, MICRO will now offer certain materials on disk. See the announcement on page 80 of this issue for details on our first offerings.

If you are an author, MICRO guarantees that your manuscript will be reviewed and you will receive notification within two weeks of receipt. This rapid response will serve to get your material into print quickly with prompt payment, and will insure that the MICRO readers are getting the most current information.

If you are a reader, MICRO invites you to become a more active participant in the world of microcomputing. Tell us, through the June Reader Survey, what you want MICRO to do for you. Send us your ideas, suggestions, feedback. (We do listen! The negative reader feedback that we received on our 'new, improved' listing techniques in the November and December issues made us find better methods.) And, most of all, write articles to share your knowledge and understanding with others. In this fantastic world of microcomputers, nobody knows everything, and everyone knows something.

MICRO is jour magazine. Make it work for you.

Editor-in-Chief

This Month's Cover

When he looked at this windmill, Don Quixote saw double. He fought an imaginary giant, and he lost.

In Double Vision, Valerie and Alan Floeter fight a real giant ... the problem of one long listing using the CATALOG routine. Unlike Don Quixote, the Floeters win their battle. Now your listing can be condensed into two, three, or four columns, but don't worry-your not imagining it-you've got Double Vision.

SPECIALS on INTEGRATED CIRCUITS
$6502 @ 4.906520 @ 4.006522$ @ 5.004116 @ 1.85 $2532 @ 5.902716 @ 4.456116 @ 6.454164 @$
Anchor Automation Signalman MODEMS

free source membership with signalman All Signatman Modems are Direct Connect, and provide the best price-performance values. Dealer and OEM inquiries invited
Volksmodem with computer cahie 68
Mark VII Auto Dial/Auto Answer 99
Mark XII Smart Model 1200/300 279
DC HAYES Smartmodem 219
DC Hayes Smartmodem 1200/300 519

PROM QUEEN for C64 or YIC
Apple Emulator for Commodore 64 Call
STAT Statistics Package for C64 Solid Oak 2 Level Sland for CES or VIC C64NIC Switch (networking)
BACKUP V1.0 tape copier for C64 or VIC
CARDBOARD/6 Motherboard - VIC
CARDBOARD/5 Motherboard - C64
CARD PRINT G Printer Int. with Graphics
CARD PRINT B Printer Interface-C64NIC
CARDBOARD/3s Motherboard - VIC CARDCO C64NIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC Complete CAROCO Line in stock
CIE and VIE IEEE Interfaces in stock
MSD Dual SuperDisk for C64 or IEEE
MAE Assembler for C64
50
Koala Pad Touch Tablet-C64 or VIC
CBC $4 / 12$ Analog to Digital 4 chan/12 bit
MULTIPLAN for C64 75

Dust Cover for C64 or VIC 79

Grand Master Chess for C64
with sprites, color graphics, sound, turtle graphics.
BusCard II from Baitieries Included
ULTRA BASIC - 64 with Turtie Graphics
Super Disk Utility - C64 - includes backup
MicroChess - C64-8 levels of play
HES MOOEM with software for C64 45
Commodore 64 Programmers Reference Guide
WordPro $3+/ 64$ with Spellighi
VIController (also C64) - BSR Controller 16

COM VOICE Synthesizer tor CO 85

COM VOICE Synthesizer for C64 or VIC
VIC products in stock - call for extra discounts.
Victory Software for VIC and C64 in stock.

APPLE-FRANKLIN TTEMS

FRANKLIN-complete line in stock
QUENTIN Orives for Apple/Franklin
Swapper Stopper
189
automatic switch between paddles and joystick
KHAFT Apple Joystick
Kraft Apple Paddie Pair
Koala Pad Touch Tablet-Apple/Franklin 90
SPINNAKER Software in stock
Broderhuad Soltware in stock
16K RAM Card for Apple
Multiplan-Microsolt
189
Solid Oak 2 Level Stand for Apple
Serial Card for Apple 185

MPC RAM/80 column card for lie (AP/TXT] 89

Z80 Softcard and CP/M (Microsoft) 139 235
RANA Elite I with Controller 389
Parallel Printer Interface/Cable 69
Microtek and MPC Interfaces in stock Grappler + Interface
DC Hayes Micromodem II, Ile with Smartcom
PFS: File or PFS: Report or PFS: Graph
Videx 80 Column Card
245 909
209
Apple Blue liook

Geominodore
See us for Personal, Business, and Educational requirements. Educational Discounts available.

PETSCAN I \$245 base price

Allows you to connect up to $30 \mathrm{CBM} / \mathrm{PET}$ Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.
COMPACK/STCP
$\$ 115$
Inteligent Terminal Package for PET, CBM, C64 Includes ACIA Hardware / STCP Software
MSO Dual Super Disk for IEEE or C64 570 replaces 4040 drive
SCBEENMAKER 80 Column Adapter for C64 139
Provide big screen capability for business applications.
Copy-Writer Word Processor for C64
49
Full-featured package with 800 lines of text in memory. Includes double column printing, graphic capability, full printer support.
Special Screenmaker/Copy-Writer Combo 179

VICTORY Soltware for VIC and C64

Metamorphosis 16 Creator's Revenge 16
$\begin{array}{llll}\text { Labyrinth of Creator } & 16 & \text { Galactic Conquest } & 16\end{array}$
Kongo Kong 16 Annihilator
Chomper Man 16 Grave Robbers
Bounty Hunter 16 Adventure Pack I or II 16
PAPER CLIP Word Processor - CBM/C64
ORACLE Data Base from Batteries Included
SPINNAKER Software C64, Apple, IBM, Atari
Compute!'s First Book of PET/CBM
POWER ROM Utiilites for PET/CBM
WordPro 4+-8032, disk, printer
VISICALC for PET, ATARI, or Apple
Compute's First Blook of 64 Sound \& Graphics
SW-KIT anhancod PET/CB M ROM UHillitias
PET Spacemaker II ROM Switch

DISK SPECIALS

Scotch (3M) 5"ss/dd Scotch (3M) 5" ds/dd Scotch (3M) $8^{\prime \prime} \mathrm{ss} / \mathrm{sd}$ Scotch (3M) $8^{\prime \prime} \mathrm{ss} / \mathrm{dd}$
$10 / 2.10 \quad 50 / 1.90 \quad 100 / 1.86$
$10 / 2.65 \quad 50 / 2.45100 / 2.40$

We stock VERBATIM DISKS
Write for Dealer and OEM qrices.

| Sentinal 5" ss/dd | $10 / 1.80$ | $50 / 1.75$ | $100 / 1.65$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sentinal 5" ds/dd | $10 / 2.40$ | $50 / 2.35$ | $100 / 2.25$ |
| We stock Dysan disks | | | |
| Wabash $5^{\prime \prime}$ ss/sd | $10 / 1.50$ | $50 / 1.45$ | $100 / 1.40$ |
| Wabash $5^{\prime \prime}$ ss/dd | $10 / 1.80$ | $50 / 1.75$ | $100 / 1.65$ |
| Wabash 5" ds/dd | $10 / 2.50$ | $50 / 2.45$ | $100 / 2.35$ |

We stock MAXELL IIISKS

Write for dealer and OEM prices.

Disk Storage Pages 10 for $\$ 4$ Hub Rings 50 for $\$ 6$ Disk Library Cases $8^{\prime \prime}-3.00 \quad 5^{\prime \prime}-2.25$
Head Disk Cleaning Kits 12
AMARAY Disk Storage Systems in stock
Innovative Concepts FLIP 'N' FILES in stock.
CASSETTE TAPES—AGFA PE-611 PREMIUM
$\begin{array}{llll}\text { C-10 } & 10 / .61 & 50 / .58 & 100 / .50\end{array}$
C-30
$\begin{array}{lll}101.85 & 50 / 82 & 100 / .70\end{array}$

USI Video Monitors - Green or A HAEA 20 WHz hi-res Dealer and OEM inquiries invited

White for IBM PC COMPATI日le Phices
Mutliplar-IBM or Apple
179
Quadboard for IBM available
KOALA PAD Touch Tablets-Apple, Atari, IBM, CBM
Peachtext 5000 Seftware Package
PFS Soltware for IB ${ }^{W}$ and Apple in stock
SPINHAKE月 Software C64/VIC, Apple, IBM, Atai
VOTRAX Personal Speech System
BNC 9191 Color Monitor
BMC 124 12" Green Monitor
Dynax (Brether) DX-15 Daisy Wheel Printer
Brother HR-25 Daisy Wheel Printer (25 cps)
Itoh Prowriter Paralle! Printer
Panasonic 1090 Priater with Correspondence Mode
Gemini 10X
89

Compute's First Book of Games
CmC Interfaces (ADA1800, ADA1450. SADI in stock)
Compuie!'s Reforence Guide to 64 Graphics
Compute's Machine Language for Beginners
11

FlexFile for PET/CBM/C64 \$59

DataBase, Report Writer with calculations, Mailing Lists.
Easy to use, and can be modified.
FORTH for PET/C64 full FIG model - Cargile/Riley 50 includes all FORTH 79 Standard extensions, structured 6502 assembler with nested decision macros, standard 16×64 screens, ability to read/write BASIC sequential files, sample programs, introductory + reference manual.
Metacompilier for FORTH for independent object code 30 Floating Point for FORTH
KMMM PASCAL IV for PET/CBM/C64
99
Virtually full Jensen-Wirth implementation is now suitable for advanced placement courses.
EARL for PET/CBM Disk-based ASSEMBLER 65
SuperGraphics - BASIC Language Exiensions 45
Fast graphics, sound, turtle graphics routines for PET/CBM.
RAM/ROM for PET/CBM \quad 4K \$75 8K \$90
COMAL Language for C64, CBM, PET 14
C8M Public Domain Sottware - C64 27 disks 75
STAT for PET/CBM/C64 and Apple
95
Comprehensive Statistical Analysis Routhes
Includes complete file handling capabilities, summary statistics, confidence intervals, hypothesis tests, exponential mean tests, multiple and power series regression, analysis of variance, histograms, and non-parametric tests.
Page Wate 60 Command Word Processor
20
Full-featured package for all Commodore computers. Full screen editing, and supports disk, tape, and all printers.

EPSOM, Okidata, Star Micronics printers in stock USI CompuMOD 4 R F Modulator
We Stock AMDEK Monitors
A P Products
15% OFF
COMPUTER COVERUPS IN STOCK
BROUKS 6 Dutlet Surgo Suppressor/Hoise Filter Surge Suppressor-6 outlet
Electrohome 1302-2 $13^{\prime \prime}$ Hi-res RGB Monitor
Panasonic $12^{\prime \prime}$ Monitor (20 MHz) with audio
Synerfek SYM-1 Microcamputer
54
29
335
135
189

Hewlett Packard
 Write or call for prices.

DATASHIELD BACKUP POWER SOUACE $\$ 265$
Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.

ATAAI - WE STOCK ENTIRE LINE
SPINNAKER and Broderbund Software in stock.

Letterbox

Dear MICRO:

Some of your recent issues have had parallel articles for the various computers you cover. I like this feature. In fact, it is the main reason I renewed my subscription. It is frustrating to see neat programs written for other computers, but not for mine.

Consequently, I was very disappointed that the well-written article on Fast Low Cost A / D Converter, MICRO 69, did not have listings for use of the converter with the Atari Computers. No A / D converters are available for the Atari |to my knowledge). This could have been very useful. The Atari was also slighted in the Adding Computer Senses to Your Micro.

Your excellent Interface Clinic suffers from the same problem. I should think that there are other Atari users who might also wish to have routines useful for interfacing the Atari with analog circuitry.

I hope you can extend this type of article to include the Atari in the future. Thank you for your consideration.

Michael Soso

Seattle, WA
Your points are well taken. The generality problem discussed above is even more prevalent when dealing with the Atari. The BASIC used in the Atari is somewhat unique. While there are many minor differences between the BASICs on the Apple, Commodore and Color Computer - they do have a lot in common. Atari is sort of out-in-leftfield. For this issue, for example, I went to generalize the Talking to your Printer.
First I had to wade through the Atari OPEN and XIO commands to setup the input and output, then had to DIMension all of the string variables, and then realized that due to the strange way Atari BASIC handles string concatenation - there was no way to get the program to work!!! Talk about frustration!

Some of the other programs you mentioned could have been, and probably should have been, converted. If any Atarist has converted them, we would be happy to print updates. Let
me make two proposals for future articles. First, MICRO will make a greater effort to perform Atari conversions where possible/practical. Second, if any Atari readers are interested in performing such conversions, we will work with them, pay a modest remuneration, and provide program/projects to convert. We can not do it all, but we can all do it together.

Dear Editor,

I read your editorial "Is It Reasonable?' ${ }^{\prime}$ in February 1984 MICRO \#69 with interest. Many of your thoughts and statements are true and I agreed with them. I do think you touched on a very important aspect of the APPLE success (and failure). That is "Third Party" vendors, which I'll come back to in a moment.

I believe the success of the microcomputer in the home and workplace stems from the fact that we are trained to use tools of "convenience", for example, log tables, slide rule, electronic calculator and the microcomputer. We must have some knowledge of their function to use them successfully and effectively. It is exciting to watch a human float effortlessly in space, but the thoughts of the details of what it really took to put him there and get him back are much more exciting. Some knowledge of the intricate steps required is where it is really at. So it is with the microcomputer.

What Apple, Inc. did with the Apple II was give the curious the opportunity to learn the intricate details which cause the II to function. They produced a Disk Operating System and Monitor that was easily and quickly understood. Your publication published a complete understanding of the Apple II^{\prime} ' operating system. I think the way the 'Steve(s)' started made this environment necessary. They needed the support of the Home Brew Computer Clubs, and also of Third Party Vendors. If the software didn't get written and published as fast as it did, I believe Apple wouldn't be as successful as it is. The resources
weren't available at the time. It is the software vendors and publications such as yours that contributed a measureable amount of resources to Apple's success.

It seems to me the Apple III, Lisa, MAC, et al, will follow the path of the TI-99 unless Apple will facilitate easier learning of the Operating System. The person in the business place may only want applications software, but there are orders of magnitude more at home wanting to write their own software hoping it will be of sufficient quality to be published. Apple needs to loosen their management philosophies regarding the MAC and provide a simpler operating system.

I am a co-founder of a 170 member Apple users group here in Silicon Valley. We were fortunate to have Apple's sales department demonstrate the MAC the day after it was unveiled. We had 300 people attend the presentation - an exciting turn out! Disappointment quickly set in when I discovered the complexity of the operating system. I decided the MAC was not something I would be interested in. I think MAC will follow Lisa unless Apple wakes up and provides a much simpler operating system so the Third Party vendors can contribute again.

I am now waiting for the new 650XX chip that has been reported in various news releases. If it doesn't satisfy the simple Apple II operating system concept with much expanded memory, I will seriously look at the Saybrook or QWERTY system again. I suppose you have guessed what I think is reasonable. It is a source of hardware and information that will give our tools of convenience a chance to be even more so.
Robert C. Madden
San Jose, CA

Sir
"The Apple/// had limited capabilities..."!!??

Surely you jest! 256K of pure RAM: what could be more versatile? An operating system which BYTE magazine called "the most|

sophisticated operating system available for an 8 -bit machine". The ability to run virtually all Apple][software. Can you seriously consider this to be limited capability?

Now, there is no doubt that the /// had some early hardware problems, which in turn discouraged software developers from jumping on the bandwagon. This, rather than "limited capability" resulted in the lack of early acceptance of the ///. Apple has now revitalized the ///, set up specific resources for it, and even published a booklet (approximately entitled 'Will someone tell me what you can do with an Apple ///?') which lists a great range of software available for the ///.

I develop software on the $/ / /$ for both it and the $\mid[$. I also use the $/ / /$ for all my other work: word processing, data base, modem, Pascal, BASIC, Assembly ... etc. I will gladly stack up the capabilities of the Apple /// against any other 8-bit machine on the market, regardless of price or manufacturer (and even against some of the pseudo-16sl. Would you care to enumerate its limitations?
Tracy Valleau
Pacific Grove, CA
I personally was unimpressed with the Apple /// when I saw it. I was at that time completing development of a 6809-based system that sold for $\$ 500$ less than the basic Apple /// and offered almost eight times the disk capacity, had a far superior keyboard, included many hardware features and a complete package of user-friendly software. I really had expected a lot more from Apple for the price - not just more memory. I guess today I would say it is perhaps a good computer, certainly not a great one. The next writer provides another possible reason for the lukewarm reception the Apple /// got.

Dear Sirs:
Although this letter will refer to the program by Joseph Kattan in MICRO 71, my criticisms are really directed at MICRO's editorial policies, rather than the specific program. The Credit Register program looks like a good idea, and I would like to run it on my
computer. However, it is written in such a way that it is essentially not transferable to any computer other than the Atari. The GRAPHICS commands, as also the PEEKs and POKEs are totally specific to the Atari, and lacking REMs as to their function, it is impossible to reproduce them on another machine. If the program involved something that had to be hardware dependent, such as a hi-res graphics presentation, there might be excuse for this. However, the screen. presentation that is shown looks like fairly straightforward printing, which it should be possible to generate with. standard PRINT statements.

You are in a favorable position for insisting on some kind of standard BASIC in your program listings, to improve as far as possible the portability of programs from one: computer to another. If this means that; all programs are restricted to a. minimum implementation of BASIC $\left.\right|_{\mathrm{c}}$ sort of lowest common denominator), this is not necessarily a bad thing. It is very elegant to use all possible bells; and whistles that are specific to your computer, in order to get the most: sophisticated display; but if this is only achieved at the expense of portability, :believe it is a bad bargin.
Rolf B. Johannesen
Rockville, MD
I agree with everything that you say, except for the problem being one of 'MICRO's editorial policies'! We evaluate every article with machine generality in mind. Literally hundreds: of programs/articles have been rejected because they were limited to a single computer. The ideal would be for everr program to work on every machine. Unfortunately, there are a number of factors working against this ideal. First, most authors have expertise on one micro and are often not aware of what is specific to their BASIC. Second, it is easier to write machine specific BASIC. Third, most authors do not have multiple micros for testing various versions. Fourth, it takes a great deal of work to take a program that has not been written with generality in mind and generalize it. We have worked many hours recently just to generalize a few programs, including Smart

Modem, (converted for three additional microcomputers), MICRO 68; Adding Computer Senses, (converted for two additional microcomputers), MICRO 69; Least-Squares Curve Fitter and PEEKing TOM, MICRO 70; Talking to Your Printer, in this issue; and so forth. Fifth, a generalized program requires testing. It may require hardware configurations that neither the author nor MICRO possess. Sixth, errors may be induced into the program during the generalization process.

The Talking to Your Printer article shows one technique that we use and hope that other programmers will adopt where possible. We plan to describe other techniques in future issues. Unfortunately we are not in a position to insist: we request, and we conjole, and we do reject.

Dear Sir,

I haven't been able to enter the program Master Directory for the Apple, MICRO 67/69 into my Apple $\mathrm{II}+$ with Language Card. My usual procedure with Machine Language programs is to convert to a Hex dump but the Master Directory listing is one that I have never seen before and it does not seem suitable to this method.

Would you please advise how I could go about using this program.
Herman F. Schulz
Schenectady, NY
Mr. Hill's program was too long to print and too good to ignore! We normally print the object code along with the source. In this case we dropped the object code to save space. Due to a number of letters and phone calls, we planned to print the hex dump in this issue. Turns out it would take a full four pages, four columns per page! What to do! We have arrived at two solutions: 1 . We will provide a complete listing including the object code for $\$ 1.00$ to cover copying and a self-addressed, stamped-envelope; or, 2. We will provide the assembler source (in LISA format) and the binary file (BRUN format) on a diskette, and the printed listing, for $\$ 15.00$. See the MICRO Diskette Service announcement on page 80

Raise your Apple's IQ Twelve Times A Yeart

A one-year subscription to NibBLE brings you twelve issues packed with programs and
comprehensive articles to help you get the best out of your Apple.

You'll get over $\$ 500$ worth of programs for Home, Business, Education and Entertainment with complete instructions. Nibble articles show what each program does, how to use it and enter it into your Apple, Franklin ACE or other Applesoft-compatible computer.

You'll enjoy regular features for the beginner as well as the expert. Among
these are the Educational Corner, where programs: help make learning fun, Tips \& Techniques which showcases little-known programming tricks, Utilities to facilitate Basic: DOS \& Printing, and Games with arcade fun you can type and run.

Ty a NiBBLE!

Here's what some of our Readers say: 0 Certainty the best magazine on be Appler"
\square "Programs rernarkably easy to enter:
\square Your service is fantastic. . as a matter offact Im amazed!"

Applot is a registerted trademark of Apple Conputen tid
getered rademakhor rank

Note

DCanads surtace subscription zate is $\$ 34.95$
\square Outide the US, and Canado suitace subscription yate it sios. 5
 - Canda Air Malls subsectitition rate is 565.96
oscription rate is \&soq. 0 Allpayments mostpe in $4 S$. funds drawn ora U.S. bank

Join the more than

120000 Apple/ACE

users who say:

NBBBLE is terrific

ferelot ot voincheak monow onder warde $\%$ \qquad Expires \qquad PEEASE PAMTF GEEARLX Signature \qquad Name \qquad Ndidess \qquad City \qquad state \qquad $2 i 9$ \qquad \qquad

Reviews in Brief

Product Name: IDS, An Integrated Development System for the Apple II Plus
Equip. Req'd: Apple II or II +
Price: $\quad \$ 85.00$
Manufacturer: R.R. Michaels, Inc., Box 565
Leesburg, VA, 22075
703/777-1933

Description: A utility package, written in 6502 machine langauge, to support Applesoft programming. Allows for the easy construction of screen displays for data entry, file structures for record storage and retrieval of output formatting for reports.

Pluses: The package is easy to use. It includes an editor for constructing display screens, which are keyed to variable labels; this permits the Applesoft programmer to coordinate their variables directly with the input display screen. Input edit checks can be performed to reduce the chance of key-stroke error. The record definition system permits easy storage and retrieval of both sequential and randomly accessed files. Individual fields, as well as entire records, may be stored or retrieved. One Applesoft weakness is in the output of data, where it lacks a PRINT USING capability. IDS permits the programmer a variety of display formatting, including specified decimal places, embedded commas and dollar signs and right justification. The IDS system uses CALLS to reserved variable names which perform each function (all of the calls begin with Z to avoid confusion with other BASIC variables).

Minuses: The IDS package has a modest RAMN overhead of a minimum of $\$ 2000$ bytes. In addition, several of the structure definition tables reside just below this address. Thus, the user will sacrifice at least 8 K to use the IDS software, although many Applesoft routines are eliminated, shortening the space needed for BASIC code.

Documentation: The manual is well written. It begins with a tutorial on the use of the IDS routines, including the construction and use of each of the three subsystems. A reference section describes each command available.

Skill level: The package will be of most interest to the Applesoft programmer writing commercial grade software.

Reviewer: David Morganstein

Product Name:	Magic Memory Equip. Req'd: Apple $\amalg+$, , $I e$ 48 K wAM
Price:	$\$ 100$

Manufacturer: ARTSCI
5547 Satsuma Blvd.
North Hollywood, CA 91601

Description: Magic Memory bills itself as an electronic address book. It is, in fact, a flexible way to create and recall a variety of information. All entries can be crossindexed, easily updated, and printed. Files can be saved on any disk, making it virtually impossible to run out of storage space.

Pluses: Looking to future developments, the program is entirely compatible with a hard disk drive and disk space is reserved within a submodule for new utilities that may be created.

Minuses: The copy-protected master disk cannot be copied to a hard drive and the 70 -column video driver can only be used with a 64 K system. Memory does not let you carry a file format from one file to another; rather you start each file blank and have to enter all data.

Documentation: A looseleaf manual provides ample instructions and some technical information.

Skill level: Intermediate to advanced.
Reviewer: Mike Cherry

Product Name:	Super Text
Equip. Req'd:	Commodore 64 with one disk drive and a printer
Price:	$\$ 100$ Manufacturer:
	Muse Software $347 ~ N . ~ C h a r l e s ~ S t r e e t ~$
	Baltimore, MD 21201

Description: A word-processor with a software-based 80 column display, Super-Text is loaded with features: creating/saving files, block moves, justification, automatic page numbering, find and replace, tabs, and imbedded control characters. Also available are file merge, on-screen help, word counting, and "autolinking" your files to the printer.

Pluses: Super-Text provides several printer parameters which can be adapted to fit almost any printer and interface., The 80 column display is a "bonus" feature and does not gobble up all your memory.

Minuses: Creating and editing text occur in separate modes. Jumping from mode to mode will slow you down and confuse you at first. Also, the screen will not
necessarily show the printer's format. You will need to refer to a preview section to verify the printout is the way you want it.

Documentation: A spiral booklet contains tutorial and technical information.

Skill level: Beginner and up.
Reviewer: Mike Cherry

Product Name:	Computer Mechanic Equip. Req'd: Commodore 64 with disk drive or cassette
Price:	$\$ 60$
Manufacturer:	Softsync, Inc.
	14 East 34th Street
	New York, NY 10016

Description: A diagnostic program to help pinpoint mechanical problems with your car. Mechanic also teaches the basics of car maintenance and sets up a repair history and maintenance schedule for any car.

Pluses: Mechanic will prepare a standard disk to accept files giving you room for hundreds of records. The use of the Commodore's graphics and color abilities is excellent and the advice is sound and helpful.

Minuses: Error-handling is marginal. Data entries are not adequately checked for proper input and error messages may confuse the beginner. Mechanic's simple approach limits the diagnostic advice/record-keeping to an introductory level.

Documentation: A thin 6-page pamphlet provides orientation but no technical information.

Skill level: Intermediate to advanced level. Poor errorhandling means a beginner may have trouble with this program.

Reviewer: Mike Cherry

Product Name:	Delta Drawing
Equip. Req'd:	 48K RAM
Price:	$\$ 40$
Manufacturer:	Spinnaker Software Cambridge, MA First Street

Product Name: Delta Drawing 48K RAM
$\$ 40$
Spinnaker Software
Cambridge, MA

Description: A FORTH-based program geared towards elementary school use lets you create drawings with simple keyboard commands. Various configurations allow for color fill, background color, preprogrammed patterns, saving and printing programs in text or graphics modes.

Pluses: Easy to learn, Delta Drawing is fast and pleasing. Children will be able to create interesting pictures with only a little practice. The "color fill" command is especially fun to watch.

Minuses: Only the Grappler + interface is supported for printing graphics; all else will print only text. Patterns saved can not later be recalled and included in BASIC programs.

Documentation: An excellent tutorial and separate 'flash cards" illustrating various patterns are included.

Skill level: Beginner and up.
Reviewer: Mike Cherry

Product Name: Mail Controller
Equip. Req'd: Cornmodore 64 with 1541 Disk Drive, 1525 printer or other with interface.
Manufacturer: Orbyte Software
Box 948
Waterbury, CT 06720
Description: An easy to use mail list program. Allows over 2000 entries per disk with editing functions available. Will print labels in one across format or print out on paper stock taking advantage of your paper width. The program allows formatting a new data disk in order to access more records. This makes it possible to have extremely large files across several d:sks.

Pluses: The program is powerful and easy to use. All work starts at the menu and the function keys are taken advantage of to simplify work. A help screen is provided for the New Disk and Data Entry functions. Mail Controller may also be used as a small database for other than mail lists, although the amount of information storage is limited.

Minuses: There is a limit of 73 characters that may be used for the fields in a standard mail list format. This requires careful field setup.

Documentation: The 38-page manual is one of the easiest to use that I have seen. Each function is made clearly understandable.

Skill level: Anyone, from beginner to expert, would be able to use this program.

Reviewer: Richard E. DeVore

Product Name: Experiments in Human Physiology
Equip. Req'd: Apple II, II + , IIe
Price: $\quad \$ 249$ (Demo disk available for 30-day preview)
Manufacturer: HRM Software
175 Tompkins Avenue
Pleasantville, NY 10570

Description: A combination of hardware and software to implement a variety of experiments in Biology and Human Physiology including: Psychomotor Response Time, Calibration of Temperature Probe, Skin Temperature, Respiration Rate, Heart Rate and Polygraph Testing. A useful supplement ot a High School Biology class. All of the experiments would easily fit into the classroom curriculum, helping the student to further understand basic functions by first hand experiments and encouraging further exploration in this area.

Pluses: The experiments are simple but dramatic, giving the impression of a 'mini-laboratory". The students learn by doing, gaining not only class work, but experience in using computers as well.

Minuses: None.
Documentation: Well written and clearly explaining the experiments.

Skill level: Beginner ${ }_{j}$ the hardware connections are clearly explained, although they probably should be done by the teacher.

Reviewer: Edouard Garcia

Product Name:	Pro-Color-File 2.1
Equip. Req'd:	TRS-80 Color Computer
Price:	$\$ 79.95$
Manufacturer:	Derringer Software
	P.O. Box 5300
	Florence, SC 29502

Description: A database utility. File definition capability allows up to 60 fields per record, to a maximum length of 1024 bytes. Fields can be defined as numeric or alphanumeric. Report formatting capabilities include math functions, report layout and definable work fields for use in reports. Up to five distinct report formats may be defined and invokable at any one time. Search, select and
sort features are available for databsase manipulation. Data entry is accomplished via quick entry screens designed by the user. Up to 5 separate data entry screens may be defined per logical record.

Pluses: Good flexibility in design allows for a wide variety of applications. Subtotals, totals and averages can be automatically caiculated in reports. Other user-definable formulas can add versatility to the report writer feature. The entire program is written in Extended Color Basic and is provided as user-modifiable code. This allows the user to make such things as printer baud rate settings a permanent part of the program. Record segmentation provides the ability to add fields even after records have been entered. Select and sort features are quick and efficient. Special menu format allows for end user input with reduced menu. Password protection is available on selected fields.

Minuses: The program does not provide for boolean operations during report writing aside from the standard selection process. The documentation claims that a field name can be up to 15 bytes long, but the program would allow only a 12 tyte name. The program does not provide any automated word procesing capabilities. While this can be accomplished using the report writer, much manual intervention is required during the printing phase.

Documentation: A 35-page manual is well-written and easy to understand. It makes good use of examples and the diskette also includes those same examples to give the new user an established database to practice with.

Skill level: Intermediate. Programming skill is not required, but some familiarity with computer records is useful.

Reviewer: Norman Garrett

Product Name:	HJL-57 ColorComputer Replacement Keyboard
Equip. Req'd:	TRS-80 Color Computer Price:
\$79.95	
Manufacturer:	HJL Products
	P.O. Box 24954 Rochester, NY 14624

Description: A direct replacement for the standard Color Computer keyborard, but unlike others on the market, it has the layout and color scheme of the original with the addition of a longer spacebar and four function keys (one locking). It includes installation instructions, necessary hardware and a replacement bezel. The keyboard is fully shielded ahd has the connecting cable installed (the purchaser must specify the computer version desired so that the correct connecting cable can be determined]. The keyboard rests at about the same angle as the original,
with the overall contour slightly modified. It comes with a one year guarantee.

Pluses: The contour of the keyboard (the slight variation of angle between rows of keys) is modified a bit to give it a more natural feel. This is especially apparent with the spacebar, which is much more accessible than on the original. The texture and sculpture of the low profile keys are significantly improved. An additional benefit is the RFI shielding included, which noticeably reduced the RFI on my television.

Installation is straightforward. For a person who has never opened the computer case, it would probably take a maximum of 30 minutes. The only modification is to shorten one plastic post. The unit rests on the original posts. Manufacturer telephone response to questions is good. The finished appearance is good, blending well with the original and being truly a replacement and not a modification.

Minuses: The effect of the locked PF2 key on other keys needs to be explained (more explanation on the actual use of the function keys in general would be helpfull. This would allow a programmer to better utilize the programmed key functions.

Documentation: Consists of excellent, easy to follow installation instructions, the decimal values generated by the function keys, and a sample program which will program your function keys as follows: F1 dumps the current screen to the printer; F2 allows auto repeat of any key (F2 locks); F3 flips between upper and all lower case; F4 acts as a control key and subtracts 64 from the ASCII value of any key.

Skill level: Installation requires no technical experience. The instructions are geared to a non-technical installer.

Reviewer: Norman Garrett

$$
\begin{array}{ll}
\text { Product Name: } & \text { Flight Simulator II } \\
\text { Equip. Req'd: } & \text { Apple II + 48K, DiskDrive } \\
\text { Price: } & \$ 49.99 \\
\text { Manufacturer: } & \text { SubLOGIC Corporation } \\
& 713 \text { Edgebrook Drive } \\
& \text { Champaign, IL 61820 }
\end{array}
$$

Description: The long awaited sequel to Flight Simulator I. An incredibly well thought out product of real value to pilots and fascinating to those not aviation minded. The package includes maps of the four areas of the U.S. modeled in detail on the main disk. The company advertises the availability of other scenery disks. Care has been taken to simulate the intricacies of communications and navigation that are in real life the most demanding tasks of a pilot.

Pluses: Sheer attention to detail. User variable weather is a particularly valuable feature in that it brings home to the user precisely how poor weather creates chaos with flying. For the younger user, a World War I dogfight game is included as a special option of the main disk.

Minuses: There really are not many. In places, the instructions could be improved. There is a tendency to assume too much aeronautical knowledge on the part of the user. The authors seemed to be aware of it, but were not entirely successfal in avoiding the problem.

Documentation: Overall, I was pleased with it. The manual was printed in a professional manner, and the incredible detail of tine product was handled nicely. Each feature is explained without hype or unnecessary enthusiasm.

Skill level: A novice computer user who follows the manual should have no trouble using the product.

Reviewer: Chris Williams

Product Name:	The World of Counting
Equip. Req'd:	Apple $I+$ or IIe
Price:	$\$ 24.95$
Manufacturer:	Educomp Enterprises
	191 North 650 East
	Bountiful, UT 84010

Description: Designed to teach counting principles to learning-disabled class or regular preschool. Provides examples, demonstrations, quiz questions, and a final test, using hires graphics, music and sound effects for reinforcement. Student scores and response times are displayed at end of lesson.

Pluses: Lots of repetition and reinforcement. Program written in Apple Pilct - can be customized to meet user's specific needs. Good graphics.

Minuses: Pictures are drawn very slowly (inherent problem in Pilot). Musical reward may be confused with musical number prornpt. Scores are not stored on disk for later reference.

Documentation: 8-page pamphlet with excellent program description and directions. Software also shows instructions.

Skill level: 3 to 6 year old (mental age); adult to start program.

Reviewer: Mary Gasiorowski

Product Name: Practicalc II
Equip. Req'd: $\quad 48 \mathrm{~K}$ Apple II +, IIe and compatible computer
Price:
Manufacturer:
$\$ 69.95$
Micro Software International Inc.
The Silk Mill
44 Oak Street
Newton Upper Falls, MA 02164

Description: This is not another Visicalc clone although it does have the same basic features; 80 column width, scrolling, columnar movement/expansion, and all the other spreadsheet "musts." It has some things that the others are lacking, for instance database management that enables you to do alpha and numeric sorting and searching. There are also prompts for entry during calculation and printing of list formulas.

Practicalc II was designed with the nonprofessional user in mind. It certainly is capable of being used in a business setting but unlike most "professional" packages it has some friendlier additions. For example, you may not use a particular spreadsheet but once a month, so chances are the next time around you won't remember how you set things up. This is not a trivial matter when you are dealing with columns and numbers. Practicalc II

CHECKBOOK MANAGER

This is a superb checkbook package evolving from over 3 years of rigorous testing and usage. Stores up to 6,000 checks on one Disk. Machine language where it counts!

- Easily and quickly enter checks \mathcal{E} deposits, with "Shorthand" options. No waiting for disk with each entry. Entries are automatically saved to disk when you return to the main menu... stores 1000 thecks in approximately 8 seconds.
- Payee and category entry up to 39 characters each. 255 different categories possible. Check No.'s up to 32766
- Powerful search feature, very fast. prints to screen or printer, locates by all fields. Locate a range of Check No.s! Dates! Even payees or categories between dates. Totals all checks/deposits located.
- Look at your spending trends with Hi-Res charting
- Easily make corrections
- Checkbook balancing
- Up to 6 checking accounts per disk
- User friendly, menu driven, fully documented
- CHECK PRINTER MODULE:

[^1]P.O. Box 2132

Athens. Texas 75751
(214) 675.8479
 disk drives (Preferably twa)
saves a spreadsheet with the menu that contains all of the printer settings and other pertinent information.

Pluses: Unlike the other spreadsheet packages you have seen, the price for this one is only $\$ 69.95$! Perhaps you had previously found it hard to justify an expenditure of several hundred dollars for something that you only needed a few times a month. At this price intermittent use is justifiable, particularly when you think of the time saved and the frustration avoided.

One unique and handy "extra" offered by Practicalc II is that it includes a word processing package. It is your basic WP, but has a few nice additions not usually found. One of these is the capability of typing columnarly newspaper style. This is a feature many major WP packages do not have. It is one of those things that might not be useful to most people on a regular basis, but when you need it - what a blessing! The standards - insert, delete, etc., are nicely implemented. When deleting/inserting in newspaper-style typed text, correcting one column does not affect the other.

Besides the bargain price, Practicalc II has another major difference - it is not copy protected. Microsoftware hopes this feature will not be abused, but instead will aid its customers by allowing them to have a copy of Practicalc $I I$ on different diskettes. This certainly would enable more facile use of their product and make life a little easier for the user. Using 15 K of memory, there is plenty of room for other things. The actual code can be accessed if you are willing to disassemble it (use Big Mac) and put the whole thing back together. I would suggest you make a few copies for backup first.

Minuses: The one area in which Practicalc II is not as proficient is speed. The difference is minimal, most noticeable when saving a spreadsheet. Because each sheet is saved with a copy of the menu and its settings, it takes a little longer to be stored on disk - a reasonable tradeoff to most users. The scrolling and screen movement are not as fast as its competitors, but again the difference is negligible.

Documentation: The documentation for Practicalc II is clearly writter with examples and logical steps for procedures. It contains an Index and a good Table of Contents - botic very useful. Future addenda should be available to users for a nominal fee. Also available will be diskettes containing new versions to help kill the bigger bugs. These will sell for $\$ 5.00$ a diskette.

Skill level: The level of expertise needed by the user ranges from beginner to expert. The beginner can learn the basics rather easily; the more advanced the user the more options and features he/she will be able to utilize.

Reviewer: Mark S. Morano
MCRO"

SANYO MONITOR SALE!!

9" Data Monitor

- 80 Columns $\times 24$ lines
- Green text display
- Easy to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

- 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
 12" Screen - Green Text Display (anti-reflective screen)
 12" Screen - Amber Text Display (anti-reflective screen)
 14" Screen - Color Monitor (national brand)
 *\$239.00
 *PLUS $\$ 9.95$ for Connecting Cable.

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity 5×7 dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of Audio/Video, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products,
 from cameras to stereos. That's an assurance not everybody can give you!

[^2][^3]
80 COLUMN PRINTER SALE-\$149.00*

-15 Day Free Trial -180 Day Immediate Replacement Warranty

- Lowest Priced, Best Quality, Tractor-Friction Printers in the U.S.A.
- Fast 80-120-160 Characters Per Second - 40, 46, 65, 80, 96, 132 Characters Per Line Spacing - Word Processing - Print Labels, Letters, Graphs and Tables - List Your Programs
- Print Out Data from Modem Services - "The Most Important Accessory for Your Computer"

*STX-80 COLUMN

 PRINTER-\$149.00Prints full 80 columns. Super silent operation, 60 CPS , prints Hi -resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal paper! Best thermal printer in the U.S.A.! (Centronics Parallel Interface).

**DELUXE COMSTAR T/F 80 CPS PRINTER- $\$ 199.00$

 The COMSTAR T/F (Tractor Friction) PRINTER is exceptionally versatile. It prints $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ standard size single sheet stationary or continuous feed computer paper. Bi-directional, impact dot matrix, 80 CPS, 224 characters. (Centronics Parallel Interface).
Premium Quality-120 CPS
 COMSTAR T/F SUPER-10X

PRINTER—\$289.00
COMSTAR T/F (Tractor Friction) SUPER10X PRINTER gives you all the features of the COMSTAR T/F PRINTER plus a $10^{\prime \prime}$ carriage, 120 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underlining, back spacing, left and right margin settings, true lower decenders with super and subscripts, prints standard, italic, block graphics
and special characters, plus 2 K of user definable characters! The COMSTAR T/F: SUPER-10X PRINTER was Rated No. 1 by "Popular Science Magazine." It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX 80).

Premium Quality-120 CPS
 COMSTAR T/F SUPER-15 $1 / 2$ "

PRINTER—\$379.00

COMSTAR T/F SUPER $151 / 2^{\prime \prime}$ PRINTEF has all the features of the COMSTAR T/F SUPER-10X PRINTER plus a $151 / z^{\prime \prime}$ carriage and more powerful electronic:s components to handle large ledger business forms! (Better than Epson FX 100).

Superior Quality

SUPER HIGH SPEED-160 CPS

COMSTAR T/F 10"

PRINTER-\$489.00
SUPER HIGH SPEED COMSTAR T/F (Tractor Friction) PRINTER has all the features of the COMSTAR SUPER-10X PRINTER plus SUPER HIGH SPEED) PRINTING-160 CPS, 100% duty cycle, 8 K buffer, diverse character fonts, special symbols and true decenders, vertical and horizontal tabs. RED HOT BUSINESS PRINTER at an unbelievable low price!! (Serial or Centronics Parallel Interface)

Superior Quality SUPER HIGH SPEED-160 CPS
 COMSTAR T/F 151/2"'
 PRINTER-\$579.00

SUPER HIGH SPEED COMSTAR T/F $151 / 2^{\prime \prime}$ PRINTER has all the features of the SUPER HIGH SPEED COMSTAR T/F $10^{\prime \prime}$ PRINTER plus a $15^{1 / 2^{\prime \prime}}$ carriage and more powerful electronics to handle larger ledger business forms! Exclusive bottom paper feed!!

PARALLEL INTERFACES

For VIC-20 and COM-64- $\$ 49.00$
For All Apple Computers - $\$ 79.00$ NOTE: Other printer interfaces are available at computer stores!

Double Immediate Replacement Warranty

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within "180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge, prepaid. This warranty, once again, proves that $W E$ LOVE OUR CUSTOMERS!

PROTECTO

ENTERPRIZES we.ove unc customeas)
BOX 550, BARRINGTON, ILLINOIS 60010 Phone $312 / 382.5244$ to order

EXECUTIVE LETTER QUALITY
 DAISY WHEEL PRINTER SALE $\mathbf{\$ 7 9 0 0}$

COMSTAR 13"

computer printer

COMSTAR 1ふ" "DAISY WHEEL" POWER TYPE PRINTER is typewriter friendly. It uses a simple drop in cassette ribbon. Just turn on the COMSTAR $13^{\prime \prime}$ "or Crip executive quality correspondence at 18 CPS with a daisy wheel that prints 96 power type flawless characters, bidirectional. Designed for personal and business applications. COMSTAR 13' carriage accepts paper from letter to legal size, continuous computer paper cr single sheets, you can set right and left margins, vertical and horizontal tabs. LIST PRICE ${ }^{5} 599^{\circ 0}$ SALE PRICE ${ }^{5} 379^{\circ 0}$

OLYMPIA "DAISY WHEEL" COMBINATION PRINTER/TYPEWRITER SALE

 $\$ 489^{00}$
(1) Olympla (world's finest)

THE OHIMPİ COMPUTER PRINTER ELECTRONIC TYPEWRITER is the ultimate for Home, Office, and Word Processing. You get the best Electronic Typewriter made and used by the world's la'gest corporations (better than IBM Selectric) plus a Superb Executive Correspondence Computer Printer!! (Two machines in one!) Just flick the switch for the option you want to use. The extra large carriage allows 14//8" printer paper width. It has cassette ribbon lift off correction. Baud rates, Jumper selectable 75 through 19,200 (serial or parallel interface) LIST ${ }^{5} 799^{\circ 0}$ SALE ${ }^{5} 489^{\circ 0}$

- 15 DAY FREE TRIAL - 90 DAY FREE REPLACEMENT GUARANTEE

The Accurate Printer

by Richard Marmon

Have you ever typed a program from a book or magazine into your Atari computer that used graphics characters or inverse characters? Have you been frustrated when you tried to list the program on your Epson for Epsoncompatible) printer only to have the printer go crazy? If you have the Graftrax or Graftrax-plus option for your printer, then Accu-Print will solve this problem for you - and give you some added desirable features as well. With Accu-Print in control of your printing, your Epson printer will faithfully reproduce each and every character that the Atari line of computers can generate on the screen with no exceptions.

What Accu-Print Can Do

Figure 1 shows a little nonsense listing using Atari graphics characters and inverse characters. If you type these statements into your computer (using the appropriate keystrokes to obtain the special characters as described in the Atari Basic manual] and then list them to your printer, you will obtain the results shown in Figures 2, 3, and 4 printed on three sheets of paper. The printer will pretty much garble the listing and seem to go crazy with form feeds as it is printing.

This is because there is an incompatibility between the ATASCII
codes used to represent the computer's character set and the ASCII codes used to represent the printer's character set:. Some ATASCII values representing inverse characters to the computer represent different Epson-style graphics characters to the printer. In fact, the special Atari graphics and inverse characters just aren't included in the Epson printable character set. And some ATASCII values are interpreted by the printer as special control characters. Hence, the printer form feeds when you don't really want it to. This is quite a messy state of affairs!

I wrote Accu-Print in order to get around these difficulties. It seemed to me that the printer's graphics capabilities could somehow be used to form the special characters. After much experimentation and some pain, I finally succeeded, and now I'd like to share the result with you. When AccuPrint is controlling the printing, the program shown in Figure 1 will print on paper exactly as it's shown in the figure. As you can see, all Atari characters can be printed.

Accu-Print System Description

In its usual configuration, printing on the Atari computer is controlled by a routine within the Operating System ROM called the printer driver. Each
time a character is to be printed, either by a cartridge [such as BASIC or the Assembler-Editor) or by an application program (such as the Atari Program Text Editor, APX Forms, or a userwritten one), the printer driver is executed and sends the ATASCII code for the character to the printer. The printer then responds to the code according to its internal character set, not the Atari's. Under the Accu-Print system, a new printer driver replaces the one contained in the OS ROM. Once loaded, the new printer driver controls all subsequent printing by any program. The new printer driver is contained in an AUTORUN.SYS file and is located automatically and attached to the Operating System during system startup. To use the system, all you have to do is make sure AUTORUN.SYS file is on your boot disk and then start and use the computer system normally. No differences will be noticeable until Atari graphics or inverse characters are printed. Then, the special characters will simply be reproduced on the printer, although the printing will slow down somewhat due to the use of the printer's graphic mode.

There are basically two parts to the Accu-Print system. The first is the AUTORUN.SYS file which contains
the new printer driver. The second is the Customizer program which is a BASIC program that creates the AUTORUN.SYS file for you. It allows you to select typestyle and control character options, and it permits you a great deal of flexibility in using AccuPrint and your printer. Customization of the AUTORUN.SYS file will be explained in a later section.

Getting Started

Listing 1 shows the Customizer program. When executed, it will create the AUTORUN.SYS file you need to do the accurate printing described above. For now, let's just try it to see how it works. Type the program into your computer exactly as shown in the listing. Don't forget to save it on your disk drive! You might call it CUST.BAS. When you've got it right, put a disk in your drive that doesn't have an AUTORUN.SYS file on it and run the Customizer program. Type 1 followed by a RETURN when you see the typestyle menu. Type N followed by a RETURN in response to the control character selection question. Finally, type D:AUTORUN.SYS followed by a RETURN in response to the file name question. The disk will now chug away, and in a few moments you'll see a question regarding creation of another file on the screen. Type N followed by a RETURN and the program will end. The Accu-Print printer driver is now embedded in the AUTORUN.SYS on your disk and is ready for your use.

Now, turn your computer off and then on again. When the disk stops spinning, the new printer driver has become an integral part of your computer's operating system. To try it out, just type in the listing shown in Figure 1 and list it to your printer. If all is well, your printer will print out an exact copy of Figure 1. Don't be concerned that the printer slows down when it encounters the special characters. It happens because the printer automatically does a carriage return when it goes into dot graphics mode, which is used to print the graphics and inverse characters.

With the system as it is now, you can print all of your program listings that contain graphics characters accurately on your printer. Just be sure to start your system using the disk containing the Accu-Print AUTORUN.SYS file. But since AccuPrint can do even more, let's get a little deeper into the system.

Figure 1

```
10 REM CHARACTEF SET FRINT TEST
2Q REM ABCDEFGHIJKLMNOFGRSTUVWXYZ
```



```
49 REM @123456789
```



```
BG FEM abcdefghi jElmnopqr stuvw:yz
```



```
1@g FEM ABCDEFGHIJKLANDPQFSTUYWXYZ; .
```



```
1SO FEM AS ON ATARI MANUAL
140}\mathrm{ FEM E{\+f+6K
15g REM f\DBHREG
```

Figure 2

Figure 3

[:

120 REM

Figure 4

Listing 1			
: ACCU-PRINT			
; this routine rlins as an alito run routine			
; IT CAUSES THE OPERATING SYSTEM TO USE THE			
; NEH DEvice mrite portion dF The printer handler.			
ICFC	* ORG \#ICFC		
	;		
9010	IINIT	EQU 10	
001E	ICHAR	ERU SIE	
901 F	ISAVE	EQU \$1F	
	;		
0254	CBASE	EQU 62 F 4	
1D17	NPTAB	EQU 1017	
	1		
ICFC AD IF D0	BEGIN	LDA \$001F	; CHECK FOR DPIION KEY
1CFF 2964		AND \$ 304	
1091 F6 13		beg finis	
	; IF = DOn't use nen printer routine		
1083 A9 17		LDA \#NPTAB	; REVECTDR PRINTER
1095801863		STA	
1088 A9 1D		LDA /NPTAB	
1DOA 8D IC 03		STA 193IC	
1090 EE E8 02		INC \$2E8	
1D1) EE E8 02		INC \$2E8	
1 D 3 EE E8 02		INC \$2EB	
101660	FINIS	RTS	; RETURN
	1		
	; SUBRO	INE VECTORS	
1017 9E EE		ADR SEEPE	; OPEN
1019 DB EE		ADR EEEDB	; CLOSE
101890 EE		ADR SEE9D	; READ
1D1D E7 1D		ADR PWHIT-1	; NEN WRITE
101F 80 EE		ADE \$EE89	1 STATUS
1021 9D EE		ADR \$EESD	; SPECIAL
1023 4C		BYT \$4C	; JUhf Vector 10
102478 EE		ADR \$EE78	; DEvICE INIT ROUTIME
	HEH DEVICE HRITE ROUTINE		
	; NEH DEVICE WRITE RDUTINE		
102600	DH	BYT 0	; DOUBLE WIDE
1027	CHCNT	BYT	; LINE CHAR COUNT
102601	CHINC	BYT 1	; INCREMENT FOR GRAPHICS
1029 51	LEN	BYT 81	; LINE DUERFLOH LENGTH
102A 08	FT	EYT 0	; FIRSI TIME INDICATDR
102869	15	BYT 0	; PRINTER INIT STRING
102 C 00000		BYT 0,0,0,0,	0,0
	; NOTE: DUE 10 SPACE CONSTRAINTS WE DO NOT LIST OUT ; EVERY byte separately, instead he cohbine theh, WE USE this convention particularly hhen listing text		
1034	AS	BYT 0	; SPECIAL COMTROL CHAR ALLDH
10359000		DEY $0,0,0,0$,	, $0,0,0,0,0,0,0,0,0$
10530000		DEY $0,0,0,0$,	, 0,0,0,0,0,0,0,0,0
10710000		DEY $0,0,0,0$,	, $0,0,8,0,0,0,0,0,0$
108F 000000		DEY $0,0,0,0$,	, 0, 0, 0, 0, $0,0,0,0,0$
IDAD 09000		DBY $0,0,0,0$	
108560	6R	ByT	; GRAPHIC INDICATOR
1086 00	COLCT	BYT 0	; CURRENT COLUM OF CHAR
10870	FRET	BYT	; FOUND 155 (CR) INDICATOR
	;		

The OPTION Key

When the AUTORUN.SYS file containing the new printer driver is on one of your boot disks, it will automatically control the printing whenever you start your system using that disk. However, there may be times when you don't want the Accu-Print system to handle the printing. Instead of using another disk that doesn't contain Accu-Print's AUTORUN.SYS file, simply press the OPTION key and turn your computer on. Keep the OPTION key depressed until the disk drive stops and the startup operation is complete. Now printing will be controlled by the normal Operating System printer driver. To use AccuPrint again, just turn your computer off and restart your system without depressing the OPTION key.

Compatibility With Other Programs

The Accu-Print printer driver uses 768 bytes of memory, which is subtracted from the amount of memory available for application programs. The AUTORUN.SYS file, upon booting, modifies the LOMEM pointer so that application programs may be loaded and run in conjunction with the printer driver without overwriting it

Since Accu-Print is designed to coexist and run with other programs, it is compatible with language cartridges such as BASIC, PILOT and AssemblerEditor. It is also compatible with standalone programs such as the Atari Program Text Editor and APX Forms. It is not compatible with any program that has its own AUTORUN SYS file or that directly calls the Operating System's printer driver routine. In short, Accu-Print is compatible with any program or cartridge that uses or supports normal Atari Operating System printing conventions.

Control Characters

The Epson (and Epson-compatible) printers, without software support like Accu-Print, will not normally print Atari graphics or inverse characters. The reason is that while the Atari computer will display graphics symbols in response to certain numeric values, the Epson printers will consider those same values as control codes and respond accordingly. For example, the BASIC statement PRINT CHR $\$(12)$ will cause a graphics symbol to appear on the screen. However, the statement

LPRINT CHR \$(12) will cause the Epson printers to form feed.

When the Accu-Print printer driver as created above is controlling the printing, the only control character the Epson printers will respond to is the carriage return. All other control characters will cause the printers to print the same graphics characters that would appear on the screen. For program listings and other uses, this is precisely what you want. However, there are other applications for which you would want your Epson printer to respond normally to certain control characters while responding to others by printing the Atari graphics or inverse symbols. For example, the AssemblerEditor cartridge generates form feed control characters when printing assembly listings. But you might want to put inverse characters in comment lines for emphasis. Therefore, you'd like to use the Accu-Print printer driver, but not have it treat form feeds as Atari graphics symbols. The Customizer program allows you to customize the Accu-Print printer driver for this type of use.

The Customizer Program

This program (Listing 1) creates an Accu-Print printer driver that has been customized for your use. As an option, you may select among any of 24 typestyles allowed by the Epson printers with Graftrax. All text except graphics or inverse characters will be printed in the typestyle you select. Note that you may not change typestyles while you are printing with the Accu-Print driver unless you select a control code option.

A second option is the specification of allowed control characters. You may specify up to 128 control characters which your Epson printer will respond to normally. That is, the Atari graphics or inverse characters corresponding to these symbols will not be printed in response to these control codes. Instead, the printer will respond as specified in its instruction manual.

Running the Customizer program is simple. With the BASIC language cartridge inserted, just load and run CUST.BAS. After initialization is completed, you will see a menu of typestyle choices. Just type the number corresponding to the typestyle you want followed by the RETURN key. You will then be asked if you want to allow control characters. If you do, type Y and RETURN in response to the question:

1088 85 dF	Phinit	STA ISAVI:	; STDRE ATASCII CHAR
IDBA 28 IA EF		JSR SEFJA	
10 D A 08		LDY \#id	; InIt column count
JDBF 8 CB B 10		STY GR	; AND INDICATORS
$10 \mathrm{C} 2 \mathrm{BC} \mathrm{B6} 10$		STY COLCl	
1DC5 AC B7 ID		STY FRET	
10 CA CC 2A 1D		CPY FT	; FIRST TIME THRU ?
IDCB Dg 13		BNE G00N	: BRANCH IF NGT
1DCD EE 2A 1D		INC FT	; BYPASS AFTER THIS
1009 B9 2810	LOP	LDA IS, Y	; CHECK FOR MORE
1003 C9 90		ChP Id	1 PRINTER IMIT CHARS
1005 F9 99		BEE 600N	; BRANCH IF NO MORE
1007 Ab 10		LDX 2INI'	: INIT CHAR IN PRINTER
10 D 2 CF IE		JSR STCHI	
1DDC C8		INY	1 POINT TO NEXT INIT
10DD 4C D 10		JMP LOP	; CHAR AND GET IT
1DEE A5 IF	G00N	LDA 2SAVE:	
10E2 29 IF		JSR CHRCK	; CHECK FOR NON-COMPATIBLE
10E5 C 01		CPY \$1	; Character
10E7 F0 ${ }^{\text {a }}$		BEA INCMP	; bRANCH IF INCDMPATIBLE
1DE9 4C BC 1E		JMP CMPAT	; COMPATIBLE
10EC EE B5 10	INCMP	JMC 6R	; SET GRAPHIC FLAG
1DEF 18		CLC	
1DF9 AD 2810		LDA CHINC	; INCREMENT LINE
1DF3 60 2710		ADC CHCNT	; CHAR COUNT
10F6 802710		STA CHCNT	
10F9 CD 2910		CMP LEN	; CHECK FOR LINE OVERFLOH
1DFC D9 90		BME CTRL	; BRANCH IF NO OUERFLOW
1DFE A9 98		LDA \$155	; ELSE, SEND CARRIAGE RETURN
1ESA Ab 10		LDX ZINIT	
1 E 22 29 CF IE		JSR STCH:	
1E95 AD 2810		LDA CHIM:	; Clear char count
1508802710		STA CHCNT	
1EOB A9 18	CTRL	LDA \#118	; PUT GRaphics control
1EDD Ab 10		LDX IINIT	; CHARS INTO PRINTER BUFFER
1EPF 29 CF 1E		JSR STCHR	; STORE CHAR
IE12 A9 4C		LDA $\$ 76$	
$1 E 14$ AC 26 10		LDY DH	; CHECK FOR DOUBLE WIDE
$1 \mathrm{EL7}$ CO 90		CPY	
$1 \mathrm{EI9}$ F1 62		BEQ LD76	; BRANCH IF NOT
1E18 A9 48		LDA $\$ 75$	
1E1D Ab ID	L076	LDX 2IN]'	
1EIF 26 CF 1E		JSR STCHR	
1E22 A9 98		LDA ${ }^{\text {\% }}$	
JE24 A6 10		LDX ZINI"	
1E26 29 CF IE		JSR STCHR	
$1 E 29$ A9 ${ }^{\text {a }}$		LDA	
$1 E 28$ Ab 10		LDX 2INJT	
1E2D 29 CF IE		JSR STCHR	
$1 E 39$ AC B6 10	BACK	LDY COLCT	; COLUMN COUNT IN Y
$1 E 33$ A5 IF		LDA ISAV:	; ATASCII CDDE IN A
1E35 2048 dF		JSR GETC:	; GET COLUMN VALUD
1E38 8A		TXA	; PUT INTO A
1539 C9 98		CMP \$155	- 155 IS ATASCII EOL
1E38 095		BNE PUTC	
IE3D EE 87 10		INC FRET	1 SET FOUND 155 FLA6
$1 E 40$ A9 98		LDA \$144	; SEND A 144 INSTEAD
$1 E 42$ Ab 10	PUTC	LDX ZINIT	; INDEX JNTO PRINTER BUFFER
1E44 EE 86 10		INC COLC'	; SET CLOUMN COUNT
$1 \mathrm{E47} 2 \mathrm{CF}$ [E		JSR STCHR	; Put colunn value in pb
1E4A A9 98		LDA \#	
1E4C CD E6 10		CMP COLCT	
1ED9 C9 9B		CMP 1898	

ANY CONTROL CHARACTERS TO ALLOW?

Then type the decimal value of the control character you wish your Epson printer to respond to normally followed by the RETURN key. You will then be asked:

ANY MORE?

Respond with a Y and RETURN to specify more control characters, and continue in this way until you have typed all the control characters you wish to allow. You can specify up to 128 control characters in this manner.

You will then be asked for a file name. This is the name of the file your customized printer driver will be written to. You may give any legal file name and must give the complete specifier, including the disk drive. For example, this could be Dl:SPECIAL.OBJ. Follow the file specification with the RETURN key. The file will then be written to the disk. Next you will be asked if you want to create another printer driver file. Type Y and RETURN if you want to create another customized printer driver, or N and RETURN if you want to exit the program.

To use your new printer driver, just copy the file you created to the AUTORUN.SYS file and reboot your system with the disk containing it. You should also turn your printer off and then on again before you use a new printer driver so it will be cleared of any previous settings.

You will probably want to create several Accu-Print printer drivers for different uses. For example, you might have one using normal Pica type and no control characters allowed for BASIC program listings, another using Pica type and allowing form feeds for assembly listings using the AssemblerEditor cartridge, and perhaps another using Emphasized Pica type and allowing several control characters for word processing applications.

Additional Details

Pressing the RESET key will make the Accu-Print printer driver inactive. You will have to restart your Atari computer system to use Accu-Print again.

Accu-Print uses the character definitions stored inside your Atari computer to generate the graphics and inverse characters on your printer. In fact, it uses the CHBAS Operating System vector to find the character set definitions in memory. Thus, if you use the Accu-Print printer driver with
an application program that uses a redefined character set, the redefined characters will be printed on your printer. This is useful for many special applications, and can be the basis for special graphics character screen dump programs.

How Accu-Print Works

Listing 2 is an assembly language listing of the Accu-Print printer driver. I've included it for those of you who might like to understand how the printer driver works. Additionally, you might wish to modify it for your own special purposes. I've tried to liberally comment the listing to make it a little easier to understand.

The basic idea behind Accu-Print is to replace the normal Operating System printer driver with one of my own design. This is made possible by two features of the Atari system. The first is the capability to load and execute a program stored in an AUTORUN.SYS file at system startup after the system is initialized, but before the user is given control of the system. The second is the fact that the Operating System uses RAM to store pointers [or vectors] to input/output control routines. Combining these features, the system allows us to execute a program icontinued in AUTORUN.sys) during system startup that changes the print pointer from the standard printer driver to our own. Labels BEGIN through FINIS show these operations. At system startup, the entire AUTORUN.SYS file is loaded into memory and execution begin at BEGIN. If the OPTION key is pressed, the program simply exits and nothing happens. Otherwise, the address of our new printer device table flocated at NPTAB is stored in locations $\$ 31 \mathrm{~B}$ and \$31C, which contain the pointer to the Operating System's standard printer device table. Next, the LOMEM pointer is incremented by 768 to make sure the following code isn't overwritten by an application. The program then exits and the user is given control of the system. Only a few instructions are executed at system startup, but the effect is great! All printing will now be vectored through our new printer driver. The data for the driver starts at DW and the executable code starts at PWRIT.

Chapter 8 of the De Re Atari gives more information about Operating System vectors and device tables if you're interested in more detail about

1EDB FO 91	$\begin{aligned} & \text { MEXT } \\ & \text { CR } \end{aligned}$	BEECR	: BRANCH IF CHAR IS EQL
1EDD 68		RTS	; RETURN
IEDE A9 29		LDA \$ ${ }^{\text {20 }}$	
1EED AO 09		LDY 49	
1EE2 BC 27 1D		STY CHCNT	: Clear char count for hen lin
1EE5 90 C0 03	NXT		; PAD BUFFER MITH
1EE日 E8		INX	; BLANKS
1EE9 E4 1E		CP\% 2CHAR	
IEEB D9 F8		BNE NXT	
IEED A9 ${ }^{\text {O }}$	LAST	LDA \$ $\$ 108$; SEND BUFFER TO PRINTER
LEEF 85 ID		STA IINIT	
IEF! AE 7F EE		LDX \$EE7F	
1EF4 AC 86 EE		LDY \$EEB	
1EF7 20 Eb EE		JSR \$EEE6	
IEFA 2959 E4		JSR \$E459	
IEFD AD 2610		LDA DH	; CHECK DOUBLE HIDE
1F90 690		CMP \$	
1F92 F9 05		BEE OUT	; BRANCH IF NOT
$1 F 94$ A9 09		LDA ${ }^{\text {\% }}$; FORCT
1F66 8D 2A 10		STA FT	; initialization
1F996 6		RTS	; RETURN
	;		
	; CHECK Char for compatrgility mith ; PRINTER Char SET, RETJRN Y=0 IF COMPAtIBLE, ; y $=1$ IF NOT. ATASCII Values incompatible; ; 6-31,96, 123-154, 156-255		
	;		
JFIA 38	CHRCK	SEC	
		CMP \$156	
1F9D 8927		BCS SOME	; 3155-NEED GRAPHICS
1F8F C9 98		CMP \$155	
1F11 F120		BEQ STERD	; = 155-DON'T HEED GRAPHICS
1F13 A 09		LDY $\$$	
1F15 BE 3410	ANXT	LDX AS, Y	; CHECK FOR SPECJAL
1F18 E0 69		CPX ${ }^{\text {a }}$; ALLOH CHARACTERS
1FIA F9 99		BEE MMOR	; BRANCH IF ND MORE
1FIC D9 3410		CMP AS, Y	; CHECK CHAR
JFIF F912		BEP SZERD	; ALLOH IT IF EQUAL
1F21 68		INY	; POINT TO NEXT ALLOH CHAR
$1 F 224 \mathrm{Cl} 15 \mathrm{JF}$		JMP ANXT	; AND CHECK I
$1 F 2538$	NMOR	SEC	
1F26 7978		CMP 1123	
1F28 30 06		BCS SOME	; 7122 - NEED GRAPHICS
1F2A 38		SEC	
1F28 6920		CMP \$32	
1F2D 9907		BCC SONE	; <32-NEED GRAPHICS
1F2F C9 69		CMP 396	
1F31 F9 83		bed Sone	; $=96-$ NEED GRAPHICS
1533 A 60	STERO	LDY 30	; DON'T NEED GRAPHICS
1F35 60		RTS	
1F36 Ag 91 $1 F 3860$	SONE	LDY \$1	; NEED GRAPHICS
		RTS	
	1		
	; COMPute colunn value to construct char		
	; $A=$ ATASCII VALUE OF CHAR		
	; Y = COLIINN VALUE TO COMPUTE		
	; $x=$ COLUMA VALUE ON EXIT		
	;		
1539	AMS	BYT	; COMPUTER COLUMN VALJE
1F3A 96	ATVAL	BYT ${ }^{\text {d }}$; atascil char value
153800	CVAL	BYT 0	; INTERNAL CHAR VALUE
1F3C 90	CLNUM	BYT	; COLUMN NLIMBER
$1 F 3090$	IMFLG	BYT 0	; Inverse char flag

1F3E 9096 $1 F 40804020$ 7	CHBAS	DBY ; CHAR SET BASE ADDRESS BYT $128,64,32,16,8,4,2,1$; MASKS FOR COLUNNS 90			
	MASKS				
	i SEE 'NOTE' in First page of Listing				
1F4880 3A 1F	GETCL	STA ATVAL	- SAVE ATASCII VALUE		
1F4B 8C 3C IF		Sty Clnum	; SAVE COLUAN NUMEER		
1F4E A0 00		LDY \$0	; INItiAlize		
1F50 8C 39 IF		STY ANS			
155338		SEC			
1554 C9 80		CHP \$128			
17569098		BCC NCHAR	; BRANCH IF NDT INVERSE		
1F58 AD 3A 1F		LDA ATVAL			
155838		SEC			
1F5C E9 99		SBC \$ 128	; CONVERT TO MON-INVERSE		
1F5E 8D 3A IF		STA ATVAL			
1F61 A 011		LDY \$1			
15638 C 3 IF	NCHAR	STY INFLG	; SET INVERSE FLAg		
1F66 AC F4 92		LDY CBASE	; GET CHAR SET base		
1 F 69 90 3F 1F		STA CHBASt1	; AND SAVE IT		
1F6C AD 3A 1F		LDA ATVAL	- CONVERT ATVAL TO		
1F6F 38		SEC			
1F70 6968			; INTERNAL CODE		
1F72 9604		BCC L68	; BRANCH IF < 660		
1574 4C 89 IF		JMP CSTOR	; ELSE, COntinue		
$1 F 7738$		SEC			
1578 C9 40	166	CMP \$ ${ }^{\text {d }}$ 4			
1F7A 9106		BCE L4\%	; BRAMCH IF 310		
1F7C 38	620	SEC			
1F70 E9 29		SEC \$120			
1F7F 4C 89 IF		JMP CSTOR			
1F82 38	148	SEC			
$1 F 83$ C9 20		CHP \$ ${ }^{\text {20 }}$			
1F85 ${ }^{1685}$		BCS 620	; BRANCH IF >=\$20		
1F87 6949		ADC $\$$ \$40			
1F89 80 38 IF	CSTOR	STA CVAL	; Store internal value		
1F8C AA		TAX	- CDMPUTE ADDRESS OF CHAR		
1F8D A9 00		LDA 10	; DEFINITION.		
1F8F E6 00	L00P	CPX \#			
1F91 F90		BEA CMPCL	; NO MORE ADJUSTMENT NECESSARY		
159318		CLC			
15946988		ADC \#8			
1F96 CA		DEX	; DECR. INTERNAL VALUE		
159798 Fb		BCC L00p	; SEE IF DFFSET = 256		
1F99 EE 3F IF		INC CHBASt!	; BUAP HIGH.		
IF9C A9 08		LDA			
IF9E 4C 8F 1F		JHP LODP			
IFAI BD 3E IF	CHPCL	STA CHBAS	; STORE LOM BYTE		
1FA4 BD B6 1F		STA MODI+1			
IFA7 AD 3F IF		LDA CHBAS+1			
IFAA 8D B7 dF		STA MODI +2			
IFAD A 0 O		LDY ${ }^{\text {d }}$; CONTROLS LOOP		
IFAF AE 3C 1F		LDX CLAUM	; INDEX TD MASKS		
1FB2 BD $401 F$	L00P!	LDA MASKS, ${ }^{\text {\% }}$; GET CDLUNN HASK		
1F85 393 LF	MOD1	AND CHBAS, Y	; MODIFIED - WILL POINT TD		
1F88 6909		ChP	; CHAR. DEFIMITION		
IFBA F9 9		BEQ CHECK	; branch if coluhn bit not set		
1FBC AD 39 IF		LDA ANS	; ELSE, update colunan value		
1F8F 18		CLC			
IFCO 79401 F		ADC MASKS, Y	- Add value to and		
IFC3 8D 39 1F		STA AMS			
1FC6 68	CHECK	INY			
1FC7 6088		CPY ${ }^{\text {P }}$			

that area. To set the stage for understanding the printer driver code itself, let's notice that when a character is to be printed, its ATASCII code will be placed in the A-register and the code beginning at PWRIT will be executed.

The driver first checks to see if this is the very first time the printer driver is being executed. If it is, then the characters contained in the data string starting at IS will be sent to the printer to initialize it. The particular character string stored here is a function of the typestyle selected when you ran the Customizer program. The driver then checks to see if the character to be printed is a graphics or inverse character. The subroutine at CHRCK is used for this. If it is not a special character, then subsequent code is bypassed and the driver operates exactly like the standard one.

If a special character is to be printed, then some special processing takes place. Each special character is printed in bit graphics mode. This means that data values corresponding to the individual 8 -dot columns of the printed characters have to be sent to the printer in addition to control characters putting the printer into and out of graphics mode. This accounts for the slowdown while printing these characters. For each special character printed, 12 data characters have to be sent. In addition, special handling has to be given if a column data value happens to be 155. The Atari system will recognize this value as a carriage return and send a line feed character after it. Since we really want this value to be printed as a single 8 -dot column, the automatic insertion of additional data is unacceptable. So if this value occurs (as it does with an inverse A) the driver breaks it apart, prints part of the column, backspaces the printer, and prints the second part. At any rate, the code between INCMP and CMPAT is devoted to sending data to the printer that causes it to print the 8 -dot columns that form the graphics or inverse character being printed. After this data is sent, the printer is taken out of graphics mode and the printer driver is exited.

Two subroutines worthy of note are CHRCK and GETCL CHRCK determines when a character needs special handling. It does this by checking the character's ATASCII code with the codes of the graphics and inverse characters. Also, it checks the character's code against the list of legal control codes (if any) you specified
while running the Customizer program．The character string AS contains those control codes．So it is this routine which allows for passing certain control characters intact to the printer．

GETCL is the real workhorse of the printer driver．It accesses the internal character definitions and computes the data values to send to the printer so it can reconstruct the characters precisely as the Atari defines them．The routine is executed 8 times for each special character，once for each 8 －dot column． The algorithm used is interesting，since it has to translate between the row－by－ row internal character set definitions and the column－by－column data required by the printer．You can also see why Accu－Print works with custom character sets．It uses the standard character set vector to find the character definitions．Custom character sets use this vector too！My technique is probably not the most sophisticated possible．An interesting exercise would be to make it shorter and more efficient．I have a feeling that one of you whizzes out there can write this subroutine using one quarter of the code I did．Any takers？

Well，I hope this explanation of how the code works will help you understand some of the subtleties of the Atari Operating System and of assembly language．I highly recommend De Re Atari and the Technical Reference Notes for more in－ depth treatments of the techniques used．

A Concluding Note

I＇ve found the Accu－Print system to be very useful in my work．I can now feel free to use graphics strings in my programs at will，particularly to represent assembly language routines where it saves me a lot of typing and leads to faster execution times for initialization．I don＇t get gibberish on my printer anymore，and I find that most programs work with Accu－Print easily．I hope you find the system helpful to you as well．

1FC9 06 E7		BME LOOPI	；BRANCH IF NOT DOHE
IFCB AE 3D IF		LDX INFLG	；HANDLE INYERSE
IFCE E O1		CPK＊	
IFDP D9 88		BME FIN	；BRAMCH IF NOT INYERSE
1FD2 A9 FF		LDA \＄255	；ELSE，FLIP BITS
IFD4 $40391 F$		EOR ANS	
$1 F D 780391 F$		STA ANS	
IFDA AD 3 A IF FIN		LDA ATVAL	；LOAD REES FOR EXIT
1FDD AC 3 C 1F		LDY CLNUM	
IFE AE 39 IF		LDX ANS	
1FE3 60		RTS	
	；		
1FE4		END	

Listing 2

```
1 REM ACCU-PFINT CUSTOMIZER
4 RER
15 GRAPHICS G:POSITION 15,8:? "ACCU-PRINT"
2月 FOSITION 15, 10:? "CUSTOMIZER"
49 POSITION 5, 15:? ' (REVERSE ON3PLEASE HAIT FOR
INITIALIIATION\{REVERSE OFF)"
59 REM PUT ACCU-PRINT IN STRING
```



```
89 GRAFHICS 3:POSITION 15, 日:? "ACCU-PRINT"
9 POSITION 13,1:? "TYPESTYLE IEENU"
100 POSITION 2,3:? " 1 PICA"
110 POSITION 2,4:? " 2 ITAL"
129 POSITION 2,5:?" 3 FICA EMPH"
130 POSITION 2,6:? " 4 ITAL EMPH"
140 POSITION 2,7:? " 5 PICA OS"
150 POSITION 2,8:? "6 ITAL DS"
169 POSITION 2,9:? " 7 PICA EHPH OS*
176 POSITION 2,1A:? " 8 ITAL EMPH DS"
189 POSITION 2,11:? " 9 COND PICA"
19 POSITIOM 2,12:? "1 COND ITAL"
2ag POSITION 2,13:? " 11 COND PICA DS"
218 POSITION 2,14:? "12 COND ITAL DS"
229 PIISITION 29,3:? "13 COND-EXF PICA"
239 POSITION 26,4:? "14 COND-EIP ITAL"
24I POSITION 29,5:? " 15 COND-EXP PICA DS";
250 FOSITION 20,6:? " 16 COND-EIP ITAL DS";
266 POSIIION 29, 7:? "17 EXP PICA"
270 PDSITION 29, 8:? "18 EX̆ ITAL"
299 POSITION 29,9:? "19 EXP PICA EMPH"
290 POSITION 2角, 10:? "29 EXP ITAL EMPH"
300 POSITION 29,11:? "21 EXP FICA DS"
31 POSITION 29,12:? "22 EXP ITAL DS"
320 POSITION 29,13:? "23 EXP PICA EMPH DS';
330 FOSITION 20,14:? "24 EAF ITAL EMFH DS";
341 FOSITIIM 2,16:? "YOLR CHOICE";
35 INPUT CH
36 ON CH GOTO 499, 495, 410, 415, 429, 425, 439, 435, 446, 445,
\(459,455,466,465,479,475,486,495,499,495,569,565,519,515\)
37 PRINT CHR \(\$(253) ;\) :G0T0 349
46 RESTORE 401:GOTO 6月G
491 DATA 255
495 RESTORE 446:G0T0 690
406 DATA 27,52,255
418 RESTORE 411:G0T0 606
411 DATA 27,69,255
415 RESTORE 416:GOTO 698
416 DATA 27,52,27,69,255
429 RESTORE 121:60TO 69月
```

421 DATA 27，71，255
425 RESTORE 426：6070 600
426 DATA $27,52,27,71,255$
436 RESTORE 431：60T0 696
431 DATA $27,69,27,71,255$
435 RESTORE 436： 0070 696
436 DATA $27,52,27,69,27,71,255$
449 RESTORE 441：60TO 543
441 DATA 27， 89,255
445 RESTORE 446：60TO 548
446 DATA 27．89，27．52．255
459 RESTORE 451：60T0 540
451 DATA $27,89,27,71,255$
455 RESTORE 456：6070 54
456 DATA $27,80,27,52,27,71,255$
469 RESTORE 461：60T0 56：
461 DATA $15,14,255$
465 RESTORE 466：6070 56月
466 DATA $15,14,27,52,255$
479 RESTORE 471：60T0 560
471 DATA 15，14，27，71，255
475 RESTORE 476：60T0 56月
476 DATA $15,14,27,52,27,71,255$
480 RESTORE 481：60T0 58月
481 DATA 14，255
485 RESTORE 486：6070 589
486 DATA 14，27，52； 255
499 RESTORE 491：6070 589
491 DATA $14,27,69,255$
495 RESTORE 496：60TO 589
496 DATA $14,27,52,27,69,255$
599 RESTDRE 501：60T0 580
501 DATA $14,27,71,255$
595 RESTORE 596：60T0 589
596 DATA $14,27,52,27,71,255$
516 RESTORE 511：6070 58月
511 DATA $14,27,69,27,71,255$
515 RESTORE 516：G070 589
516 DATA 14，27，52，27，69，27，71，255
541 R $\$(46,46)=$ CHR $\$(133): 6070$ 6明

$58 \mathrm{R} \$(46,46)=$ CHF $\$(41): \mathrm{R} \$(43,43)=$ CHR $\$(1)$
691 1＝48
G19 FEAD A：IF $A=255$ THEN 6070769
6ZA R $\$(1,1)=[H E \$(A): 1=1+1: 6070 \quad 619$
7肠 GRAPHICS G：POSITION 15，白？＂ACCU－FRINT＂
710 POSITION 7，1：？＂CONTROL CHARACTER SELECTION＂： FOSITION 2，3：$I=57$
720 PFINT＂ANY CONTROL CHARACTERS TO ALLOM＂；

74 PFINT＂CONTROL CHARACTER TO ALLOH：＂；

760 FRINT＂ANY HOKE＂；
77 ITAFUT A\＄：IF A\＄（1，1）＝＂Y＂THEN GOTO 74
86\％GRAFHICS B：FDSITION 15，B：？＂ACCU－PRINT＂
810 FOSITION 11，1：？＂DISk FILE CREATION＂
820 FOSITION 2，3：？${ }^{\text {P FILE NAME：＂；}}$
85in DIM F $\$(15)$ ：INFUT F
84 DPEN $\$ 1,8,6, F \$$
85G FOSIIION 2，5：
？＂\｛REVERSE ONHOH WRITING FILE［REVERSE OFF\}"
855 PUT $\$ 1,255$ ；PUT 11,255 ；PUT $\$ 1,252$ ；PUT 11,28 ：
FUT 11,227 ；FUT $\$ 1,31$

PUT 11,252 P PUT $\$ 1,2 \mathrm{~B}$
879 CLOSE \＃1
875 POSITION 2，7：？${ }^{\text {S CREATE ANDTHER FILE＂；}}$
880 INFUT A 5 ：IF A $\$(1,1)={ }^{2} Y^{n}$ THEN CLR ：60T0 10
890 GRAPHICS G：CLR ：END
994 DATA 173，31，288，41，4，249，19，169，23，141，27
991 DATA $3,169,29,141,28,3,238$
912 DATA $232,2,238,232,2,238,232,2,96,158,238,219$
903 DATA $238,157,238,183,29,128,238,157,238,76$

9， 17 DATA $0,0,9,9,0,0,0,0,9,0,0,0,0,9,4,0,0,0,0$

911 IATA $1,9,9,9,9,4,9,9,6,133,31,32,26,239,150$
912 DATA $1,146,181,29,149,182,29,146,183,29,204,42$
913 DATA $29,2989,19,238,42,29,185,43,29,201,4$
914 DATA $246,9,166,29,32,287,36,246,76,268,29,165$
915 DATA $31,32,19,31,192,1,249,3,76,188,37,238,181$
916 DATA 29，24，173，46，29，169，39，29，141，39，29，295
917 DATA $41,29,298,13,169,155,166,29,32,297,36$
918 DATA $173,4 \mathrm{~B}, 29,141,39,29,169,27,166,29,32$
919 DATA $267,34,169,76,172,38,29,192,6,246,2,169,75$
926 DATA $166,27,32,297,36,169,8,166,29,32,267,36,169$
921 DATA $1,166,29,32,297,39,172,182,29,165,31$
922 DATA $32,72,31,138,201,155,298,5,238,193,29$
923 DATA $169,144,166,29,238,182,29,32,207,39,169$
924 DATA $8,265,182,29,298,223,169,6,295,183,29$
925 DATA $240,97,141,182,29,172,46,29,169,8,106,29,32$
926 DATA $297,39,172,38,29,192,4,246,7,169,8,166$
927 DATA $29,32,297,36,169,27,166,29,32,267,36,169$
928 ［ATA $76,172,38,29,192,10,249,2,169,75,166,29,32$
929 DATA $267,30,169,8,166,29,32,267,39,169,1$
936 DATA $166,29,32,297,34,172,182,29,165,31,32$
931 DATA $72,31,138,162,6,261,155,208,2,162,11,138,166$
932 DATA $29,238,182,29,32,207,39,169,8,295,182,29,298$
933 DATA $223,169,1,96,173,39,29,169,49,29$
934 DATA $141,39,29,165,31,166,29,32,267,36,76,185,39$
935 UATA $157,192,3,232,228,31,249,22,134,29$
936 DATA 2月1，155，249，1，96，159，32，169，9，144，39，29，157
937 DATA $192,3,232,228,3 \hat{3}, 298,248,169,4,133,29$
Y38 DATA 174，127，238，172，128，238，32，236，238，32，89，228
939 DATA $173,38,29,261,1,246,5,169,6,141,42$
949 DATA $29,96,56,261,156,176,39,291,155,249,32,169,1$
941 DATÀ 191， $5 \mathbf{5} 2,29,224,6,249,9,217,52,29,249$
942 DATA $18,219,76,21,31,56,291,123,176,12,56,291,32$
943 DATA $144,7,261,96,246,3,169,9,96,169,1$
944 DATA $96,9,9,9,9,6,0,6,128,64,32,16,8,4,2,1,141,58$
945 DATA 31，149，61，31，164，0，149，57，31，56，291
946 DATA $128,144,11,173,58,31,56,233,128,141,58,31,16$ h
947 DATA $1,1441,61,31,173,244,2,141,65,31$
948 DATA $173,58,31,56,291,96,144,4,76,137,31,56,201,64$
949 DATA $144,6,56,233,32,76,137,31,56,201,32$
950 DATA 176，245，165，64，141，59，31，174，169，1，224， 1,240
951 DATA $14,24,195,8,292,144,245,238,63,31$
952 DATA $169,7,76,143,31,141,62,31,141,182,31,173,63,31$
953 DATA 141，183，31，169，7，174，69，31，189，64
954 DATA $31,57,62,31,241,4,246,16,173,57,31,24,121,64,31$
955 DATA $141,57,31,201,192,8,288 ; 231,174$
956 DATA $61,31,224,1,268,9,169,255,77,57,31,141,57,31$
957 DATA $173,38,31,172,69,31,174,57,31,76$

A

 Low Cost Mouse for the VIC-20by Robert l.. Martin WB2KTG

As most readers of this magazine are aware, the "mouse" is a popular easy-to-use device for inputting data to computer or terminal. Many newly designed computers, such as Apple's Macintosh, are being built with mice as standard factory equipment.

Having recently purchased a VIC-20, and being unwilling to spend several thousand dollars to get a new mouse-equipped computer, I decided to build a mouse which could be used to upgrade my present system.

To begin this project I decided on the objectives of the design. First, my mouse should be a "hardware-only" design. I don't enjoy programming and, besides, it will be more of a challenge this way. Second, if I do upgrade my hardware at some time in the future, I don't want the mouse to be incompatible with whatever it is I buy. The mouse shall be usable with all computer systems in existence or planned. Third, the design should be simple enough that anyone could make a duplicate in one evening's time. And fourth, it should not be expensive. As you will soon see, these objectives limit the performance of the final product, but we do produce a mouse.

Not wishing to be inconvenienced by the care and feeding of a live mouse, I decided to start with the next best thing. A rubber mouse from the local pet store looked great. The mouse I bought cost less than two dollars. As an added bonus, my mouse was available in several colors.

A quick incision on the mouse's lower abdomen (no anesthetic necessary) with my trusty Swiss Army Knife and a control port was available for interconnecting cable insertion. I used a telephone extension cord with modular end connectors. The connector keeps the cable from pulling

Figure 2. Detailed illustration of the mouse.
out of the control port. The other end of the cable is secured to the computer with a suitable length of masking tape. The assembly and checkout are now complete.

Operating Hints and Suggestions

The mouse, used in conjunction with the intensity control on the monitor, is useful for varying the brightness of the video display. When the mouse is used with the contrast control, the user can adjust the luminous intensity ratio between the screen characters and the background. A little experimentation with the mouse will quickly demonstrate its other capabilities.

One caution--feline quadrupeds sometimes find the mouse interesting also

Some method was needed to hold the mouse between operating sessions. While chatting with the manager of our local hardware store, I mentioned the project and my need. He suggested something which appears to be almost designed for the job. He called it a "trap." That seems to be as good a name as any. The trap can be fastened to the monitor, the wall, or even to your computer table.

Future Trends

One industrial espionage agent, whom I have done some business with in the past, furnished me with a photograph he took in the secret research and development laboratories of a major computer manufacturer. Reportedly, their new interface will be named the "Hippo." One distinguishing feature of this advanced controller will be the fact that it is wireless. Presumably it communicates with the computer via infra-red or uses some kind of R.F. link.

I hope you will have as much fun building and using the mouse as I did. After the novelty wears off, it can always be used as a decoy for your next mouse hunt!

Robert Martin may be corresponded with at 45 Salem Lane, Little Silver, NJ 07739, or by ham radio at WB2KTG.

Figure 4. Mouse and mouseholder, sometimes called "trap."

Figure 5. Secret photograph of possible successor to mouse, alias Hippo, an advanced wireless controller.

Raise your Apple's IQ Twire Times A Year!

Try a NIBBLE!

Here's what some of our Readers say:
\square "Certainly the best magazine on the Apple!"
\square "Impressed uith the quality and content."
\square "Programs remarkably easy to enter."
\square "I'll be a subscriber for life!"
\square 'Your service is fantastic . . . as a matter of fact, I'm amazed!"

Try a NIBBLE!

NIBBLE is focused completely on the Apple and Applesoft-compatible computers
Buy NIBBLE thrcugh your local Apple Dealer or subscribe now with the Coupor or Order Card in this issue.

You'll want Back Issues Too!

Here are some examples of programs you can get:
The Investor-Stock Tracking, Reporting, and Graphing.
Recipe Box-Kitchen/Menu Management made Fun.
The Librarian--Auto Logging and Retrieval of your Disks.
Designer/Illustrator-Art/Design Creation and Composition with Graphics.
Machine Language Editor-Quick and Easy Aid for Typing and Changing M,L Programs.

> And Much . . . Much More!

NIBBLE will become a permanent part of your Reference Library. Discover why 95% of NIBBLE Readers save every issue! Join more than 120,000 Apple/Ace users who say: "NIBBLE IS TERRIFIC!"
SUBSCRIBE NOW AND SAVE $\$ 12.00$ OFF THE COVER PRICE!
Products! ìnside and Out
Comprehensive Product Reviews.
Education Corner
Programs that help make Learning Fun.
Tips ' \mathbf{N} Techniques
Little known programming Tricks you can Use.
Disassembly Lines
An Expert reveals the mysteries of Applesoft.
Utilities
Superchargers for Basic, DOS, Printing, and More.
Games
Arcade Fun you can Type and Run.

Note

Domestic U.S. First Class subscription rate is $\$ 51.95$
Canada Air Mail subscripton rate is $\$ 59.95$
\square Outside the U.S. and Canada Air Mail subscription rate is $\$ 89.95$
All payments must be in U.S. funds drawn on a U.S. bank.
(c) 1983 by MicroSPARC Inc. All Rights Reserved.

Applet is a registered trademark of Apple Computer, Inc.
$A C E$ is a registered trademark of Franklin Computer, Inc.

Double Vision Catalog Double Vision Catalog for for

40 or 80 Columns 40 or 80 Columns

by Alan and Valerie Floeter by Alan and Valerie Floeter

As more people buy Apple IIe's, we will be seeing more software using 80 columns. It is something to be expected. One logical usage of an 80 column width is in the CATALOG program, using the other half of the screen for listing file information. In the past, several DOS patches have appeared in publications to display two columns of file information for the normal 40 column display. Although we generally use short filenames, |we hate typing/, the patches did shorten the amount of information sent to the screen. Now with a full 80 columns available, the complete file information can fit in two columns of 40 characters each.

When you think of it, most people's printers already have 80 or 132 columns, so why not have the CATALOG use all the available space, whether there are 40,80 , or 120 . Why not take it even one step further and allow the CATALOG to shorten the filenames when wanted, printing multiple columns of files?

With these dreams, we set out to work on the CATALOG command for DOS. We were not only successful in the results we produced, but accomplished them with a patch that
merely replaces the origi:aal CATALOG. This saved valuable patch space needed for other DOS enhancements already published.

So exactly what does this CATALOG patch do? Well, it depends on the number of characters your output device has and whether you use it in the normal or shortened mode. The chart in Figure 1 summarizes tizis.

Figure 1: Number of columns of filenames displayed

	COLUMNS		
Normal	40	80	120
Shortened	2	2	3
		4	6

If you use the normal CATALOG mode, 40 characters of information are displayed per filename. In the shortened mode, 20 characters are displayed per file,since the end of the filename is chopped off. If you serd a CATALOG to an Apple II and App.e Il Plus screen (40 column width), you'll see either one or two files per line depending on the mode. If you sent a CATALOG to an Apple IIe (80 column width), or an 80 column printer, such
as an EPSON MX-80, you will see either 2 or 4 column files. Many printers have at least 120 characters per line, enabling them to produce 3 or 6 columns of file information.

How Was This Done?

When the Apple screen receives 40 characters, it automatically does a carriage return and line feed. We used this feature when we developed our CATALOG patch to DOS. Since the screen will take care of its own carriage returns, we just keep sending it information without telling it where the next line starts. This way the patch doesn't have to know how many columns the device has available. This CATALOG command sends out either 20 or 40 characters per file name continuously, and the printer or screen decides how much will fit on each line.

This works well for screens, but some printers or their interface cards might not be set up to send out a carriage return when their line is full. There is usually a switch on the printer or the interface to do this, or some specified control sequence will accomplish this. If you are unsure as to how your system handles this, just follow the suggestions we will give later.

One nice side benefit of this patch is that you don't need to do any POKE's to set up the number of columns. When you send out a CATALOG listing to two devices at the same time you will get different listings. For example, if you have a 132 column printer and an 80 column card and then enter "CATALOG", your screen will show two columns of filenames, while your printer will produce three columns.

Entering the Patch

We have written the assembly language routine to patch DOS for you. Enter the program, either into an assembler, or enter the opcodes, and save it to disk. Whenever you wish to have this patch in your DOS, BRUN the program. This could be part of your HELLO routine.

How to Shorten Filenames

When you want to shorten the filenames to store more information on the screen, enter POKE 44561,10 and POKE 44592,2. This will print 20 characters per file. To reset it back to the full 40 characters per file, enter POKE 44561,29 and POKE 44592,3.

DOS Warning

We always like to warn people about using a patched DOS. This patch doesn't use any of the patch space used by some of the other DOS improvements, so you shouldn't have any conflicts with other patches, but we can't guarantee it. Although we haven't had any problems, whenever you change a standard you can't predict if someone else assumed that part would stay the same.

Conclusion

Now you can utilize the entire line for CATALOG's, whether it is 40,80 or 120 columns. Not only will you make better use of your display area, but you won't have to tell your device how many columns you have.

Figure 2. Sample CATALOGs for 40 and 80 columns.
CATALOG
DISK VOLUNE 254
A 082 HELLO
Normal 40 Column T RO1 PRIMTER
Screen
A 033 TEXT-TIJ-FOCUS
A 003 FDCUS-TD-TEXT
A 119 BUCHANAN
A 093 FOCUS NEN
A 939 BUCH-2
B 954 MASTER DIRECTORY.L
A a63 NEM FOCUS
B 098 MASTER DIRECTORY

- 409 HASTER DIR/DISPLAY.L

T 01 HILISTER.MS
T 698 BOOThON2
A 027 FLYMN
A 627 MJCRO MLR
B 906 FLOETER
A 641 BUCH!
]

OJSK Volume 254 Normal 80 Column	
A 02 HELLO Printer	T 001 PRINTER
A 903 TEXT-TO-FOCUS	A 033 FOCUS-TO-TEXT
A 119 BUCHANAN	A 693 FDCUS MEK
A 339 BUCH-2	B 954 NASTER DIRECTORY.L
A 603 NEH FOCUS	B 098 MASTER DIRECTORY
B 099 MASTER DIR/DISPLAY.L	T 001 HILISTER.HS
T 608 B00Tmon2	A 227 FLYNN
A 927 MICRO MLR	B 006 FLOETER
A 041 BUCHI	

CATALOG	Shortened 80 Column Printer		
DISK VOLUME 254			
A 962 HELLD	T 013 PRINTER	A 003 TEXT-T0-FDC	A 063 FOCUS-TO-TE
A 119 BUCHANAM	A 933 FOCUS NEM	A 939 BUCH-2	- 954 MASTER DIRE
A 003 NEW FOCUS	8088 MASTER DIRE	B 909 MASTER DIR/	T 001 HILJSTER.MS
T 098 Bootmon2	A 927 FLYMN	A 027 MICRO MLR	B 006 FLOETER
A 641 BUCHI			
]			

Listing 1
| PAtch for 80 columh catalog for dos 3.3
1
BY AL FLOETER
;
;
0309

0985

3087
;
'IND EQU $\$ 85$
CDINT EQU $\$ 87$
;
9300 A2 04
0302 BD 26 LS LDOP LDA PATCH, X
9305 FIE
03978586
9399 E8
939 AD 2633
930 8585
339F E8
9310 BD 2603
03138587
1315 E8
0316 A 09

BEE DOHE
LDX \#

STA IND+1 ; EET HI ORDER
INX
LDA PATCH, X
STA IND ; GET LD ORDER
INX
LDA PATCH, : GET COURT
STA COUNT
INX
LDY 10

A New Variation on an Old Theme: Replace Your 6502

by Ron M. Battle

There are probably a lot of computer enthusiasts out there who have waited for a high-performance successor to the trusty 6502. Enter Rockwell's new CMOS 6502 product line. Although not the ultimate successor to the "old" 6502, the R65C00 family has many enhancements you might find quite interesting.

New Features

This new family of CMOS microprocessors comes in 3 models:

```
R65C02
R65C102
R65C112
```

All three will be available with your choice of operating frequency:

$$
\begin{aligned}
& 2 \mathrm{MHz} \\
& 3 \mathrm{MHz} \\
& 4 \mathrm{MHz}
\end{aligned}
$$

Each uses a single 5 volt $\pm 20 \%$ power supply drawing only 4 mA per MHz . By stopping the input clock, the processor will go into a standby mode and dissipate only 10 uW of power. In addition, 12 new instructions are added to the instruction set plus 2 new addressing modes.

Processor Description

Figure 1 has the pinouts of these new chips and, as you can see, the R65C02 and R65C102 are pin compatible with the 6502 .

R65C02: This is a direct replacement for the 6502 .

R65C102: This new chip has functions on pins not used by the original 6502 . No external time base is needed when a crystal is connected between pins 35 and 37 , but the crystal frequency will be divided by four.

Alternatively, you can input a TTL level single phase clock signal to pin 37 (XTLI) for compatibility with the 6502. Pin 3 (Phase 4) is a quadrature clock output used for peripheral timing. This output clock replaces the Phase 1 on the 6502. Pin 4 (ML), memory lock, is an output used by arbitration circuitry so read-modify-write instructions are not interrupted by external devices. Pin 36 (BE), bus enable, allows an external device to tri-state the data, address, and R/W lines by pulling this pin low. The R65C102 would be an interesting substitute for the 6502 so direct memory access (DMA) devices could be implemented easily.

R65C112: Designed as a slave processor, this model is used in conjunction with the R 65 C 102 for a master-slave configuration. Pin 37 (Phase 2) is the input clock derived from the R65C102 Phase 2 output. This

Figure 1

chip has DMA capability like the R65C102.

New Addressing Modes

Indexed Absolute Indirect: This new 3 byte instruction takes 6 machine cycles to execute. The new opcode is C 7 H and new mnemonic is JMP(IND), X. In execution, the contents of the second and third bytes are added to the X register. The effective address is pointed to by this 16 bit result. This addressing mode comes in handy when you don't have room in zero page for a table of jump vectors or if you have a table of jump vectors in Read Only Memory (ROM).

Indirect: This new 2 byte instruction takes 5 or 6 machine cycles to execute. The second byte of this instruction is a zero page address. The zero page address points to the effective address, stored as low byte first, then high byte. This new addressing mode works with instructions ORA, AND, EOR, ADC, STA, LDA, CMP, and SBC.

New Instructions

Table 1 gives an overview of the new instructions. Most notable of these are the bit manipulation instructions. Most of these work on zero page bytes

Table 1

Mnemonic	Function
BBR	Branch on Bit Reset
BBS	Branch on Bit Set
BRA	Branch Always
PHX	Push X Register on Stack
PHY	Push Y Register on Stack
PLX	Pull X Register from Stack
PLY	Pull Y Register from Stack
RMB	Reset Memory Bit
SMB	Set Memory Bit
STZ	Store Zero
TRB	Test and Reset Bits
TSB	Test and Set Bits

so that individual bits can be set $[1]$ or reset (0), and program branching can be controlled by the status of each bit. These instructions facilitate coding for microprocessor based controller applications. The BRA, branch always instruction, is a handy tool for designing relocatable code and saves memory and machine cycles. The PHX, PHY, PLX, PLY instructions save memory and machine cycles, especially when used for interrupt processing. The STZ, store zero instruction, simplifies coding and will also save memory and machine cycles compared with alternate techniques.

Peripheral Support

To round out the R65C00 family, Rockwell has also introduced two CMOS peripheral chips, the R 65 C 21 PIA and R65C24 PIA with timer. Both are low power versions of the 6521 Peripheral Interface Adapter which offers the user two 8-bit ports with handshaking. In addition, the R65C24 has a 16 bit timer on board for use in timing applications. Initially, two versions will be offered, 1 MHz and 2 MHz .

Things To Come

A high performance microcomputer system could be built using the 4 MHz R65C102, a DMA controller and fast arithmetic processor chip. With its bit manipulation instructions and low power consumption, the R65C02 could make a high performance controller utilizing FORTH. With the read access time of the 4 MHz processor being 168 nanoseconds, it will work with the newer 6116 CMOS 150 ns . memory chips. In fact, my next project is converting my Ohio Scientific 2 MHz micro to 4 MHz operation with the R65C102. Talk about computing in the FAST land!!!

For more information on the R65C00 family, contact: Rockwell International, Electronic Devices, P.O. Box C, Newport Beach, CA 92660; 714/833-4700.

P.O. Box 4364

Flint, Michigan 48504
(313) 233-5731
(313) 233-3125

WE CARRY MANY VIC AND APPLE PRODUCTS. PLEASE SEND FOR A CATALOGUE.

CP/M BOARD
128K RAM*

* COMPATIBLE WITH aLL SATURN Systems software *

BARE BOARD $\$ 29.00$

BARE BOARD $\$ 29.00$
80 COLUMN BOARD*

* COMPATIBLE WITH THE VIDEX VIDEOTERM WITH SOFTSWITCH BUILT IN *

ALL BOARDS HAVE SOLDER MASKING, COMPONENT LAYOUT, AND GOLD EDGE FINGERS

BUILD YOUR OWN APPLE PERIPHERAL CARDS AND SAVE UP TO 80%

WE WILL SUPPLY
 THE IC LIST FOR

 ANY BOARD
©Spec Box: 16K CoCo

Mike Hamilton

Requirements:

Any TRS-80C Color Computer

Have you ever wished you could have Extended BASIC for one day, just to see what high-resolution was like? Whether in text or high-resolution, the many modes of the Color Computer are generated by programs controlling the VDG (Video Display Generator). The graphics of Extended BASIC are programs stored in the Extended ROM chip. The program for high-resolution can easily be written in BASIC or assembly language, as illustrated by the following programs.

Three programs are provided, each accomplishing the same thing: highresolution. FAST is for those that like fast, complex programs written in assembly language. LOADER is a BASIC utility program that loads and stores the FAST machine-code data. The second program, SLOW, is written in pure and simple, but slow, BASIC. The third, and my favorite, is HYBRID, combining the simplicity of BASIC and the speed of machine-code to create an efficient compromise. Use whichever you prefer, or use them all! Please note that only HYBRID contains a demonstration of the high-resolution.

How it Works

Certain steps must be taken to program the VDG for proper functioning. Each distinct step is documented in all the programs to help in understanding.

The first step in programming the VDG is reserving memory. This can be done via the clear statement. Line 10 of each program 'clears' the required amount of memory. Since FAST is actually entered by LOADER, it does not require its own statement to reserve memory.

The second step is setting the proper values to the appropriate registers. This is the subroutine labeled 'PMODE 4' in lines 700-800 of FAST, 1000-1030 of SLOW, and 10000-10030 of HYBRID.

The third is clearing the screen or video memory. Lines 640-690 of FAST, 10040 of HYBRID, and 1040 of SLOW accomplish this. As you can see in SLOW, this takes considerable time. HYBRID implements a machine-code subroutine that takes about $1 / 5$ of a second. This is the only distinction between SLOW and HYBRID.

All that's left is plotting-setting, resetting, and pointing of a dot. Each can be implemented by various logical operations. Prior to the plotting in SLOW and HYBRID, the correct values of X and Y must be put in the X and Y variables. If, after calling the point subroutine, the variable PT is not equal to zero, then the point is set; else, it is reset.

FAST uses a slightly different approach. Before plotting, one must place the corresponding values of X and Y. into Xval and Yval and set the SRP register. The SRP (set/reset/point) register must contain a zero to set, 255 to point, and any other value to reset. If, after calling the point subroutine, P reg contains 0 , the point is reset; otherwise, a value of 255 means it's set.

Now you're ready to start experimenting with high-resolution. I recommend you use HYBRID, since it includes a demonstration and is considerably faster than SLOW. Try experimenting, such as changing the value of 248 to 240 in line 1020 of SLOW and line 10020 of HYBRID. If you're really ready to experiment, read section 4 of Getting Started with Color BASIC.

There are many other modes waiting to be used. Some are unavailable even through Extended BASIC, such as 192×64 resolution with 8 colors available at once. Good luck.

Mike Hamilton is a 15 year old computerist who lives in the small town of Checotah, Oklahoma, where the computer revolution is just starting. He has slightly over 3 years of programming experience and has never had a formal programming class. His equipment consists of an Extended Color Computer with 16 K , a tape recorder, and small printer.

This famous book now contains the most comprehensive description of firmware and hardware ever published for the whole Apple II family. A new section with guide, atlas and gazeteer now provides Apple lle speciflc information.

- Gives names and locations of various Monitor, DOS, Integer BASIC and Applesoft routines and tells what they're used for
- Lists Peeks, Pokes and Calls in over 2000 memory locations
- Allows easy movement between BASIC and Machine Language
- Explains how to use the information for easier, better, faster software writing

This expanded edition is available at the new low price of only $\$ 19.95$
For the 35,000 people who already own previous editions, the lle Appendix is available separately for just $\$ 5.00$.

Easy DOES-IT (Not DOSPLUS)

Part 4

by Michael Keryan

DOES-IT .. Add new utility functions to a Commodore 64 by use of the RESTORE key.

Abstract

Editor's Note: It has been brought to our attention that Micro System Software, Inc. has manufactured a software package under the trademark of DOS PLUS since 1981. We wish to make it clear that the programs included in the four parts of this article are in no way related to that product and that, had we been aware of the product, we would not have allowed the use of the name. To avoid further infringement on the trademark in question, we have renamed the series "DOES-IT," because in almost any case, no matter what utility your C -64 needs, this program "does-it".

This article adds two new functions to the recently published utility program (improperly named DOSPLUS in previous issues). The first is a program that allows BASIC programs to be hidden under ROM and swapped with the currently active BASIC program. The second is a time and alarm routine.

This is the fourth in a series of articles in which a number of machine language utility programs have been added to a Commodore 64. To access these utilities, you press the RESTORE key, which generates a Non-MaskableInterrupt. The next key pressed determines which utility program is to be run.

The series of programs reside in unused RAM starting at location \$C800. Called DOES-IT, they can be loaded and initialized at the same time as the DOS WEDGE !located at $\$ C C 00)$. In addition to the permanent utilities, additional transient programs can be called in from 'hidden' RAM located in the same address space as the

BASIC ROM (\$A000-\$BFFF) and executed at $\$$ C000.

The framework was given to a..low anyone experienced with machine language programming to add their own routines and assign unique keys to access them. However, what if you have a BASIC program that you would want instant access to? If we can tuck away machine language programs in hidden RAM, why can't we do the same thing with our BASIC programs?

Hidden BASIC Programs

From the viewpoint of the compu:er's memory cells, a BASIC program is not much different than a machine language program; they both consist of a lot of 8 bit binary numbers. The procedure illustrated here can be used to store any BASIC program into hidden memory, provided that it can fit into this area. The hidden program is pulled out by the RESTORE key, followed by the left arrow key. In
addition to pulling out this program, the BASIC program currently in memory is transferred to the same area of hidden RAM--the two programs exchange places. Therefore, the RESTORE, left arrow sequence can be used to toggle between two completely different BASIC programs.

Listing 1 is a BASIC program called DIRECTORY.PRINT that we will use to demonstrate hiding BASIC programs. The program is quite handy for producing compact directory listings on the printer. The directory entries can be listed as-is (unsorted) or sorted in alphanumeric order. The number of columns for the listing can be changed from the default of 3 by changing line 1 . Using three columns |with the compressed mode of a printer) allows the listing to be small enough to be cut out and taped to the front of a diskette jacket.

To store this program (or any other BASIC program), proceed as follows. First (with DOES-IT activated) load the

\begin{tabular}{|c|c|c|c|}
\hline Listing 1 \& \multicolumn{3}{|l|}{$610 \mathrm{EXF}=8 \$ 1111$}

\hline 0）：REM M．J．KERTAN 11－12－93 \& \multicolumn{3}{|l|}{620 8\＄（11）$=8$（ $11-1$ ）}

\hline 1：SEM MICRO \＃71－AFRIL 1984 \& \multicolumn{3}{|l|}{$630 \mathrm{~B} \$(11-1)=E X \$$}

\hline \％：REM \& \multicolumn{3}{|l|}{$640 \mathrm{FK}=11$}

\hline 9 ：WIDTH＝3：WD＝WI－1：REN WIDTH＝COLUANS \& \multicolumn{3}{|l|}{650 NEXT 11}

\hline 10 DRTA＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \& \multicolumn{3}{|l|}{660 IF LBFFX＋1 THEN 680}

\hline 20 DATA＂＊ \& \multicolumn{3}{|l|}{$670 \mathrm{LB}=\mathrm{FX}+1: 50 \mathrm{TO} 590$}

\hline 30 DATA＂＊DIRECTORY FRINTER＊ \& \multicolumn{3}{|l|}{680 OPEN 4，4}

\hline 40 DATA＂＊ \& \multicolumn{3}{|l|}{690 PRINT＊4：REM PRINT THE HEADER}

\hline 50．DATA＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \& \multicolumn{3}{|l|}{700 PRINT＊4，8\＄（0）}

\hline 60 DATA＂＊＊ \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{710 REM THE NEXT COMMANDS SENDS CONTROL TO PROWRITER 715 REM OR NEC－802：PRINTERS THRU TYMAC CONNECTION}}

\hline 65 DATA＇＊＇S SORTED＇U＇UNSORTED＊ \& \& \&

\hline 70 DATA＂＊＇N NO PRINT＇Q QUIT \& \multicolumn{3}{|l|}{720 REM TO SHITCH＂O CONDENSED MODE AND WIDE LINES}

\hline 80 DATA＂＊ \& \multicolumn{3}{|l|}{730 IF HI 2 THEN PRINT $\$ 4$, CHR \＄（27）CHR $\$(27)$＂Q＂：}

\hline 91）DATA＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \& \multicolumn{3}{|l|}{REM CONDENSED MODE FOR＞ 2 COL．}

\hline 109 POKE 53280，13：POKE 53281，7：POKE 646，0：DIM B（100） \& \multicolumn{3}{|l|}{740 If WI 3 THEN PRICNT＊4，CHR \＄（27）＂W＂CHR（132）：}

\hline $110 \mathrm{FOFP} 1=1$ T0 10：READ A 3 （1）：NEXT \& \multicolumn{3}{|l|}{REM WIDE LINES TO PREVENT CR＇S}

\hline \& \multicolumn{3}{|l|}{750 REM NOW PRINT IHE DIRECTORY}

\hline B $\$(1)=4 \mathrm{C}$ ，NEXT \& \multicolumn{3}{|l|}{}

\hline \& \multicolumn{3}{|l|}{770 FOR I＝1 TO RW：FOR W＝1 TO WI}

\hline 340 GET 0f：if 0 $3^{\text {an＂}}$ THEN 140 \& \multicolumn{3}{|l|}{ 6070800}

\hline 150 GET Of：if 0f＝＂＂THEN 150 \& \multicolumn{3}{|l|}{790 PRINT\＃4， B （ $1 \mathrm{I}+(W-1)$＊RW）}

\hline \& \multicolumn{3}{|l|}{800 NEXT W：PRINT\＃}

\hline \& \multicolumn{3}{|l|}{810 NEXT I}

\hline 200 PRINT＂（CLEAR $)$（RVS，SPACE32，RVSOFF）＂： $2=-1$ \& \multicolumn{3}{|l|}{B20 PRINT\＃4}

\hline 210）60SUE 880 \& \multicolumn{3}{|l|}{930 REM SWITCH PRINTER TO NORMAL}

\hline 200）GET\＃1，At，BF \& \multicolumn{3}{|l|}{840 IF WI）2 THEN PFINTH4，CHRS（27）CHR\＄（27）＂N＂： GEM UNEONTENEET}

\hline 290 GETHL，A\＄，B \& \multicolumn{3}{|l|}{REM UNCONDENSE：}

\hline \& \multicolumn{3}{|l|}{850 IF WI）3 THEN PFINT\＃4，CHR $\$(27)$＂W＂CHR $\$(80)$ ；}

\hline $310 \mathrm{C}=0$ \& \multicolumn{3}{|l|}{REM BACK TO 80 COLUMN LINE}

\hline 329 If A\＄く）＂4 THEN C＝ASC（ A（ $)$ \& \multicolumn{3}{|l|}{860 CLISE 4}

\hline \& \multicolumn{3}{|l|}{870 G0 TD 120}

\hline \& \multicolumn{3}{|l|}{880 CLOSE 15：OPEN 15，8，15}

\hline \& \multicolumn{3}{|l|}{890 DPEN 1，8， 0 ，＂ 10 ＂}

\hline \& \multicolumn{3}{|l|}{900 INPUT\＃15，E1，E2 $4, E 3, E 4$}

\hline 370）IF LEN $(2 \$)=2$ THEN $2 \$=0 "+7 \$$ \& \multicolumn{3}{|l|}{}

\hline \& \multicolumn{3}{|l|}{920 CLOSE 1： 6010930}

\hline $390.2=0$ \& \multicolumn{3}{|l|}{720 RETURN}

\hline 400 GETH1，B6：IF ST＜＞0 THEN G0 T0 510 \& \multicolumn{3}{|l|}{930 GET W\＄：IF W\％）＂THEN 930}

\hline 410 If B \＄$($ CHRR $\$(34)$ THEN 400 \& \multicolumn{3}{|l|}{940 GET W\＄：IF W\＄＝＂＂THEN 940}

\hline \& \multicolumn{3}{|l|}{95060 T0 890）}

\hline 430 GET\＃！，$\$ \$$ ：IF $\mathrm{B} \$=$ CHR $\$ 132$ ）THEN 430 \& \multicolumn{3}{|l|}{Listing 2}

\hline \& COOO \& \multicolumn{2}{|l|}{ORG $\$ 10000$}

\hline \& \& Oro \&

\hline 460 C $=$＝＂， \& 0001 R6510 \& EQU $\$ 0!$ \& ：ROM SWITCH

\hline \& 0020 VARTAB \& EQU $\$ 20$ \& ；VAR．FOINTER

\hline \& 00 Cb NDK \& EQU $\$$ \& ： KBC 明 COUNT

\hline \& 0277 KEYt \& EQU $\$ 0277$ \& ： KGD EUFFER

\hline \& CB4 1 MESEAG \& EQU $\$$ C84！ \& ；MESSAGE PRINT

\hline \& CBBD BFLAG \& EQU $\$$ C8ED \& ；FLAG

\hline CLOSE 1 \& COOO AD BECB＇EASWAP \& LDA BFLAGt \& ：1S FLAG＝0？

\hline 530 IF Q\＄\＞＂N ${ }^{\text {n }}$ THEN 570 \& C003 6900 \& $$
C M F: \$ 00
$$ \&

\hline \& C005 0014 \& BNE SPECL \& ：NO．BRANCH

\hline 55i）GET Qt：If Q $\ddagger=$＂${ }^{\text {a }}$ THEN 50 \& C007 A6 20 \& LDX VARTA日 \& ；YES，ORIG PGM

\hline 570 IF Q $\$=$＂U＂THEN 680 \& COOC 8E BD CB \& STX BFLAG \& ；UAR POINTER

\hline 580 L8：2

580 \& COOC Ab 2E \& LDX YARTAB＋1 \& ；SAve It

\hline 590 FOR［［＝J－ 1 TO LB STEP－1 \& COOE GE BE CB \& STX BFLAG 1 \&

\hline \& C011 E0 14 \& CPX ${ }^{20}$ \& （20）

\hline \& \[
$$
\begin{array}{lll}
\cos 13 & 80 & 15 \\
\cos 5 & A 9 & 14
\end{array}
$$

\] \& | BCS SWAPG |
| :--- |
| LDA 20 | \& ：NG，LEAVE FNTA ；YES，EXPAND

\hline
\end{tabular}

00178528		STA VARTAB +1	Listing 3		
C019 00 if		QNE SWAP＇：Branch always			
CO1B AE BD CB	SPECL	LDX EFLAG ；GET BACK FLAG	0340		OR6 $\$ 0340$
COIE 8t 20		StX vartab iRESTORE FNTR		；	
CO20 AE PE CB		LDX BFLAG +1 l	0314	CINV	EQU $\$ 0314$
C023 86 2E		STX VARTAB＋1	0420	TIMDIS	ERU $\$ 0420$
0025 A9 00		LDA \＄$\$ 00$ ：SET FLAG	0020	BORDER	ERU $\$ 0020$
CO27 8D BE CB		STA BFLAG＋1	0286	COLOR	EQU $\$ 0286$
cij2A A9 A7	SWAPE	LDA \＃${ }^{\text {a }}$（ MAKE SURE	0418	SIDYOL	ERU $\$$ D 418
CO2C 9047 CO		STA EASI＋2 ；THAT ROUTINE	0820	OISCLR	ERU \＄0820
Ci2F 804 CO		STA BAS2＋2 I 15 SET－UF IN	0 COO	TENTHS	EQU $\$ 0$ C08
［0．32 A9 08		LDA \＃\＃08 ：CASE OF REENTRY	DCO9	SECS	EQU TENTHS +1
C034 8048 co		STA RAMI +2	DCOA	MINS	EQU TENTHS +2
C037 805200		STA RAM2＋2	OCOB	HOURS	EQU TENTHS＋3
COSA 78		SEI \quad NOM SWAP	0 OO	CIAINT	EQU TENTHS＋5
C03B A5 01		LDA R6510			
C03D 29 FE		AND＊FFE	1） 340 AD $O D D C$	TMMIRE	LDA CIAINT
C0．3F 8501		STA 26510	$\begin{aligned} & 134,32904 \\ & 0245 \\ & \hline 00 \end{aligned}$		$\begin{aligned} & \text { AND } \begin{array}{l} \$ 004 \\ \text { oro } \end{array} \text { oremo } \end{aligned}$
Cij4 AO OE		LDY \＃11 ；11 BLOCKS	$0347 \text { 80 FA } 03$		STA ALFLAG
C043 A2 00		LDX ${ }^{\text {¢ }}$ \＄00	$\dot{0} 34 A$ AD FA 03		IDA ALFLAG
Cil 458000 A 7	BAS！	LDA \ddagger A $700, x$	$0.34 A$ $034 D \mathrm{FO} 20$	BEGIN	LDA ALFLAG
C048 48		PHA			STA DISFFL
C049 80 00 08	R．AMI	LDA $\$ 0800 . X$	0352 A5 A2		IDA \＄A2
CO4C 9000 A7	BAS2	STA \＄AT00．$\%$	03546 A		ROR A
C04F 68		PLA	$0.3556 A$		ROR A
0050700008	RAM2	STA \＄0800．${ }^{\text {W }}$	13556 A		RCR A
cis 3 E日		INX	035729 OC		AND \＃\＄OC
C054 00 EF		BNE BASI			STA BORDE
CiJb EE 47 CO		INC 8ASI＋2	0．359 8020 $0.35 C$ 9		AND BTO4
COF9 EE 4E CO		INC BAS2＋2	O35E 9D 18 D4		STA SIDUO
COSC EE 4E CO		INC RAMI +2	035E 0.361 A5 25		LDA \＄C5
COSF EE 52 CO		INC RAM2＋2	0.363 C9 C4		CMP \＃\＄04
C062 88		DEY			ONE DISTIM
C063 D0 EO		BNE BAS1	1）367 A2 CO		LDX $\# \$ 00$
C065 A5 01		LDA R6510 ：RESTORE BASIC	0.367 A2 0		
00670901		ORA ${ }^{\text {\％}}$ O1	0369 8E FA O3		STX ALFLAG
C196985 01		STA R6510	OJ6C 8EF9 03		STK DISPFL
COO日 58		CLI	036 F AD 9903	DISTIM	LDA DISPFL
C06C $2041 \mathrm{C8}$		JSP MESSAg	0372 F0 60		EEQ TIMRET
C06F 93		BYT \＄93	0374 AD（18 DC		LDA HOURS
0070202020		ASC．PRESS	0377 AA		TAX
C09112		BYT $\$ 12$	037829 OF		AND \＃\＃0 F
C082 524554		ASC RETURN	037A 1B		CLC
C088 92		BYT $\$ 92$	0.3786980		ADC \＃$\$ 30$
0087205445		ASC TO RUN	$037080: 14$		STA TIMDIS＋1
C090 $0043 \mathrm{4C}$		BYT \＄0D，\＄43．$\$ 4 \mathrm{C}, ~ \$ 52.500$	03808 A		1XA
0095111152		BYT \＄11，\＄11，\＄52，\＄55，\＄4E，\＄91，\＄91，\＄0	03811004		BPL LELA
c090 A9 20		LDA \＃$\$ 20$	$0383 \mathrm{~A} 2: 0$		LDX \＃\＃ 10
¢097880 7762		STA KEvD	0.385 10 02		BPL LBLB
CUAZ A9 20		LDA \＃$\$ 20$	0387 A2 191	LBLA	LDX \＃$\$ 01$
COA4 80 7802		St＇A KEYD 1	0389 日E 26 04	LBLB	STX TIMDIS＋6
COA7 A9 20		LDA \＃$\$ 20$	038C A2 20		LDX \＃\＄20
COA9 807902		STA KEYD＋2	038 E 29.10		AND HE10
COAC A9 13		LDA \＃\＄13 ；STORE SOME	0390 F0 1）2		BEE LBLC
CJAE 8D 7A 02		STA KEYD＋3 STUFF IN THE	03924231		LDX \＃F3！
COE1 A9 11		LIA \＃\＃11 ：KEYBOARD	0394852004	LBLC	STX Timbls
C15日 807602		STA KEYD＋4 ；BUFFER	0397 AD JA DC		LDA MINS
COB6 A9 OD		LDA \＃FOD	039A AA		TA：
COB8 80 7C 02		STA KEYD 5	039829 ）		AND＊ 0 F
COBB A9 106		LDA \＃$\$ 06$	03906930		ADC \＃$\$ 30$
C6ED 95 Cb		STA NDX	03986024104		STA TIMDIS＋4
COBF 60		RTS	O3A2 8A		TXA
			$03 \mathrm{~A}{ }^{\text {2 }}$ 4 4		LSR A
COCO		END			

BASIC program into memory. Then save it to disk and get a directory listing |by pressing @ then $\$$ |. Multiply the required number of blocks by 256 , then subtract 1 (you should get $11 \times 256-1$ 2815). Next, in immediate mode, type the following:

FOR I=0T02815: A=PEEK(I+2048): POKE 1+42752, A: NEXT

(If you got a number other than 2815 , use it above.) Now load into memory at $\$ \mathrm{C} 000$ the one-block machine language program as shown in Listing 2. Use either an assembler, the monitor, or a BASIC loader that POKEs DATA into memory. If your required number of blocks was not 11, place your number at $\$ \mathrm{C} 042$, add nine and place this number at $\$ \mathrm{CO} 12$ and at $\$ \mathrm{C} 016$. Then move this program to hidden RAM also:

FOR I=0T0255: A=PEEK(1+49152): POKE

 [+42496 , A: NEXT> POKE 40991,1: POKE 41023,166

So far, we've moved the one-block boot program to $\$$ A600, the BASIC program starting at $\$$ A700, and set up table pointers for the left arrow function. Now press RESTORE, S to get into the monitor and type:
.S " FPDPSH. ML", 08,A000,COOO

This saves to disk the BASIC program as well as the other programs previously hidden (printer formatting and the monitor).

The machine language BASIC boot program deserves some explanation (refer to Listing 2). A flag (located at \$CBBE) is initially set to zero. If it is zero, then the program BASWAP knows that this function hasn't yet been activated and our hidden BASIC program is still hidden. If so, the pointers to the beginning of the variables table (located at \$002D, \$002E) are saved in \$CBBD, \$CBBE. If the current BASIC program is larger than our hidden program, everything is OK, but if it is smaller, then we move the variable pointer table up to make room for the new program.

Next, the two basic programs are swapped |or at least the first 11 blocks of the current program is swapped in this example). A CLR command is activated; then the option is given to RUN the new program by pressing the RETURN key. This is accomplished by printing appropriate information on the screen and stuffing carriage returns into the keyboard buffer. A few spaces stuck into the buffer guard against multiple

Listing 4 (continued)

1910 REH*
1920 REM + HELP SCREEN CALL BY *
1930 REM* RESTORE, H OR SYS 512:32 *
1940 REMt

2000 POKE 53280,5: POKE 53201,1
2010 PRINT" \{CLEAR (RED, RUS)COMMAND SUMMARY (RUSOFF\}"
2020 PRINT" DOS 5.1 DOES-[T 1.2"

2040 PRINT" $\{B L A C K$ \} (UP ARROW3PGMCB|UE\} LOAD \& RUN (BLACK\}RESTORE
(BLUE\} STOP SCROLL"
2050 PRINT" ${ }^{\text {(BLACK }}$ /PGM(BLUE\} LOAD PGH"
2060 PRINT"\{BLACK\} YPGM(BLUE\} LOAD ML PGM --FOLLOH BY:"
2070 IF AS $\$=^{2} \mathrm{~N}^{\text {a }}$ THEN PRINT
2075 IF AS $\$()^{\prime N}{ }^{\prime \prime}$ THEN PRINT" BLUE) PRINT DIRECTORY*
2080 PRINT" $\{B L A C K$ (GACK ARROH\}PGM (BLUE\} SAVE PGH (BLACK)A (PLLIIE 2 APPEND PGMS"
2090 PRINT

2110 PRINT" \{BLACK\}C\{BLUE\} CHARACTER COLORS*
2120 PRINT" (BLACK\} ENO:NAME,ID E(BLJE) EDGE COLORS"
2130 PRINT" FORHAT DISK"
2135 IF ASS《"N" THEN PRINT"\{UP\} FORMAT DISK (GREENOF
(BLUE\} FORMAT PRINTER"

2150 PRINT" RENAME DISK (BLACK)O\{BLUE\} PRINTER OFF"
2160 PRINT" $\{B L A C K\}$ RCO:NEWPGK=0LDPGM P\{BLJE $\}$ PRINTER ON"
2170 PRINT" COPY PGM (BLACK)R(BLUE) REPEAT ON/OFF"
2180 PRINT" (BLACK ASO:PGM H(BLUE) HELP (THIS LIST) ${ }^{\text {a }}$
2190 PRINT" SCRATCH PGM (BLACK\}U(BLJE\} USER HELP"
2200 PRINT"(BLACK) E!(BLUE) INITIALIZE"
 (BLUE) TIMER/ALARH"
2210 PRINT"\{BLACK\} 代I(BLUE\} RESET (BLACK\}M(BLUE\} NUMBER CONUERSN,"
2220 PRINT" $\{B L A C K\}$ © V (BLUE $\}$ VALIDATE
 (BLUE) SUPERMON"
2230 PRINT'(BLACK) 88(BLUE) QUI7 0055.1 (BLACK3K(BLUE) KILL ALL (RESET)*
2240 PRINT" \{BL.ACK\}RETURN(BLUE\} CANCEL"
2250 PRINT" \{RED\}PRESS (RYS\}FETURN(RUSOFF) TO CONTINUE";
3000 POKE 53128,4: POKE 53131,248
3010 SYS 53164
3020 POKE 64488, PEEK (53280)
3030 POKE 64489,PEEK(53281)
3040 POKE 53128,216: POKE 53131,252
3050 SYS 53164
3055 IF AS $\$=$ "W" THEN GOTO 3060
3056 POKE 52179,89: POKE 52211,207! POKE 52166,89:POKE 52198,207: POKE 52157,0
3057 POKE 52191,89:POKE 52223,207: POKE 52158,0: POKE 53123,0
3060 IF AR $\$=$ "Y" THEN GOSUB 5000

3080 POKE 52171,2261POKE 52203,25!?
3090 POKE 53280,6: POKE 53281,12:POKE 646,0
3100 PRINT" (HOME, DOHN4\}PRINT (FRE (0) +65535) CDONN,LEFT12\}GYTES FREE": POKE 198, 6 3110 POKE 631,19:POKE 632,17:POKE 633,17:POKE 634,17;POKE 635,17; POKE 636,13 3200 NEN
5000 FOR I=832 TO 1018: READ A:PDKE I, A:MEXT I
5010 POKE 52180,240tPOKE 52212,3: 3 YS 983
5020 POKE 51560,32: POKE 51561,215:FOKE 51562,3
5025 RETURN

RESTORE key activations which sometimes occur when you press this key. If you don't want to RUN the program, press the cursor down key instead of the RETURN key.

To go back to the original BASIC program, hit RESTORE, left arrow again. Now the variable table pointers are restored (from \$CBBD, \$CBBE) and then the swap is performed again. This sticks our originally hidden program back in its hiding place and returns our original BASIC program to the BASIC workspace, unharmed.

Time Routine

In the December 1983 MICRO, a very nice machine language time/alarm routine was described. Unfortunately, this program is incompatible with DOES-IT's since they both use the same memory area at $\$ 02 \mathrm{~A} 7$. Therefore, Ian Adam's program was shortened and revised somewhat to tie it into DOES-IT.

The revised program is shown in Listing 3 . The entire program fits into the cassette buffer from $\$ 0340$ to $\$ 03$ FB. The changes from the original program are as follows:
The RESTORE, T key sequence is used to toggle only the time display on and off. This allows the alarm to remain active even if the time is not displayed. No SYS calls are necessary.
Only hours, minutes, and AM/PM is shown in the upper right corner of the screen. The seconds and tenths of seconds proved to be distracting; they were replaced by a blinking colon to let you know the clock is still ticking.
The alarm function is nearly the same, except the word ALARM was left out to save space. Function key F1 turns off both the alarm and the display (but you can reactivate the display with RESTORE, T).
The characters used in the time display always use the currently active character color. This assures visibility. A warning: never leave the time display on the screen when you are editing programs. It is very easy to accidently edit the current time of day into your BASIC programs. The time and alarm setting is done through the new DOES-IT boot program, DOS + .

Getting It All Together

The machine language routine DOESIT.ML must be changed to incorporate the vectors for the Repeat and Kill functions from Part 3 (or the required

Listing 4 (continued)

5030 INPUT" CDOHN5\} IS IT NOW \{RUS\} AM \{RYSOFF\} OR \{RVS\} PM (RUSOFF\}"; AS: INPUT"\{DOHN\} THE HOUR"; H
5040 PRINT" $\{001$ N2 2$\}$ Enter the minute to start the clock"
5050 PRINT" CDOAN3 THE CLOCK HILL START UHEN YOU HIT CRVS)RETURNCRUSOFF, DOHN 3 ENTER THE HINUTE";

5070 IF H >9 THEN $H=H+6$
5080 IF LEFT $\$(A \neq 1)=" P{ }^{\prime \prime}$ THEN $H=H+128$
5090 C=56328: POKE C +3 , H: POKE $\mathrm{C}+1,0$
5100 INPUT M: $\mathrm{M}=\mathrm{M}+\mathrm{INT}(\mathrm{M} / 10) 46$
 press any key
5120 FOR $l=1$ TO 1000:IF PEEK(198) THEN PIIKE 198,0:SYS 1008:60T0 5030
5130 NEXT
 INPUT" (RVS\} AM \{RUSOFF) OR (RUS\} PM (RUSOFF\}"; As
5150 A $\ddagger=L E F T t(A \ddagger, 1): I N P U T "\{D O W N\}$ THE HOUR"; H:HH=H
5155 IF H>12 THEN AS="P":H=H-12: 60 T0 515.5
5160 H=H-6*(H>9)-128*(As="F"):INPUT"\{DOWN3 THE MINUTE"; $\mathrm{H}: M H=M: M=H+I N T(M / 10) * 6$
5175 POKE C +7 , 136:POKE C +3 , H: POKE C +2 , M: POKE C, 1 :POKE C $+7,8$
5180 POKE 54273,99:POKE 54278,240:POKE 54276,21:POKE 54287,2:POKE 54290,17
 MM; AS"M ALARM": GOTO 5195
5190 PRINT" (CLEAR, DOWN 2) "SPC (27-HH/9.9); HH; " (LEFT):"; RIGHT\$(STRs (MH), 2); "Ał"H ALARH"
5195 RETURN
6000 DATA 173, 13, 220, 41, 4, 240, 3, 141, 250, 3
6010 DATA 173, 250, 3, 240, 32, 141, 249, 3, 165, 162
6020 DATA 106, 106, 106, 41, 12, 141, 32, 208, 41, 4
6030 DATA 141, 24, 212, 165, 197, 201, 4, 209, 8, 162
6040 DATA $0,142,250,3,142,249,3,173,249,3$
6050 DATA 240, 96, 173, 11, 220, 170, 41, 15, 24, 105
6060 DATA $48,141,33,4,138,16,4,162,16,16$
6070 DATA $2,162,1,142,38,4,162,32,41,16$
6080 DATA $240,2,162,49,142,32,4,173,10,220$
6090 DATA 170, 41, 15, 105, 48, 141, 36, 4, 138, 74
6100 DATA $74,74,74,24,105,48,141,35,4,169$
6110 DATA 59, 141, 34, 4, 169, 13, 141, 39, 4, 162
6120 DATA 32, 142, 37, 4, 173, 9, 220, 41, 1, 240
6130 DATA $3,142,34,4,173,8,220,173,134,2$
6140 DATA 162, B, 157, 31, 216, 202, 209, 250, 76, 49
6150 DATA 234, 120, 173, 20, 3, 162, 64, 141, 213, 3
6160 DATA 142, 20, 3, 173, 21, 3, 162, 3, 141, 214
6170 DATA 3, 142, 21, 3, 88, 96, 169, 1, 77, 249
6180 DATA 3, 141, 249, 3, 96, 0, 0

Figure 1. DOES-IT Help Screen

COMMAND SLMMARY			
DOS 5.1		DDES-IT	
GM	LOAD \& RUN		STORE STOP SCROLL
/PGM	LOAD PGM		
\%PGM	LOAD ML PGM		--FOLLO
		$\stackrel{+}{+}$	PRINT DIRECT
*PGM	SAVE PGM		APPEND PGMS
et	LIST DIR	B	BACKGND COLO
		C	CHARACTER COL
EN0:NAME,ID		E	EDGE COLORS
		F	FORTAT PRINTER
QRE: NEWHMM=OLDNM		D	DUMP TO PRINTER
RENAME DISK		0	PRINTER OFF
EC6:NEWPGM=OLDPGM		P	PRINTER ON
ese: PGM		R	REPEAT ON/OFF
		H	HELP (THIS LIST)
	SCRATCH PGM	U	USER HELP
@I	INITIALIZE	T	TIMER/ALARM
eul	RESET	N	NUMBER CONUERSN.
(2)	validate	5	SUPERTMON
EQ	QUIT DOS 5.1	K	KILL ALL (RESET)
			TURN CANCEL
	PRESS RETURT		ONTINUE

POKEs should be included in the loader program). However, it is desirable to keep the Time function and the transient programs as options so we can bypass loading and executing them if we desire. Therefore the loader program, now called DOS + , has been changed; see Listing 4.

If the machine language portion of DOES-IT from $\$$ C800 is not in memory, the loader program will load it (it is now called $\mathrm{D}+++. \mathrm{ML}$) as shown in lines 900-1000. A SYS to 51200 is made to initialize DOES-IT and the wedge. Then you are asked if you want the Time routine and the transient programs. If you answer yes to the second question, the 8 K block FPDPSM.ML is loaded into hidden RAM at $\$ A 000-\$ B F F F$, only if the flag (at location $\$ 0002$) indicates that it is not yet in memory

The HELP screen was changed to reflect all the additions to DOES-IT and will only print out those additions that are actually loaded into memory. A
printout of the latest HELP screen is shown in Figure 1 (but it looks better on a color monitor).

If the time routine is desired, then lines 5000 are run, in which the current time and the alarm time are encered. Ending the program leaves the time display on, the program NEWs itself, then prints the available free memory.

The DOES-IT routines now consist of three programs that can be copied to copies to your other disks: DOS -- , the BASIC boot program, $\mathrm{D}+++$ ML, the permanent ML programs and tables that load into \$C800-\$CFFF fthis also contains the DOS WEDGE], and FPDPSM.ML, the 8 K block that loads into hidden RAM (\$A000-\$BFFF]. To activate DOES-IT, type in IJOAD "DOS + ", 8 then RUN.

In general the routines are quite easy to use. However, entering them from the keyboard for the first tinie can be confusing due to the complexity of operations involved. For $\$ 10$ (US), MICRO will provide the DCIES-IT
routines from the four articles in this series on disk, along with all the assembly source listings. For foreign requests, please send sufficient postage. For those hackers interested in adding more functions, five blocks of memory is unused in the hidden RAM from $\$ B 200-\$ B 6 F F$, eight block are available from $\$ E 000-\$ E 7 F F$, and all sixteen blocks are available in the hidden \$D000-\$DFFF area.

ANCRO

ATARI 48K * TRS C/C 32K COMMODORE 64 747 FLIGHT SIMULATOR

ACTUAL SCREEN PHOTOGRAPH
Superbly reatistic instrumentation and pilot's view in lifelike simulation which includes emergencies such as engine fires and systems failures. This program uses high resolution graphics to the full to produce the most realistic flight-deck display yel seen on a home computer. There are 21 real dials and 25 other indicators. Your controls operate throttle, ailerons, elevators, flaps, slats, spoilers, landing gear, reverse thrust, brakes, etc. You see the runway in true perspective. Uses joysticks and includes options to start with take-off or random landing approach. A real simulation, not just another game! Casselte only, $\$ 27.95$ (add 6% in Calif.). Sole U.S. distributor for D.A.C.C. Ltd., England.

F. Ashton

P.O. Box 7037

Chula Vista, CA 92012

Four Techniques to Make Your Assembly Programs
 by Chris Williams

These four 6502 assembly language programming techniques are designed with one and only one consideration in mind. Speed. Raw, unadulterated, eyebrow-raising speed.

These techniques are applicable to any 6502 microcomputer. They have nothing whatsoever to do with graphics or sound or anything else that would require special machine-specific arrangements. They are meant to be entirely generic. In fact, the underlying concepts are not limited to the 6502 . They are readily applicable to all 8 -bit machines.

A relentless pursuit of speed-ofexecution is perhaps the noblest of activities for a programmer. While speed isn't the only characteristic of a fine program, it usually is the characteristic most difficult to achieve. As a result, when a programmer has a finished routine that absolutely screams through its task, he tends to grin a bit wider and finds himself a bit more anxious to show it off-especially to knowledgeable friends who will appreciate what they're seeing.

So, if you're sitting there now nodding at the familiarity of that scene, and if you suspect that your routines could execute faster, then you'd be well advised to study the following techniques carefully...and use them! Writing fast programs is a skill, not a talent, and skills are perfected through practice.

Counting Up or Counting Down

From the perspective of speed, choosing to count up is the single most common mistake in the typical assembly language program. If you're taking notes, write this down. In general, counting up is slower than counting down. Watch.

Suppose I have an application that requires an index to count through a
list of values. Here's how the typical program does it:

	LOY	\# 0	initialize index
LOOP	LDA	(LOC),	;ogt value from list
	STA	Place	do something with it
	iny		: increment index
	CPY	maxyal	:check to see if done
	ENE	LOOP	; not done, 1000
DO			;else, proceed

Count the instructions. There's six, four for loop management, two (the LDA and STA functional. That's about the best we can do counting up.

Instead, let's arrange things to count down.

LDY MAXVAL :initaalize index
LIOP LOA (LOC), yiget value from list
STA PLACE ;do something with it
DEY ; decrement index
BNE LOOP ;check for zero to finish
DONE .-- ---- :else, proceed
Five instructions this time. No CPY, which is a four-cycle instruction (absolute addressing). So our loop here is four machine cycles faster than w. counting up.

This kind of thing is always true. You are never better off counting up and checking a count. If MAXVAL is 256 , you can eliminate the CPY when counting up and achieve indentical speed, but MAXVAL is rarely 256. Count down!

Fast Double Precision

All 6502 microcomputers have a 64 K memory maximum, assuming no bank switching. 64 K is 65536 which is $\$$ FFFF hex. \$FFFF hex cannot be represented by a single byte; it requires two.

What this all means is that any addressing routines you might need have to be double precision (assuming you're looking for more than just 256 bytes]. Below is a fast, general technique for doing additive doublebyte addressing. And below that is a special case method for doing the same thing even faster.

QLC
LDA $\$$ LDC :get least significant byte
ADC \#VAL :add inmediate value
STA FLDC istore result in L.S. byte
LDA $\$ L 0 C+1$;get M.S. byte
ADC \#O add with carry iero
STA tLOC +1 ; stare in M.S. byte
RTS
The carry from the least significant oyte operation flows into the most significant byte operation. This results in a nice, tight, double precision add.

If \#VAL is equal to 1 , as it often is, we can get even faster.

INC $\$ L O C$	increment L.S. byte ENE OUT
iRTS uriless $=0$, from	
previous FF	

Use Immediate Addressing

In general, immediate addressing is the fastest way to get a value for just about any purpose. In all instructions, immediate addressing results in a twocycle operation as opposed to absolute addressing which burns four cycles doing the same thing.

Even if the value to be used changes occasionally, you can still get away with immediate addressing. The byte in question always follows the op-code of the relevant instruction and,
therefore, has a fixed address. Simply write to it using absolute addressing when you can afford to he clow The new value will then be there the next time you need speed.

Be careful when you calculate where to write or you'll clobber the program.

Select Branches Wisely

When you have to do a compare and branch, keep speed in mind when choosing the type of branch. For example:

LOOP	LDX	LOC
	CPX	\#TESTYAL
	BCC	OUT
	BCS	LOOP
OUT	$-\cdots$	----

jcontinue

This seems fine at first glance, tut watch what happens if you simply reverse the order of the branches.

LOOP	LDX	LOC
CPX	TESTVAL	
BCS	LOOP	
	-	

;continue
There's no need for the BCC since you continue execution anyway, so don't put it in. Keep a sharp eye out for this error. It seems so obvious that programmers tend to devote inadequate attention to it.

So, those are four good ones, and I think that's plenty for now. Let me once again admonish you to practice. Use the techniques. Use them even when you don't think you need them. In the long run--and for your programs
there should be no such thing--you'll be glad you did.

Mr. Williams is a frequent contributor to MICRO with both articles and reviews of new products. He can be contacted at 1165 E. Edgewood Dr. 10, Ogden, Utah 84403. Please enclose S.A.S.E. with any questions.

MCRO"

059 APPLICATION SOFTWARE

ACCOUNTS PAYABLE

ACCOUNTS RECEIVABLE \$299

COMPLETE DOCUMENTATION \$19.95
OS9 \& BASIC 09 ARE TRADEMARK OF MICROWARE, INC. \& MOTOROLA CORP.

(405) 233-5564

2110 W. WILLOW - ENID, OK 73701

SOPHISTICATED TELE-COMMUNICATION IS HERE THE COMMUNICATOR
for 4.0 Commodore Computers
JIM STRASMA'S REVIEW:
"THE best terminal package l've seen yet"'
By April 1 (maybe sooner) It Will Be Even Better SPEEDS UP TO 9600 BAUD XON - XOFF
TRUE CTAL KEY (we do our own keyboard scan)
THE HARDWARE - A printed circuit board; easily installed in the CBM. It uses no CBM connectors; gives a serial port with true RS232C standard.
the software -

- Emulates the ADDS Regent 100. ADM 31 and/or the TeleVideo 950.1 Or choose the VT 100 model tor use with DEC and VAX computers.
- Runs coresident with BASIC programs; lets BASIC programs and program on host computer communicate to develop really sophisticated communication and control capabilities.
- The program is on ROM at either address; no disk loading required. Uses only 512 bytes of RAM; will relocate itself around any other mactine language program at top of memory.
- Will upload and download and run BASIC programs. with GASIC progiam will upload and download standard data files. 100 page manual gives program listing for BASIC programs.
Excellent text editor designed to work with THE COMMUNICATOR THE COMMUNICATOR $\$ 200$ Text Editor $\$ 40$
1200 baud mxdems beginning at low, low $\$ 385$, and even less when purchased with THE COMMUNICATOR
AMPLIFY, INC.
2325 Macbride, lowa Clity, lowa 52240 319-337-8378
1 trademarks Adds Regent, inc., Lear Liegier, Inc., Televideo Systems, Inc.

-Talking to Your Printer
 Original Program by Dick Buchanan, Jr.

 Text by Mark S. MoranoGetting an electric typewriter to listen to a piece of fruit is not easy. If you own an Apple and a printer you probably know what we're talking about. Regardless of what micro and printer you may have you are probably familiar with the difficulty of getting your computer to talk to your printer. The size of this program should give you some idea of the scope of these problems. But don't despair --in order to use this program you are not committed to keying in the entire listing. It is an easy extract those elements that are useful to you and leave out those that are not. that are not. For example many people will never use the international style font. They would simply leave out the references to this style and the accompanying code. The same would apply to any other features you haven't any use for.

During the creation of this printer control program many interesting and frustrating problems arose. Hopefully in examining these you will find a solution applicable to your own particular problems.

To begin with each printer has its own set of printer control codes that are composed of a combination of Escape, Control and other keys, used separately and in conjunction with one another. Each printer has different control codes

Abstract

Editor's Note: The original printer program was written by Dick Buchanan for the Apple. The program was then modified and enhanced by Robert T. Tripp and Mark S. Morano.

- why make life simple. There were a few codes that we did find in common, so these we grouped together and used for both the Epson and the Gemini. Of course this looked fine in print but we soon discovered that there was more to it than met the eye. On the Epson you must use Escape "W1' to turn Enlarge Mode on. Looking at the manual it seemed to be the same for the Gemini. We discovered that the Gemini will not accept the codes in the same form. It needed an Escape "W" CHR\$(1). (Happily the Epson does accept the form needed by the Gemini). This was the kind of "obvious" bug that we ran into time and time again.

Now to make matters more complicated there is the problem of upper versus lower case letters. The printers make a distinction -the Apple doesn't. This fact was brought to our attention when the printer only printed out a line of garbled graphics. Tracing through the code we found an Escape combined with an upper case ' L ' where a lower case ' 1 ' should have been. Unfortunately, on the Apple II and II there aren't any lower case letters. As luck would have it the combination of Escape and upper case 'L' was used by the Epson to turn on the graphics mode. Undaunted we set our variable
to the ASCII numeric for lower case ' 1 ' CHR $\$(108)$. This solution proved to be a great success, not only here but elsewhere.

Working with different printers we learned that within one machine there were certain modes that, when in operation, automatically cancelled or turned on other features. As additional styles can be obtained by using various combination of styles, it is important to know which combinations are compatible. Those styles that cannot be used together vary with each printer and should be noted so as to avoid unnecessary aggravation. For instance, witi 1 the Epson, turning on the superscript or subscript type activates the double strike style, or when using emphasized type - condensed, superscript, and subscript are not available. Usually these peculiarities do not cause any problems as everyday priating needs are not very complicated.

Another "detail" to be aware of is how your printer and computer are connected. If they are connected serially you should use PR\#2 when sending an output string to the printer (ex: line 18). If you are using a parallel cable then you would use PR\#3 (which is kow we set the program up). The
only problem you will encounter if you haven't made the right choice is that your printer won't hear your computer - rendering the program useless.

The use of output strings gives the programmer greater and easier control in matters of ports, varying differences in control codes, etc. For a further explanation of this technique read the accompanying article - String Power.

String Power

Notes Toward Generic BASIC

Concepts apply to all BASICs
Example for Apple, Commodore, CoCo and Atari

Probably the first thing everyone learns about BASIC is that:

PRINT "HELLO"

will result in the word "HELLO" being printed on the display. Then they go on to learn other ways of using the PRINT statement. Unfortunately, most of what is taught results in BASIC programs that are difficult to maintain, update, or convert to other micro BASICs. A program written in BASIC for one computer will normally not run on any other computer without some modification. This has been one of our greatest frustrations at MICRO. A good program submitted for micro X could be converted to run on other micros, but due to the eccentricities of BASIC, is not worth the effort. Often the differences are relatively trivial and could be avoided entirely if the programmer would use a few simple techniques to generate more generic code. We took the program submitted by Buchanan as a sample case and generalized it to run on several micros. One of the techniques used, Output Strings, can help you make your BASIC better.

Changing the Printer Port

The original program was written in standard BASIC using simple PRINT statements. To output a master reset to to the printer, the Applesoft BASIC statement was:
[30 PR\# 7: PRINT ESC\$; CHR\$(64);: PR\# 0 I
which selected port 7 as the printer output port, output the characters required to reset the Gemini printer, and reset the output device to the display. Applesoft BASIC PRINTs to the currently selected device. Each time the device is switched between the screen (device 0 always) and the printer (connected as device 7 on this system) a PR\# command must be issued. Every time output was directed to the printer, instead of the display, the $\mathbf{P R} \# 7$ command was issued within the print statement line. Changing the printer port would require changing every one of these print lines within the program! That is a lot of work. And, miss just one and your system will probably 'hang'. If there was some way to have the printer port defined only once in the program, then changing tie printer port would only require changing one reference. There is a way. If every set of information that is destined for the printer is turned into an output string, then a subroutine that will handle the output string can be called whenever output is required. The statement:
[$O S \$=E S C \$+C H R(64)$]
defines a string variable OS\$ that contains the two characters required for a master reset. This string is output to the printer via a short subroutine:
[18 PR\# 7: PRINT OS $\$$: PR\# 0 : RETURN J
and is called as:
[30 OS $\$=E S C \$+C H R(64):$ GOSUB 180. 18]
Every time the subroutine at line 18 is called, it selects port 7 for output, outputs the current value of the OSS string, resets the output port to the screen, and returns. All of the statements in the original program that generated output to the printer were rewritten as output strings, using the string variable OS\$, and calling subroutine at line 18 for the actual output. Now, if the printer is changed to port 2 , then only this single line has to be changed. It is changed to:
[18 PR\# 2: PRINT OS $\$_{:}:$PR\# 0 :
RETURN] It is obviously much easier to char.ge the printer port when only one line needs to be changed. This makes the program a lot easier to use, maintain and update. Output strings are defired within many of the 'working' lines of the program. The basic printer control

Summary
The concept of using an output string instead of immediate printer commands has been discussed，and it has been shown that this technique can
make your BASIC program more flexible．In the particular example，it made it easier to change printer port，to change type of printer，and，to change micro．This is but one of a number of techniques that can be used to make
your BASIC more generic．Other techniques will be described in additional articles on this subject．If you have discovered other techniques， we would like to hear about them．

Listing 1	
1 REM PRINTER FORmat Program	
2 REH ORIGINAL APPLE／GEMINI 10 VERSION	
3 REH GY DICK BUCHANAN	LR\％＋CHR（34）+ CR （
4 REM MODIFIED BY R．M，TRIPP	214 DSt $=$ OS\＄+ PL\＄+ FS\＄+ CO\＄+ PNS + F1\＄+ CHR
5 REM FOR GENERAL MICROCOMPUTERS AND	（34）＋COS
6 REM THE EPSON PRINTER	
13 REM MICRD－MARCH 1984－\＄76	220 RETURN
14 REM	299 REM DISPLAY PRESENT VALUES
15 SOSUB 9998；REM SYSTEM INITIALIATION	300 COS＝＇，＂；GOSUB 218：G0TO 18：
16 GOSUB 9098：60T0 30：	REM OUTPUT TO PRINTER
REM PRINTER INITIALIZATION	496 CAS＝CR\％：GOSUB 205：GOSUB 19：60T0 21：
	REM DUTPUT TD DISPLAY
4 ＊	1098 REM FONT STYLE
－Microcomputer Specific Code to	1085 GOSUB 20
＊Service Input／Dutput Must Be	1010 OS\＄＝＂1）SELECT STANDARD ASCI］＂＋CR\％
1 Entered Here．See Modules at End	1011 05\％＝0S
t	1012 O5\＄＝05\＄＋＂3）SELECT INTERNATIONAL＂＋CR\＄；
	60sus 19
30 05\％＝MR\＄＋MS\＄：60SUB 18： REM DUTPUT TD PRINTER	1048 OSt＝SNs：GOSUB 19：GOSUB 21： IF Ns＝＂THEN RETURN
50 GOSUB 20	1845 IF N\％＜＂1＂DR N\＄＞＇3＇ThEN 1949
```51 O5$ = " A) FONT STYLE CONTROLS" + CR$: GOSUB 19```	1050 IF $\mathrm{Ms}_{\mathrm{s}}=1 \mathrm{I}$＇THEN 05s＝IXs：605UB 18： AAs a＂STAMDARD ASCII＂；RETURN
$\begin{array}{ll} 52 \text { OS\$ = " } & \text { B) FONT PITCH CONTROLS" + CRS: } \\ \text { GOSUB } 19 \end{array}$	106 IF N：${ }^{\text {＇2 }}$＇THEN OSs $=$ INs：6OSUB 18： AAs＝＂ITALIC PRINT＂：RETURN
53 OS\＄＝＂C）SPECIAL PRINT MODES＂＋CR\＄；	1070 IF W\％く＞＇3＇THEN 1088
GOSUB 19	1871 GOSUB 29：05s＝＂INTERNATIONAL FONTS＂＋CRs：
54 05s＝＂D）SPECIAL PRINT EFFECTS＂＋CR\＄： GOSUB 19	$\begin{aligned} & \text { SOSUB } 19 \\ & 1072 \text { FOR } 1=\text { TO AX: } \end{aligned}$
$5505 \$=$ E）LINE FEED CONTROLS＂＋CRs：GOSUB 19	
56 0St＝＂F）FORM FEED CONTROLS＂＋CR\＄；60SUB 19	1973 EOSUP 19：NEXT I
57 OS\＄＝＂6）VERTICAL TABS＂＋CR\＄：GOSUB 19	1075 OSs＝SN\％：GOSUB 19：GOSUB 21：
58 OS\＄＝＂H）HORI2ONTAL CONTROLS＂＋CR\＄；	IF $\mathrm{NF}={ }^{\text {a }}$＂THEN RETURN
60SUB 19	
$5905 \%$－I）INITIALIIE PRINTER RESET＂＋CR\＄；	1998 AAs＝Ax\＄（ YAL（N\＄））
GOSUB 19	1100 OSt $=$ SIs＋CHRs（VAL（NS））：GOSUB 18：
6905\％＝＂J）PRINT PRESENT PARAMETERS＇＋CR\＄：	RETURN
605UB 19	2909 REM FONT PITCH
$6105 \%$（ 6 ）	2905 G05UB 29
DISPLAY PRESENT PARAMETERS＂＋CRs＋CRs： 605UB 19	2010 OS＝＇1）SET PICA STANDARD（＂＋PK＋＂） ＇＋CR！
63 OSs＝＂X）TO EXIT＂＋CRs：GOSUB 19	2911 05s＝OSs＋＂ 21
65 0St＝CRs：GOSUB 19	SET ELITE STANDARD（＂＋EX\＄＋＂）${ }^{\text {a }}$＋CR\％
79 0St＝SN\％：G05UB 19：G0SU日 21	2012 05\％＝0S\％＋＇ 3 ）
75 IF N：$=$＂THEN 78	SET CONDENSED（＂＋CX\％＋＂）${ }^{\text {a }}$＋CR\＄
89 IF NS＝＂X＂THEN END	2013 05\％＝05\％＋＂4）
$98 \mathrm{~N}=\mathrm{ASC}$（N\＄）－ASC（＇2＇）：	SET ENLARGED（＂＋EN\＄＋＂）${ }^{\text {a }}$＋CRs
IF N 〈 1 OR N ＞11 THEN 70	2014 OS\＄＝OS\＄＋＇5）CAMCEL ENLARGED MODE＂＋CR\＄；
	605UB 19
8090，30，300，400	2950 05\％＝SN\＄：60SUB 19；GOSUB 21：
110607050	IF $\# \$=1$ THEN RE］URN
298 REM PRESENT VALUES	2960 IF N\％（＂1＂OR N\＄）＂5＂THEN 2950
285 GOSUB 28	2965 ON VAL（N＊）GOTO $2110,2120,2130,2140,2150$
$\begin{aligned} & 21805 \$=A A \$+" n+B S \$+C Q \$+B 3 \$+C Q \$+A 2 \$+ \\ & P T \$+C R \$ \end{aligned}$	```2110 OS% = PF% + E5% + [HR$ (81) + PC%; 605UB 18: PTs=PX```

```
211| RC% = PC$:BS$ = "PICA"; RETURN
2120 05% = EF% + E5% + CHR$ (81) + EC$; 60SUB 18;
 PT$ = EX$
2121 RC$ = EC$;85% = "ELITE"; RETURN
2130 05% = CF% + E5$ + CHR$ (B1) + CC$; GOSUB 18;
 PT$ = CX$
213! RC$ = CC %:BS% = "CONDENSED": RETURN
214005% = EM$: GOSUB 1B!B3% = 'ENLARGED"; RETURN
2150 05% = EY$: GOSUB 18:B3% = "NON-ENLARGED";
 RETURN
3000 REH SPECIAL PRINT
3095 60SUB 20
3010 05% = " 1) DOUBLE STRIKE PRINT" + CR$
3011 05$ = 05$ + " 2) CANCEL DOUBLE STRIKE" + CR$
3012 05% = 05% + " 3) EMPHASIIED MODE" + CR$
3013 05% = 05% + " 4)
 CANCEL EMPHASIZED MODE" + CR$ + CR&
3950 GOSUB 19
3069 05% = 5N$; 60SUB 19; GOSUB 21:
 IF N% = "" THEN RETURN
3079 IF N$ < "!" OR N$ > "4" THEN 3960
3099 ON VAL (N#) 60TO 3110,3124,3130,3149
3119 C5$ = "DOUBLE STRIKE":OS% = SD$; GOSUB 18;
 60T0 3085
3126 CS$ = "NON-DOUBLE STRIKE";05% = CD$; 60SUS 18:
 6070 3095
3130 C2% = "EMPHASIIED":OS$ = SE$: 60SUB 18:
 G0T0 3985
3140 C2% = 'NON-EMPHASIIED':OS% = CE$; GOSUB 18:
 6070 3085
4006 REM SPECIAL EFFECTS
4995 605UB 29
4910 05% = " 1) UNDERLINE CHARACTERS" + CR$
4911 05% = 05% + " 2) CANCEL LNDERLINE" + CR$
4012 DS% = DS% + " 3) SUPERSCRIPT MODE" + CR$
4913 05$ = 05% + " 4) SUBSCRIPT MODE" + CR$
4014 05% = 05% + ' 5)
 CANCEL SUPER/SUBSCRIPT MODE" + CR$
4015 O5% = 05$ + * 6) UNI-DIRECTIONAL HODE" + CR$
4016 05% = 05% + ' 7)
 BI-DIRECTIONAL MODE" + CR$ + CR$
```



```
4990 0S% = SN%: GOSUB 19; GOSUB 21:
 IF K$ = "" THEN RETURN
4100 IF N: < "1" OR N$ > "7" THEN 4090
4106 N = VAL (N$);
 ON N 60TO 4119,4129,4130,4140,4150,4160,4170
4110 05% = UN$; GOSUB 18; 60TO 4095
4126 DS% = UF$: GOSUB 18: GOTO 4895
4136 D5% = "SUPERSCRIPT MODE";OS$ = 5S5: GOSUB 18:
 60T0 4085
4140 DS% = "SUBSCRIPT HODE';05% = 5B$; 605UB 18;
 60T04995
4150 DS% = 'NORMAL MODE';05$ = SF$; 60SUB 18;
 GOTO 4995
4168 D2$ = "UNJ-DIRECTJONAL MDDE";OS$ = UD5;
 605UB 18: 60TO 4095
4170 D2$ = "BI-DIRECTIONAL MDDE";OS$ = BDF;
 GOSUB 18: GOTO 4985
5060 REM LINE FEED CONTROLS
5085 GOSUP 20
5019 05% = " 1) SET LF TD 9/72 (1/8) INCH" + CR$
5911 OS$ = OS$ + ' 2) SET LF TD 7/72 INCH" + CR!
```

5012 OS\％＝OS $\$+$＂3）SET LF TO 12／72（1／6）
INCH＇+ CR
$501305 ;=05 ;+4)$

5614 05 $=055+$＂ 5 ）
SET LF TO N／＂＋HMS＋＂INCH（N $=1$ TO 127）
${ }^{-}+\mathrm{CR}_{\mathrm{s}} \mathrm{+}$＋ CR
566 60SUB 19
5078 05\％＝SNs：60SUB 19：G0SUB 21：
IF Ns＝＂${ }^{\text {THEN RETURN }}$
5986 IF N\＆〈＂1＂OR M§ 〉＂5＂THEN 5979
$5190 \mathrm{~N}=\mathrm{VAL}(\mathrm{Ns}):$
ON N 60 TO 5119，512日，5139，5146，5146

5129 LTs＝＂7＂：LB＝＂72＂：05s＝L1s：60T0 18

5146 INPUT＇ENTER N（1－127）：＇IP\＄
5142 IF VAL（P\＄）（1 DR VAL（P\＄）
） 127 THEN 60 TO 5149

〈 128 THEN LT\＆$=$ Pi；ON N－3 GOTO 5168，5178
 607018
5179 LB $=$ HMs：OS $=$ L4s + CHR（VAL（Ps））： 607018
begg ren forn feed controls
6895 60SUB 29
$601905 \%$＝＂1）SET LINES PER PAGE（1－127）＂＋CRs
6011 05：＝051＋＂2）
SET PAGE LENGTH IN INCHES（1－32）＂＋CRs
$601205 \$=054+$＂ 3 ）SET HEADER LJME＂+ CRs
$661305 \%=05 \$+$＂ FIRST LINE PRINTED， $1-16$ ）
＇＋CR
$601405 \%=051+441$
SET MAXIMUM LINES FROM bottom OF＂＋CR
6015 OSt＝051＋＂THE PAGE（1－127）＇＋CR
$691605:=05(4+" 5)$
CANCEL LINES FROM BOTTOM SETTING＇＋CRs＋CR\＄
6960 G05u8 19
6676 OSt＝SNI：GOSUB 19：GOSUB 21：
IF $\mathrm{N}=$＝＂ THEN RETURN
6889 IF（
$6990 \mathrm{~N}=$ VAL（N5）：
ON N $60 T 0$ 6110，6129，6139，6149，6159
6119 INPUT＂：NTER LLP（1－127）：＂；Ps
b111 IF VAL（Ps）（ 1 DR VAL（Ps）＞127 THEX 6113

GOSUB 18：60T0 6065
6120 INPUT＂ENTER PL（1－32）：＂IPs：
IF VAL（Ps）＜ 1 OR VAL（Ps）） 32 THEN 6129

60SUB 18：G070 6865
6139 INPUT＂ENTER HL（1－16）：＂；Ps：
IF VAL（Ps）＜ 1 DR VAL（ $\mathrm{P} \$$ ）） 16 THEN 6130
6135 F2s＝Ps：05s＝HDs＋CHR（VAL（Ps））：
60SUB 18：GOTO 6965
6149 INPUT＂ENTER LFB（1－127）：＂；Ps
6141 IF VAL（P\＄）＜ 1 OR VAL（P\＄）） 127 THEN 6149

605UB 18：6070 6985
6159 05\％$=5 \times 5$ ；60SUB 18： 60706085
7996 REM VERTICAL TABS
7695 GOSUB 29
7910 0S\＄＝＂1）ADVANCE TO NEXT TAB＇＋CR\＄

7011 OS = 0S + + $16,12,18, \ldots, 68$ STANDARD " + CR		$\begin{aligned} & 9167 A X \$(5)=\text { "SHEDEN" } \\ & 9188 A X \$(6)=\text { "ITALY" } \end{aligned}$	
7912 05s = 055 + " 21		9169 AX $\$(7)=$ "SPAIN"	
SET NEW VERTICAL TAB POSITIONS" + CR		9110 AX = 7: REM NLIMUER OF COUNTRIES	S
7013 05\% = OS + " (MAXIMUM OF 20) ${ }^{\text {a }}+$ + CR		9120 REM GEMINI COMMAND STRIMGS	P
7014 0St $=$ OSt + CR\$ + CR\$		9131 SI\% = ESt + 7 '	C
7040 G05U8 19		9149 PF\% = ESt + 'B' + CHR (1): REM PICA MODE	-
7850 OS $=$ SN\$; 60SUB 19: 60SUB 21;		9159 EF\% = ESt + 'B' * CHR§ (2): REN ELITE MODE	F
IF $\mathrm{NS}=$ " ${ }^{\text {I THEN RETURN }}$		9168CF\% = ESS + 'b' + CHR (3) :	I c
7860 IF N\$ = '1' THEN OS\$ = VT\$; 60SUB 18:		REM CONDENSED Milde	c
GOTO 7605			C
7965 J = 9: IF N\$ < > '2' THEN 7050		REM SUPERSCRIPT MODE	0
7079 INPUT 'ENTER TAB: 'iT\$(J + 11: $3=3+1$		9171 SB\$ = ES\$ + '5" + CHR\$ (1):	D
7975 INPUT 'SET NEXT TAB (Y/N); ';Ps;		REM SUBSCRIPT MIDE	E
IF LEFT\$ (P\$, 1) = 'Y' THEN 7879		9180 SL $=$ ES\$ + 'KM: REM SET LEFT MARGIN	
7980 OS\$ = SUs: OS\$ = TS\$: FOR I = 1 TO Ji		9181 SV\$ = ES\$ + 'P': REM SET VERTICAL TAB	
OSt = OS\$ + CHR (VAL (T\$(J))):NEXT:GOSUB 18		9182 SRs = ESS + 'R'; REM RIGHT MARGIN	
		9183 HMs = '144": REM HIGH DENSITY LINES 9396 60T0 9800	
		9596 REM EPSON CHAFACTER SET STRINGS	
8999 REM HORIZONTAL CONTROLS		9501 DIM AX ${ }^{\text {(9) }}$	
8985 G0SUB 24		9592 Ax\$ (1) = "USA'	
8010 06\% = ' 1) SEND CARRIAGE RETURN' + CR\$		9593 Ax\$(1) = 'FRANCE'	
8911 OS\% $=05 \%$ + ' 2) SET LEFT MARGIN' + CR\$		9584 AX ${ }^{(2)}$ ) = "GERMANY ${ }^{\text {P }}$	
8812 OS\$ = OS\$ + " 3) SET RIGHT MARGIN' + CR\$		9595 AX $\$(3)=$ ENELANII"	
8913 OS\$ = 05\% + " 4)		9586 AX $\$(4)=$ DEMMARK"	
HOVE TO NEXT HORIIONTAL TAB' + CRt		9587 AX\$(5) = 'SMEDEN'	
8914 OS\$ = 05\% + ' $110,20,30$,		9588 AX\$(6) = 'ITALY'	
..., SET STANDARD' + CR\$		9599 AX\$171 = 'SPAIN'	
8915 OSt = OSt + CRs + ' 5)		9516 AX $\$(8)=$ 'JAPAN'	E
SET NEW TAB POSITIONS' + CR\$ + CR\$		9511 AX = 8: REM NUMEER OF COUNTRIES	P
8979 60SUB 19		9523 REM EPSON COMMAND STRINGS	S
8880 OS\$ = SN\$: GOSUB 19: 60SUB 21:		9531 SI\$ = E5\% + 'R': REM SET INTERNATIONAL	N
IF ${ }^{\text {S }}$ = ${ }^{\prime \prime}$ THEN RETURN		9540 PF\% = ES\$ + 'P'; REM PICA MODE	
		9550 EF \$ = ES $\$+\mathrm{M}$ ': REM ELITE MODE	S
8109 ON VAL (N\$) $60708110,8129,8138,8149,8150$		9566 CF\% = CHR $\$$ (15) : REM CONDENSED MODE	$\stackrel{\text { P }}{\text { E }}$
8110 OS\$ = CR\$; GOSUB 18: 60708885		9579 SS\% = ES\$ + 'S' + CHR (1):	E
		REM SUPERSCRIPT MODE	1
OS\$ = SL + CHR (VAL ( P \$ ) )		9571 SB\% = ESt + 'S' + CHR (0):	F
8125 G05ub 18; 6070 8095		REM SUBSCRIPT MODE	c
8130 INPUT 'ENTER RIGHT MARGIN: '; P\$:RCS = P\$;		9589 SL\$ = ES\$ + CHRT (198); REM SET LEFT MARGIN	C
OS\$ = SR\$ + CHR ( VAL (P\$))		9581 SU\$ = ESt + 'R'; REM SET VERTICAL TAB	C
8135 60SUB 18: 60708085		9582 HMs = '216': REM HIGH DENSITY LINE MODE	0
8140 OS\$ = CHR ( 9 ): 60SUB 18: 60508905			D
$8158 \mathrm{~J}=0$		9890 REM STANDARD SITRIMGS	E
		9891 AAs = "STANDARD ASCII':A2\% = "FONT PITCH IS "	
8160 INPUT - SET NEXT TAB (Y/N): "; Ps:		9802 BS\% = 'PICA':PT5 = "18 CPJ/89 CPL"	
IF LEFT ( P \$,1) $=$ "Y- THEN 8155			
$816505 \%=T S \$$; FOR I = 1 T0 Ji		9884 C2\$ $x$ 'NON-EMPHASI2ED':RC\$ $=$ "86':LC\$ = '1'	
OS\$ = OS\$ + CHR\$ (VAL (T\$(1))): NEXT		9895 RS\$ = 'RIGHT MARGIN SET TO ";	
8178 05\$ = 0S\$ + CHR (0): 60SUB 18: 60TD 8005		DS\$ = 'NORMAL MOIE'	
8999 REM INITIALILATION		9896 LS $=$ 'LEFT MARGIN SET TO ':LT\$ $=11 \mathrm{l}$	
9 9096 REM APPLE VERSION		LBt $=16{ }^{\text {c }}$	
9010 GOSUB 20: INPUT 'GEMINI OR EPSON [6/E]: "; TY		9897 D2\% = '81-DIRECTIONAL MODE';	
9911 IF TY\% = '6" THEN TY = 1: 60709199		LFs = 'LINE FEED IS'	
9012 IF TY\$ = "E' THEN TY $=2$ 2 6070 9509			
981960109810		BL\$ = 'LFB ${ }^{\text {' }}$	
9109 REM GEMINI CHARACTER SET STRIMGS		9899 FS = '66':F1\% = '11':F2\% = '1"; F3t = '6"	
9181 DIM AX\$(8)		9819 REM	
9162 Axs (1) $=$ 'USA'	M	9820 REM COMMON COMMAND STRINGS - GENINI AND	
9163 Ax\$(1) = 'ENGLAND'	1	EPSON	
9184 Ax\$(2) = 'germany	N	9821 MRS = ESS + CHRI (64) : REM MASTER RESET	
9195 A 3 ( 3 ) $=$ 'DENHARK ${ }^{\text {d }}$	1		
9186 AXs $(4)=$ PFRAMCE"		REM SET RIGHT MARGIN 89	


	EPSON	modules	
9823 INs = ESs + "4": REM ITALIC ON   9824 IX = ESt + '5": REM ITALIC DFF			
9826 EY\% $=$ ES + + W" + CHR $\$(0)$ :REM ENLARGED MODE OFF			
9827 IJ \% = ES + CHR $(-1)$ : REN UNDERLINE MODE ON		18 PRa 7:PRINT OSt;:PR\# 0:RETURN: REM DUTPUT TO PRINTER	
9828 UF\$ = ESt + CHR		19 PRINT OS\$:1RETURN: REM OUTPUT TO DISPLAY	
9829 NM\$ = ES\$ + "T": REM TURN SCRIPT MODE OFF		20 HOME: RETURN: REM HOME COMMAND	
9839 UD\$ = ESt + "U" + CHR \$ (1) :		21 INPUT M\$:RETURN	
REM UNI-DIRECTIONAL MODE			
REM BI-DIRECTIDNAL MODE			
9832 L9\% = ESt + "8": REM 1/8 INCH LINE SPACE			
$9833 \mathrm{LI}=$ E5\% + '1': REM 7/72 JNCH LIME SPACE		\&	Subroutines for FLEX used on Color Computer
9834 L2\$ = ES\$ + "2"; REM 1/6 INCH LINE SPACE			
9835 L3: = E5\% + "A": REM X/72 INCH LIME SPACE	G	18 PRINT 10, OS\%;RETURN: REM OUTPUT TO PRINTER	
	M	19 PRINT OST; RETURN: REM OUTPUT TO DISPLAY	
REM X/144 GEMINI, X/216 EPSON	1	29 PRINT CHR (12) $:$ RETURN: REM CLEAR SCREEN	
9837 FL: $=$ ESt + "C": REM FORM LINES	N	21 INPUT \%, M \$ RETURN	
9838 FI = ESt + "C" + CHR \$ (3) :			
REM FORM LENGTH IN INCHES 9839 S0s = ESs + "N': REM SKIP OVER PERFORATION		991\% OPEN "§. PRINT.SYS" AS \%i REM DPEN PRINTER DEVICE	
9849 SK = ESK + "0": REM TURN SKIP OVER OFF			
9841 VT\$ = CHR (11): REM EXECUTE VERTICAL TAB			
9842 SR = ES + "R": REM SET RIGHT MARGIN			
9843 TS\% = ES\% + "D": REM HORIZONTAL TAB SET			
9844 SEs = ESS + "E"; REM SET EMPHASIIED MODE		Subroutines for FLEX used on FOCUS	
9845 CE\$ = ES + "F"; REM CLEAR EMPHASIZED MODE			
9846 SD = ES + "G"; REM SET DOUBLE STRIKE MDDE			
9847 CDS = ES\$ + "H": REM CLEAR DOUBLE STRIKE MODE		19 PRINT OS\$;:RETURN: REM OUTPUT TO DISPLAY	
9851 HD = ES\$ + "R"; REM HEADER LINE		26 PRINT CHR $\$(11)$; $\mathrm{CHR} \$(24)$; RETURN : REM CLEAR SCREEN	
9890 RETURN		21 IAPUT \# $\#$, NS: RETURA	
9899 REM			
9909 REM SYSTEM SPECIFIC STUFF		9916 OPEN " 7 , PARALLEL, CMD" AS 0	
9985 ES $=$ CHR (27): REM ESCAPE CODE			
9996 CR\$ $=$ CHR ${ }^{\text {d }}$ (13):REN CARRIAGE RETURN/LINEFEED			
9997 SN = CR + "SELECT; "; REM SELECT MESSAGE			
		Subroutines for Comadore 64/VIC-20	
( Printer Initialization Code, If		18 PRINT: 1,05\%;RETURN: REM OUTPUT TO PRINTER	
1 Required, Must Be Entered Here, \$		19 PRINT OS\$; RETURN: REY OUTPUT TO DISPLAY	
! ${ }^{\text {a }}$		29 PRINT (CLEAR\}; RETURN :REH CLEAR SCREEN	
		2! INPUT M\%:RETURN	
$t$ t		9910 CLOSE 1:OPEN 1,4: REM OPEN PRINTER PORT	
* The following statements should be *			
* altered according to your printer, \%			
t As me had an 8 inch printer we set			
-10 CPI/89 CPL (line 9912-9917)			
$t$ *		Subroutine for the Atari	
		Subroutine for the Atari	
9911 PX\% = '18 CPJ/89 CPL"			
9912 PC = B9: REM CHARACTERS PER LINE		Atari. The problea arose in the output strings that had	
9913 EX $=$ '12 CPI/96 CPL"		to be concatenated. Given how laboriously Atari handles	
9914 EC = 96; REM CHARACTERS PER LINE		concatenation and how often it mould have to be used in	
$9915 \mathrm{CX}=$ "17 CP1/136 CPL" 9916 CC $=136:$ REM CHARACTERS PER LINE		this progran, conversion was ade virtually impossible.	
9916 CC = 136: REM CHARACTERS PER LINE $9917 \text { EN\$ }=" 5,6,8.5 \mathrm{CPI}^{n}$		MCRO*	
9929 RETURN		NCRO	

# HI-RES SCREEN DUMP for the EPSON MX-80 

by Robert D. Walker

## A machine language subroutine for dumping high resolution Apple II graphics to the Epson MX-80 printer which allows choice of screen dump size.

## Requirements:

Apple II with 48 K
Epson MX-80 equipped with Graftrax

8 bit parallel interface

In the February 1983 issue of MICRO I published a short article which included an Apple Pascal program for printing the Apple II HiRes (abbreviation for high resolution)
graphics with the Epson MX-80 equipped with the Graftrax option. For those with a parallel interface capable of sending 8 bits, this program worked flawlessly, but slowly. Let's face it, the Apple p-code interpreter is generally faster than BASIC, but it is not exceptionally fast. In addition, one must realize that the entire HiRes screen contains 53,760 pixels. Each pixel must be processed individually, this accounting for the slow execution cf this program.

In this article I have included a fast 768 byte machine language subroutine which dumps the HiRes screen to the Epson MX-80. In addition to the usual dot-for-dot format (see figure 1), I have iacluded an optional format for creating an expanded printout (see f:gure 2).Careful examination of figure 2 will reveal that each screen pixel is printed as a two by two dot matrix.

To demonstrate the method of calling this machine language subroutine from your own BASIC program, I have included a useful

Figure 2 Expanded Size Screen Dump
Figure 1 Normal Size Screen Dump


Table 1   Screen Dump Memory Locations			
Location Hex	Location Dec	Explanation	Default Value
\$9300	37632	call this location to dump the screen normal size	
\$9303	37635	call this location to dump the screen expanded size	
\$9306	37638	screen page, for HiRes page 1 use $\$ 20$ (32), for page 2 use $\$ 40$ (63)	32
\$9307	37639	left column of screen area to be dumped DIV 7	0
\$9308	37640	right column of screen area to be durnped DIV 7	39
\$9309	37641	top row of screen area to be dumped DIV 8	0
\$930A	37642	bottom row of screen area to be dumped DIV 8	23
\$930B	37643	number of spaces in left margin of normal size dump	16
\$930C	37644	number of spaces in left margin of expanded size dump	10
\$930D	37645	byte exclusive-ored with image, $0=$ normal image, $255=$ reversed image.	0



9386		ORE 99390	
	；		
	；ROUTINE	ENTRY POINTS	
		JMF DUMP	
		JMP DUMPE	
	；		
	；FARAMET		
93 BL 20	SCRNPG	BYT	
930700	LCOL	BYT	
93 时 27	RCOL	EiT \＄27	
93690	TROH	EYT 6	
938417	BROW	BYT \＄17	
938810	LMARG	BYt \＄10	
930 CA	Lhatge	EYT 60A	
930060	IMAGE		
	；		
	：TEMP ST		
93㫙 8 明	FOM	EYT	
93 909	COL	EYT	
$9310{ }^{\text {a }}$	Elkroim	EYT	
931100	FLKCOL	EYT ${ }^{\text {a }}$	
9312 处	EXEYTE	EVT	
931300	TIME	BiT ${ }^{\text {a }}$	
9314 明	MLLT1	EYT	
9315 明	nult？	BYT ${ }^{\text {a }}$	
93169009	PRDD	BYT 9,8	
	DOTS	EYT 1.0	
	Flktan	EYT $0,7,0,0,0$	， 9,8
	；		
			いますきいます！
	it DUMP	THE HIRES SCHE	，DET FOF
	；＊DOT－	NORMAL SİE	！
	；111434＊		
	；		
93224968	Plimp	LDA \＃598	－LINE SPACING
9324247795		ISR LINESPC	；－800ts
4327 AD 1993		LDA TROH	；START AT TOP
932A AD SE 93		STA ROLA	
	；		
	－PRINT Oil	NE RCH Of Block	－－
	：1．E． 8	gous of Dots	
9320296495	FROH	JSK CHKKEY	：INTERFUPT ？
7336 An 0893		lda lmarb	；LEFT MARGIN
9353298995		3SR TAF	
9336 AD 1793		LDA LCOL	；START AT LEFT
9339800793		STA COL	
933038		SEC	；COMPUTER \＃dots
9330 AD 4893		LDA FCOL	；IN ONE ROM
9344 ED 1793		SEC LCOL	
9343801493		STA MULTI	
9346 EE 1493		INC MULTI	
9349 A9 97		LDA \＃\＄67	
974 E 911593		STA MULT2	
934 E 204495		3SR MULTPLY	
9351298695		JSE PDOTS	；TELL FRINTER DOTS IN ROW
9354 AD 1693		LDA PROD	
9357 209F95		JSR PRCCOUT	
935A AD 1793		LJA PROD＋1	
93500209595		3SN PRCOUT	
93620 Ca 94	PGLX	1SR CALCELK	；CALC AdDRESS
9363294394		JSF ROTELK	；ROTATE IMAgE
9366 A2 49		LDA	
9368 Eid 1493	PCOL	LDA BLKTAE， 1	：GET BITE



SAFEWARE ${ }^{\text {SM }}$ Insurance provides full replacement of hardware，media and purchased software after a low $\$ 50$ deductible As little as $\$ 35 / \mathrm{yr}$ covers： －Fire－Theft－Power Surges
－Earthquake－Water Damage • Auto Accident Select the coverage you want from the table．

Amount of Insurance	Annual Premium
Up to $\$ 2.000$	$\$ 35$
$\$ 2,001 \$ 5.000$	$\$ 60$
$\$ 5.001-\$ 8.000$	$\$ 75$
$\$ 8.001 . \$ 11.000$	$\$ 90$
$\$ 11.001 \$ \$ 14.000$	$\$ 105$

Call for higher coverages
Not avail in AK．DC．HI．KY．IA MF．MS．NW，SC，or WY Call for immediate protection．

## 1－800－848－3469

（In Ohio call 1－800－848－2112）


COLLMBIA NATIONAL GENERAL AGENCY

## Subscribers ． Check Your Labels ！

As part of our recent reorganization，we have changed subscription fulfillment houses．
As programmers，you can appreciate that any change such as this，no matter how carefully done，is likely to cause some errors during the transition period．This is especially true with the foreign subscriptions． While the new system uses a better method of generating country information，we had to make some guesses in converting from the existing labels．

Please examine your subscription label on this issue of MICRO．If you find any problems－wrong address， incorrect spelling，incorrect zip code，etc．－please notify us immediately．

## MICRO Circulation

P．O．Box 6502
Chelmsford，MA 01824

Applesoft program for loading and printing HiRes pictures.

## The Machine Language Subroutine

Listing 1 shows the assembly listing of the screen dump subroutine. In this listing the subroutine was assembled to reside in memory locations $\$ 9300$ through $\$ 95 \mathrm{FF}$, just below DOS for a 48 K system. Table 1 shows the important memory locations for calling this subroutine.

As shown in Table 1, the area of the screen to be printed is determined by four parameters: left (\$9307), right (\$9308), top (\$9309), bottom (\$930A). These parameters require special consideration.

The left and right parameters are each divided by 7. Assume,for example, that the entire screen is to be printed. The far left column would be 0 , while the far right column would be 279 . Dividing both of these numbers by 7 and taking the integer portion yields 0 and 39 , respectively. Thus the value 0 would be stored in location $\$ 9307$. In addition, the value 39 would be stored in location $\$ 9308$.

The top and bottom parameters are each divided by 8 . In keeping with the Applesoft standard, the top row would be 0, and the bottom row would be 191. Dividing both of these values by 8 and taking the integer portion yields 0 and 23 , respectively. In a similar manner, the value 0 would be stored in location $\$ 9309$, and the value 23 stored in location \$930A.

This technique of dividing the parameters by 7 or 8 significantly shortens the size of the screen dump subroutine. The one drawback, however, is that the screen area to be printed cannot be specified exactly. Instead, it is specified in blocks of 7 dots horizontally and 8 dots vertically.

Another feature of this subroutine is the ability to terminate the screen dump at any time simply by pressing the escape key. Pressing this key will return control to the calling program.

The following instructions show the steps required in creating a binary disk file containing this object code.

1. Protect memory locations above $\$ 92 \mathrm{FF}$ by setting high memory pointers to $\$ 92 \mathrm{FF}$ (37631). While in Applesoft type "HIMEM: 37631"'.
2. Enter the monitor by typing "CALL -151'".


3. Enter the binary code into locations $\$ 9300$ through $\$ 95 \mathrm{FF}$. For example, the first 8 bytes would be entered as follows:
9300:4C 2293 4C AA 932000
See page 44 of the Apple II Reference Manual for more detail.
4. Exit the monitor by typing a control-B followed by a return.
5. Save the object file to the disk by typing:
"BSAVE OBJ.DUMP,A\$9300,L\$2FF"
To use this subroutine as part of a BASIC program it is first necessary to protect all memory locations above \$92FF (37631). In Applesoft this is done by the command HIMEM: 37631. Second, the object code must be loaded from the disk. In this case one would type "BLOAD OBJ.DUMP,A\$9300". The subroutine is now ready for use.

## The BASIC Program

Listing 2 is the BASIC program which demonstrates the use of the screen dimp subroutine. This program provides an easy means of loading, d:splaying and dumping HiRes graphics.

The program consists of five main parts. Lines 100 through 200 load the object code and initialize the screen dump parameters. Lines 210 through 350 prompt the user for the binary file neme. Line 280 will then load the image into HiRes page 1.

The third section of this program, lines 360 through 710 , allows the user to select different screen dump parameters. When first run, these parameters are set to the default values shown in Table 1.

Lines 730 through 800 pass the screen dump parameters to the machine language subroutine through the use of POKE statements.

The final section, lines 810 through 850, calls either the normal or expanded size screen dump subroutine. Once the screen dump is complete or terminated by pressing the escape key, control is once again returned to the Applesoft program.

## Concluding Remarks

I have used this subroutine since August 1981, and have found it to work quickly and flawlessly. I am presently wcrking on linking this machine language subroutine into an Apple Pascal library unit. This will improve upon the program published in Micro, February 1983.

9476 D9 CA	ENE PCOLL2	94 Ca A9 ${ }^{\text {a }}$	CALCELK	LDA \＃60	；FLAFT $=$ SCENPG	
9478 AD OE 93	LDit rol ：DONE WITH COL？	$94 C 285 \mathrm{FC}$		STA BLIPT		
947E CD AA 93	CMP EROH	$\begin{aligned} & 94 C 4 \text { AD } 0693 \\ & 94 C 785 \mathrm{FD} \end{aligned}$		LIA SCRNPG		
947E F 16	HEQ PCOLL4			STA ELKPT +1		
	INC POH					
9483 40 30 94	JMF FCOLL		；$A=M, \mathrm{Mc}, \mathrm{MS}$ of ROH			
9486269895						
		$94 C 9$ A9 86		LDĤ \＃̇gin	; ELKFi =	
		$94 C B 801493$		STA MULTI	；ELKPT＋A：$\$ 8 \mathrm{~B}$	
	;	94CE AD ©E 93		LUA FOH		
9489 AD AF 93	LDA CGIL ；DOnE？					
948 C CD 0793	CMF LCOL		；MASEL OF			
948 F F 6 66	BEE DONEE		；			
9491 CE WF 93	DEC COL	9401297		AND＊ 67		
9494 4C Ȧ3 93	JMP PCOLE	9403801593		ETA MULT2		
9497 4C 7595	DONEE JFF RESETPR ：RESET PGINTEE	9416294495		JSh militil		
		948918		CLC		
		94DA A5 FC		LDA ELAPI		
		940 C 6 D 1693		ADC Prod		
		94 DFF 85 FC		STA RLXPT		
		94EI A5 Fi		LDA ELSPT +		
949A AD 1293	FXPHTE LDA EXEYTE	94E3 60 1793		AilC Frodel		
9490406093	EOR IHAGE	945685		STA RLKPT＋		
94AB 4C 9F 95	JMP PRCOLT		； $\mathrm{H}=\mathrm{MA}, \mathrm{HS}$ OF KOH			
		94ES A9 28		LDA $\# 29$	；ELKFT＝	
	；EITS ARE NOT ALIGNED FOR FRJNT－	94EA 8D 1493		STA multi		
	：ING TDF OF IMAGE AT TBP OF PAPER  	94ED AD［15 93		LIAA ROH		
			；MASK DF	E THEN SH	0 LSE POSIION	
			；			
		94F 2918		AND \＃$\# 18$		
		94F2 4A		L5R		
	；Make byte from lig bits in flktab	945 S 4A		LSR		
	；Mare bhe fram lin bits in blkta	9454 4 ${ }^{\text {9 }}$		LSR		
74A7 5E 19 93	HAKEEYT LSR RLKTAE	9455801593		STA MULI2		
94AA 6 A	ROR	94 FB 204495		JSR MULTPL		
94AIE CA	DE\％	94FE 18		CLC		
94AC EGFF	CFY Haff	94FC A5 FC		LDA PLEPT		
94AE［合 F？	GNE MakE EYy	94 FE 60 1693		ADC PROD		
945048	FHA ；PUSH EYTE ON STACK	959185 FC		STA ELKPT		
948188	IEY	750.3 A5 FD		LDA ELEPT＋		
9482 DaFI	ENE ROTELK！	9595601793		ADC PROD +1		
	；Make new dikab from 7 BYTES	950885 FD		STA FLKFT＋		
	：MAKE HEW GLKTAB FROM 7 BYTES；GTORED ON STACK	956 A 18		CLC	；FLEPT＝	
				LDA ELKPT	；ELKPT＋CAL	
	；gore an star	950060 6F 93		ADC COL		
7414 A 2 Cb		951085 FC		STA ELKPT		
948668	GETBYTE PLA	9512 A5 FD		LDA ELEPT		
74E7 90 1A 93	STA ELKTAE， X	951469 明		ADC \＄ 4 明		
94 HA CA	DEX	951685 FD		STA BLKPT＋		
948日 EG FF	C．F．\＃${ }^{\text {PFF }}$		；			
$9480 \mathrm{DG7}$	INE GETEMTE		；${ }^{\text {atatitit }}$	＊！！！！！		
94 EF 60	RTS		；STORE 8 EYTES OF ELOCK（BLKPT） 1 \％			
	（1）		－BLOCK TAELE（ELKTAB）．TOP EYTE			
			；IS STO	TEED IN ELKT	$\ddagger$	
			；＊＊titit	（1t1titim		
	© ELKFI IS THE ADDFESS OF THE TOP		；			
	：HYTE IN THE ELOCK DEFINED EY ROH：	9518 A5 FC	STOBLK	LOA ELKPT	：InItIALİE	
		9514 B5 FE		STA TELKPT	；TRLKPT HITH	
		951C A5 FD		LDAA BLEXT＋	；ELAPT	
		951E 85 FF		STA TELKPT		



# nanman 

 by Mike Hamilton> A most accurate timer for Standard Color BASIC, Extended Color BASIC, or ML programs can be made with just a few POKEs

The Color Computer probably has one of the most accurate and simple interrupt timers available on any microcomputer. All that is required to use it is understanding of a few points about the Color Computer hardware and software.

The Video Display Generator (VDG) displays an entire screen 60 times per second. After each screen display, the VDG toggles its horizontal synchronization line which is tied to the interrupt input of a Peripheral Interface Adapter (PIA). When bit zero of the control register of this PIA is set, the interrupt is enabled and is passed on to the Interrupt ReQuest (IRQ) pin of the 6809 MicroProcessor Unit (MPU). When the MPU receives this interrupt, it fetches the address of the IRQ routine from memory locations \$FFF8 (65528) [high address byte] and \$FFF9 (65529) [low address byte]. This ROM address is permanently set to point to RAM location \$010C (268) which is a three byte IMP program that we can easily alter to fit our needs.

The idea behind using IRQ as a timer is simple: every interrupt from the VDG, add one to a 16 -bit register, reset bit seven of the PIA control register to enable the next interrupt, and return to processing. Extended Color BASIC does something similar with its TIMER command. You can check by comparing the TIMER value with the 16 -bit register at $\$ 0112$ (274) and $\$ 0113$ (275) with this program:

## 1) PRINT PEEK (274) *256+PEEK(275);

TIMER:GOTO 10

Doing the same in Standard Color BASIC requires a bit more programming. Listing 1 is the short BASIC program. Line 10 reserves memory space for a short IRQ processing machine language routine that is POKEd into memory. The assembly listing for this interrupt processor is shown in Listing 2. Note that the Data Direction Register of the PIA at \$FF03 (65283) must be read to reset the IRQ interrupt. This is done by the LDA $\$ F F 03$. Line 20 changes the JMP instruction at $\$ 010 \mathrm{C}$ (268) to point to the new IRQ routine. Line 30 POKEs the ML routine into memory. Line 40 enables the IRQ interrupt. Line 50 is the DATA for the ML routine. Line 60 shows the timer operating.

Now, even if you erase the BASIC program, the timer will continue to
operate. Resetting the computer will reset the interrupt enable bit to its normal value and the timer will stop. Another way of stopping either the 'homemade' timer or Extended BASIC's TIMER is to:

$$
\text { POKE (65283), PEEK (65283) AND } 254
$$

which will disable the IRQ interrupt. A timer is one of the simplest uses of the interrupt, but other tasks that require constant updating, such as printing a message in the comer of the screen, are also easily implemented. Proceed with caution though, because the more elaborate and time consuming the task, the slower the main program will function, especially in BASIC.

## Listing 1 BASIC Timer

```
10 CLEAR 255,16367 REY REGERUE ML SPACE
20 POKE 269,6.3,POKE 27),240 REM IRQ JMP VALUE
30 FOG I=1 TO 12:READ A:POKE 16367+I;NEXT I REM POKE ML
40 POKE 65283,PEEK(65233) OR I REM ENABLE INTERRUPT
50 DATA 190,6.3,253,48,1,191,63,253,182,255,2,星
60 PRINT PEEX(16381)*256+PEEX.(16382):60T0 60
```

Listing 2 IRQ Handler

	Time	EQU	\$3FFD	; 16381
		JFG	\$3FFO	
$3 F F O$ BE $3 F F D$	START	L.DX	TIME	
3 FF 3001		EAK	$1, x$	; ADD ! TO TIME
$3 F F 5$ BF 3FFD		3TX	TIME	
$3 F 58$ 日6 FF02		I.DA	\$FF02	; READ DDR TO RESET
3FFB 3B		ATI		; RETURN



It is always uncomfortable broaching a subject such as this. People would rather not know, would like to believe it's just a story, a rumor, a bad dream. But we both know the truth - its a nightmare.

I should know - I've been there. I remember how it first started. You know that first time always sticks with you. It had been a long tense day at the office. We had this package to get out before a competitor, so we were working pretty hard. The pressure had been mounting and there were more bugs than mosquitos in a swamp. You know how it is - seems like they're breeding in an invisible subroutine somewhere. About 3 a.m. I was alone, huddled over my terminal when Error 13 - disk error, popped up on the screen. It always seems to creep out at the worst time. But now it had made its last interrupt. I was mad, raging like a bull. I slammed my fist on the desk, punched the disk drive open and ripped that diskette into a thousand pieces.

There I sat, tracks and sectors everywhere. Then this strange sense of relief, a calming came over me. The kind of feeling you didn't want to let go of ... but, inexorably, it faded and was gone. I came to my senses and cleaned up the mess before I was discovered by the security guard, or worse yet - the night janitor. Still shaken, I powered down and called it a night.

At first I thought it was a one time thing; I wrote it off to nerves, a bad day, too much pressure. But then, it happened again. Another late night alone with my terminal. Feeling tired and tense, thinking about a drink, but knowing what I really wanted -- that release. And there was only one way I knew how to get it. Suddenly it was upon me. I found myself jumping up and down on a poor defenseless diskette. Trampling it to bits, I couldn't stop myself. After it was over, surrounded with cardboard and tape, that euphoric peace came over me. I was caught in an infinite loop.

No one knew for a while. A few suspected in Purchasing when the requests for diskettes started growing. A box or two soon deteriorated into cartons and cases. Being a group leader I put the blame on my subordinates, but I knew discovery was inevitable.

Then one day George came in to get a diskette I had borrowed. You can imagine the horror when he found it covered with teeth marks. I said it fell on the floor and I accidentally rolled over it with my chair. It was run over by a motorcycle, it ... he wasn't juying it. I confessed the truth was my dog got a hold of it. That was my slipup; George knew I didn't have a dog. He just shook his head and walked away.

My excuses wore thin - faulty drive, bad lot - people stopped believing. I found myself selling my peripherals to support what was now a $\$ 500$ a week habit - diskettes don't come cheap these days.

Well, now I'm out a job, my wife and kids have left me and I sit around thinking up mail order scams -- you know, offering great games on diskette for five dollars if you send a diskette. They never see either again. And so it goes, on and on. Someday I'll be able to fass the local computer store without getting the shakes. But right now I can't ${ }^{\text {I }}$ just lie awake at night thinking of Winchester's. Its a hard way to go.

# Mero" CoCo Bits 

## by John Steiner

As promised last month, we are going to take a closer look at BASIC09, and its advantages for the CoCo user. First, there is an omission in the documentation about loading BASIC09 that has caused a few problems for Tandy, and I am sure has frustrated some users. In the documentation, the only instruction to enable the user to access BASIC09 is to type 'basic09' ENTER. The user is then confronted with an ERROR 216 (file not found). Putting the BASIC09 disk in drive 1 and entering /d1/basic09 causes OS-9 to display ERROR 214 (file not accessable'.

After some frustrating attempts at circumventing the problem, I finally resorted to calling my salesman at the Radio Shack store. As it turned out, I had called at just the right time, as his morning mail that day contained the solution to the problem in the form of a technical note from Tandy. In case you run into the problem with your OS-9, here is the simple solution. Either use the COPY command to copy BASIC09 into the command directory, so it will be accessable from command level, the way Tandy uses it in the BASIC09 manual, or use the LOAD command to load BASIC09 into OS-9's workspace:

## COPY

/D1/basic09
/D0/cmd/basic09

## LOAD /D1/basic09

Either choice works, but using COPY to put BASIC09 into the cmd directory is the most convenient for future use. Create an OS-9 diskette with basic-09 in the cmd directory, and you will have it available as needed.

One of the questions I am most often asked is what will BASIC09 do that I can't do from Extended Color BASIC. Programming in the highly structured BASICO9 is quite a bit different from working with Color BASIC. BASIC09 is a much more powerful language and, if you learn it well, you will be able to create faster, more powerful operating programs.

Currently, it is the closest thing to a full-fledged compiler CoCo users have access to, in that the packed modules are really compacted BASIC code executed from a run time package.

Programs written in BASIC09 are written in modules. Use the Edit mode to enter your program. Type E procedurename to open the edit file for your procedure. At this point, the first character of the line is expected to be an edit command. To insert a line in your procedure just type a space, tiae program line and the ENTER key. All program lines must begin with a space.

The other edit commands are $+(30$ to next line), -(move back one line), L (list current line) and D (delete current line). One unique advantage of BASIC09 over Color BASIC is that error checking is done at the time each line is entered. Syntax errors, and similar line entry errors are trapped before you leave the line. In addition, an error check is done before leaving t.ae procedure to check for undefined gotos, gosubs, etc. Also, if there is not enough memory for your procedure and any arrays, you will be warned at that point.

After typing a space, your program line can begin with a number if you want. If you plan to use GOTO or GOSUB to call the line you are typing, it will have to have a line number. Once you type a few lines you can list the procedure by typing $L^{*}$. Your program will be listed with tie hexadecimal I-code address next to each line. The I-code address is used to refer to individual program lines when an error occurs, or for other reasons.

BASIC09 has four modes. We have been working with the edit mode. The system mode is used to save, load, pack, rename and otherwise manipulate procedures from workspace to disk, or vice versa. The execution mode is entered whenever it is time to run your procedures. There is also an autorun feature that allows you to load and run programs from OS-9. If an error
occurs, BASIC09 automatically enters the debug mode unless ON ERROR GOTO has been implemented.

Debug is one of the most powerful programming aids I have seen. It is even possible to execute the procedure one line of source code at a time. You can even display the source code on the screen while it is executing. Debug mode is very powerful, and has much more ability to assist with errors in programming than Extended Color BASIC.

BASIC09 will be a useful package for you, if you can justify the $\$ 170.00$ or so that the language will add to the cost of your system. I hope to have some practical BASIC09 programs for you in the future. If you have hints or techniques regarding either BASIC09 or OS-9, send them in; we will pass them along.

## New Tandy Drives for COCO

The TEC drive which Tandy has sold with the CoCo seems to have been replaced with a new unit Not many people I have talked with have been overly impressed with the performance level of the TEC drive, so this is good news. Tandy is now supplying the same drive unit that is found in the Model III and 4. A redesigned controller to work with the CoCo 2 has also been released, which doesn't require the 12 volt line that the CoCo 2 doesn't have at the cartridge port.

The new package should be a reliable addition to the CoCo line. The redesigned controller uses phase lock loop technology for data separation, which will also improve performance and stability. The only minus is Tandy's insistance on saving pennies by not gold plating the contacts on either the drive or controller cards. By the way, if you have a multi-pack interface, you can use the old drive controller with the CoCo 2. Also, Tandy still configures the cables, so if you are mixing drives be aware of the configuration situation.

## Two Disk Utilities

I have received two utilities for review that are useful for the person who has to duplicate large quantities of software for production purposes. I am impressed with both of them.

Disk Manager by Elite Software contains two programs that allow copying to tape or disk Load either DTCOPY (tape) or DDCOPY |disk|, and RUN. Insert the source disk in drive zero and press ENTER. The drive will read the directory and list the title of each entry by a number. Load the destination disk or tape, and enter the number of the program|s) desired. (e.g.
$1,5,6,12,14)$. The copy utility will copy only those files on the destination disk or tape. Entering ALL will cause the entire disk to be backed up. The disk version will make multiple copies with only one entry, and will offer Copy, and Abort options if a file is already on the destination disk. Other options include single drive operation, and rearranging the order of files on the destination diskette. The disk version requires installation of a formatted diskette.

FASTDUPE by Spectrum Projects allows duplication and formatting of an entire diskette. The only requirement is that the size of programs on the
diskette must be small enough for all of them to fit in the 64 K CoCo. FASTDUPE will first read the source disk and ask you to remove it. Install unformatted diskettes in drives 0 through 4 and press ENTER. FASTDUPE will then format and copy all four drives in succession, and let you install four more to do it again. If you don't have four drives, it will work with three, two, or even a single drive. Any bad copies are flagged, and the process continues. If you are just reproducing diskettes with a few small programs FASTDUPE will save you a lot of time.


ALL BOARDS HAVE SOLDER MASKING, COMPONENT LAYOUT, AND GOLD EDGE FINGERS

BUILD YOUR OWN
APPLE PERIPHERAL CARDS AND SAVE UP TO $80 \%$

> WE WILL SUPPLY
> THE IC LIST FOR ANY BOARD

APPLE 11 IS TRADIEMARK OF APPLE COMPUTERS, INC. CPIM IS REGISTERED TRADEMARK OF DIGITAL RESEARCH, INC VIDEX IS REGISTERED TRADEMARK OF VIDEX INC.

# alcro 

by Ralph Tenny

As promised in the last issue, we're going to look at programming the 6526 CIA (Complex Interface Adapter) I/O chips in the Commodore 64. This is a very complex IC which has a high capability and a correspondingly complex programming sequence to use all the CIA features. Here's a list of the I/O assignments for the two 6526 s in the C-64:

## U1 - Base Address \$DC00

## PAO -

PA7: Keyboard Column Strobes
Joystick B
Paddle Multiplex
PBO -
PB7: Keyboard Row Input Joystick A Fire Button/Light Pen
SR: Shift Register \#
User Port
CNT: Count Input
User Port
PC: Output Handshake Line Not used
FLAG: Input Handshake/Interrupt Input
Serial Bus
Timers
(2): System use

Time of Day Clock: Available for User

## U2 - Base Address \$DD00

PAO.
PA1: Memory Address Mapping
PA2.
PA3: User Port
PA4
PA7: Serial Bus Control and Data
SR: Shift Register \#2 I/O User Port
CNT: Count Input
User Port
PC: Output Handshake User Port
FLAG: Input Handshake/Interrupt User Port
Timers
(2): Available for User

Time of Day Clock: Available for User.

When you add it all up that is 16 User I/O lines. There are also two 9 Volt AC lines 5 VDC and four ground jpower supply common) lines. Of these $16 \mathrm{I} / \mathrm{O}$ lines only PB0 - PB7 on U2 program in a completely straightforward manner. If you have the HESMON 64 machine language monitor cartridge or one of the several monitors available on disk (MINIMON, SUPERMON or others not from Commodore) you can follow this discussion more easily.

The B port is addressed at \$DD01 and the B Data Direction Register (DDR) is at \$DD03. The lines are set for output on a line-by-line basis. For example set Bit 0 of the DDR to logic 0 to make Bit 0 an input; otherwise set it to logic 1 for output. Once the direction assignments are made simply write 0 or 1 to output lines as needed or read input lines.

Turn on your C-64 and enter the monitor (with HESMON 64 plug in the cartridge and turn on power). Assign PB0-PB3 as input and PB4-PB7 as output by writing \$F0 to \$DD03. Now write 00 to \$DD01 and try to read it back. What do you read? If there are no external connections made to the User Port you will read back \$OF. The following lines illustrate that sequence as performed with HESMON 64. (User input appears in italics and the HESMON response in normal characters.) In HESMON memory modification is performed by positioning the cursor on a displayed memory value then entering the new value. In the display below this is shown by having the new entry
immediately below the byte to be changed:

```
*DDOO(ret)
:D000 97 FF 3F FF FF FF FF
 po(ret)
MDDOO(ret)
:0000 97 FF 3F F0 FF FF FF FF
 00(ret)
ndo00(ret)
:0D00 97 OF 3F FO FF FF FF FF
```

Although it is possible to accomplish the above experiment in BASIC the nature of PEEKs and POKEs will obscure the experiment's outcome. Programming the User Port lines PB0-

PB7 in BASIC is possible but the rest of the lines are much more difficult to program in BASIC.

Listing 1 demonstrates the fundamentals of programming PA2 and PA3 of U2 and Listing 2 does the same for using the SP line in an assembly language program. Listing 1 assumes that Port A data direction assignments made during the C-64 power-up sequence have not been changed from $\$ 3 F$ in \$DD02. In fact careless modifications to location \$DD02 can crash the computer as can any uninformed data manipulations involving U1.

The required sequence for controlling PA2 or PA3 of U2 is to set tits high with a logical OR and to set tits low with a logical AND operation. If you merely wish to change the logic level (toggle) the bit use an EXCLUSIVE OR with the same bit mask as the OR operation. Listing 1 lines 8 \& 9 gives the OR bit mask which will set either PA2 or PA3 high. The proper instruction sequence to insure that PA2 is high is:

LDA	\$504	;BIT MASK FOR
ORA	\$0D00	; BIT 2 = HIGH
	\$0DOO	

Figure 1


## Listing 1





This sequence modifies only PA2 leaving all other bits of Port A alone. To insure that PA2 is low use:

```
LDA {$FB ;ONLY BIT 2 IS LO&
AND $DD00
STA $DDOO
```

Study the sequence of operations in Listing 1. This program toggles PA2 255 times with a delay between each operation. This allows you to monitor the action with a logic probe to verify the activity. Note in the DELAY subroutine that lines $26-30$ save the $A$ $Y$ and $X$ registers during the delay countdown and lines $39-43$ restore the registers after the delay. This was not necessary for this program's operation but is good programming practice if you develop any routine which can be used as a mini-utility in all your programs.

Listing 2 is quite similar once you inderstand how to manipulate the SP ine. This line is used to input or output 8 bits of synchronous serial data using the shift register internal to the 15526 CIA devices. If the Shift Register is set for input (Bit 6 of the CIA Control R Register A 0) the SP line goes high. Conversely programming the Shift Register for output (Bit 6 1) toggles SP low. Listing 2 toggles SP high then low 255 times with a delay between toggle operations. Note that exactly the same programming techniques can be used for SP1 [pin 5 of the User Port) by addressing \$DCOE instead of \$DDOE.

Both Listing 1 and Listing 2 were generated using the Commodore Assembler Development package [disk based] with intention of using HESMON 64 as a debugger. The BRK iastruction (line 38 ) causes our program to stop by returning to HESMON. These examples will get you started on I/O programming on the C-64. We have not yet dealt with serial I'O using the Shift Register but we may get to that next time. Note also that PC and FLAG are not programmable directly. PC strobes low and back high automatically whenever Port B is written to or read from, furnishing an antomatic handshake signal.

Whenever FLAG is pulled low bit 4 of the Control Register (\$DCOD on U1 and \$DD0D on U2) is set high. If the FlAG interrupt has been enabled an interrupt will be enabled. Otherwise you can poll this bit using:

LDA	\$DDOD	;GET INTERRUPT STATUS
AND	$\$ 10$	;TEST BIT 4
EEQ	NOTHI	;BRANCH TAKEN IF NO BIT

Your own code to process the bit received condition should follow directly.

Last month's experiment was a home-built single-slope A/D converter capable of operating from just two I/O lines. The TL507CP is a very low cost flexible A/D converter with 7 bits resolution (one part in 128) which is excellent to read pot or joystick position or two-wire sensors such as thermistors. Figure 1 shows a test circuit with two TL507s driven from the C-64 User Port. Up to eight TL507s can be controlled with this circuit and the results are displayed in a line across the lower one-fourth of the CRT. If fewer than eight A/Ds are connected all eight buffer locations will display but only those with data will change.

The TL507 is a single-slope A/D converter which contains a resistive ladder and a digital counter to generate the ramp. The ramp begins (count 0) at .75 Vcc and runs to maximum (count $\$ 7 \mathrm{f})$ which occurs at 1.25 Vcc. Although this is inconvenient for converting DC voltages, potentiometers work very well. The TL507 works this way; the reset line (pin 8 ) is set high and then low. The output (pin 4) then switches high. Next the clock line (pin 2 ) is pulsed repeatedly until the output switches low. Just as in the experiment last time, the number of clock pulses required to switch the output is kept in a CPU register.

Listing 3 is the program which exercises the circuit of Figure 1. SP1 drives the Reset line, SP2 drives the Clock line, and the output lines of up to eight TL507s are sensed by PBOPB7. It works this way: the TL507s are reset by lines $58-60$ and the output lines all go high. This condition is stored in MASK and a counter is initialized. The clock lines are pulsed (simultaneously) one time and the post input pattern is compared to MASK (lines 67-76). If any TL507 output changes, lines 77-82 detect the change and save this new pattern in MASK. Lines 83 -91 identify the TL508 which signalled Conversion Complete, save the clock count and display the count. This process is repeated until all input lines have been switched low, or until 127 clock pulses have been issued. Lines 93-104 control the display process. If fewer than 8 TL507s are connected, data buffers associated with the missing converters are reported as ' 00 '

CO47 90 OE 00		S"A SPISET	
CO4A A5 70		Lill Sayy	; GET COUNT
CO4C C8		IHY	; COUNT CLOCK PULSES
CO4D 8470		S"Y SAMy	; AND REMEMBER CDUNT
C04F 30 D0		BMI NEW	; START OVER IF COUNT $>127$
CO5: AD O1 DD		LIDA EFORT	; READ A/D OUTPUTS
00544570		EOR MASK	; TEST FOR A/D DONE
C056 F0 E2		B6: CLOCK	; NONE? CLOCK AGAIN
COSS AE D1 DD		LI* BPORT	; READ PORT AGAIN
CO5B 9670		$S^{* \prime} \times$ MASK	; MAKE THIS NEW MASK
cosi a do		LIX 100	- CLEAR INDEX
COSF 4A	BITID	LSR A	; TEST MHICH BIT HIGH
C06i) 9008		BCC NXTBIT	; If TRUE, NDT THIS EIT
C062 9480		SIY BUFFER, $X$	; It was true, save count
01642071 C0		JSR SHOU	- DISPLAY COUNTS
C067 4C 3A C0		3MP CLOCK	; TEST OTHER A/DS
CO6A E8	NXTBIT	INX	; COUNT SHIFTS
CO6B E0 02		CP) \#LIMIT	; ALL BITS TESTED?
CO6D F0 E2		BCE NEW	; ALL DONE, START OUER
CObF DOEE		BME BITID	; ELSE TEST NEXT BIT
C071 8675	SHOW	STM XINDEX	; SAVE VALJES
C073 84 7E		SIY YINDEX	
C075 A2 OD		Lix \#00	; CLEAR INDEX REGS
C077 A0 00		LIIY \#00	
C0798580	READ	LIIA BUFFER, ${ }^{\text {P }}$	; get colunt value
C078 2088 CO		JSR OUTPUT	; DISPLAY IT
C07E E8		INX	- POINT TO NEXT
C07F EO 08		CFP \# 08	; TEST FOR LAST
C08: 90 Fb		BCC READ	
C083 Ab 7F		LIX XINDEX	; RETURN WITH DATA
C085 A4 7E		LIY YINDEX	
C087 60		RTS	
	OUTPUT		
C088 48	OUTPUT	PHA	- SAVE data
C089 4A		LGR A	; GET HIGH NIBBLE
C08A 4A		L¢R A	
C08日 4A		LSR A	
C08C 4A		LER A	
COBD 20 QE CO		JGR CONVRT	; MAKE DISPLAYAELE CHAR
C090) 20 AB C0		JER DISPLY	; SHOW IT
C093 68		PL.A	; 6ET DATA AgIAN
CO94 29 OF		AAD \#SOF	; MASK TO LOW NIBBLE
C096 20 9E CO		JSR CONURT	
C099 20 AB C0		JER DISPLY	
CO9C C8		Iniy	; SPACE BETHEN BYTES
C090 60		RTS	
	;		
COTE C9 OA	CONURT	CHP \# 30 A	; ALPHA OR DIEIT?
COAO 9004		BCC NUMBER	; 0-9
COA2 38		SEC	; A-F
COAS E9 09		SEC \# $\$ 09$	; MAKE IT C-64 SCREEN CODE
COAS 60	ExIT	RTS	
	;		
COAS 18	NUMBER	CLL	; CONVERT TO ASCII
COA7 6930		ADC \# $\$ 30$	
COAP DO FA		BNE EXIT	; BRANCH ALHAYS
	'		
COAB 997007	DISPLY	STA WINDOW, Y	; PUT [N SCREENBLIFFER
COAE A9 OO		LDA \#00	; CHAR, COLOR = BLACK
COBO 9970 DB		STA WINCLR, Y	; UPDATE COLOR RAM
COB3 $\mathrm{C8}$		INY	; BLMP INDEX
C084 60		RTS	
COB5		END	

# Commodore Compass 



by Loren Wright

## New Commodore Computers?

Commodore's CES announcement of two new computers was at least partially withdrawn. It appears now that the 264 , if it appears at all, will be introduced late in the year. The 364 has been indefinitely postponed. It's probably just as well. I, and a number of others, doubted the wisdom of bringing out a whole new line just when the Commodore 64 had become established. The Commodore 64 finally has a respectable assortment of software available, and it is doing very well, I might add. The 1701 processor would have been the biggest hurdle. It would have taken a while to convert a significant amount of $6502 / 6510$ software, and Commodore would have started again with the same problem it has always had with new computers - little, if any software!

## Side Scrolling Update

Because of space limitations in last month's issue, you may have been left a little in the dark regarding how to use the side scrolling routine. What the routine does is move the screen contents, along with the corresponding color memory, to the right or left. If the move is to the left, then column 1 (actually the 2 nd column) is copied into column 0 . Column 2 is copied into column 1, and so on, until the move is complete. If the move is to the right, then column 38 is copied into column 39 , column 37 into 38 , and so on, until the move is complete. The program allows you to specify a range of columns to be moved. The left column (LCOL) must be POKEd into 49152, and the right column (RCOL) must be POKEd into 49153. On a left move LCOL must not be less than one, and on a right move RCOL must not be greater than 38. If there is a 0 in location 49154, then the last column copied will remain unchanged--i.e., there will be two identical columns
adjacent. Most of the time, you will want that last column replaced with spaces, and any number besides 0 POKEd into 49154 will accomplish that result. The left move is called with SYS 49155, and the right move is called with SYS 49182.

It is a simple matter to add this feature to the screen editor [MICRO 66:28]. In addition to the subroutine provided last month (70:59), only three lines are required:

## 5 GOSUB 19000: LC49152: RCLC1: POKE LC2,1 361 IF T\$[ THEN GOSUB 1000: POKELC, 1 : POKE RC,H: SYS49155: GOTO2100 <br> 362 IF T\$1 THEN GOSUB 1000: POKELC,H: POKE RC,38: SYS49182: GOTO200

The horizontal cursor position $[\mathrm{H}\rangle$ is used to determine the end of the screen move. This is the quick-and-dirty implementation. It removes the two square brackets characters from use in a graphic, though. To get them back, I would suggest using one of the unused function keys (f4 and f8) to enter a command mode, which expects another key to complete the command. This allows for future expansion, st.ch as up and down screen moves, fill routines, etc. To avoid errors, it would be a good idea to have some audible or visible (flashing border?) indication that another key is expected.

## Communications Update

I was serious about including bulletin board listings and information in this column. So far I only have one such item (coming up next). I will also be checking my CompuServe EMAIL regularly, so for those who missed it, my CompuServe nu:nber is 70626,636 . I won't always be able to give direct responses to questions, but information and news that you think would be of general interest is welcome.

## TPUG BBS New Number and Policies

The Toronto PET Users Group (TPUG) has a new number for its bulletin board service: (416)-429-6044, 24 hrs, 7 days. The biggest change in policy is that users will no longer be able to download programs from the club library. To get library programs you must purchase the club's library disks or cassettes. However, the board may be used to upload programs, and this use is encouraged. The club librarians will go through programs so received regularly. Acceptable ones will be added to the library, and the contributor of an accepted program will get to choose a free library disk.

## TPUG Conference

The Third Annual TPUG Conference will be held May 26 and 27, 1984, at the Constellation Hotel in Toronto. Features of the conference include two full days of lectures, workshops, and panel discussions conducted by local, as well as out-of-town, experts. The preliminary schedule shows at least five different speakers going at once all day Saturday and Sunday. Typical topics: Evaluating Commercial Software, Speech Synthesis, Hi-res Graphics on the

C-64, Netwcrking, How to Use Spreadsheets, and a Computer Music Overview.

Some of the more popular sessions, such as Jim Butterfield's day-long machine-language workshop, may be filled, but there should still be a lot to choose from. I enjoyed participating last year, and look forward to it again this year. My topics will be Sprite Programming Techniques (intermediate level), and C-64 Graphics: A Little Machine Language Goes a Long Way (intermediate/advanced).

Other activities at the conference include easy availability of copies of club library disks, an exhibit area for hardware and software vendors, an answer room, a trader's corner, and an optional banquet.

If you've never been to Toronto, I should tell you that it is a beautiful city with a lot going on! Registration (required to participate in events) is $\$ 25$. In addition, you must be a club member, which costs $\$ 30$ (regular) and $\$ 20$ (associate). Associate membership is intended for out-of-town members. You still receive the club's magazine TORPET and have access to the club library. The number to call for more information is (416)-782-9252 (business hours only).


# From Here to Atari 

by Paul S. Swanson

I recently added an Atari 800xl computer to my collection. The main differences between that system and the earlier Atari 400,800 and 1200 xl computers is that no BASIC cartridge is required. BASIC is built in. I also noted some differences in the keyboard. The Atari 1200xl keyboard is still the best of the series and I use that system for my word processing. However, the Atari 800 xl keyboard is close competition. The keys are non-glare type finish and have shorter strokes than the ones on the Atari 1200xl computer, which may be preferable to some touch typists.

What really impressed me about the Atari 800 xl computer was one of the details of the design. The cartridge slot has two metal strips forming a double door configuration, opening inward when a cartridge is inserted. When the cartridge is removed they spring closed again. The impressive detail is that there is no way to trap your finger in it. This seems like a minor point until you consider having a small child at the computer. The configuration of the cartridge door looks like an ideal setup for trapping small fingers, but after spending about 20 minutes studying the door, I concluded that there was no way it could trap anything.

## MYDOS UPDATE

Last month I reported a few bugs in MYDOS. Since then I have been in communication with SWP concerning that product. The updating of random access files has been corrected in versions 3.012 and 3.17 . I noted that other minor bugs that I had uncovered have also been corrected. The new version should be available by the time you read this column.

I also acquired an 80-track disk drive for my ATR 8000 . Using MYDOS to configure it, the 80 -track double sided Qume disk holds about 734K of usable disk space. That is a little more than eight times the capacity of an Atari 810 disk drive.

## TELECOM UPDATE

Nite Lite, the computer bulletin board I'm running every night, has been a good source of information concerning how people are setting their Ataris up for telecommunication. If you have an Atari 850 interface or
an ATR8000 you still have the widest selection. Any RS-232 compatible modem will connect to either of these devices directly.

There are many callers who do not have Atari 850 interfaces or ATR800C's connected to their systems. These Atari owners use either the Atari 835 modem or the MPP-1000. The Atari 835 is a little more expensive, but connects along the serial bus like other peripherals. The MPP-1000 plugs into a joystick port.

I have noted one problem with the MPP-1000C, which is that it doesn't respond as device $R$ : so no custom software or any other software not specifically written for that modem will work. That eliminates what seems to be the most popular software on the Atari computer in this area, which is a public domain program called AMODEM. However, the MPP-1000 comes with software that is at least comparable. The problem arises when you want to do other things with the modem. For example, there are several people who want to start their own computer bulletin boards, which requires different software.

If you are looking for ways to get into telecommunication with your Atari computer, without an Atari 850 interface module or an ATR8000, the MPP-1000 is the least expensive route. Other than that one problem, I have heard no complaints, so that modem seems to be worthy of consideration. I will be looking into the features of that modem and ways around the problem of interfacing it to other software. This will be reported in future columns.

Information such as this can also be found on Nite Lite if you already have telecommunications capabilities at either 300 or 1200 baud. Nite Lite operates from 7:00 pm until 7:00 am, eastern time, at (617) 576-2426. If you call, leave me a message telling me that you got the number from this column. You are, of course, welcome to leave suggestions of issues for me to address in this column on Nite Lite.

Telecommunications is a rapidly expanding area on personal computers. As the number of callers increases, the amount of information and entertainment available from these computer bulletin boards increases proportionally. There are also other new services opening up that are accessible using the same equipment and software required to access the free bulletin boards.

MCRO

A Perfect 2nd Computer for the Apple Owner

HAVAC (Home/Academic Very Affordable Computer) is a transportable ( 14.2 lbs ), 64 K RAM, 40 column computer system compatible with the Apple II family. Its designed around the 6502 chip and a new $5.25^{\prime \prime}$, 164K disk drive. A stand alone drive is also offered as an expansion product.

Over 1000 of the most popular Apple programs have been successfully run on the system. Each HAVAC is shipped with an updated list of tested programs, and any special instructions needed to run them. These programs include games, education and business software.

This computer is aimed at first time users, but its low price of $\$ 850$ also makes it the perfect 2 nd computer for the two-computer family. That price includes 64 K RAM, 8 K ROM; 164 K floppy disk drive; 62 Key detached keyboard supporting upper and lower case and 4 cursor keys, HiRES color graphics; printer port, serial port, game port and video hookup. Free software includes HAVAC DOS, Typewriter, Card File, Calculator, Utilities, HAVAC BASIC and HAVACOM.

MicroSci
2158 S. Hathaway Street
Santa Ana, CA 92705 714/241-5600

The C-64 is missing an important feature...a reset switch. The only way to regain control on a hung-up computer is to turn it off and lose the data entered already. A reset switch is available which attaches with two simple solder connections, either externally in a separate box or through a hole drilled in the computer cover. With an enclosed software program, it allows recovery of entered data, and costs only $\$ 9.95$.
An Interference Filter Kit solves the problem of RF emissions from the computer unit of older 64's. It requires opening the computer and making three simple solder connections, but can be done in minutes. Price is \$19.95.
A Monitor Cable with 5 - Pin Din Plug with attach Commodore, Atari and other computers to the new 1702 Commodore Monitor. The cable packed with the monitor has an 8-pin din plug that won't work with many machines. This retails for $\$ 24.95$.

Bytes \& Pieces
550 N. 68th Streat
Wauwatosa, WI 5321.3


## Modem Adapter for the Atari Serial Bus

The R-Verter, Serial Bus Modem Adapter for Atari 400, 600XL, 800 and 800XL home computer systems allows most modems and other RS-232C devices to be used directly without using the Atari 850 Interface Module or other interfaces. It comes with a software package which includes a smart terminal emulator and an RS232C device handler, and will work with any RE-232C device which will accept TTL-level inputs (the majority will). The R-Verter requires no modifications of the computer or other peripherals and it does not use up a
joystick port. All circuitry is contained in an RS-232C type connector to minimize size.

It comes with a built-in 3 foot cable and is available in either male or female connector configurations. When used with the A.I.D. Interfast-1 buffered printer interface (not included), it allows modem or RS-232C data to be echoed to a printer without first storing to a cassette or disk. Most common RS232C handshaking configurations are available using internal jumpers. Price with terminal and print echo software is $\$ 49.95$.

Advanced Interface Devices, Inc.
P.O. Box 2188

Melbourne, FL 32902
305/676-1275

The drives are different in size and shape from typical OEM drives. This is largely due to the horizontal clutch carrier plate which is lowered via a nylon coated, miniature steel cable and activated by turning an ergonomically designed knob. The new drives are packaged in plastic housings and are slightly larger than standard OEM drives. According to the manufacturer, product maintenance and cost of maintenance is low due to fewer parts and simpler manufacturing process. End user pricing for the XL and XL80 are: $\$ 199$ and $\$ 299$.

MicroSci
2158 S. Hathaway Street
Santa Ana, CA 92705
714/241-5600


90 degrees. Color transfers are also possible on the Dataproducts (IDS) Prism printer.

The manual provides a step-by-step procedure for installation of the UniiPrint and even includes pre-tested configurations for the most popular parallel printers avialable. Over 25 printers are listed, including: Epson, C-ITOH, Apple DMP, Anadex.

Videx, Inc.
1105 N.E. Circle Blvd.
Corvallis, OR 97330
503/758-0521

## Data Line Surge Protection

The SurgeSentry offers data line protection against power-induced problems such as static, electrical storms and other electrical interference problems. When a modem transmits its data signal via long distance phone lines, high voltage spikes and transients caused by storms, power stations, etc. can't be avoided and are carried along with the data being tre.nsmitted.

The data line protector constantly monitors the line as a passive device and, when a voltage spike is detected, clamps on the surge and absorbs the power from the line. This two-stage

suppression device was designed to provide the fastest reaction time and the highest absorption level, using silicon avalanch diodes and gas discharge tubes (spark gaps).

The SurgeSentry plugs directly into a household phone jack, and the modem cable plugs into it, thus
protecting the line to the modem and equipment connected to it. The SurgeSentry retails for $\$ 89.50$.

RKS Industries
4865 Scotts Valley Drive
Scotts Valley, CA 55066
408/438-5760

## Surge Suppressor Outlet Strip

The LG20 Surge Suppressor MultiOutlet Strip offers small computer owners protection against voltage surges that can damage and even destroy electronic solid state components. Since this product can easily be installed by simply plugging into any 15 Al 25 V AC outlet, it is ideal for home, business or office use.

This UL-listed 9 3/4' product features four "U ground" outlets, an on/off switch with pilot light, a six foot cord with three prong grounding plug, and a push-to-reset circuit breaker which protects against power overloads. The suppression circuit acts as a shock absorber by limiting surges or spikes without interfering with normal current flow. The LG20 will absorb surges up to 6000 volts or 6500 Amps in less than 10 nanoseconds. The unit limits voltage to a safe 205 volts. The LG20 sells for $\$ 34.95$ plus $\$ 2$ shipping and handling.

Gadgeteer
1524 Pine Street Philadelphia, PA 19102

215/732-0965

## C64-FORTH/79 <br> New and Improved for the Commodore 64

C64-Forth/79 ${ }^{\text {™ }}$ for the Commodore 64-\$99.95

- New and improved FORTH-79 implementation with extensions.
- Extension package including lines, circles, scaling, windowing, mixed high res-character graphics and sprite graphics.
- Fully compatible floating point package including arithmetic, relational, logical and transcendental functions.
- String extensions including LEFT\$, RICHT\$, and MID\$.
- Full feature screen editor and macro assembler.
- Compatible with VIC peripherals including disks, data set, modem, printer and cartridge.
- Expanded 167 page manual with examples and application screens
- "SAVE TURNKEY" normally allows application program distribution without licensing or royalties.
(Commodore 64 is a trademark of Commodore)
TO ORDER
-Disk only.
-Check, money order, bank card, COD's add \$1.65
-Add $\$ 4.00$ postage and handling in USA and Canada
-Mass. orders add 5\% sales tax
-Foreign orders add $20 \%$ shipping and handling
-Dealer inquiries welcome


## PERFORMANCE MICRO PRODUCTS

770 Dedham Street


Canton, MA 02021
(617) 828-1209

VISA
NOTE: When you contact the manufacturers about these products, please be sure to tell them "I saw it in MICRO." We appreciate your support.

# Index of Reviews <br> June 1983 through May 1984. 

## Title

Magic Memory
Apple Record Manager
Personal Finance Manager
File-Fax
TGS: The Graphic Solution
Master Grades
Form Letter Writer
Mail List
Data Manager
Career Counselor
Homebase
C.C.Calc Disk Version

Disk Data Handler
Semi-Draw
Mail controller
Diary 64
Passive Solar Design for Home 64 Mail List
Hello Central!
Disk COLORCOM/E Smart Term.
The Color Connection
BugByter
Ultra Disassembler
BASIC Debugger
Atari BASIC Compiler
ABC
DISKEDT
STARDOS 64
BASIC Aid
CCREAD Editor/Assmb/Debugger
Disassembler for 6809
Platinum Worksaver
Ultra 80CC
Computer Mechanic
SYSRES
Delta Drawing
Exper. in Human Physiology
Flight Simulator II
Word Attack
Watchwords \& Wordisk Maker
Bumble Games
General Chemistry
Face Maker
Multiploy

Manufacturer

ARTSCI	A	APPLE	71
CONN. INFO SYSTEMS	A	APPLE	68
APPLE COMPUTER ING	A	APPLE	67
TMQ SOFTWARE	A	APPLE	64
ACCENT SOFTWARE	A	APPLE	63
MIDWEST SOFTWARE	A	AP/PET	64
MMG MICRO SOFTWARE	A	ATARI	70
MMG MICRO SOFTWARE	A	ATARI	68
MMG MICRO SOFTWARE	A	ATARI	67
MMG MICRO SOFTWARE	A	ATARI	66
HOMEBASE COMP. SYS.	A	COCO	70
TRANSFORMATION TECH	A	COCO	67
CUSTOM SOFTWARE ENGIN. A	COCO	61	
COMPUTERWARE	A	COCO	61
ORBYTE	A	C64	71
COMPUTER MARKETING	A	C64	68
DON DANVLYK	A	C64	67
COMPUTER MARKETING	A	C64	66
HOWARD W. SAMS	C	APPLE	63
EIGEN SYSTEMS	C	COCO	67
COMPUTERWARE	C	COCO	65
COMPUTER-ADVENTURE	D	APPLE	68
ADVENTURE INTER.	D	ATARI	66
MMG MICRO SOFTWARE	D	ATARI	66
DATASOFT	D	ATARI	65
MONARCH DATA SYS	D	ATARI	63
SPECTRAL ASSOCIATES	D	COCO	70
STAR KITS	D	COCO	70
EIGEN SYSTEMS	D	COCO	68
EIGEN SYSTEMS	D	COCO	68
GRANITE COMPUTER SYS	D	COCO	67
PLATINUM SOFTWARE	D	COCO	62
SPECTRAL ASSOCIATES	D	COCO	61
SOFTSYNC	D	C64	71
SOLIDUS INTERNATIONAL	D	C64	67
SPINNAKER SOFTWARE:	E	APPLE	71
HRM SOFTWARE	E	APPLE	71
SUBLOGIC	E	APPLE	71
DAVIDSON \& ASSOCIATES	E	APPLE	65
MICROMEDIA SOFTWARE	E	APPLE	64
THE LEARNING CO.	E	APPLE	64
COMPRESS	E	APPLE	64
SPINNAKER SOFTWARE:	E	APPLE	63
RESTON PUBLISHING CO	E	APPLE	62

Type Key: Application, Communication, Development, Educational, Forth, Game, Hardware, Language, Software, Tutorial, Utility or Word processor.

Title
Earl's Word Power: Homonyms Decimal Practice
Preparing for the SAT
Square Pairs
Turtle Tracks
Wordrace
Mathmenu l.0
Fundamentals of Mathematics
C64-FORTH
Mickey in the Great Outdoors
Shrink
Printmate 99 Printer
Printmate l50G Printer
RAM/EPROM Memory Board
APPLE Pin Saver
Ultra ROM Board/Editor
KoalaPad Touch Tablet
KoalaPad
HJL-57 CoCo Replacement Kbrd.
CCP-1 Serial/Parallel Int.
Disk Interface/ROM Pack Ext.
RS-232/C Expansion Cable
Spectrum Stick
TRS-80 Model 100 Port. Comp.
Interpod
Smart Ascii
Robographics CAD-1
VoiceBox II
TYMAC Universal Tape Interface
Vanilla PILOT
DataFax
Aztec C
ANA-List
Micro Illustrator
Money Tool
Modula-2
The Stripper
NEWTALK
The World of Counting
Cdex Training for VisiCalc
The Visible Computer: 6502
Discover BASIC
CoCo
Disk Library
Insta-Load
The Prime Plotter
Apple Mechanic
BASIC Commander
Pro-Color-File
64K Disk Utility Package
Disk Utilities with Repair
Bank Street Writer
Super Text
Casual Writer

Manufacturer
Type

GEORGE EARL
CONTROL DATA PUBL. E ATARI

## PROGRAM DESIGN, INC

SCHOLASTIC INC
SCHOLASTIC INC
DON'T ASK SOFTWARE
INTER + ACTION
STERLING SWIFT PUBL. COMPUTER MARKETING
WALT DISNEY
STAR KITS
MICRO PERIPHALS
MICRO PHERIPHALS
JOHN BELL ENGINEERING
KEN BRANSCOME ASSOC
HOLLYWOOD HARDWARE
KOALA TECHNOLOGIES
KOALA TECHNOLOGIES
HJL PRODUCTS
BOTEK INSTRUMENTS
SPECTRUM PROJECTS
SPECTRUM PROJECTS
SPECTRUM PROJECTS
TANDY CORPORATION
OXFORD COMP. SYS.
MIDWEST MICRO ASSOC
ROBO GRAPHICS
THE ALIEN GROUP
MICRO-WARE DIST.
COMPUTER MARKETING
LINK SYSTEMS
MANX SOFTWARE SYS.
SYNOPTIC SOFTWARE
KOALA TECHNOLOGIES
HOWARD W. SAMS
VOLITION SYSTEMS
EIGEN SYSTEMS
STAR KITS
EDUCOMP ENTERPRISES
CDEX CORPORATION
SOFTWARE MASTERS
STERLING SWIFT PUBL.
ISA SOFTWARE
MODULAR MEDIA.
EDEN II COMPC"TING
PRIMESOFT COR.P
BEAGLE BROTHERS
MMG MICRO SOFTWARE
DERRINGER
SPECTRUM PROJECTS
COMPUTERWARE
BRODERBUND SOFTWARE
MUSE
E.N. PUBLICATIONS

E	APPLE	61
E	ATARI	70
E	ATARI	67
E	ATARI	67
E	ATARI	67
E	ATARI	67
E	COCO	70
E	C64	67
F	C64	67
G	ATARI	66
G	COCO	68
H	ALL	70
H	ALL	68
H	ALL	62
H	APPLE	70
H	APPLE	67
H	APPLE	67
H	ATARI	70
H	COCO	71
H	COCO	68
H	coco	68
H	COCO	66
H	coco	63
H	OTHER	67
H	64/20	68
H/C	64/20	67
H/S	APPLE	67
H/S	Atari	68
H/U	64/20	66
L	64/20	65
S	APPLE	70
S	APPLE	70
S	APPLE	70
S	APPLE	68
S	APPLE	68
S	APPLE	66
S	COCO	68
S	coco	66
T	APPLE	71
T	APPLE	67
T	APPLE	66
T	APPLE	64
T	C64	65
U	APPLE	64
U	APPLE	64
U	APPLE	63
U	APPLE	61
U	ATARI	63
U	COCO	71
U	COCO	67
U	coco	62
W	AP/AT	65
W	C64	71
W	VIC	66

## MICRO Program Listing Conventions

Commodore

LISting	C64 KEYBOARD
Commands	
［CLEAR：	C］．CLF
（HOME）	明 HOME
\｛INSERT	－INSI
（DOWN）	CHESE DOWN
（uF）	．］＂．CRSR UF
（RIGHT）	h］CRSR RIGHT
（LEFT）	Ill ${ }^{\text {c CRGR LEFT }}$

Colars

\｛BLACK\}	IIt	CTRL	1	BLK
（WHITE）	\％	CTRL	2	WHT
（RED）	［19］	CTRL	3	RED
\｛CYN\}	\＄	CTRL	4	CYN
\｛FURPLE\}	\％	CTRL	5	PUR
（GREEN）	1	CTRL	6	GRN
\｛ELUE\}	8	CTRL	7	BLU
\｛YELLOW\}	itil	CTRL	8	YEL
（RVS）	8	CTRL	9	RUS
\｛RUSOFF\}	$\pm$	CTRL	0	RUS


（ORANGE）	$7=1$
（BROWN）	噗 $=2$
\｛GREY 1）	谌 $=3$
\｛GREY 1\}	用］$=4$
（GREY 2）	试 $=5$
（L）GREEN\}	T $=6$
\｛LY BLUE\}	\％$=7$
\｛GREY 3）	明＝8

Functions

\｛F1\}	－ 1
\｛F2\}	號 $\therefore+2$
（F3）	－ 63
（F4）	臓－f4
（F5）	1） 95
\｛F它\}	暔＂for
（F7）	－f7
（F8）	－${ }^{\text {a }}$

Special Characters
（pli）$\pi$＂Fi Char
（FOUND）E Found Sign
（1）ARROW：F Uo Arrow
\｛BACK ARRON\}; gack Arrow

## Atari

Conventions used in ATARI Listings．
Norfal Alphanumeric appear as UPFER CASE： GAMPLE
Reversed Alphammeric appear as loner case： yES iy is reversed）
Special Control Characters in quotes appear as：
icomandi as follows：

Listing	Commard	ATARI Keys
（UF）	Cursor lip	＋ESC／CTRL
（ T gata	Cursor boun	＋ESC／CTEL $=$
\｛LEFT\}	Cursor Leit	－ESC／CTEL＋
ERIEHT	Cursor Right	$\rightarrow$ ESC／CTRL＊
（CLEAR：	Clear Screen	5 ESC／CLEAR
CACK	Back Space	－ESCiEACK 5
\｛TAB	Cirsor to Tatu	ESC／TAL
（BELETE LINE）	Delete Line	IT ESL／SHIFT UELETE
\｛INGERT LIAE）	lisert Line	B ESC／SHIFT IMSEET
［CLEAR TABG	Clear Tab Stop	［ ESC／CTEL TAB
（SET TȦ日）	Sat Tab Stop	$\rightarrow$ ESC／SHIFT TAB
（BEEF）	Breep Spezer	$\square$ ESCITKL 2
CELETE	Delete Char．	E ESEICTFL BACK 5
\｛ RGERT $^{\text {d }}$	Insert Char．	17 ESC／CTEL INSERT
［CTFL A）	Graphic Char．	CTEL A
	where fi is any	Graphic Letter key


（015＝）	CHE（8）
CENB＝${ }^{\text {¢ }}$	
SLOWER CASE	CHR（14）
CUPPER CASE：	CHFP（142）
（＂RETUFN\}	［HR）（142）
＜0El）	CHF\％（20）
\｛SPACE\}	CHES（160）

Notes：

1．．＂represeits SHIFT KEy
2．＝represents Commodore key in lower left corner of keyboard
3．CTFL represents CIRL key
4．Graphics sharacters represented in Listing by keystrokes requared to generate the character
5．A number directly atter s Symbol； indicates multaples of the sumbul： （DOWNb）woula mean DUWN o times

## Advertiser's Index

A B Computers	
Amplify	48
Computer Mail Order	4,5
F. Ashton	57
Home Base Supply	34
J \& M Software	16
J J Wild	de Back Cover
Lazerware	
MICRO Magazine	39,57
Nibble	11,31
Percom	Back Cover
Performance Micro Products	76
Perry Peripherals	72
Protecto	17,18,19
Safeware	46
Skyles Electric Works	Ins. Front Cvr
Specialty Electronics	48
Winders \& Geist	9
Zanim Systems	1,36,80

 Coming in June

As a special bonus to Micro readers, we are including the complete all-new Apple lle Supplement to What's Where in th Apple.

We will also share with you the fruits of someone's seven years of labor ... a Random Number Generator that has endless possibilities. For those urifamiliar with Macro's, we have an informative article explaining what Macro's are and how to incorporate them in your programming. The musical minded will enjoy our Musical Notes article putting a 5 -octive range at your fingertifis.


## WHERE'S THE MicroCalc!

Those of you who took advantage of our recent subscription promotion which featured a free copy of our new MicroCalc Screen-Oriented Calculation Program - please be patient a little while longer. Our original plan was to make a few 'minor' improvements to the MicroCaic that was published in MICRO 68 (December 1983) and release it on disk. Well, once we got into making changes, we sort of got 'carried away'. This has been the primary cause of the delay.

The version of MicroCalc to be released shortly has many major improvements and completely new functions. These include:
$\square$ the ablity to handle strings and string functions as well as numbers,
$\square$ program control functions for looping and testing limits,
$\square$ informative help screens,
$\square$ disk I/O routines that allow for automatic calling of subsidary screens from disk,
$\square$ printer routines for dumping the display screen,
$\square$ printer routines for generating formatted output,
$\square$ plus an extensive manual, complete listings, and demonstration screens.
Due to these additional features, and the extra effort that has gone into development of the MicroCalc package, the price has been increased from $\$ 14.95$ to $\$ 29.95$. Those of you who have alrezdy ordered MicroCalc, or who are owed it as part of your subscription, will not be charged anything extra.

We are sorry it has taken the extra time, but you will find that the time was well spent. The Commodore 64 version will be completed by the time you read this. The Apple version will be available in May and the Atari and CoCo versions in May or June.

## Disk Service Now Available.

In response to your requests, we are now offering selected programs from recent issues on diskette. We will expand this
service, if there is adequate demand. Each diskette will include all of the programs in BASIC and/or Assembly Source, plus binary 'load-and-go' files. The price includes shipping and handling.

## Master Disk Directory

Charles Hill
Apple II with disk
MD-1 MICRO 67/69

## Does-it Monitor

Michael Keryan
Commodore 64
MD-2 MICRO 68/69/70/71

## Accurate Printer

Richard Marmon
Atari with Epson Printer
MD-3 MICRO 71
Send us your requests. If there is enough interest for any particular program, we will issue a diskette.

Please order each diskette by Name and Number
Send $\$ 15.00$ for each diskette to:
MICRO Diskettes
P.O. Box 6502

Chelmsford, MA 01824

## Computer's

 Choice.

## The revolutionary office duty, letter quality daisy printer system from Primages.

In word processing and data communications applications, where high quality printing at high speed means higher computer productivity-The Primage I daisy printer by Primages is the computer's first choice.
That's because Primage I, with its PAGEMATE I* sheet feeder, costs much less than any other office-quality, high-speed daisy printer. And because it's easy to interface with any microcomputer system.

## Primage I features:

- 45 cps speed in heavy duty applications
- Word processing features
- Consistent letter quality production
- Wide choice of fonts
- Easy connection to your computer

■ Easy to install sheet feeder that handies up to $11^{\prime \prime} \times 14^{\prime \prime}$ sheets, either landscape or portrait

- Full 13 $1 / 2^{\prime \prime}$ writing line
- Switch selectable multiple languages
- Patented technology for greater reliability
- PAGEMATE is a trademark of Primages, Inc.


## ATARI COMPUTER OWNERS:

## Pick the positively perfect, practical, printer-port peripheral package, from PERGOMDATA!

[^4]
[^0]:    
    
    

[^1]:    User - Definable Check Forms allows Printing to almost all computer checks. (Include your Checkbook Manager Serial No. when ordering.) ORDER BOTH FOR $\$ 43.50$

[^2]:    - LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
    - BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

[^3]:    Add $\$ 10.00$ for shipping, handlling and insurance. Illinots residents | please add 6\% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAII | | orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
    | Enclose Cashiers Check, Money Order or Personal Check. Allow 14 | days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. Visa - MasterCard - C.O.D.

[^4]:    That's right. . the positively perfect PERCOM DATA $51 / 4^{\prime \prime}$, floppy disk drive with a BUILT-IN PRINTER-PORT, for your Atari $400 / 800$ is now available!
    Until now, Atari computer owners who wanted to hook a printer to their computer had only one choice ... spend about \$220 for an interface device. THOSE DAYS ARE OVER. PERCOM DATA has built a parallel printer-port right into its new AT 88 PD model. Now you can add a quality disk drive system AND have a place to plug in a printer... WITHOUT BUYING an interface
    The AT88 S1 PD ${ }^{\text {m }}$ disk drive operates in both single density ( 88 K bytes formatted) and double density ( 176 K bytes formatted)
    What more could you want? NO INTERFACE, a high quality PERCOM DATA disk drive... AND a
    built-in PRINTER-PORT . all with a price of $\$ 599$.

    Pick up a positively perfect PERCOM DATA disk drive, with
    printer-port ... pronto!
    For the name of an authorized PERCOM DATA Dealer near you,
    call our TOLL-FREE HOTLINE 1-800-527-1222 NOW, or write for more information.

    Perfectly Priced
    $(1) 0$
    PERCOM QATA

    Expanding Your Peripheral Vision
    $\qquad$
    11220 Pagemill Road, Dallas, Texas 75243 (214) 340-5800

