
U.S. Edition:
International Edition: JUNE 1984

Better Random Number Generator
Musical Notes

16 Bit 68000 Supermicros
Programming with Macros

C

The Fast BASIC Compiler

“...BASIC pro
grams running
up to 20 times
faster”

A stunning show delighted the
crowd at the Whisman Theater in
Mountain View last night. Called
BLITZ!, loaded and performed by
Robert Skyles in a one-man virtuoso
programming display, the show fea
tures the spectacular compiler for
--------------------- the COMMODORE 64.
1C pro- The BLITZ! com-

piler is faster than'Unning PET SPEED, and

i ti m q faster than anyt 111 I IC O other Commodore
compiler that has

_____________appeared to date.
Shortly after Skyles took his seat
and inserted BLITZ!, he had normal
BASIC programs running up to 20
times faster after he BLITZed them.

The performer explained that
BLITZ! translates the slow BASIC

language into a much faster code,
thus improving the performance of
the BASIC routines. BLITZ! reads
the entire BASIC program, decides
which operations only have to run
once, and compiles the operations.
It then re-writes the program into
its special P-code.

Skyles also showed how BLITZ!
adds security to your programs,
because once a program has been
compiled, it is not readable. That
means protection is an automatic
part of the re-writing.

The highlight of the show was, for
this reviewer, when BLITZ! compiled
a string of BASIC programs such
that one loaded the next. An im
pressed audience looked on as
Skyles effortlessly passed informa
tion from one program to another.

BLITZ! on disk for the Commodore 64 costs only $99.00.
(You can also get one for the older PET CBMs on a special-order basis.
It puts on quite a show!)

Cbwjpo F lp r f r i r W n rk * Available from your localoKyiGS E lectr ic WOrKS Commodore 64 dealer or
231E South Whisman Road ca|| 1 -800-227-9998.
Mountain View, CA 94041 ' , '/ y i ic \ n c c 1 -70ET BLI TZ! IS a t radem ark of Skyles Electr ic Works.
(4 1 5) y b b - l / S O C o m m o d o re is a trademark of C o m m o d o re

There are three ways to learn 6502 Assembly Language on your Apple Computer:

Hard
O TH E R A S S E M B LE R S

Easy Easiest
LISA v2 .6 LISA ED PAC

Introducing the Easiest Way: The LISA Ed Pac"

Y o u ca n t d e n y th a t le a rn in g a s s e m b l y is e x t r e m e l y im p o r t a n t f o r y o u if yo u w a n t to m a k e th e m o s t of y o u r w o r k If a s s e m b l y la n g u a g e w a s n ’t so
im p o r ta n t , w h y a re a lm o s t al l of t h e t o p s e l l i n g p ro g r a m s a v a i la b le fo r t h e A p p le II w r i t t e n in a s s e m b ly l a n g u a g e 7 B u t le t ' s f a c e it. le a r n in g 6 5 0 2
a s s e m b l y la n g u a g e isn t a p ie c e of cake . At le a s t n o t un t i l now . B e c a u s e n o w th e r e 's t h e L IS A E d u c a t i o n P a c k a g e " f r o m L a z e rw a re . I t ’ ll h a v e y o u up
to s p e e d w i th a s s e m b l y la n g u a g e in a f r a c t io n o f t h e t ;m e it w o u ld o t h e r w i s e take.

T h e L IS A Ed P a c ' b e g in s w i th L IS A v2.6. t h e fa v o r i t e a s s e m b l e r o f b e g in n e r s a n d p r o f e s s io n a ls a l ike. M o r e A p p le o w n e r s h a v e le a r n e d 6 5 0 2
a s s e m b l y la n g u a g e u s in g L IS A th a n al l t h e o t h e r a s s e m b l e r s c o m b in e d . M o r e tu to r i a l m a te r ia l is av a i la b le fo r LISA, i n c lu d in g b o o k s by D. F u d g e , R.
H yd e , W. M a u re r , a n d R. M o t to la . R a n d y H y d e ’ s 3 0 0 - p a g e Us i n g 6 5 0 2 A s s e m b l y L a n g u a g e is i n c lu d e d m the L IS A Ed P a c " .

N e x t w e t h r e w in S P E E D / A S M a s e t o f 6 5 0 2 s u b r o u t i n e s th a t m a k e p ro g r a m in g in a s s e m b ly la n g u a g e as e a s y as BASIC. A n d f o r t h o s e w h o w a n t to
s e e h o w it ’s d on e , t h e S P E E D / A S M s o u r c e l i s t in g s a re a lso m d u d e d . W e a l s o i n c lu d e d t h e L U D * 1 (L is a U t i l i t y D isk - 1 (w h i c h in c lu d e s an e x t e n d e d
e d i t o r f o r L IS A an d a L IS A s o u r c e f i le l i s t in g u t i l i t y . Final ly , w e a d d e d M A X W E L L 'S D e b u g g e r " t o t he L IS A Ed Pac Th is u l t r a - p o w e r f u l
d e b u g g e r / m o n i t o r m a k e s ' l e a r n m g an d d e b u g g in g 6 5 0 2 a s s e m b ly la n g u a g e a b r e e z e

LISA Ed Pac Pr ice S1 45 .9 5 . A S 2 2 9 75 V a lue (s u g g e s te d retai l*
A vai lab le at d e a le rs e v e ry w he re , o r d i r e c t ly f rom.

F o r a c o o y of L i z w o i w i r e s A C ,.
N o te L 'SA. l ISA 6 i . ;SA n Pi.'.
A p p le A[:p<t-‘ li a ^ d A rt;:*-

;,r ,7 1 4 ; 7 3 b ' 1 041

This Month in
MICRO

This is a very special m onth for M ICRO. It's been
redesigned to m ake it easier to read and easier to
use. The listings are being typeset in clearer, larger
print, and they are now proofed by computer for
typos before being published.

The Staff believes that it has chosen features
w hich w ill truly interest and excite serious
com puterists. However, to be certain of this, an
extensive, in-depth Reader Survey has been included
in this issue. The answers we receive w ill guide the
future direction of M ICRO'S editorial m aterial; be
certain that your opinions, your desires, your likes
and dislikes are considered. Return the Survey (with
additional com m ents if you like] and m ake M ICRO
the magazine that you want it to be.

Featured This Month

Random Number Generator — Based on seven
years of research, this is one of the best RN G 's you
w ill ever find. W hether you want it for software
d e v e lo p m e n t, g a m es , g a m b lin g , co m p u te r
sim ulation, scientific experim entation, or any of its
myriad other uses, you w ill discover that it is in an
understandable form w hich you can easily use in
your own programs.

Musical Notes — For the budding m usician in each
of us, a program that gives you control over a five
octive range covering the entire treble, bass and alto
clefs. W ith a 200 note table and rhythm ic variations,
this is far more than just a toy. It even offers the
unusual option of changing notes if you don't quite
get your m asterpiece right the first tim e.

Programming with Macros — For the advanced
com puterist who writes in Assembly Language,
M acros can be the key to m ore efficient, cleaner,
more easily debugged programs. They are a powerful
tool in knowledgeable hands.

Under the Commodore 64 ROM — Use the entire
potential of your computer and free up your BASIC
m emory w ithout sacrificing program messages.
Here, at last, is a way to print messages to the screen
(even full screens) using the 16K of RAM located
under the BASIC and Kernal ROM chips.

Sixteen Bit 68000 Supermicros — The 68000 is
thought by many to be the 6502 of the '80s, the
future of m icrocom puting. To keep you aware of the
latest trends, two seasoned com puterists share their
views and insights into this relatively new chip
fam ily. Their thoughts may influence the directions
that your own hardware and software planning take.

Useful Math Functions — Save yourself tim e and
m athem atical aggrevation w ith this practical
com pilation of defined functions assembled into a
very friendly program. Once entered, the m ath
formulas are at your disposal as needed w ithout the
frustration of entering them again and again.
Apple lie Guide and Atlas — A very special gift to
our readers this m onth is the com plete Apple lie
Supplement to our best selling b o o k ," W hat's
Where in the A pple." This w ill bring earlier copies
of the book up-to-date w ith the m aterial included in
the latest printing. For those who have not yet
discovered the importance of this book for your
programming efficiency, this w ill give you a chance
to see the type of m aterial available to you. (An
order form may be found on the inside back cover, if
you would like to own a com plete copy.)

Question Mark — For those who enjoy a good
mystery, our staff has com e up w ith som ething that
may pique your curiosity. Test your computing
knowledge and find the answer.

Inside the CIA — No, we haven't gone political -
just practical. In his ongoing 'Interface C lin ic'

series, Ralph Tenny exam ines a toggle mode of
operation useful for output and input of m ultiple
bytes of parallel data, and the advantages and
methods of using the Shift Register. He also looks at
ways to interface directly to a m icroprocessor bus
w ithout damaging the computer.

Spotlight — Acorn, a new computer system widely
used in Great Britain, but just coming into
American m arkets, is studied in detail. Developed
for education, this versatile, sophisticated system
w ith its excellent color graphics and advanced sound
should go far in hobbyist, hom e and business
applications.

2 MICRO No. 72 ■ June 1984

Dear Readers,

As you read through this issue you will notice a few new
things in Micro. While preserving the integrity and thrust
of Micro, we are always working towards improving what
we already have. To this end we have made some changes
in the physical layout of the magazine to make reading
Micro even easier and more enjoyable. You will notice
that now we are typesetting our listings rather than taking
them directly from the printer. This is in direct response
to readers' comments on the legibility of listings. In
addition to being typeset, the size of the actual type in the
listings is slightly larger. (Hopefully this will help slow
down the loss of your eyesight due to staring at too many
computer screens for too many years.) We have also
improved the layout of the articles to make reading easier.

Now some of you may feel that these changes reflect a
loss of the 'original' Micro. To the contrary, we are more
committed than ever to bring you articles that are
intelligent and thought provoking. As part of this
commitment we have added to some articles a 'Key to
Understanding.' Don’t get your hopes up; this is not some
magical method to 'knowledge.' Nor is it a leftover from
'Secrets of the East.' Instead, it is our way of making more
of our articles accessible to more readers. How often have
you picked up a magazine and found that due to a lack of
some assumed 'basics' an article was beyond your reach. If
only you had a basic foundation you could then use the
article. Or on the flip side, you come across an article
which, although it has information you find interesting, is
interspersed with Pablum explaining every other word.
How many times have we read what a binary digit is? To
help eliminate both of these problems we have taken out
the basic information needed to understand an article and
put it in a sidebox. This 'Key to Understanding' explains
any terms or concepts that are necessary for intelligently
reading the accompanying article. Those who are already
familiar with the subject matter can go on to the article,
being spared what for them would be repetitious. This tool
will be used as is appropriate and necessary. In this issue
you will find two articles that utilize this style - The
Random Number Generator by Cem Kaner and John
Vokey, and Programming with Macros by Patty
Westerfield.

And now you have an opportunity to outdo yourselves
-yes, it's Survey Time. (Why aren't you jumping up and
down?) Last year Micro readers proved their stuff with a
return rate of over 20 percent! In the world of surveys this
is fantastic. Now you can do it again; don't miss out -

this is your big chance to help out your fellow man (i.e.
the Micro staff and Micro readers). And it is faster, easier,
and much more pleasant than giving blood, although some
have likened it to pulling teeth. Seriously, we would
greatly appreciate your taking a few minutes of your time
to fill out the survey and return it to us. We will pay the
postage and put in the time and expense necessary to
tabulate it. Why? It is through the survey results that we
can decide how best to serve you. Everyone could be

waiting for an article on interfacing your computer to your
pet dog, but unless you fill out the survey and tell us we
will never know. In the past, Micro readers have shown
their stuff by responding in numbers much better than
usually projected for survey returns. We hope this year to
do even better. Although we can't give out a lollipop for
each survey returned, we can guarantee that your opinion
and information count and will be responded to.

In closing, I would like to reiterate that we feel we are
here to serve you and not the other way aroun. Micro is
not just a magazine, but rather a community of dedicated
readers. We invite you to participate and come out and
play - write a letter to the editor, submit articles, give us a
call, or - if you find it's Friday night and your computer is
down - fill out the survey. Thanks.

Mark S. Morano
Technical Editor

On The
Cover

Sum m er is here and m usic is in the air. Play the old
favorites or com pose a new tune to honor the
season, w ith M usical Notes for the Apple.

No. 72 ■ June 1984 MICRO 3

NEC PRINTERS
NEC 2 0 5 0 ... *999 .00
NEC 3 5 5 0 .. '1 6 7 9 .0 0

PERCOM/TANDOM
DISK ORIVES

5 'A " 320K Floppy.....................................*229.00
5 Meg Hard w/Concroller...............................CALL
10 Meg Hard w/Controller............................ CALL
15 Meg Hard w/Controller............................ CALL
20 Meg Hard w/Controller............................ CALL

AMDEK
310A Amber M onitor............................... *169.00
□XY 100 R o tte r....................................... *599 .00
Color II... *399 .00

AST RESEARCH
Six Pak R is ...from *279 .00
Combo Rus I!...from..................................*279,00
Mega Rus .from *309 .00
I/O B us...from .. *139.00

QUADRAM
Quadlink... *479 .00
Quacftoard ..as low as............................... *2 8 9 .0 0
Quad 512 Rus..as low as.........................*249 .00
Quadcolar...as low as..................................*219.00
Chronograph ..*09 .00
Parallel Interface Board............................... *89 .00
64 K RAM Chips K it.....................................*59 .00

MICROPRO
\AfordS tar/M ailMerge.................................*349.00
In foS ta r... . ..,*299 .00
SpellStar ... *159.00
CalcStar ..*99 .00

MICROSTUF
Crosstalk.. *105.00

MICROSOFT
Multiprfan.. *159.00

ASHTON-TATE
dSASE II ... *389 .00
Friday!... *185.00

iu s
Easy W rite r II *249 .00
EasySpetler... *119.00
Easyfiter .. *2 2 9 .0 0

CONTINENTAL SOFTWARE
1st Class Mal/Form Le tte r.........................*79 .00
Home Accountant Plus.................. *88 .00

IBM
VISICORP

IBM APPLE
VisiCalc *159.00
VisiCalc 4 *159.00
VisiCalc Advanced *269-00
VisiWord/Spell *249.00
Visitrend/Rot *199.00 *199.00
VisiUnk *169.00
Visi File *199.00 *169.00
VisiSchedule *199.00 *199.00
Visidex *159.00
VisiRot *135.00
VisiTerm *75 00
Oesktop Ran *199.00 *169.00
Blb .Forecast Model *75 .00 *75 .00
StretchCalc *75 .00 *75 .00
VisiTutor Calc *59 .00 *59 .00
VisiTutor Advanced *75 .00 *75 .00
VisiTutor \M rd *2 5 9 .0 0 *59 .00
Visi—On Calc *2 0 9 .0 0
Visi—On Graph *1 79 00
V is i— On W ord »275 00
V is i— On Mouse. *159 00
V is i— On Host *319 00

pfs
IBM APPLE

W rite *09 .00 *79 .00
Graph *89 .00 *79 .00
Report '7 9 .0 0 *79 .00
File *09 .00 *79 .00
Solutions’ : as low as *16.00 *16.00

‘ Call On Titles

MONOGRAM
Oollars and Sense. *109 00

LOTU8
1-2-3.. *399 .00

PROFESSIONAL SOFTWARE
PC Rus/The Boss................................. *349.00

SYNAPSE
Rle Manager... *89.00

SOFTWARE ARTS
TX Solver..*109 .00

PRINTERS
AXIOM

AT-100 Atari Interface...............................*239.00
GP-100 Parallel Interface......................... *199.00
AT-B46 Interface...*99 .00

BMC
401 Letter Q uality...................*509 .00
BX-80 Oot M a trix *269 .00

CENTRONICS
122 Parallel ...*299 .00
739-1 Parallel..*199.00
7 39 -3 S e ria l..*249 00

C.ITOH
GoriHa Banana...*209.00
Prownter 051OP....................................... *379.00
Prcwncer 1550P'5 9 9 .0 0
A10 [18 cps)...*569 .00
8 6 0 0 P ...*929.00
F10-40 ... *999.00
F10-55 ... *1499.00

COMREX
ComW nter || Letter Quality.................... *499 .00

DIABLO
6 2 0 Letter Quality *949 .00
6 3 0 Letter Quality................................*1749 00

DAISYWRITER
2 0 0 0 .. *9 9 9 .0 0
Tractor Feed.. *109.00

EPSON
MX-BOFT, MX-100, RX-00, PX-0OFT.

FX-80, FX-100 .. CALL

IDS
Prism 00 ..For ConfigurationsCALL
Prism 32 ..For ConfigurationsCALL

M A N N E S M A N TALLY
1 6 0 L ...*509 .00
1 0 O L ... *799.00
Sptnt 8 0 ... *309 .00

MBC-550...............CALL
MBC-555...............CALL
MBC 1100... *1499.00
FDD 3 2 00 -320K Orive.......................... *309 .00
MBC 1150...*1099.00
M8C 1200 ..*1049.00
FDD 6 4 00 -640K Orive.......................... *469 .00
M8C 1250..*2099 .00
PH 5 5 0 0 P rin te r......................................*599.0C

^ S A N Y O

APPLE/FRAIUKLIN
DISK DRIVES

MICRO-SCI
A 2 ...*219.00
A 4 0 ... *299 .00
A 7 0 .. *319.00
C2 Controller..*79.00
C47 Controller...*09.00

RANA
Elite 1 .. *279.00
Bite 2 .. '3 0 9 .0 0
Bite 3 .. *569.00

APPLE lie STARTER PACK
64K Apple lie, Disk Orive & Controller, 80 Cdumn

Card, Monitor II & DOS 3.3
COMPLETE... CALL

ACE 1000 Color Computer....................... ..CALL
ACE Famrfy Pack System............................. CALL
ACE PRO PLUS System............. CALL
ACE 1200 Office Mgmt. System................. CALL

"N o t lie Expensive"

TERMINALS
9 1 4 ..*569 .00
9 2 4 ... '6 0 9 .0 0
9 2 5 ...*739 .00
9 5 0 ...*929 .00
9 7 0 ... *1 0 3 9 0 0

COMPUTERS
Teleport Portable.. CALL
8 0 0 A ...*1099.00
0 0 2 *2699 .00
8 0 3 ... *1949.00
8 0 2 H ..*46 9 5 .0 0
8 0 6 /2 0 ..*49 9 9 .0 0
8 1 6 /4 0 ...*9199.00
160 2 ... *3 3 9 9 .0 0
160 3 .. CALL

f t T eU M deo

ANCHOR MODEMS

NEC
2 0 1 0 /2 0 3 0 .. *099 .00
8 0 2 3 Oot M atrix*379 .00
8 0 2 5 Oot M atrix*669 .00
3510 Serial/Letter Quality.....................*1449.00
3 5 3 0 Parallel/Letter Quality.................. *1499.00
771 0 /7 7 3 0 Serial/Parallel.....................*1949.00

OKIDATA
02, 83 , 84, 92, 93, 2350 . 241 0 CALL

SM ITH CORONA
TP-2 ..*399 .00
Tractor Feed.. *119.00

SILVER REED
5 0 0 Letter Quality.................................... *469 .00
5 5 0 Letter Quality.................................... *699 .00

STAR
Gemini 1 0 X .. *299 .00
Gemini P15X .. '3 9 9 -0 0
Oelta 1C.. '5 5 9 .0 0
Serial Board...*75.00

TOSHIBA
1350 ..*1699 .00

TRANSTAR
1 2 0 P ... *49 9 .0 0
1 3 0 P ... *689 .00
3 1 5 C o lo r... *499 .00

APPLE INTERFACE
CARDS & BUFFERS

Choose from PKASO, Orange Micro, MPC.
M icroM ax, Tymac. Quadram & Practical
Peripherals. PRINTER CABLES
are avalable for m ost aM computers on the
market. W e supply aH your computer needs.

PAPER SUPPLIES
1000 shts. 0V$x11 Tractor P aper..............*1 9 "
1000 shts. 14V&X11 Tractor Paper.........* 2 4 "
1 or 2 " Address Labels....................................* 9 "

Vdksmodem.......... '5 9 .0 0
......... *79 .00

Mark VII (Auto Ans./Auto Oial]...... *119.00
Mark XII [1200 Baud]................... .. .*299 .00
TRS-00 Color Computer................ *99 .00
9 \M t F^jwer Supply*9 .00

HAYES
Smartmodem 3 0 0 *209 .00
Smartmodem 120 0 *499 .00
Smartmodem 1200B *449 .00
Micromodem lie.......... *269 .00
Micromodem 100............................ '2 9 9 .0 0

......... *89 .00
Chronograph......................................*199.00

NOVATION
J-C at.. *99 99
SmartCat 103 *179.00
SmartCat 1 0 3 /2 1 2 *399 00
A jtoC at*219.00
212 AutoCat..................................... ... *549 .00
Apple Cat II................. '2 4 9 .0 0
212 Appte Cat..............................*569 .00
Apple Cat 212 Upgrade................. *309 .00
C a t.....................................'1 3 9 .9 9

ZENITH
ZT-1*339.00
ZT-10.. *309 .00
ZT-11 *369.00

AMDEK
3 0 0 Green.....
3 0 0 Amber
310 Amber....
Color 1
Color 1 Rus..
Color 2
Color 2 Rus ..

MONITORS
PRINCETON GRAPHICS..*149.00

...*159.00
..*169 00
.. '2 7 9 .0 0
..*299 .00
.. '3 9 9 00
...*419.00

Color 3 *349 .00
Color 4 ..*699 .00

BMC
12” G reen..*00 .99
12" Green Hi-Res...................................... *119.99
9191- 13 " Color..*249 .00

GORILLA
12” Green......................*BB.99
12" Amber..*95 .99

NEC
JB 1260 Green.................*109.00
J8 1201 Green... *149.99
JB 1205 Amber..*159.99
JC 1215 Color.. *269 .00
JC 121 6 HGB.. *4 2 9 .0 0
JC 1 4 6 0 Cotcr.. *3 5 9 .0 0

HX-12 RG8..................................... *519.00

SAKATA
1 0 0 '2 6 9 .0 0

TAXAN
210 C okr RG8..................................*299.00
40 0 Med-Res RGB *319.00
415 Hi-Res RGB............................... ...*439 .00
4 2 0 Hi-Res RGB [IBM].................... ...*409 .00
100 12" G reen *125.00
105 12" Am ber................. .. *135.00

USI
Pi 1. 9 " G reen*99.99
Pi 2, 12" Green *119.99
Pi 3, 12" A m b e r*149 99
Pi 4, 9 " Amber................................. *139.99
1400 Color...*269 .99

QUAORAM
Quadchrome 0 4 0 0 *5 4 9 .0 0

ZENITH
ZVM 122 Amber *109.00
ZVM 123 Green...............................*09.99
ZVM 135 Cotar/RGB........................ *469 .99

east
800-233-8950
In PA call [7 1 7]3 2 7 -9 5 7 5 ,D e p t 40 515

Order S tatus Number: 3 2 7 -9 5 7 6
Customer Service Number: 3 2 7 -1 4 5 0
477 E. 3rd St., Williamsport, PA 17701

Canada
Ontario/Quebec

800- 268-3974
O ther P rovince8800-268-4559

In Toronto call p ie^S -O S ee.D ep t 4051 5
Order Status Number: 828-0866

2505 Ounwvin Drive, Unit 3B
Mississauga, Ontario, Canada L5L1T1

west
800-648-3311
In N V call (702]58a-5654,Dept. 40 5 1 5

Order S tatus Number: 588-5654
P.O.Box 6689

Stateline, N V 89449
No risk, no deposit on C.O.D. orders and no waiting period for certified checks or money orders. Add 3 % (minimum *5) shipping and handling
on all orders. Larger shipments may require additional charges. N V and PA residents add sales tax. All items subject to availability and
price change. Call today fo r our catalog.

Koala
Technologies Corporation

KOALA PADS
Atari [Disk]..
A tari [ROM]
C-64 [Oisk].
C-64 [ROM],
IBM
Apple/Franklin

KOALA SOFTWARE........ CALL

commodore
CBM 8 0 3 2 *5 9 9
CBM 4 0 3 2*599

MSO S01 Disk Drive..............................*349 .00
MSD SD2 Disk Drive..............................*599 .00
CBM 8 0 9 6 ...*8 6 9 .0 0
C8M 9 0 0 0 ...*999 .00
B 1 2 B -B 0 ... *769 .00
8 0 3 2 to 9 0 0 0 Upgrade.........................*269 .00
2031 LP Disk Onve............................... *299 .00
8 0 5 0 Oisk Onve......................................*949 .00
8 2 5 0 Disk Drive...................................*1 1 9 9 .0 0
4 0 2 3 P rin te r.. *379 .00
802 3 P rin ter.. *569 .00
6 4 0 0 P r in te r .. *1399 .00
Z—R AM ... *499 .00
Silicon Office..*699.00
The Manager ..*199 .00
5o ftR O M .. '1 25 00
VisiCaic... *159 .00

PROFESSIONAL
SOFTWARE

W ord Pro 2 Plis*159 00
W ord Pro 3 Rus......................................*109 .00
W ord Pro 4 Plus/5 Plus...each.......... *279 .00
InfoPro.. *1 7 9 .0 0
Acfrninistrator... *399 .00
Power.................. ... *79 .00

SX-64
PORTABLE
*839

VIC 2 0 CALL
CBM 6 4*199
C1541 Oisk Drive.................................... *249 .00
C1530 Datasette*69 .00
C 1520 Color P rin te r/R o tte r..................*1 2 9 .0 0
M-B01 Dot M atrix P rin te r.....................*2 1 9 .0 0
C 1526 Oot M atrix/Serial....................... *2 9 9 .0 0
C 1702 Color M onitor.............................. '2 4 9 .0 0
C1311 Joystick..»4.99
C l 31 2 Paddles.. *11 .99
C 1600 VIC Modem.................................... *59 .00
C 1650 Auto Modem............................... *89 .00 .
Logo 6 4 ..*49 .00
Pilot 6 4 ..*39 .00
W ord Pro 64 Plus....................................... *59 .00
Parallel Printer Interface........................... *4 9 .0 0
Caic Result 6 4 ..*65 .00
Caic Result Easy..*39 .00
Codewriter 6 4 ..*75 .00
Quick Brown Fox..*49 .00
MCS 801 Color P r in te r*4 9 9 .0 0
OPS 1101 Daisy P rin te r.........................*45 9 .0 0
Mage Voice Speech Module...................... *54 .00
Desk Organizer Lock................................... *49 .00
Vidtex Telecommunications.........*34 .95

We stock a full inventory of software for Commodore, such
as: Artworx, Broderbund, Commercial Data, Creative Soft
ware, EPYX, HES, MicroSpec, Nufekop, Romox, Sirius,
Synapse, Thorn EMI, Tronix, UMI, Victory, Spinnaker, Rain
bow & Timeworks!___________________________________

INFOCOM
Zork 1,2,3 [AT/AP/CBM/IBM].....
Deadline [AT/AP/CBM/IBM].........
Enchanter (AT/AP/CBM/IBM) ...
Planet fall (AT/AP/CBM/IBM)........
W itness [AT/AP/CBM/IBM]......
Starcross [AT/AP/CBM/IBM]... .

ATARISOFT
IBM/AP C64/VIC

PacMan *29-99 *37 .99

*32.95 Centipede *2 9 9 9 '3 7 .9 9

.*32.95 Oig Dug *29 .99 *37 99

*32.95 Donkey Kong * 2 9 9 9 '3 7 .9 9
Defender *29 99 •3 7 .9 9

*29.00 Robotron '2 9 .9 9 '3 7 99
S tar Gate *29.99 '3 7 99

CMO’S PORTABLE CORNER
m

HP 71B
•499”

4 1 CV..................................*1 9 9
4 1 CX................................... * 2 4 9 "
HP 1 0 C ... *51 .99
HP 11C ...*69 .99
HP 12C ...*8 0 .9 9
HP 15C ...*80 .99
HP 16C ...*08 .99
HP 75C .. *749 .99
HPIL Module...*90 .99
HPIL Cassette or P r in te r*359 .99
Card R eader...*143 .99
Extended Function Module......................... *63 .99
Time Module ...*63 .99

TIMEX/SINCLAIR
Timex/Sinclair 1 0 0 0 CALL
Timex/Sinclair 2 0 8 6CALL
1 6K M em ory..........*25 00
2 04 0 Printer ... *99 .99
VuCalc..*17 99
Mindware P rin ter....................................... *99 .99

NEC
PC-0221A Thermal Prin ter................*1 4 9 .9 9
PC-0201 A Data Recorder...................... *99 00
P C -0201-06 8K RAM C hips................ *1 0 5 .0 0
PC-8206A 32K RAM Cartridge...........*32 9 .0 0

.•165”

...* 8 8 ”

......... *1 2 0 .9 9
*171 99
.*93 99

*1 3 4 99
.. *2 9 .9 9

PC-1500A.....
PC-1250A..........
CE-125 Printer/Cassette............
CE-150 Color Printer/Cassette.
CE-155 0K RAM
CE-161 16K RAM........................
CE-500 ROM Library

HOME COMPUTERS

ATARI 1
WHILE SUPPLIES LAST!

ATARI 600XL
*149

101 0 Recorder... '7 4 .0 0
102 0 C dor Prin ter..........'2 4 9 .0 0
1 02 5 Dot Matrix f t in te r*349-00
1 02 7 Le tter Quality................................*30 9 .0 0
1 0 3 0 D irect Connect Modem...............'1 1 9 .0 0
1 0 5 0 Oisk Orive...................................... *33 9 .0 0
CX30 Paddle..'1 2 .0 0
CX40 Joystick ..each....................................*8 .00
CX77 Touch Tablet..................................... *64 .00
CX80 Trak Baff..*48 .00
CX85 Keypad..'1 0 5 -0 0
4 8 8 Commuricator II.............................. *22 9 .0 0
4 0 0 3 Assorted Education...................... '4 7 .0 0
4011 Sta- Raders................................... *33 00
4 0 1 2 Missile Command............................*29 .00
4 0 1 3 Asteroids.. *29 .00
5 0 4 9 VisiCalc... *1 5 9 .0 0
7 0 7 9 Logo... *79 00
7101 Enterta iner...................................... *69 .00
7 1 0 2 Arcacfc Champ................................. *75 .00
6 0 2 6 Oig Dug...*33 .00
8 0 3 0 E.T Phone Home..*33 .00
0031 Donkey Kong................. . .*39 .00
0 0 3 3 Robotron.. .. *35 00
6 0 3 4 Pole Position *39 00
8 0 3 6 Atari W r ite r *79 .00
8 0 4 0 Donkey Kong, J r. *39 .00
0 0 4 3 Ms. Pacman.....................................*39 00
6 0 4 4 Joust.. *39 .00

DISKETTES
MAXELL

5 / 4" M O -1... *29 .00
5 ’/«” M O -2... *39 00
0 - F0-1 [SS/DO].................................. *39 00
0 " FO-2 [0 S /0 0].....................................*49 .00

VERBATIM
5 1/ * " SS/OO..*26 .99
5V4” D S /0 0 ... *36 99

ELEPHANT
5 V i" SS/SO..*18 49
5 % " SS/DO... *22 .99
5 V i” D S /0 0 ... *28 .99

HEAD
5 /> " Oisk Head Cleaner.........................*14 .99

DISK HOLDERS
INNOVATIVE CONCEPTS

Rip-n-Rle 1 0 ..*3 .99
Rip-n-Fle 5 0 ..*17 .99
Rip-n-Rle [4 0 0 /8 0 0 ROM]Hoider *17 99

800XL......................*299
1200XL.................. CALL
1400XL.................. CALL

PEflCOM

U K
Atari Letter Perfect D isk(40/80], .
A tari Letter Perfect RGM(40 col]..
A tari Letter Perfect ROMfSO col]
A tari Data Perfect ROM [0 0 col] .
A ta ri Spell Perfect Disk
A tari U tility /M alM erge.........
Apple Letter Perfect.......... . .
Apple Data Perfect...................
Apple LJK Utility......................
Apple Lower Case Generator..

*79 .99
*79 .99
•79 99
'7 9 .9 9
*59 99
*21 00
*9 9 .0 0
*75 .00 ..*21 00

.*19 .00

AT 80-S1 .. •369 .00
AT 08 -A 1 ... '2 5 9 00
AT 08-S1 PO...................................... *449 .00
AT 8 0 -D O A ... *119 .00
RFD 4 0 -S 1 '4 4 9 00
RFD 40-A1 .. '2 6 9 .0 0
RFO 40 -S 2 ... '6 9 9 .0 0
RFD 44 -S 1 '5 3 9 .0 0
RFD 44-S2 *869-00

TEXAS INSTRUMENTS
TX 99-S1 .. *2 7 9 .0 0

RANA
1 0 0 0 ... •3 2 9 .0 0

TRAK
AT-D2 .. *389 00

INDUS
GT-Dnve ... •3 7 9 0 0

M EM ORY BOARDS
Axlor 3 2 K .. •59 .00
Axlor 4 8 K*99 .00
Axlon 12BK *299 00
Intec 32K '5 9 .0 0
Intec 48K. . . . *04 00
(ntec 6 4 K '9 9 .0 0
Intec Real Time Clock........................... *2 9 .0 0

ALIEN VOICE BOX
A t a r i .. •1 1 9 .0 0
Apple .. •1 4 9 .0 0

CONTROLLERS &
JOYSTICKS

W ICO
Joystick .. •2 1 .9 9
3-way Joystick *2 2 .9 9
Famous Red Ball................................... .. '2 3 .9 9
Power Grip... . *21 .99
BOSS Joystick..................................... . *17 99
ATARI/VIC Trak B a ll........................... •3 4 .9 9
Apple Trak Ball..................................... *5 4 .9 9
Apple Adapter....................................... '1 5 99
Apple Analog..................... *37 .99

KRAFT
Atari Single Rre •1 2 99
Atari Switch H i t te r *1 5 .9 9
Apple Paddles............................... ... *34 .99
IBM Paddles................................... ... *34 99
IBM Joystick *46 99

AMIGA
3 1 0 0 Single.. *13 .99
3101 Pair *19 .99
Joyboard .. •37 99

TG
Atari Trak Gail. * 4 7 9 9
Apple Joystick . *47 99
Apple Trak Ball...................................... ... *4 7 .9 9

east
800-233-8950

Canada
Ontario/Quebec

800- 268-3974
west

800-648-3311
In N V call (7 0 2)5 8 8 5 6 5 4 ,Dept 40515

Order S tatus Number: 5 8 8 -5 6 5 4
P.O.Box 6 6 8 9 1 ' ' ’i

S tateline, NV 8 9 4 4 9

In PA call [7 1 7]3 2 7 -9 5 7 5 ,D e p t. 4 0 5 1 5 £ ^ S S 2 5 S S 4 0 5 1 * In NV call (7 0 2)5 8 8 -5 6 5 4 ,Dept 40515
O rder S tatus Number: 3 2 7 -9 5 7 6 ''5 “ * « “ » dumber: 5 8 8 -5 6 5 4 / W

Customer Service Number: 3 2 7 -1 4 5 0 aS Q5 D u n lin Orivs, Unit 3B P .O .B O X b b o a i . \
477 E. 3rd St., Williamsport, PA 17701 Mississauga, Ontario, Canada L5L1T1 Stateline, N v 8 9 4 4 9 \
CANADIAN ORDERS: All prices are subject to shipping, tax and currency fluctuations. Call for exact pricing in Canada. —
INTERNATIONAL ORDERS: All shipments outside the Continental United S tates must be pre-paid by certified check only. Include 3 % [minimum
*5] shipping and handling.
EDUCATIONAL DISCOUNTS: Additional discounts are available to qualified Educational Institutions.
APO S FPO: Add 3% [minimum *5] shipping and handling.

Publisher/Editor-in-chief

Associate Publisher.
Cindj^Kochet „

Producfion Manage'
Jennifer Collins

Technical Editor-''
Mark S Moiariq

Technical Editor
Mike Howe

Advertising Ma
William G. York

Dealer Sales Manager
Linda Hensditl

Circulation Mfanager
Linda Hensdill

Office Manager
Pauline Giartf

Shipping Director
Mane Ann LeClair

Comptroller
Donna M Tripp

Accounting
Louise Ryan

Contributing Editors
Cornells Bongers

Phil Daley
David Malmberg.

John Steiner
Jim Strasma

Paul Swanson
Richard C Vife. Jr

Loren Wright

MICRO is published monthly by
MICRO, Chelmsford, MA 01824.
'itxond Class. postage paid a r

. ii in . i ' l M\ U1«M aiiiii iiMfuanal
m.nl mg offices
USPS Publication Number. 483470- V ‘—<
ISSN 0271-9002.
Send subscriptions, change of address,.
USPS Form 3579, requests for back issues ,
and all othe fulfillm ent questions, t o : .

P O Box 6502
Chelmsford, MA 01824

or ta ll 617/256-3649
Subscription Rates: (per year}- •
U S $24 00 or $42 00 for t«o i ears
roreiqrt surface mail $27 00
Air mall Europe $42 00 ■ •
Muxico Central America. Middle East, •
N> ith Africa. Central Aftica $4800 -;- *
rf^uth America.'South Africa, Far f
Au train. New Zealand $72JOO

Copyright © tgSjT by MICROL;.
All Hichts Reserved.- ’.‘V

/AlCftO
for the Serious Com puterist

J U WE 1984
20 Musical Notes for the

Apple
Phillip Bowers

23 Under the C64 ROM
John A. Winnie

26 A Better Random
Number Generator
H. Cem Kaner and John R. Vokey

36 Control
M itche ll Esformes

43 Sixteen Bit 68000
Supermicros
Paul Lamar and Richard Finder

47 Programming with
Macros
Patricia West erf ield

52 Useful Functions
Paul Garrison

56 Apple lie Supplement
to “What’s Where in
the Apple”

Phil Daley

72 Inside the CIA
Ralph Tenny

With five octives and
rhythm, too, you can play
old tunes or compose new.

Gain BASIC memory
without losing program
messages using RAM
under ROM.

A better version for
simulations, games and
gambling, forecasting.

A program for assembly
code efficiency, or
statistics, step/trace
debugging and more.

Is this the 6502 of the
80’s? What will it mean for
your computing plans?

Make your assembly
language more efficient,
cleaner, easier to debug.

Save time and
mathematical aggrevation
with a compilation of
defined function.

PEEKs, POKEs, CALLS,
etc. specific to the Apple
lie, from Micro’s best
selling book.

Advantages of the shift
register on the CIA, and
direct expansion from the
microprocessor bus.

KJO. 72
Product Reviews

15 Autoterm A communication
package with added
features for the
CoCo.

18 Advanced
X-tended Editor

An Applesoft line
editor for BASIC
program
development.

15 SuperText
Professional

The most recent
version of this
powerful Apple word
processor.

18 The Oddsmaker An “ Electronic
Bookie” for the
Apple or
Commodore.

17 Super-Text
Professional Word
Processor

A simple business-
powered processor
for the Atari.

18 BASIC Tutor A course in BASIC
programming on the
Apple.

17 G.A.L.E. An Applesoft Line
Editor with the most
complete set of
commands.

19 Card? A Commodore
parallel printer
interface for
text/graphics.

17 LOGO A fairly extensive
implementation of
the language for
Commodore 64.

Departments

2 Highlights 75 Catalogs
3 Editorial 77 Books

8 Feedback 78 Question Mark

10 Spotlight: Acorn 79 Listing Conventions

15 Reviews 80 Advertiser Index

At last! . . . A dual 6522 versatile
interface adapter (VIA) board

for the Commodore-64.
The 6522 V IA , long the preferred

input/output chip for 6 5 0 2 m i
crocomputers, is now available for the
C -64 . 6522 programming techniques,
covered in many available books, can now
be applied to the C -64 for even the most
sophisticated real-time control applica
tions. Board allows full use o f the IRQ
interrupt. W hen com bined w ith the
C -64 ’s memory capacity, it provides an
extremely powerful yet cost-effective de
velopment system and controller in one
package. Includes extensive application
notes and programming examples.

Up to four boards can be connected to
gether, providing sixteen 8-bit ports.
Order Model 64IF 22 , $169 fqr one, post
paid USA. Each additional $149.

Complete reconstructed Assembly Lan
guage source code for the C-64’s BASIC and

KERNAL ROMs, all 16 K!
Extensively com mented and cross-

referenced. Far more than a mere “ memory
map" o f useful locations, this book really does
tell all. An incredible time-saver in effective
C-64 programming and understanding. Order
C-64 Source $29.95, postpaid USA.

SCHNEDLER SYSTEM S
1501 N. Ivanhoe, Dept. M6

Arlington, VA 22205
Telephone orders/information: (703) 237-4796
VISA MASTERCARD

ATARI 48K * TRS C/C 32K
COMMODORE 64

747 FLIGHT SIMULATOR

A C T U A L S C R E E N P H O T O G R A P H

Superbly rea lis tic in strum enta tion and p ilo t's
view in life like s im ula tion which includes
emergencies such as engine fires and system s
failures. This program uses high resolu tion
graphics to the fu ll to produce the m ost rea lis tic
flig h t-d e ck d isp lay yet seen on a home
com puter. There are 21 real d ia ls and 25 other
in d ica to rs . Your co n tro ls opera te th ro tt le ,
a ile rons, e levators, flaps, s la ts , spo ile rs ,
landing gear, reverse thrust, brakes, etc. You
see the runway in true perspective. Uses
jo ys ticks and includes options to s ta rt with
take-off or random landing approach. A real
s im ula tion , not just another game! Cassette
only, $27.95 (add 6% in Calif-)- Sole U.S.
d is tr ib u to r fo r D.A.C.C. Ltd., England.

F. Ashton
P.O. Box 7037

Chula Vista, CA 92012

Dear Editor:

My programming abilities are just
enough to get me into trouble. But I’ve
been following your series on graphics
and hope you can help me.

I want to graph a time series of data
as line graphs. Data is: High, low,
close, date and I want to display it in
the form:

H

L

I also want to label the axis as to price
and time:

Then overlay a moving average of the
data:

" S .

-I—I—I—I—I—I—I-
1(1 2/1 3/1 DATE

Possibly adding a second series of data
on the same chart, requiring a third
label on axis:

50--

45--

40--

35--

3 0 -

2 5 -

20 - -

f I I---1—I---1—I—I---h

--100

3n DATE

The kicker is that data may cover an
extended period of time (e.g. 200 days)
and for clarity maybe only 50 days

could be displayed at a time. So, I want
to be able to scroll back and forth,
timewise (left, right) and change the
text labels as this occurs, stopping as
necessary and then dumping the screen
to a printer.

Big order? That's why I need help.

Harvey L. Taback
Vancouver B.C., Canada

68000: The 6502 of the '80’s

Dear Editor:

It's a real pleasure to be writing to you
using the Amdek monitor that you and
your staff awarded me for "Country
5 ." I was really quite elated the day I
received the registered le tte r
announcing my good fortune in the
Micro graphics contest. Thank you all
very much for the recognition.

I've been a follower of Micro since
the days of the KIM-1 computer which
served as my training wheels in the
world of 6502 programming. In fact, I
still have the motherboard and proto
board from the Computerist holding
the ol' KIM system together.

As a reader of Micro I'd like to take
this opportunity to make a suggestion
that I believe will benefit many present
Micro followers and perhaps attract a
whole new following.

The 6502 obviously has a lot of life
left in it. Apple has just introduced the
Apple lie and, as you must already
know, the Western Design Center in
Mesa, AZ is about to release the first
full implementation of its 16 bit
versions of the 6502 (65802 and 65816].
That's great for all of us die hard 6502
programmers. I understand that Apple
and Atari have already ordered a
significant number of these chips for
evaluation.

I believe, however, that the
M o toro la 6 8 000 series of
microprocessors will become the 6502
of the 80's. I know that you folks are
already 6809 enthusiasts, so I don't
expect to run into too much resistance
to the idea of supporting another great
Motorola product. In fact, I seem to
recall a 68000 series of articles around
the end of 1982. What happened?

I've begun programming the 68000
using the QPak-68 coprocessor board
for the Apple II. The QPak-68 is a
complete 68000 development package
from QWERTY, Inc. It's based on the

8 MICRO No. 72 - June 1984

68008 and is a superb product.
Anyway, my initial reaction to the
68000 has been nothing if not
enthusiastic. It's almost like working
in a high level language after so many
years of being zero page bound and,
indeed, 8 bit bound with the 6502.

As you know, Apple has adopted the
68000 family of processors and Sinclair
is about to unleash a $500 computer
based on the 68008. There is no
magazine that I know of that is
supporting the 68000 as of yet. Why
not do the world a favor and be the first
to offer your readers a pathway into the
current generation of high performance
microprocessors.

I must sound like a member of the
Motorola marketing team after that
last paragraph. No, in fact I'm a relative
newcomer to the 68000, but I see a vast
future for this chip family and
apparently an increasing number of
computer systems designers do also.
How about putting the question to your
readers and find out how they feel
about Micro supporting the 68000.

Once again thank you for the
wonderful validation in selecting my
Apple graphic as the first prize entry in
the Apple II category.

Thomas Wilson
San Rafael, CA

Editor’s Note: The staff o f Micro also
feels that the 68000 chip m ay well be
the 6502 o f the '80's. We need to know
our readers ’ interest in a regular 68000
column and feature articles on this
fam ily from time to time. These would
be in addition to (not in place of) our
other chips. Please take a few minutes
to answer the Reader Survey Questions
on the card in this issue; we will
analyze your responses carefully to
determine the direction you want
Micro to follow .

Medical Programs

Dear Editor:

Several months ago I wrote to you
asking if any of your readers would be
interested in contributing programs to
a book, “ M icrocomputer Programs In
Medicine. ” The response from your
readers was astounding.

I had letters, post cards, packages of
discs and printouts from all over
America, various parts of Canada,

England, Ireland, South Africa, Saudi
Arabia, Israel, Australia, Malaysia and
even one from mainland China.

I had phone calls in the middle of
the night from foreign parts apologizing
for the time zone difference, but asking
for details of the impending book.

As a result, the programs have now
been published in book form in two
volumes. Volume I contains scheduling
and appointment programs, direct
patient billing and accounts receivable,
patient file retrieval, simple statistics
including standard deviations, etc.,
graph drawing and curve fitting,
numeric and alphabetic sorting.
Volume II contains programs on patient
h isto ry tak in g and h isto ry
summarization, respiratory function,
pediatric growth percentile calculation,
bar graph drawing, analysis table
making, using a VisiCalc template,
obesity advisory program for weight
loss, CHI square statistics and analysis
of variance.

The book is now in print and is
available from the publishers,

Com puter M edica Corporation,
Medical Software Company, 328 Main
Street, Center Moriches, N.Y. 11934,
at $80 per volume.

I must thank your readers again for
the fantastic response.

Derek Enlander, M.D.
New York, NY

AtCftO

Don’t Forget to Send
Your Reader Survey. Do

It Today!

OS9
APPLICATION

SOFTWARE
ACCOUNTS PAYROLL

PAYABLE GENERAL ^ jm

a o q q l e d g e r
Y m W W w i th

CASH SMALL
ACCOUNTS JOURNAL BUSINESS
RECEIVABLE £ Q Q Q INVENTORY

$299 $299
COMPLETE DOCUMENTATION $19.95

OS9 & BASIC 09 ARE TRADEMARK OF
MICROWARE. INC. & MOTOROLA CORP.

SPECIALTY
ELECTRONICS

(405) 2 3 3 -5 5 6 4
2 1 1 0 W . WILLOW - ENID, OK 73701

No. 72 - June 1984 MICRO 9

Acorn
Microcomputer

System
Distributor

Acom Computers Corporation
400 Unicom Park Drive
Woburn, MA 01801

Introduction

The Acom microcomputer was first developed in response
to an invitation issued by the BBC to computer firms to
compete in creating a new micro that would meet their
specifications. The contract was awarded to Acom, which,
at the time, was only five years old.

Various features, in particular a Local Area Networking
capability of up to 254 Acorns, led to the acceptance of the
Acom as an educational tool. Presently more than 85% of
English schools use the Acom. The Acom has made its
entrance into the U.S. market with a few model systems
established, the most recently publicized being the school
system of Lowell, Massachusetts, where a network of
Acoms is serving grades K-12.

Memory and Optional Expansion Features

The Acom has a series of co-processors that allow optional
expansion of the standard 64K of memory. The Operating
System is 16K built-in ROM, 16K built-in Word Processor
|VIEW), built-in ROM BASIC interpreter, 32K RAM for
User Programs. The co-processors enable the addition of
three expansion features:
1) a 3MHz 6502 (includes an additional 64K RAM): this
will run any program faster with more space available to
the user
2) a Z-80B with 64K RAM: 'the software with this unit
allows CP/M programs to be run with more memory than
a normal CP/M environment. In addition, the main user
program is left free to do calculations, leaving the BBC
Microcomputer to deal with graphics, printers, clock,
floppy disk, etc.'
3) a NS 16032: a 16 bit machine with 32 bit internal
architecture, can be used with up to 16 Megabytes of
RAM.

The Acom has a built-in (ROM) BASIC interpreter,
which also includes a 6502 Assembler. This permits
Assembly Language to be mixed in the middle of a BASIC
program. All the standard features and statements are
available with some nice enhansions such as local
variables, subroutines that pass parameters and recursion.

Also built into ROM is a 16K word processor called VIEW.
This package is of professional quality featuring local and
global control, search, change, replace, automatic page
numbering, etc.

Graphics

When first viewing the Acom one immediately notices the
high quality graphics; an RGB Video is used to display the
high resolution screens. The Acom uses a number of
display modes, including 640 x 200 for 2 color graphics (80
x 25 text), 320 x 200 for 4 color (40 x 25 text), and 160 x
200 for 16 color graphics (20 x 25 text), to list a few. There
are a number of commands which facilitate graphics
control, including the familiar commands such as PLOT,
DRAW, and MOVE.

Sound/Music

To generate sound and music the Acorn employs four
'channels.' Through the use of SOUND and ENVELOPE
commands a great deal of control is available to the user,
and a full five octave range gives plenty of room to work
in. The ENVELOPE offers a great deal of control with six
parameters, governing the attack, decay, and release of a
note.

Voice Synthesis

The Acom also has a built-in voice synthesizer, including
a Speech Processor and a PHROM (Phrase Read Only
Memory). The Speech Processor is one made by Texas
Instruments, the TMS 5220. In the PHROM chip is stored
206 ready-made words, and other PHROMs fitted with
different words will be available in the future. The speech
system can be accessed from BASIC and Assembly
language.

Interfaces

The Acorn includes a number of interfaces: Floppy Disk
Interface up to 1 MB unformatted; RS423 Serial Interface
(RS232 enhanced for speed and distance); Software
Selectable Baud Rates between 75 and 19,200 Baud; 8-bit
'Centronics-type' parallel printer port; four 12-bit Analog
Input Channels -input voltage range 0-1.8V, 10ms
conversion time for each channel; standard audio cassette
for low-cost storage.

10 MICRO No. 72 • June 1984

Peripherals

Peripherals supported include: 5 1/4-inch floppy disk
drives with capacities of 400K-800K formatted;
monochrome, color (RGB, Composite Video) and TV; dot
matrix and daisy-wheel printers, game paddles and
joysticks.

Keyboard and Physical Description

The 73-key Qwerty keyboard is cleanly laid out, including
10 User Definable Function Keys. It has a nice touch and
has the break key safely put out of normal reach. The size
is 16"W x 13 1/2''D x 2 3/4''H, weighing in at 16 lbs. The
dual disk drive is compact and neatly designed, taking the
space of a normal-sized single disk drive.

ancient geography. The only problem is that it is fun and
addictive. Plato's Cave is an introduction to the relation
between evidence and inference (using a Platonian
approach). The subjects covered by Krell and other
manufacturers of Educational Software is quite varied,
developed for all levels and covering subjects from color to
transpiration to gas chromatography.

Price

The price breakdown is as follows: for the basic
microcomputer the price is $995.00; the 800KB dual disk
drive is $995; a 400KB (double sided) single disk drive is
$545; a 200KB (single sided) single disk drive is $395; a
RGB high resolution monitor (12 inch) is $595;
Monochrome monitor (12 inch) amber or green is $195,

Software

The software available for the Acom is growing every day.
Although all of the software that is presently in use in
England isn't available here, there is certainly enough to
keep anyone busy. There are packages covering business
applications, graphics, languages and a plethora of
educational software. American companies have been
enlisted in converting some of the English software, in
particular the education packages, for use in the United
States. The name that stands out in this area is Krell
Software Corporation (1320 Stony Brook Road, Stony
Brook, NY 11790). The most well known of their software
are Alexander the Great and Plato's Cave. Alexander the
Great is a cross between Risk and Scrabble, developing
word and arithmetic skills as well as touching upon

both the RGB and Monochrome include cables. Prices for
the additional co-processors are not available at this time.

Conclusion

Although the past emphasis has been in the area of
education, the Acom has just begun to conquer the many
fields that it is capable of handling. Given its memory,
telecommunication, graphic and other well developed
features it certanly merits consideration for home or
business use.

JMCftO

No. 72 • June 1984 MICRO 11

80 COLUMN PRINTER SALE—$ 149.00*

COM-STAR T/F
Tractor

Friction
Printer

15 Day Free Trial -180 Day Immediate Replacement Warranty
• Lowest Priced, Best Quality, Tractor-Friction Printers in the U.S.A.

• Fast 80-120-160 Characters Per Second • 40,46,66,80,96,132 Characters Per Line Spacing
• Word Processing • Print Labels, Letters, Graphs and Tables • List Your Programs

• Print Out Data from Modem Services • “The Most Important Accessory for Your Computer”

•STX-80 COLUMN
PRINTER—$149.00

Prints full 80 columns. Super silent
operation, 60 CPS, prints Hi-resolution
graphics and block graphics, expanded
cha rac te r set, exce p tio na lly clear
characters, fantastic print quality, uses
inexpensive thermal paper! Best thermal
printer in the U.S.A.! (Centronics Parallel
Interface).

"DELUXE COMSTAR T/F
80 CPS PRINTER—$199.00

The COMSTAR T/F (Tractor Friction)
PRINTER is exceptionally versatile. It
prints 8 V x 11” standard size single
sheet stationary or continuous feed com
puter paper. Bi-directional, impact dot
matrix, 80 CPS, 224 characters. (Cen
tronics Parallel Interface).

Premium Quality—120 CPS
COMSTAR T/F SUPER-10X

PRINTER—$289.00
COMSTAR T/F (Tractor Friction) SUPER-
10X PRINTER gives you all the features
of the COMSTAR T/F PRINTER plus a
10” carriage, 120 CPS, 9 x 9 dot matrix
w ith double strike capability for 18 x 18
dot matrix (near letter quality), high
resolution bit image (120 x 144 dot
matrix), underlining, back spacing, left
and right margin settings, true lower
decenders w ith super and subscripts,
prints standard, italic, block graphics

and special characters, plus 2K of user
definable characters! The COMSTAR T/F
SUPER-10X PRINTER was Rated No. 1 by
"Popular Science Magazine." It gives you
print quality and features found on
printers costing twice as much!! (Cen
tronics Parallel Interface) (Better than Ep
son FX 80).

Premium Quality—120 CPS
COMSTAR T/F SUPER-15V’

PRINTER—$379.00
COMSTAR T/F SUPER 15'A” PRINTER
has all the features of the COMSTAR T/F
SUPER-10X PRINTER plus a 15%” car
riage and more powerful electronics
components to handle large ledger
business forms! (Better than Epson FX
100).

Superior Quality
SUPER HIGH SPEED— 160 CPS

COMSTAR T/F 10”
PRINTER—$489.00

SUPER HIGH SPEED COMSTAR T/F
(Tractor Friction) PRINTER has all the
features of the COMSTAR SUPER-10X
PRINTER plus SUPER HIGH SPEED
PRINTING— 160 CPS, 100% duty cycle,
8K buffer, diverse character fonts,
special symbols and true decenders, ver
tical and horizontal tabs. RED HOT
BUSINESS PRINTER at an unbelievable
low price!! (Serial or Centronics Parallel
Interface)

Superior Quality
SUPER HIGH SPEED—160 CPS

COMSTAR T/F 15^”
PRINTER—$579.00

SUPER HIGH SPEED COMSTAR T/F
15’/:" PRINTER has all the features of the
SUPER HIGH SPEED COMSTAR T/F 10-
PRINTER plus a 15'/i" carriage and more
powerful electronics to handle larger
ledger business forms! Exclusive bottom
paper feed!!

PARALLEL INTERFACES
For VIC-20 and COM-64—$49.00

For All Apple Computers—$79.00
NOTE: Other printer interfaces are
available at computer stores!

Double
Immediate Replacement

Warranty
We have doubled the normal 90 day war
ranty to 180 days. Therefore if your
printer fails within “ 180 days” from the
date of purchase you simply send your
printer to us via United Parcel Service,
prepaid. We w ill IMMEDIATELY send you
a replacement printer at no charge,
prepaid. This warranty, once again,
p r o v e s t h a t WE L O V E OUR
CUSTOMERS!

|--- 1
• Add $17.50 for shipping, handling and insurance. WE DO NOT EXPORT I
j TO OTHER COUNTRIES EXCEPT CANADA. j
■ Enclose Cashiers Check, Money Order or Personal Check. A llow 14 days j
J for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada ■
I orders must be in U.S. dollars. VISA — MASTER CARD ACCEPTED. We J
I ship C.O.D. '

PROTECTO
(WE LOVE OUR CUSTOMERS)ENTERPRIZES

BOX 550, BARRINGTON, ILLINOIS 60010
Phono 312/302-5244 to order

SUPER-10” A B C D E F G H IJ K L M N O P Q R 8 T U V W X Y Z
ABCDEFGH1JKLMNOPQRSTUVWXYZ 1 2 3 4 3 6 7 B 9 0

■ H COMBINATION “ DAISY WHEEL
^ W \ J \ V I I I I J I C I PRINTER/TYPEWRITER

• SUPERB COMPUTER PRINTER COMBINED WITH WORLD’S FINEST ELECTRONIC
TYPEWRITER!

• BETTER THAN IBM SELECTRIC — USED BY WORLD’S LARGEST CORPORATIONS!
• TWO MACHINES IN ONE — JUST A FLICK OF THE SWITCH!

• SUPERB EXECUTIVE CORRESPONDENCE - HOME, OFFICE, WORD PROCESSING!
• EXTRA LARGE CARRIAGE — ALLOWS 14-1/8” PAPER USAGE!
• DROP IN CASSETTE RIBBON — EXPRESS LIFT OFF CORRECTION OR ERASER UP TO

46 CHARACTERS!
• PRECISION DAISY WHEEL PRINTING - MANY TYPE STYLES!
• PITCH SELECTOR — 10, 12, 15 CPS, AUTOMATIC RELOCATE KEY!
• AUTOMATIC MARGIN CONTROL AND SETTING! KEY IN BUFFER!
• ELECTRONIC RELIABILITY, BUILT IN DIAGNOSTIC TEST!
• CENTRONICS PARALLEL INTERFACE BUILT-IN (SERIAL OPTIONAL)!

• 15 DAY FREE TRIAL - 90 DAY FREE REPLACEMENT WARRANTY!

I Add $17.50 for shipping and handling!!

| Enclose Cashiers Check, Money Order or Personal Check. A llow
j 14 days for delivery, 2 to 7 days for phone orders, 1 day express
| mail! Canada orders m ust be in U.S. dollars. VISA — MASTER
| CARD ACCEPTED. We ship C.O.D.

PROTECTO
ENTERPRIZES (WE LOVE OUR CUSTOMERS)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

No. 72 - June 1984 MICRO 13

• SANYO MONITOR SALE!!

9" Data Monitor

• 80 Columns x 24 lines
• Green text display
• Easy to read - no eye strain
• Up front brightness control
• High resolution graphics
• Quick start - no preheating
• Regulated power supply
• Attractive metal cabinet
• UL and FCC approved

• 15 Day Free Trial - 90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
12" Screen - Green Text Display (anti-reflective screen)
12" Screen - Amber Text Display (anti-reflective screen)
14" Screen - Color Monitor (national brand)
*PLUS $9.95 for Connecting Cable.

Display Monitors From Sanyo
With the need for computing power growing every day, Sanyo has
stepped in to meet the demand with a whole new line of low cost, high
quality data monitors. Designed for commercial and personal com
puter use. All models come with an array of features, including up
front brightness and contrast controls. The capacity 5 x 7 dot
characters as the input is 24 lines of characters with up to
80 characters per line.
Equally important, all are built with Sanyo’s commitment
to technological excellence. In the world of Audio/Video, Sanyo is
synonymous with reliability and performance. And Sanyo quality is
reflected in our reputation. Unlike some suppliers, Sanyo designs,
manufactures and tests virtually all the parts that go into our products,
from cameras to stereos. That’s an assurance not everybody can
give you!

• LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
• BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

PROTECTQ
ENTERPRIZES (WE LOVE OUR CUSTOM ERS)

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to order

I Add $10.00 for shipping, handling and Insurance. Illinois residents f
I please add 6% tax. Add $20.00 for CANADA, PUERTO RICO, HAWAII I j orders. WE DO NOT EXPORT TO OTHER COUNTRIES. j
I Enclose Cashiers Check. Money Order or Personal Check. A llow 14 {
| days for delivery, 2 to 7 days for phone orders, 1 day express m ail! I
| Canada orders must be in U.S. dollars. Visa ■ MasterCard - C.O.D. |

9 S A N Y O

Official Video Products
of the Los Angetes 1984 Olympics

*$ 69.00
*$ 99.00
*$ 99.00
*$249.00

Product Name: Autoteim
Equip. Req'd:
Price:
Manufacturer:

Color Computer with 32K
$39.95 cassette;$49.95 disk
PXE Computing
11 Vicksburg Lane
Richardson, TX 75080

Description: A full-feature communication package with
added features. An extensive amount of effort has been
spent to insure user-friendliness; several detailed menus
guide the operator in setup and operation. Any operation
can be temporarily suspended or allowed to run in
background mode while the user accesses a HELP screen.
The communications ability seems to be standard - 110
to 1200 baud full- or half-duplex, with send and receive
capability for text, graphics, BASIC and Assembly
Language data. Full communications using any modem
can continue in the background mode while data is
reviewed or edited. The connection will not be broken
during cassette loads and save, if you desire. Provisions for
embedded text and menu-selected print options make it
easy to use any printer. Received data can be printed in any
menu-defined format, regardless of the width of text lines
received.

An outstanding feature of this package is called
keystroke multipliers. The purpose is to automate the
sign-on procedures for various modems, i.e., invoke a
keystroke multiplier which will make the connection,
complete the contact and sign off, all automatically.

Pluses: The low cost of this software makes it viable for
an unlimited number of simple control and measurement
tasks, aside from its intended communications and editing
ability. Although full utilization of the package would be
complex, the learning process seems to be optimized and
friendly.

Minuses: So far, no bugs have been found, and any
perceived problem has been overcome with more study
and experimentation.

Documentation: An 81-page manual details the operation
of the program in a well written format, with additional
reinforcement from the program itself. The book is well
organized with a complete and logical index, and
numerous detailed examples are used where needed.

Skill level: By the time a CoCo owner has progressed to
the need or desire for communications, he will be ready to
use this program.

Product Name: SuperText Professional
Equip. Req'd: Apple II, I I+ , He with Applesoft ROM,

DOS 3.3, 48K, lower case capability
Price: $175 ($99 special]
Manufacturer: MUSE Software, Inc.

347 N. Charles Street
Baltimore, MD 21201

Description: The most recent version of one of the first
powerful Apple word procesors. With it, a skilled user can
write, edit, store, preview, and print documents in a wide
variety of formats. The program supports the Smarterm,
Full-View 80, and Videx 80-column boards for the II +, and
either of the He 80-column cards, as well as the Apple
40-column format. It is simple to configure the program
for most of the popular printers.

Pluses: One of the most unusual features is the "Math
Mode”, which permits calculations within files. This is
particularly useful for preparing invoices, cost estimates,
and proposals. The screen can be split and each half
scrolled and edited separately. A key can be defined as any
string up to 30 characters long, useful for reviews where a
single title occurs over and over. Cursor movement is
smooth and unobtrusive. It seems to be nearly impossible
to make such a serious error that text is lost from memory.
You can easily set up multi-line running heads or feet,
embed codes for bold, italic, and other tyepface changes,
and save or load files. There is a quick reference card.

Minuses: SuperText creates nonstandard disk files. The
program uses several of the same code sequences in
different modes, and it is fairly easy to forget what mode is
on. There is no provision for footnotes, super- or sub
scripts, or hyphenation.

The Apple He uses CTRL I to tab; SuperText has not
provided a substitute control code to turn on italics
printing, so it is necessary to embed a dummy character
while entering text, then use the 'change' mode to alter it.

Documentation: The manual has no index and needs one.
It is comprehensive, however, and almost any answer can
be puzzled out by working through the extensive table of
contents.

Skill level: It requires either experience with word
processors or great persistence to learn. A person who
learns the program and uses it regularly, however, will
have the use of an effective writing tool.

Reviewer: Ralph Tenny Reviewer: K.C. Tinkel

No. 72 ■ June 1984 MICRO 15

Subscribe to MICRO...
Save 20% and we'll send you a

BONUS GIFT
with your subscription!

Receive a coupon good for one Each Disk contains a variety of programs
MicroDisk of your choice. from Micro, all entered and ready to run on
A $ 1 5 .0 0 Value — FREE! your machine. Saves time, avoids enois.

Fill out the attached
card and mail today!

Each diskette includes all of the programs in BASIC and/or
Assembly Source, plus binary 'load-and-go' files. The price of
only $15.00 includes shipping and handling.

16 MICRO No. 72 - June 1984

Product Name: Super-Text Professional Word Processor
Equip. Req'd: Atari 400/800/1200XL, with minimum

Product Name: G.A.L.E.

Price:
Manufacturer:

48K
$99.00
Muse Software
347 N. Charles Street
Baltimore, MD 21201

Description: 'Super-Text Professional is designed to be a
business-powered processor simple enough for home and
educational use,' according to the developer. It contains
Atari DOS making all DOS functions available to the user.
All of the basics are included; delete, find/replace, block
operations, cursor movement, local and global control.

Pluses: Starting with an Introduction and Help Menu, the
user has a variety of choices and options available. The
user can set parameters for his printer with most of the
major printers parameters provided, the users simply
selects the one he needs. The printer can also be controlled
from within the text. Other nice features are automatic
page numbering, single key commands (underlining with
one command), format and tab specification control.
Super-Text has a system status line displayed upon request
which gives pertinent information when needed. Muse
Software has also provided something called Autolink
(trademark) which ‘greatly increases the Atari’s file
organization and manipulation capabilities.' With this
feature you can link files on the same or different disks and
then do global finds, replaces, etc. through those linked
files. There is a user defined function key called The Key
whose character set you can define - up to thirty
characters.

Minuses: Super-Text has seperate modes for Changes,
Adds, and file manipulation. Changing back and forth
between modes is a little awkward to start with. It is not at
all like other word processors in this respect. To those who
are familiar with other packages this method will
undoubtedly seem a bit cumbersome at first. Once this
peculiarity is gotten used to it becomes acceptable. Again
it differs from other word processors in its use and
definition of inserts. If you go searching for Insert
instructions you will find it very frustrating. There isn't
any defined Insert; rather through manipulation of the
delete command and the Change and Add mode you can
achieve what is an insert. For those not used to other
packages I suspect neither the modes or insert would be a
problem. Those who are familiar with other WP packages
will find a period of adaptation to these different features is
necessary.

Documentation: The manual provided with Super-Text is
clearly w ritten , w ith good chapter ou tlin es.
Unfortunately, as with many software packages, there is a
continuation of the belief that indexes are obsolete.

Skill level: This package is geared more for the advanced
WP user, having all of the advanced features such a user
would want and use. Beginners would certainly be able to
use Super-Text, and actually may benefit from the concept
of modes, to seperate the various functions.

Reviewer: Mark S. Morano

Equip. Req'd:
Price:
Manufacturer:

Apple II
49.95
MicroSPARC, Inc.
10 Lewis St.
Lincoln, MA 01773

Description: A Global Applesoft Line Editor with edit
mode, macro mode, global commands, hex/dec
conversion, auto line number and help are easily accessed
from BASIC or the monitor. It includes search and change,
BLOAD information, free sectors, macro definitions for
single key entry, a "hide" command to temporarily store a
program, line finding, pointer dump, renumber, variable
cross reference, append, converting hex to dec and vice-
versa, and a line editor with insert, delete, lower case
entry, find, verbatim entry, and a help screen.
Pluses: GALE is easy to use and is a great time saver for
Applesoft programmers. It includes the most complete set
of commands among the current popular line editors. It
doesn't use the &.

Minuses: The more commands there are, the more you
need a reference card. It should have been included to
make the package complete.

Documentation: A clearly written, helpful guide to
making the most from GALE is included (53 pages) in an
easy-to-read manner.

Skill level: Some programming expertise is desirable to
make the best use of GALE.

Reviewer: Phil Daley

Product Name: LOGO
Equip. Req'd: Commodore 64 and 1541 Disk Drive
Price: $49.95
Manufacturer: Commodore Business Machines Inc.

1200 Wilson Drive
West Chester, PA 19380

Description: This is a fairly extensive implementation of
LOGO (a procedural language developed at M.I.T.).
Supplied on a single disk, it includes system primitives
(commands) for graphics, arithmetic &. logical operations
and list processing. A second disk containing instructive
demos, games and various utilities is also included. Most
notable among the various utilities is a LOGO assembler
which facilitates the addition of assembly language
extensions to the language.

Pluses: This is a powerful language which is suited to
many levels of application. At the bottom level it is almost
ideally suited for entertaining and teaching children
logical thought and expression. At a higher level it is a
good vehicle for the study of structured recursive
programming. At the top level, the list processing
capabilities make LOGO a suitable candidate for
implementing AI (Artificial Intelligence) concepts on a
micro computer.

No. 72 - June 1984 MICRO 17

Minuses: LOGO is fairly large and complex (compared to
BASIC). It was apparently necessary to cut a few comers in
order to implement it on micro’s. One indication of this is
the fact that the garbage collection routines do not
function properly. It's possible for lists of unused words or
procedure names (usually resulting from typo's] to
accumulate and reduce the available workspace. This
defect will only be noticed during long program
development sessions.

Product Name:
Equip. Req'd:

Price:
Manufacturer:

The Oddsmaker
Commodore 64 or
Apple II
Disk
Printer optional
$44.95
CZ Software
358 Forest Road
South Yarmouth, MA 02664

Documentation: In addition to the demo's and examples
on the utilities disk, a 400 + page manual is provided. This
manual contains major sections on graphics, computation,
and list processing. It also covers sprites and sound/music
generation. Extensive appendices cover assembly language
programming and contain a complete glossary of LOGO
primitives. The manual is good as a tutorial, but leaves
something to be desired in conciseness and accessibility
for quick reference purposes.

Skill level: The skill required depends on which level you
approach LOGO. Little skill is required to "drive" the
turtle around the graphics screen. More is required to
write concise structured programs, and considerable skill
is required to implement AI constructs.

Reviewer: Roger C. Crites

Product Name: Advanced X-tended Editor
Equip. Req'd: Apple II
Price: *
Manufacturer: Versa Computing, Inc.

3541 Old Conejo Rd.
Newbury Park, CA 91320

Description: This program could be called "The
Electronic Bookie” , for that is exactly its function!
Through an easy-to-use menu driven system you take bets
on some activity, calculate and display the para-mutual
odds, display the amount bet on each team/horse/fighter,
print tickets for each bet, and when the contest is over,
display the pay-offs for each bet. Additional features
include automatically taking a 'house cut' percentage
from each bet and saving the betting data to disk. The
program is so complete that the creators hope they do not
get in trouble with ‘you-know-who’!

Pluses: Easy to use by anyone. Provides a good
understanding of the para-mutual betting process - quite
educational. The printed tickets feature makes the
package really useful (for fun only, of course!).

Minuses: Perhaps overpriced at $44.95.

Documentation: The twenty page booklet is clearly
written and easy to use.

Skill level: Can be used by anyone.

Reviewer: Robert M. Tripp

Description: AXE is an Applesoft line editor which
includes many time saving features for BASIC program
development. Search and replace, auto line number,
memory status, monitor commands, special formatted
listings and line editing features are all available with AXE
running. Editing commands include insert, delete, gobble,
copy, uncopy, lower case, verbatim mode and a complete
macro definition and table use for single key entry of often
used strings.

Pluses: AXE appears transparent to the user and is a great
help in editing lines without the POKE 33,33 routine.
Search and replace strings are easily defined and are very
useful in locating and changing variable names.

Minuses: A quick reference card is needed to help in
remembering the different commands. I had some trouble
in listing programs full width to the printer while AXE was
active.

Documentation: The 50 page manual is well written and
clearly explains how the various commands operate.

Skill level: Some experience with BASIC programming is
necessary to derive all the benefits.

Reviewer: Phil Daley

Product Name: BASIC Tutor
Equip. Req'd: Apple 11+ or He, 1 Drive
Price: *
Manufacturer: Courseware Applications

Savoy IL (c) 1983
Distributor: SuperSoft

P.O. Box 1628
Champaign, IL 61820

Description: A course in BASIC programming with
lessons and exercises on disk and in the manual. Covers:
what is programming, variables, expressions, entering &.
editing code, output (PRINT, TAB), input, branching (IF-
THEN, GOTO], looping (FOR-NEXT-STEPJ, and READ-
DATA. Material is fairly sophisticated. Can be used in a
classroom or for self-study.

Pluses: Quality of presentation is quite good. Overall
program is well designed. Covers all major BASIC
commands. Examples not trivial, as in many BASIC
teaching programs.

Minuses: Interaction is weak and inconsistent:
sometimes when you answer incorrectly, you are shown
the answer immediately; other times, you get 2 or more

18 MICRO No. 72 ■ June 1984

tries. You are not forced to enter the correct answer (to
show that you accept it) before proceeding. Does not
protect against keybounce - if you press RETURN several
times quickly, you may flash through the next screen(s) of
info without time to read.

Documentation: Superb manual with lesson outlines &
goals, recaps of disk lessons, additional info, summaries,
problems with solutions, reference list of disk commands,
and glossary. Material presented well for older audiences;
too many words per page for 12 yr olds to absorb (plus
adult vocabulary).

Skill level: Some reasoning &. problem-solving skills; age
15-adult.

Reviewer: Mary Gasiorowski

Product Name: Card?
Equip. Req'd: Commodore 64 or VIC 20 and a parallel

(Centronics cable) printer
Price: $75
Manufacturer: Cardco, Inc.

313 Matthewson
Wichita, KS 67214

Description: A printer interface to print text and graphics
from your Commodore computer to any parallel printer.
The included cables plug into the computer's cassette and

disk drive ports without interfacing with those devices.
Internal dip switches allow for permanent selection of
features and software selection is also available. Card?
features ASCII conversion, graphics printing (if your
printer allows it], and a listing mode that converts color
change/cursor move functions to understandable
abbreviations. Several appendices will tutor you in screen
dumps, printer control characters, and device selection.

Pluses: Card?'s flexibility is its chief asset and the newest
version supports Epson Graftrax +. Setup is easy and the
instructions form a useful tutorial.

Minuses: Interfacing Card? with word processors can
become complex if the program attempts ASCII
conversion prior to sending the data through Card?. The
problems arise when you attempt to imbed printer
commands in the text. However, Cardco, Inc. provides
suggestions and promises technical support to overcome
these obstacles.

Documentation: A new booklet is in the works for the
Graftrax update. Until then an addendum fills the gap.
The instructions are detailed with intelligent examples
and should answer your questions.

Skill level: Recommended for intermediate and advanced
users only. If you don't know what ASCII conversion is
you'll have trouble taking advantage of Card?'s features.

Reviewer: Mike Cherry

CRACKING
TECHNIQUES

Share the secrets of the world's greatest crackers.. .
Axe Man, Bozo NYC, Candy Man, Cloneman,

Disk Zapper, Lock Buster, Long John Silver, Jim Phelps,
Mr. Krac-Man, Red Rebel, Trystan II, Reset Vector, The
Woodpecker, Mr. Xerox.. . ana many more!

Study complete tutorials on Boot Tracing,
Software Tricks, Non-Maskable Interrupt, Ram

For faster service, charge your order to

Card Modifications, Hardware Tricks and other
tried and true techniques. Discover indispensable
tips on over 40 specific programs for Apple users.

Customize your software to suit your own
needs! Order your copy of CRACKJNl , TECH
NIQUES ’84 today. Supplied on disk for Apple
Computers.

MasterCard or VISA.

*39.95
Call our toll free number
and ask for Operator 68

1-800-824-7888
In California, call 1-800-852-7777

JJL PIRATES
HARBOR

PIRATES HARBOR, INC.
P .O . Box 8928, B o sto n , M A 02114

VOICE: (617) 227-7760 M O D EM : (617) 720-3600

A pple is a registered tradem ark of A pple Com puter, Inc.

I
I
I

YES, I want to leam the secrets of Cracking Techniques ’84.
□ E n clo sed is my check/m oney ord er for $39.95 (M assach u setts resid en ts

add 5 % sales tax).

NAM E: _

A D D RESS:

CITY: _ STATE: _ ZIP

PH O N E: L

® PIRATES
>< HARBOR

PIRATES H A RBO R, IN C., P.O . Box 8928, Boston, MA 02114

I
I
I

No. 72 - June 1984 MICRO 19

J i f ^ 1 7 * c££X
Musical Notes lor lie Apple

by Phillip Bowers

With a 200 note table and a five octive range
covering the entire treble, bass and alto clefs, you
can do more than just whistle ‘Dixie’.

The greatest limitation I found with
my APPLE II + (APPLESOFT) is its
inability to produce a variety of sounds.
To overcome this I wrote a small
assembler program (28 bytes long] that
is CALLed by a Basic program using at
least one POKE command.

Once loaded, the assem bler
program is capable of producing tones
from 1.54hz to well over 15,000hz
(cycles per second). Any tone can be
held, from several seconds for very high
tones, to minutes for lower tones. Four
bytes are used in page zero (from $FC to
$FF: 252 to 255] to control both the
frequency of the tone and its length.
The first two bytes set the frequency,
and the last two limit the lingth (time)
of the tone. Because two bytes are used
for each, their combined values range
from 1 to 65024 ($01 to $FE00]. The
use of the values 0($00) and 255 ($FF)
are restricted by the relationship
between the two programs.

By using page zero, it allows the
assembler program to be located
anywhere in RAM where it will be safe.

For our purposes here the assembler
program will be at address $6000, and
the variable ASSEM, in the Basic
program, will equal 24576. Once the
values are set in page zero, the Basic
program uses the command
CALL ASSEM

to produce the desired tone. Moving
the assembler program only requires
that the variable ASSEM be set to the
decimal equivalent of the assembler’s
starting address.

The assem bler program can
reproduce any musical note, including
sharps/flats, up to G# below A of
880hz. Above 880hz the rounding
errors for many notes are too great to be
of much use. Up to 880hz the largest
error is 2.74 cycles, at G and G# just
below 880hz. As the frequency
decreases, so does the error in cycles.

The useable musical notes are from
G § below 880hz, to A at 27.5hz. This
gives a 5 octive range covering the
entire treble, bass, and alto clefs. The
Basic program will allow a 10 octive
range of inputs, from 0 to 9, but octives

1 to 5 cover the above clefs, with 1
being the lower octive.

To setup the assembler program
enter Monitor
CALL • 151

then the RETURN key. Once you have
the asterisk prompt, enter the
following after it:

6000:A5 FE 38 EA A6 FC AE 30
CO A6 FC A4 FD CA DO FD
88 DO FA E9 01 DO EB C6
FF DO EB 60 00

then RETURN.

The above should be entered as one
continuous string, with each byte
seperated by a space. It is shown as it
would basically appear in a memory
dump. A memory dump is done by
entering
6000.601 C

By entering
6000L
you will get an assembler listing. The
listing is reproduced as a debugging aid.

20 MICRO No. 72 ■ June 1984

6000-
6002-
6003-
6004-
6006-
6009-
600B-
600D-
600E-
6010-
6011-
6013-
6015-
6017-
6019-
6 0 1 B-
6 0 1 C-

A5 FE
38
EA
A6 FC
AE 30 CO
A6 FC
A4 FD
CA
DO FD
88
DO FA
E9 01
DO EB
C 6 FF
DO E8
60
00

LDA $FE
SEC
NOP
LDX SFC
LDX SC030
LDX SFC
LDY $FD
DEX
BNE $600D
DEY
BNE $600D
SBC #
BNE $6002
DEC $ F F
BNE $6006
RTS
BRK

To save this to disk, use the
following:
BSAVE ASSEM SOUND, A$6000,
L$1C

The length shown ($1C) will not save
the last byte at $601C; it is included to
show the ending address only.

Still in Monitor, enter
FC.F9 02 07 18

then
6000G

when the RETURN key is pressed it
will execute the assembler program
using the values at $FC to $FF. The
note should be G below middle C, and
last 15 seconds. After the assembler
program has executed, the value at
address $FF should be equal to 0 ($00),
the other values should be untouched.
If your values differ, check for an error.

For A below middle C:
FC:C2 02 D9 1A

for D above middle C:
FC:50 02 81 23

these values should all give 15 second
notes when the assembler program is
executed.

After the "Musical Notes" program
is entered the keyboard keys
"QWERTYU"should be marked to
read ‘'ABCDEFG” , respectively. The
sharp/flat of a note is obtained by
pressing the "CNTL” key and the note
key together. A rest note is given by the
space bar.

As each note is entered, it will be
stored in an internal table for replaying,
and displayed to the upper 20 text
lines. The note table (NT) holds the
values for the note frequency and its
length in a low order, high order format
that are POKEed directly into addresses
$FC to $FF. Each note displayed to a
text line will have the format "ABCb” ,
where:

A = the octive the note is in [0 to
9).

B = the note value, A through G.
C = the note time;
W : whole
H : half
4 : fourth
8 : eighth
1 : sixteenth
3 : thirty-second
6 : sixty-fourth

b = space, note separator.
A sharp/flat of the note will have

the same format, except that it will be
in the INVERSE mode. A rest note will
be displayed as "bRCb” . The "R ”
meaning a rest note, and the “C" the
rest time.

This format allows 10 notes per text
line, and by using the first 20 text lines,
it permits 200 notes to be displayed.
The last 4 text lines are for program
information.

When the program is executed, the
first input line will be:
ENTER BEATS PER MINUTES (4TH
NOTE)
If no value is entered, the beats per
minute will be set to 120. Some sheet
music will have a note symbol (like a
quarter note), followed by an equal
sign, then a number in parenthesis near
the upper left comer. This number is
the beats per minutes. Whatever value
is entered at this point will be the base
for timing all other notes.

Once the beat is entered, you are
ready to start entering notes. To change
the octive, press any of the numeric
keys (0 to 9). Line 22 (VTAB 22) will
show the current octive.

The "BEAT = ” shows the base

beat of 120 at a quarter note value. To
change the beat for any note, or group
of notes, the keys "ASDFGHJ” are
used.

A = whole note.
S = half note.
D = fourth note.
F = eighth note.
G = sixteenth note.
H = thirty-second note.
J = sixty-fourth note.

By pressing the "A ” key, the beat
will change from:
BEAT = 120 AT 4TH = 120

to:
BEAT = 120 AT WHOLE = 30

the last number is the beats per minute
for a whole note.

Once a note is entered it cannot be
deleted, but it can be changed to any
value. The ", " and keys are used
to move the cursor over any note you
want to change. The " , ” will move the
cursor to the left, lower in the note
table, while the " will move it to the
right, but will not allow movement
beyond the next enterable note
position.

While the left and right arrow keys
would have been better, they were not
used because the right key has the same
value as the "CNTL” and "U ” keys,
which would give the note G#.

The option "Z : RUN NOTES (0)”
shows how many notes are currently
being stored, and will run all notes
regardless of the cursor position.

In the event either the "X ” or "C "
is pressed, you will be asked if you
really want it before they do their
thing. Option " X " will CLEAR
everything, and restart the program to

Listing 1

5
10

15

20

25
26
27
28
29
30
31
35

40

G0SUB 255: HIMEM: ASSEM
VTAB 21: PRINT "ENTER NOTE OR OPTION : ":
PRINT "0CTIVE= "0L" BEAT="BM" AT "BV$" = "BM / BV" "
PRINT "Z:RUN N0TES("N0")" TAB(20)"X:NEW NOTES": PRINT "C:
END PROGRAM"
VTAB VT: HTAB HT: GET IN$:ER = 0:KI = ASC (IN$): G0SUB 100:
IF ER
IF KI
IF KI
IF KI
IF KI
IF KI
IF KI
IF KI
IF KI
HTAB

= 0 THEN VTAB 23: HTAB 1: GOTO 15
= 65 THEN BV$ =
= 83 THEN BV$ =
= 68 THEN BV$ =
= 70 THEN BV$ =
= 71 THEN BV$ =
= 72 THEN BV$ =
= 74 THEN BV$ =
> = 48 AND KI
1: GOTO 10

"WHOLE":BV = 4: GOTO 70
"HALF":BV = 2: GOTO 70
"4TH":BV = 1: GOTO 70
"8TH":BV = .5: GOTO 70
"16TH":BV = .25: GOTO 70
"32ND":BV = .125: GOTO 70
"64TH":BV = .0625: GOTO 70
< =57 THEN 0L = KI - 48:

IF KI = 44 AND NP.-
G0SUB 225: GOTO 20

1 > - 1 THEN NP = NP - 1:

©

No. 72 ■ June 1984 MICRO 21

■s
60
70

o
100

105

Listing 1 (continued)
45 IF KI = 46 AND (NP < NO) THEN NP = NP + 1: GOSUB 215: GOTO 20

IF KI = 90 THEN GOSUB 200
IF KI = 88 OR KI = 67 THEN 180
GOTO 20
SB = (60 / BM) * BV:TM = INT (((SB * (IE + 6)) / 36372) + 0.5):
HTAB 1: GOTO 10
SV = OL: IF KI = 32 THEN OL = 0:XF = 0: GOSUB 145:
IN$ = " R» + LEFT$ (BV$,l) + " ": PRINT IN$:
NT(NP,0) = FL * (- 1):NT(NP,l) = FH:NT(NP,2) = LL:
NT(NP,3) = LH:OL = SV: GOSUB 215: GOSUB 170: RETURN
FOR X = 0 TO 11: IF KI = KV(X,0) THEN NV = KV(X,l):
XF = X:X = 98

©110 NEXT : IF X = 12 THEN ER = 1: RETURN
115 GOSUB 145:NT(NP,0) = FL:NT(NP,1) = FH:NT(NP,2) = LL:

NT(NP,3) = LH
120 IN$ = "":IN$ = STR$ (OL) + MID$ (KL$,NV,1) +

O LEFT$ (BV$,1) + " ": IF KI < 32 THEN INVERSE
125 PRINT IN$: NORMAL : GOSUB 215
130 POKE 252,FL: POKE 253,FH: POKE 254,LL: POKE 255,LH:

q CALL ASSEM
135 IF (NP + 1 > NO) THEN NO = NO + 1:NP = NP + 1: RETURN
140 NP = NP + 1: RETURN
145 OC = (2 t OL) * (2 t (XF / 12)):CY = SC * OC:TC = TM * OC:

O PS = IE + 6 / (2 # CY)
150 FH = INT ((PS + 1254) / 1279):FT = 21 + (5 * FH - 1) +

(1274 * (FH - 1)):FL = INT (((PS - FT) / 5) + .5)
155 TI = TC:LH = INT (TI / 255):LL = (((TI / 255) - LH) * 255):

© IF LL = 0 THEN LL = 1
160 LH = LH + 1
165 RETURN

O 170 IF (NP + 1 > NO) THEN NO = NO + 1:NP = NP + 1: RETURN
175 NP = NP + 1: RETURN
180 IN$ = "END": IF KI = 88 THEN IN$ = "NEW"
185 VTAB 21: HTAB 1: INVERSE : PRINT "ENTER 'Y' FOR "IN$",

ANY KEY TO IGNORE. : GET IN$: NORMAL :
IF IN$ < > "Y" THEN HTAB 1: GOTO 10
IF KI = 67 THEN 300
CLEAR : HOME : GOSUB 260: GOTO 10
IF NO = 0 THEN RETURN
FOR X = 0 TO NO - 1: POKE 252, ABS (NT(X,0)):
POKE 253,NT(X,1): POKE 254,NT (X,2): POKE 255,NT(X,3):
IF NT(X,0) < 0 THEN POKE ASSEM + 8,0
CALL ASSEM: POKE ASSEM + 8,192: NEXT : RETURN
HT = HT + XI: IF HT = 41 THEN HT = 1:VT = VT + 1:
IF VT = 21 THEN GOSUB 235
RETURN
HT = HT - XI: IF HT < 1 THEN HT = 37:VT = VT - 1:
IF VT = 0 THEN VT = 1:HT = 1
RETURN
INVERSE : VTAB
TO CONTINUE. ";
NP = NP - 1: VT
RETURN
HOME : PRINT "MUSICAL NOTES FOR THE APPLE": PRINT :
PRINT "BY PHILLIP BOWERS": PRINT :
PRINT "ROCHESTER, N.Y.":PRINT
BM = 120: INPUT "ENTER BEATS PER MINUTE (4TH NOTE)
SB = VAL (B$): IF SB > 0 THEN BM = SB
BV$ = "4TH":BV = 1:SB = 60 / BM:
TM = INT (((SB * (IE + 6)) / 36372) + 0.5)
ASSEM = 24576: DIM KV(ll,l): DIM NT(199,3): FOR X = 0 TO 11:
READ NO,NP:KV(X,0) = NO:KV(X,l) = NP: NEXT :KL$ = "ABCDEFG"
VT = 1:HT = 1:XI = 4:NO = 0:NP = 0:ST = 13.75:SC = ST:OL = 1
X = PEEK (ASSEM): IF X < > 165 THEN IN$ = CHR$ (4):-
PRINT IN$;"BLOAD ASSEM SOUND"
HOME : RETURN
DATA 81,1,17,1,87,2,69,3,5,3,82,4
DATA 18,4,84,5,89,6,25,6,85,7,21,7
VTAB 21: HTAB 1:
PRINT "PROGRAM END ROUTINE ": END

o

o
190
195
200
205

° „210
215

O 220
225

O 230
235

240
O 245

255

260

265

° 270

275
O 280

21: PRINT "TABLE FULL !! ANY KEY
:: GET IN$: NORMAL

VT - 1:HT = 37: IF NO < 200 THEN NO = NO + 1

",B$:

O

285
290
295
300

the initial beats per minute.
Option "C ” does not directly END

the program, rather it passes control to
line 300. The lines 300 through end
have been left open so that you can save
the note table, or whatever else you
may want to do before ENDing.

Any key oth er than those
mentioned above will be ignored. The
program will just continue along its
merry way.

The note table is defined in line 270
DIM NT(199,3)
where
NT(NO,0) = low order value for the

N T|N O ,l) = high
order value for the note.
NT(NO,2J = low order value for the

note length.
NT[NO,3] = high order value for the

note length.
The current number of table entries is
equal to NO - 1. The value of ASSEM is
also set in line 270.

Even though the number of entries
can be made greater than 200, it is not
suggested because you will lose the
relationship between the screen notes
and the notes in the note table once
more than 200 notes are entered.

In conclusion, I would like to point
out that the note table (NT) uses over 9
times more space than is necessary to
store the note values and their lengths.
This is because we are using an array
defined by a Basic program. Because of
this it is not possible to use HGR (page
1). While the basic program uses about
2400 bytes, the note table requires an
additional 9600 bytes to save the 800
bytes needed by the assembler
program.

While it is possible to POKE these
values directly into RAM, it should be
noted that it will actually require 1000
bytes to store the data. An additional
byte is needed for each note to indicate
a rest value. In the basic program a rest
note uses the same 4 data bytes as any
other note, except that the low order
rest value is negative (NT(NP,0))...line
100 in the program.

When the notes are replayed the
absolute value (ABS) value is POKEed
into address $FC (252), and the
assembler program is altered so as not
to reference the speaker location when
a negative value is encountered. But it
is executed in the same manner as any
note. So if you decide you need more
space, or want to use HGR, then
remember to include the additional
byte for each note.

JMCRO

22 MICRO No. 72 - June 1984

tia tu n e

Under the 64 ROM
by John A. Winnie

Free up your BASIC memory without sacrificing
program messages using the 16K of RAM under
the BASIC and Kernal ROM chips.

Requirements: Commodore 64

Although the Commodore 64 has a
hefty chunk of free BASIC memory
(38911 bytes at power-up), sometimes
it can still turn out that additional
memory will make the difference
between a polished program and dull
code serio u sly w eakened by
compromises. In many programs the
chief memory-muncher is the string
data: the various descriptions and
messages that eat up BASIC bytes by
just being in the program, and then go
on to cost even more when they are
accessed by arrays. A good adventure
game, for example, may inflict
hundreds of different messages on its
player ("You can't take that. It's tied
down.''), and if these are all stored in
the BASIC programming area, valuable
programming space is lost.

The program presented here, called
"Printout'', solves the problem of
string data storage simply and
economically. Although it is written in
machine language , it is unnecessary to
know machine language in order to use
it most effectively; however, it is a
good idea to know just what it does.

What Printout Does

Between them, two ROM (read-only
memory) chips in the 64 use up to 16K
of what would otherwise be free RAM.
The first chip contains the 64's version
of BASIC and lies over memory
addresses 40960 through 49151
($A000-$BFFF). The second ROM chip
contains the operating system of the 64
and is called the "Kernal” . It covers
memory addresses 57344 to 65535
($E000-$FFFF). Since the first chip
contains BASIC and the Kernal ROM
contains the operating system 's
machine code routines, it seems that
the 16K of RAM has been sacrificed to
some good purpose-and, of course, this
is quite true. Remarkably, however,

much of the sacrifice can—with a little
finagling-be avoided altogether.

First of all, data may be placed in
these locations in the usual ways: by
direct pokes from BASIC, for example,
or by loading a file straight into the
under-ROM area. The trick is to get the
data out once it has been stuffed in. A
PEEK to any of these locations, for
example, will read the contents of the
ROM chip at that address, not what is
stored in the underlying RAM location.

Fortunately, there is a way around
the problem. Both ROM chips may be
switched out by a simple poke
(POKEl,52), exposing the underlying
RAM in all its glory! Peeking is now
added to poking-or would be, except
for one thing: with BASIC so cavalierly
switched away, so too for PEEKing!
This is why we need machine language
to finally solve the problem. We can
switch off the two ROM chips using
BASIC, but we need machine language
to access the now-exposed RAM, and,
when we are through with that, switch
us back again to BASIC.

Now Printout does all this and
more. Once the ROM chips have been
switched out, Printout prints to the
screen any messages that have been
stored under the ROM chips. Of course,
the messages must be stored there in
the appropriate form. First of all, each
message must be surrounded by zeroes;
the message itself is coded by simply
using the ASCII number of each of its
characters. Thus the sequence:

H E L P ! E R R O R

0 , 7 2 ,6 9 , 7 6 ,8 0 , 3 3 ,0 , 6 9 ,8 2 , 8 2 ,7 9 , 8 2 ,0 ,

when stored in memory locations
40960 through 40972, encodes the two
messages: "HELP" and "ERROR".
When strings are stored in this way, all

that Printout needs to know is which
message you would like printed out
(counting 0,1,2,...), and where your
block of messages begins (in this
example, at 40960). So to use Printout,
POKE the message number into
memory location 2 (decimal), and the
low and high bytes of the base address
of the message block into locations 251
and 252 (decimal), respectively. (Much
of this is done for you by subroutine
50000 in the program Printoutloader of
Listing 1).

Using PRINTOUT

Listing 1 is a BASIC loader for Printout.
After adding it to your program, a call
to subroutine 60000 loads Printout into
memory locations 828 through 883.
The other subroutine included (50000)
may now be called when a message is
to be printed. It needs to be supplied
with only two pieces of information.
First, the base address of the block
where your messages are stored; this is
the value of the variable ADD. And
second, the message number must be
supplied; this is the value of the
variable ME. When subroutine 50000 is
now called, the ME-th message will be
printed, beginning at the current cursor
position. (Normally, that cursor
position will be set by the rest of the
program before calling this subroutine).
The load address (828 decimal) in lines
50010 and 60002 of Listing 1 (and
Listing 3) is not critical. Since the
machine code is relocatable, any free
area of RAM may be used to hold
Printout's 56 bytes.

Of course, in order to use Printout,
messages must be previously stored
under the BASIC or the Kernal ROMs.
An easy way to do this is to create a

No. 72 ■ June 1984 MICRO 23

program file of these messages, and
then load this file at the beginning of
your program. Listing 2,
Messagewriter, is designed to create
such files. In line 20 you specify the
total number of messages |minus one),
and in line 25 you specify the base
address of this block of messages. You
supply the actual messages in the data
statements beginning at line 500. Since
you will need to keep track of your
messages and their numbers,
Messagewriter also generates a
numbered, hardcopy list of your
messages.

Listing 3 provides an example of
using Printout to list the messages used
earlier in Listing 2. It assumes that you
already have run the program of Listing
2 and have the program file
'‘Messages” on your disk. Although
the program of Listing 3 does not do
anything spectacular, it does wrap up
all that has come before. If you
understand how it works, then the
power of Printout and the new 16K that
comes with it is at your fingertips! One
more thing. Since Printout places no
restrictions on string length, an entire
screen may be stored under R O M as a
single 999 byte string. When Printout is
called, the stored screen is displayed
almost instantly, certainly much more
rapidly than when a screen is loaded
from a disk file.
To the Machine Language Beginner
As the assembly listing shows, Printout
is in general quite straightforward. The
one slightly tricky thing is that it uses a
Kernal R O M routine (CHROUT, at
$FFD2] on data stored under the Kernal
R O M itself. So the Kernal, after first
being switched off to permit access to
the character data, is next switched
back on to permit the Kernal routine
CHROUT to print out the character.
Next-and here is the tricky part-
the Kernal is switched back off again to
get the next character. But CHROUT,
it happens, restores the hardware
interrupts along its way!
Should such an interrupt now take
place while the Kernal R O M is
switched out, the system will crash,
since the interrupt routines are
themselves Kernal R O M routines.
Hence the added step (SEI) to
repeatedly disable the hardware
interrupts each time CHROUT is used.
The moral should be clear: even though
interrupts have been disabled initially,
each time a Kernal routine is used-any
Kernal routine-the safest bet is to
again disable interrupts before going on
to switch off the Kernal ROM.

PRINTOUTLOADER
50000 REM * PRINTOUT SUB *
50005 REM * INPUTS ARE ME AND ADD *
50010 POKE 2,ME:HB=INT(ADD/2 56):LB=ADD-2 56*HB:

POKE 251,LB:POKE 252,HB:SYS 828:RETURN
60000 REM * LOAD PRINTOUT DATA SUB *
60002 FOR 1=828 TO 883:READ Q:P0KE I,Q:NEXT:RETURN
60005 DATA 120,169,52,133,1,162,255
60010 DATA 160,255,198,252,232,200,208
60015 DATA 2,230,252,177,251,240,2
60020 DATA 208,245,228,2,208,240,200
60025 DATA 208,2,230,252,177,251,208
60030 DATA 6,169,55,133,1,88,96
60035 DATA 162,55,134,1,32,210,255
60040 DATA 120,169,52,133,1,208,227

MESSAGEWRITER
10 REM * MESSAGEWRITER *
20 NMESS=5:REM * NUMBER OF MESSAGES -1 *
25 ADD=57344:REM * BASE OF MESSAGE BLOCK *
30 RESTORE:PRINT"{CLEAR,DOWN10}"

TAB(10)"PRINTOUT OR FILE(P/F)?"
35 GET A$:IF A$=""0R(A$<> "P"ANDA$<> "F") G0T035
37 PRINT"{CLEAR,DOWN10}"TAB(15)"THANK YOU."
40 IF A$="P"THEN GOSUB 100:GOTO 30
45 REM * WRITE MESSAGE FILE *
50 OPEN 15,8,15:PRINT#15,"S0:MESSAGES"
60 OPEN 5,8,5,"0:MESSAGES,P,W"
65 HB=INT(ADD/256):LB=ADD-256*HB
70 PRINT#5,CHR$(LB)CHR$(HB);:

REM * FILE WILL LOAD AT ADDRESS = ADD *
75 FOR 1=0 TO NMESS:READ D$:L=LEN(D$)
80 PRINT#5,CHR$(0);
85 FOR J=1 TO L:PRINT#5,MID$(D$,J,1);
90 NEXT:NEXT
95 PRINT#5,CHR$(0); -.CLOSE 5'.CLOSE 15:G0T0 30
100 REM * PRINTOUT SUB *
110 OPEN 1,4:PRINT#1,CHR$(14)"MESSAGE LIST"CHR$(15)
120 FOR 1=0 TO NMESS:READ D$:PRINT#1,I,D$:NEXT
130 PRINT#1:CL0SE1:RETURN
500 DATA HELLO THERE,YOU ARE IN A DARK CAVERN
510 DATA WHY NOT?,THAT WAS VERY FOOLISH
515 DATA STOP RIGHT THERE!,

YOU HAVE BEEN KILLED. TRY AGAIN?

MESSAGE DEMO'
5 REM * MESSAGE DEMO *
10 IF L=0 THEN L=1:L0AD "MESSAGES",8,1
20 GOSUB 60000:REM * LOAD PRINTOUT *
100 ADD=57344:REM * BASE ADDRESS OF MESSAGE BLOCK *
105 NMESS=5:REM * (NUMBER OF MESSAGES)-1
110 FOR 1=0 TO NMESS:ME=I:GOSUB 50000:PRINT CHR$(13):NEXT
120 GOTO 110
50000 REM * PRINTOUT SUB *
50005 REM * INPUTS ARE ME AND ADD *
50010 POKE 2,ME:HB=INT(ADD/256):LB=ADD-256*HB:

POKE 251,LB:POKE 252,HB:SYS 828:RETURN
60000 REM * LOAD PRINTOUT DATA *
60002 FOR 1=828 TO 883:READ Q:P0KE I,Q:NEXT:RETURN
60005 DATA 120,169,52,133,1,162,255
60010 DATA 160,255,198,252,232,200,208
60015 DATA 2,230,252,177,251,240,2
60020 DATA 208,245,228,2,208,240,200
60025 DATA 208,2,230,252,177,251,208
60030 DATA 6,169,55,133,1,88,96
60035 DATA 162,55,134,1,32,210,255
60040 DATA 120,169,52,133,1,208,227

O

©

©

©

o

o

©

o

©

24 MICRO No. 72 ■ June 1984

Listing 1

O

©

PRINTOUT STRINGS STORED UNDER BASIC
OR UNDER THE KERNAL.

STRINGS ARE STORED IN THE FORM:
0 , - , - , - , 0 , - , - , - , - 0 ,— ETC.

THE STRING PRINTED IS THE N-TH STRING STORED
IN THAT BLOCK OF STRINGS WHICH BEGINS AT THE
BASE ADDRESS POINTED TO BY BASELO,BASEHI.

THE STRING NUMBER N IS PREVIOUSLY POKED

RELOCATABLE

; INTO MEMORY LOCATION 2

0828
t

f ORG $828 ;

0002 'string EQU 2
00FB BASELO EQU 251
00FC BASEHI EQU 252

0828 78 SEI
0829 A9 34 LDA #52
082B 85 01 STA $01

082D A2 FF
j

LDX #255
082F A0 FF LDY #255
0831 C6 FC DEC BASEHI

0833 E8 'count INX
0834 C8 HUNT INY
0835 D0 02 BNE GTBYTE
0837 E6 FC INC BASEHI

0839 B1 FB ’gtbyte LDA (BASELO),Y
083B F0 02 BEQ CHECK
083D D0 F5 BNE HUNT

083F E4 02 ’check CPX STRING
0841 D0 F0 BNE COUNT
0843 C8 PRINT INY
0844 D0 02 BNE OUTPUT
0846 E6 FC INC BASEHI
0848 B1 FB OUTPUT LDA (BASELO),Y
084A D0 06 BNE CHROUT
084C A9 37 LDA #55
084E 85 01 STA $01
0850 58 CLI
0851 60 RTS

0852 A2 37 *CHROUT LDX #55
0854 86 01 STX $01
0856 20 D2 FF JSR $FFD2

; DISABLE INTERRUPTS
; OUT KERNAL/BASIC

; SET CNTRS

NOT PAGE END? GO ON.
PAGE END. NEXT PAGE.

j GET BYTE
A ZERO. THE RIGHT ONE?
NOT ZERO. KEEP HUNTING.

THE RIGHT ZERO?
NO? FIND NEXT ZERO
READY TO PRINT
NOT END OF PAGE? PUT IT OUT.
END? TURN PAGE.

; GET CHARACTER
NOT END OF BLOCK? PRINT IT.
END OF BLOCK. RESTORE KERNAL.

RESTORE INTERRUPTS
DONE!

RESTORE KERNAL/BASIC

CHROUT(KERNAL)
; TRICKY! $FFD2 RESTORES INTERRUPTS,
; SO THEY MUST BE DISABLED AGAIN.

0859 78 SEI
085A A9 34 LDA #52
085C 85 01 STA $01
085E D0 E3 BNE PRINT

TAKE OUT KERNAL

NEXT CHARACTER

0860 END

©

No. 72 - June 1984 MICRO

A
Better
Random
Number

Generator

by H. Cem Kaner and John R. Vokey

Reap the fruit of 7 years of labor—a superior
version of the random number generator, for
simulations, gambling, forecasting.

NOTE: The work for this article was
supported by a research grant from the
Natural Sciences and Engineering Research
Council of Canada (NSERC) to Dr. A.B.
Kristofferson, and by NSERC Postgraduate
Scholarships to the authors. The authors
would also like to thank John Lyons for the
many helpful discussions o f RNG design.

In this article we present an assembly
language program, interfaced to
Applesoft via the USR function, which
provides three in d ep en dently
addressable RNGs. Because there is so
l i t t le av a ilab le in re la tiv e ly
nontechnical language about RNGs,
and because of their growing
importance, we will also describe how
we chose them. Finally, we will outline
some of the tests that we performed on
them. The quality of a random number
generator is not determined by the
elegance of its code, but instead by the
randomness of the sequences of
numbers that it produces. The test
results are always the most important
part of the documentation of any RNG.

The RNG Algorithm

There are many ways to produce
pseudo-random numbers, a few of
which work reasonably well. Donald
Knuth's excellent 178-page chapter on
RNGs describes quite a few of all
varieties. We use what is called a mixed
linear congruential generator. Suppose
that you store the numbers you
generate in an array, so R[l] is the first
number, R[2] is the second, and so on
through R[N]. Let a, c and m be
constants. We'll be concerned with
their values later. The mixed linear
congruential generator is defined by the
following equation:
R [N +1] = (aR [N] + c) m odulo m

In other words, if your last random
number was R[N], your next one is
obtained by multiplying R[N] by a,
adding c to the product, and finding the
value of that result modulo m. As usual
(see the integer BASIC manual on
MOD for more details] to obtain a
number modulo m you divide it by m
but keep the remainder rather than the
quotient. For example:
13 mod 10 = 23 mod 10 = 972863 mod 10 = 3

A mixed congruential generator
does not produce “ truly random"
numbers (no software RNG can]
because it is possible, given knowledge
of a, m and c to predict the next
number from the last. However, if a
and c are properly chosen and m is
reasonably large, a person who did not
know the formula, or even one who did
know it but who didn't have a very
good calculator handy, would be hard-
pressed to predict the next number.

Selection of the RNG's Parameters

Not every mixed linear congruential
random number generator is good.
Most are terrible. The values of a, c and
m determine how good the RNG will
be. These three numbers are called the
parameters of the generator. Different
considerations are involved in choosing
each number. Generally, m is chosen
first, then a and c.

It is easy to find values of a and c
which will guarantee that the RNG will

Random number generators
(RNGs for short) are functions that
produce pseudo-random numbers.
Usually the numbers produced are
fractions between 0 and 1. Ideally, a
computer language’s RNG should be
able to generate every fraction that
the language can represent, every
fraction should be as likely to be
generated as every other, and the
order of the numbers should be
completely unpredictable to the user.
Slightly more formally, the RNG
should produce sequences of
numbers which, so far as standard
statistical tests can tell, behave in
the same way as "truly random"
number sequences would behave.

RNG’s are used to simulate
imperfectly predictable real life
events. Computer games use them in
this way. So do some insurance
companies, when setting rates.
E co n om ists , p sych o lo g is ts ,
sociologists, consumer behavior
researchers of various backgrounds,
often work with theories of such
complexity that the only way that
they can decide whether a theory is
correct is to simulate the behavior of
a population on the computer, and to
compare this with the actual behavior
shown by the groups they are
studying. Gamblers use random
number generators to “shuffle” cards
or “roll” dice. They try different
betting strategies at the computer,
where it’s free, rather than at the
casino (or the stock market), where
they can lose their shirt. Simulation
involving random number generators
is o ften ca lled M onte C arlo
simulation, after the casinos in
Monte Carlo: much of the early
research on probability and statistics
was financed by gamblers. As final
example of simulations, estimates of
the likelihood of an accident in a
nuclear reactor, and of its probable
severity , are o ften m ade by
simulation, before the reactor is built,
to check if safety measures are
adequate.

RNG’s are also used to provide
random test data for input to complex
computer programs. It is impossible
to test every branch or path in a major
program . Random inputs or
combinations of inputs often expose
bugs that a systematic selection of
test cases missed.

26 MICRO No. 72 ■ June 1984

Numerical analysts work with
RNGs to obtain numerical estimates
of the so lu tio n s of com plex
mathematical functions for which no
theoretical solutions exist, or to
provide estimates against which a
theoretical solution (which may be
wrong) can be checked.

Randomization of the order of
events in experiments, so that people
(rats, whatever) cannot predict
exactly what will happen next, has
been a necessary part of the design
of every experiment that we have run.

These are only some of the uses
of random number generators: among
other common ones are random
sampling (for surveys and for quality
control, for example), and partially
random decision making (sometimes
the best way to make an important
decision, as studied in Game Theory).

The better the random number
generator, the more lifelike or
interesting the sim ulation, the
stronger the test of the theory, the
more likely the numerical solution is
to be right, the more hidden bugs can
be expected to be found in the
program , the more valid the
statistical test, the tighter the
experimental control, the more
representative the survey, the more
unpredictable the decision.

Most implementations of high
level computer languages provide
something in their function library
that the manual calls an RNG.
Applesoft’s RND function is typical of
those we’ve seen on small systems.
The reference manual describes RND
as a source of random numbers, but it
provides no evidence whatever that
this claim should be believed, nor any
warning that it should be taken with a
mountain of salt.

RND, when subjected to standard
statistical tests, fails them badly.

We should stress here that we are
not singling out Apple for criticism. In
our experience with various mini and
microcomputers, manuals which
admit to low-grade RNG’s are nearly
as rare as language implementations
that provide an RNG worthy of the
name.

It is not surprising that many
languages’ RNGs are poor. Much of
the best research is very recent,
conducted after some of these
generators were written. Simulations
require a great deal of computer time.
They were not of general interest until
compu t e r t i me became very
affordable.

produce every number between 0 and
m-1 before the sequence starts to repeat
itself. Eventually, no matter what a, c
and m are, the series must repeat. How
long it goes without repetition is called
the period and the longest period that
you can get with a congruential
generator is m. For many reasons, the
longer the period, the better the
generator.

The second factor involved in
choosing m involves computational
convenience. As defined above, our
RNG produces integers. To obtain
fractions between 0 and 1, just divide
these integers by m. Applesoft reserves
32 bits for the digits of any number. If
we used m = 232, our sequence from 0
to m-1 would include every bit pattern
than can be stored for a number. In
general, since we are dealing with a
binary computer, so numbers are stored
as bit patterns, m should be a power of
2 .

Unfortunately, m = 232 will not
yield every fraction that the Apple can
store, because Applesoft uses an extra
byte per number to hold the exponent.
This allows representation of billions
of different very small numbers,
including numbers near 10-38. Working
with fractions of the form R[N]232, we
can produce only one number in this
region, namely zero. Tiny fractions in
floating point languages are always
under-represented by congruential

generators: many fractions that the
language can work with cannot be
generated. We can alleviate the
problem somewhat, and increase the
period, by increasing m to 240. Not
every possible fraction will be
generated with this m — R[N] would
have to be 17 bytes long for that and the
RNG would be very slow — but when m
is 2 40, R[N] can take on
1,099,511,627,776 different values,
which is plenty. This is the value we
use.

Our next decisions involve a and c
and these are more difficult. It is easy
to find values of a and c that allow the
period to be m. If a mod 4 = 1 and c is
any odd number, the period will be 240
(i.e. m). But this is only part of the
story.

As an absolutely awful example of a
full period mixed linear congruential
generator, suppose that a is 1 and c is
also 1. So our generator is defined by
R [N +1] = (R [N] + l) modulo m

It works in the sense that we will
indeed get all the numbers between 0
and m-1, but the sequence is 0, 1, 2, 3,
etc., and this is hardly random.

The apparent randomness of a
sequence of numbers is determined by
the ordering of the numbers. This is
where most RNGs, including all linear
congruential generators, have at least
some problems.

a .

10
■9

3 -s
ID
O
O
ZD
O -7

V -5

q:
S t -3
II

T -2

Ct -1

0.

• • #
•

• . .

* • . ••
•

•
•

1—
I •

• / ’ / ••.
• • .

• •
• • • •

• •

• / *
• • • • • •

• •
• •

• • • • * .
• • % • •

•• • • • • •
. ••

• • • •
• • •

• • • •
• • • • • * » • *•

• ••
«

• • •
* . • .- m

• • . * .*
• • •

• • • • * • • .
• • .• t ••

• • • • • •
• •

• •
• * • • *

• • • • • • . •

1 ,• . ft 1 ftl • I 1 ft 1
■1 -2 -3 -4 -5 -6 -7 -8 -9 10

Nth RANDOM NUMBER: R[N]
Figure 1

Linear patterning of successive pairs of numbers obtained from linear con
gruential random number generators. A good generator spreads the points
across more lines, yielding as few as possible on each line. Nonlinear soft
ware generators exhibit nonlinear patterns in graphs of this type but the
patterns are just as pronounced.

No. 72 ■ June 1984 MICRO 27

We can think about the ordering
problem by thinking about short
subsequences of the form |R[I], R[I1],
R[I2], R[IK]). Consider pairs first.
There are m2 possible pairs of numbers,
[R[I], R[I1]], between 0 and m-1 but a
generator of period m can only yield m
different pairs. Which m pairs is the
critical question.

In the case of R[I1] R[I] 1, agraphof
R[I] along one axis and R[I1] along the
other would show a single straight line.

A truly random sample of m
numbers from the possible m2 would
result in points scattered all over the
graph.

All linear congruential generators
will produce graphs which show
patterning, and that patterning will
always be a set of parallel lines (see
Figure 1). The trick is to find a
generator which produces as many of
these lines as possible, with as few
points on each line as possible. The
result will be a more even coverage of
the m2 possible pairs.

Note, by the way, that the larger m
is, the more lines we can have and the
closer they will be. The shorter the
period, the poorer the generator.

A two dimensional graph, with R[I]
on one axis and R[I1] on the other, is
graph of a plane. A one-dimensional
graph is simply a line. A three-
dimensional graph, of a cube, contains
planes just as a two-dimensional graph
contains lines. If we plot sequences of
three pseudo-random numbers, (R[IJ,
R[I1], R[I2]), on a cube, all of the points
will fall on parallel plane and all of the
points on each plane will be on parallel
lines. In this case, only m of a possible
m3 triplets can be produced by the
RNG, so coverage of the cube is even
more sparse than coverage of the plane
in the two dimensional graph. The
problem of patterning of triples is
potentially more severe than patterning
of pairs. In higher dimensions (longer
seq u en ces), we find p ara lle l
hyperplanes, and sparser and sparser
coverage of the space.

We call this problem of patterning
of linear congruential generators the
lines and planes problem. Our goal is to
minimize it. The more lines, planes,
and hyperplanes we can cause our RNG
to generate, the fewer the points on any
given line, plane, etc., and the less
patterning there is. In a truly random
sequence, there is no patterning, and
this is what we want to approximate
with our pseudo-random sequence.

(If you are intrigued by this
discussion but a little lost, George

M arsag lia 's chapter in the
Encyclopedia of Computer Science is
excellent and quite readable. Knuth's
discussion of random numbers also
deals with this problem at great length,
w ith num erical exam ples and
exercises. It is more technical, but in
our opinion it is the best source
available. For references to the original
research, see Knuth).

The value of the RNG multiplier, a,
is the main determinant of the degree
of serial patterning. We want to choose
a so as to produce as many lines and
planes as possible, and to space them
out as evenly as possible. This can be
translated into the goal of minimizing
the maximum distance between any
two lines (planes, hyperplanes, etc.).
Let 1/V2 be the maximum distance
between any adjacent lines in a graph
(such as Figure 1) of R[I1] against R[I].
Let 1/V3 be the largest distance
between pairs of parallel planes in the
graph of triplets (R[Ij, R[I1], R[I-2J), and
so on. Our goal is to maximize V2, V3,
V4, V5 and V6. (Note that these V’s are
inverses. The bigger the V, the smaller
the largest distance between lines or
planes in the graphs). We stop at 6
because if these values are good, higher
dimensional sequential interactions are
a lm o st certa in ly u n im p ortan t.
According to Knuth, we would be
pretty safe stopping at 4.

The V values for linear congruential
generators can be determined using a
method first proposed by Coveyou and
McPherson in 1965, which is based on
the finite Fourier transform. The
mathematics underlying this test, the
Spectral Test of an RNG, are beyond
the scope of this article, but they are
well described by Knuth. The Fourier
transform itself is a mathematical
technique for detecting and describing
repeating patterns in a set of data.

To compute the values of the V's,
we used Knuth's Algorithm S, which
requires high precision Integer
arithmetic. Apple's Pascal provides
Long Integer type variables, which
allowed us the Integer precision we
needed. (We do not list this program
because it is a direct implementation of
Knuth's algorithm S). The algorithm
takes only a and m as input - the value
of c is irrelevant. It quickly determines
the values of the V's for the output of
the generator across its entire period.

This is so spectacular that we want
to say it again. The statistics V2, V3,
and so on, which take only minutes to
calculate, take into account the
ordering of every one of the

1,099,511,627,776 different values the
random number generator produces. (!)

Until the theorems behind this
amazingly powerful algorithm were
proved, testing of random number
generators was done by examining a
relatively "sm all" subset of the
sequence the generator produced.
"Sm all” here means maybe a million
numbers. On an Apple, this type of
testing can take months of computer
time. (We report some subsequence
tests below, and they took days. Tests
of other generators not discussed here
actually did take months). One of the
reasons that old generators are so poor,
relatively speaking, is that it took so
long to test one. T estin g of
replacements was a tedious and very
expensive business.

To choose the multipliers for the
three generators we present here, we
computed V values for just over 30,000
different values of a. (A life's work for
at least 100 long-lived Apples if they
were all tested in the old ways, and this
only took two weeks). We stopped
when three suitable values of a were
found.

The values of the V's tell us what
the largest distance is between a pair of
lines, planes or hyperplanes in a sub
sequence graph of the entire period.
These values depend on the period of
the generator: the larger m is, the
larger V can be. These numbers can get
so large (see Table 1) that it’s very hard
to tell whether a value of V is good or
not. For any given period, there is a best
possible value for each of the V’s. The
easiest way to tell how a given V value
rates is to convert to a different number
[call it U), that takes the period of the
generator into account. Knuth gives
formulas for converting from V2 to U2,
V3 to U3, ..., V6 to U6. The Spectral
test is usually defined in terms of the U
values. If U is greater than 0.10, the
generator "passes" the test. According
to Knuth, every generator known to be
bad fails the test at this level. He
defines a "pass with flying colors" as a
value of U greater than 1.0.

The Spectral test is the most
powerful test known of random
number generators. The U and V values
should be part of the documentation of
any RNG. We list the values of the
three generators presented here in
Table 1. Our smallest U is 2.37.

For comparison, the U values of
RANDU, a very common RNG on
32-bit mainframes, are 3.14 (U2), less
than 0.0001 (U3), less than 0.001 (U4),
less than 0.01 (U5) and 0.02 (U6).

28 MICRO No. 72 - June 1984

Table 1
Results of the Spectral Tests

Generator X USR(1) YUSR(O)
Z USR(-1)

Multiplier 27182819621
8413453205

31415938565

Additive
Constant

3 99991
26407

V2 982974962600
1112748837514

908473954394
V3 72937326 103184754

79566866
V4 1023550

805970
1036504

V5 58786 60670
59710

V6 9916 8142 11636

U2 2.81 3.18 2.60
U3 2.37 3.99 2.70
U4 4.70 2.91 4.82
U5 4.01 4.34 4.17
U6 4.58 2.54 7.40

Knuth (pp. 102-104) provides a table
of U and V values for many mainframe
generators. Most (fortunately) are
better than RANDU. Some are better
than the three we are presenting here,
but not many of them.

The problem with many of the older
generators is that they were speed-
optimized. A full period is obtained
from any generator whose c is odd and
whose a is any even power of 2, plus 1.
These are not the only full-period
multipliers (far from it), but if you
choose a so that it is a power of 2, plus
1, all that you have to do in the
m u ltip lica tio n is to sh ift the
accum ulator a few tim es (the
multiplication degenerates into a
simple set of shifts), and then add.

As an example of a fast generator, if
you choose a = 28 +1 and a 32-bit
generator, as was recommended for the
Apple not too long ago by someone
else, you don't even need to shift
anything. Add the lowest byte to the
second lowest. Add the (8-bit plus
carry) sum of these to the third lowest
byte. Add the (8-bit plus carry) sum of
these to the high byte and you are done.
This is short, sweet, elegant, very fast,
it passes some of the sub-sequence
tests, but it fares badly on the Spectral

test and it would probably be
inadequate for many applications.

We aren't going to say who
suggested this generator, or in what
magazine, because it could needlessly
embarrass an author who doesn't
deserve to be embarrassed. He
consulted a standard, fairly recent
(1971), and well written text on
random numbers (Newman & Odell's,
The Generation of Random Variates),
followed their recommendations, and
conducted their tests. Unfortunately,
the importance of the lines and planes
problem wasn't widely enough or fully
enough realized in 1971, and the full-
period tests, many of which had not yet
been developed or polished, were not
widely enough appreciated. Newman
and Odell's otherwise very good
summary of generation techniques and
applications of random numbers made
virtually no mention of full-period
results. Their recom m endations
favored multipliers with few bits set,
such as 28 +1 or 28+3. Similarly,
Abramowitz and Stegun's numerical
bible (also known as the Handbook of
M athem atical Functions, 1964)
recommends generators of the power of
2 plus 1 type. Finally, and in another
book deserving a home on any

programmer's bookshelf, Carnahan,
Luther and Wilkes’ Applied Numerical
Methods (1969) makes much the same
recommendation.

The very fast generators, with few
b its set to allow jazzed-up
multiplication routines, have generally
fared badly when subjected to the
Spectral test. RANDU, for example,
used a multiplier of 216 + 3. The
problem seems to be that so few bits are
set, and so few operations are thus
performed on the number, that the
number's digits are not sufficiently
scrambled each time. In the 1950's and
early 1960's, generators of this type
were considered ideal, rather than poor.
They passed many of the simpler tests
of randomness. And, critical for large
sim u la tio n s then, fast m eant
(relatively] cheap. (We keep talking
about cost. Here's an illustration that
makes the point. In 1978-79, Kaner and
John C. Lyons conducted a moderately
large simulation of the behavior of the
Kolmogorov-Smirnov and related
statistics, using three PDP-11 lab
minicomputer. Some tests of the
validity of their work required greater
numerical precision than was easily
obtained on the PDP’s, so they also did
some work on a CDC 6400 mainframe.
Out of curiosity, they ran benchmark
tests to determine how much the
simulation would have cost if all of the
work had been done on the CDC. It
would have cost over $100,000, or
more than enough, at that time, to but
three well equipped PDP-ll's).

The recognition that tests of
sequential patterning are more
important than tests of frequency
(discussed below) for generators that
produce all possible numbers between
0 and m, and the discovery of fast
techniques to search for patterns across
the entire period, have caused
something of a revolution in the way
RNG's are created and tested. Almost
all of this has taken place over the last
20 years, and much more has yet to
come.

Readers familiar with statistical
techniques may have grumbled, by this
point, that there were tests of
sequential patterning long before the
Spectral test. We will mention the
results of a few of these below, but one
of them, the Serial Test, is relevant
here.

Suppose that you split the range of
fractions generated (R[N]m) into 10
equal subranges, 0 to . 10, . 10 to .20, .20
to .30 and so on. If you generate a
sample of 10,000 numbers, you can

No. 72 - June 1984 MICRO 29

count how many fall in each subrange.
A random source would produce about
1000 for each, and this can be compared
to the number that the RNG produces.
This simple test, of the frequency of
single numbers (rather than of pairs or
triples), is called the Chi-Square Test.
Similarly, you can examine the pairs,
(R[I], R[Ilj). From a sample of 10,000,
you should obtain approximately 100
of each type of pair. That is, in about
100 cases, both R[I] and R[I1 J should be
between 0 and .10. In another 100
cases, R[I] should be less than .10 while
R[I1] is between .10 and .20, and so on.
There are 1000 types of triples (R|I|,
R[I1], R|I2]) and on average we'd expect
to obtain 10 of each. The traditional
test used to examine the difference
between the actual number of each
number, pair, triple, etc. and the
number that we should obtain on
average is called the Serial Test. There
are a number of versions. We prefer
Good's, developed in 1953. [Knuth
presents a different one that is also
popular.)

The Serial test is a subsequence
test. You take a sample of the numbers
produced by the generators (we used
the first 850,000 from each in our tests,
for example). If you didn't mind tying
up your Apple for a few years you could
test the entire output of the RNG (all
trillion-plus numbers), obtaining a full-
period test the hard way. For such a
large sample, this test is known to be
extremely sensitive to deviations from
randomness.

Over the last ten years, Neiderreiter
has proved a very important set of
theorems about the relationship
between the Spectral test and the full-
period Serial test (see Knuth for
references and details). In short, any
RNG that passes a full period Spectral
test will also pass a full period Serial
test. By using the Spectral test to
determine the three values of a we
ensured that the RNGs would pass both
tests.

We have now settled on values for
m and a. How do we decide what c
should be? The additive constant in the
generator makes no difference for the
Spectral test, but it does influence the
value of another traditional test of
ordering, the Serial Correlation Test.
You can think of the serial correlation,
lag K, as a measure of the degree to
which the relationship between R[I]
and R[IK| can be described as linear. A
value of 0 indicates that there is no
linear relationship between the random
number produced now by the RNG and

the value that it will produce K calls
from now. A value of ± 1 indicates a
perfect linear relationship, and an
atrocious RNG.

K n̂uth’s Theorem K gives a method
to establish upper and lower bounds on
the correlation, across the entire
period. We applied it to test several
additive constants, for each of the
RNGs, for serial correlations lag 1
through 20 (again in a Pascal program
not listed here that followed Knuth
directly). There were thus 60
correlations, 20 for each generator. For
the values of c chosen, the largest
correlation lies somewhere between
-0.00000001135 and 0.00000000569.
The second worst case lies between
-0.00000000038 and 0.00000000072.
We don't know the exact values, just
the upper and lower bonds on the
correlations, but whatever they are
they are pretty close to zero, which is
where they should be.

In summary, the modulus value of
240 resulted from a compromise
between considerations of speed and
space on the one had, and of period
length and tiny value representation on
the other. The critical full period tests
from here were tests of sequential
relationship. Equal frequency is, of
cou rse, a m ajor c r ite r io n of
randomness, but this entered into our
parameter selection only insofar as
values of a and c that would not
guarantee equal frequency were
rejected automatically. The parameter
selection was determined, for each
generator, by performance on the major
full period tests of sequential
relationship.

Empirical Tests of the RNGs

Full period tests only tell us about
the performance of the RNG across the
entire period. They do not guarantee
that the sub-sequences will be good. It
could be that a strong trend in the first
100.000 values will be counterbalanced
by a reverse trend in the next 100,000,
and so on. Since no application that we
know of would use the full trillion
number period, the only way to be
confident about quality for actual use is
to examine the RNG's sub-sequence
behavior.

To do this, we ran a number of
standard statistical tests on the output
of each generator, examining the
output in batches (sub-sequences) of
1.000 to 10,000. For each test,
sampling started at the (same) starting
values of the generators. Many users

will only need these first few hundred
thousand numbers, so these should be
the ones most carefully examined.

1) Serial Tests
We described these in the final

discussion of the Spectral test, above.
Samples of 10,000 numbers were tested
for simple frequency (number of R[I]'s
< .10, between .10 and .20, etc.) and
for clustering of pairs and triples.
Eighty-five batches were examined and
the 85 results, for each test and each
generator, were compared to the
distribution of results we would expect
from a random source, using the
Kolmogorov-Smirnov Test. All three
generators passed the simple frequency
(p> .10) and triples [p> .20) tests. The
generators listed as X and Y in Table 1
passed the doublets test, but Z did not.
The problem with Z, which we will see
again later, is that it does too well on
these tests.

If you test a truly random source
many times, it will sometimes fail a
test of randomness and it will
sometimes only marginally pass it. Not
often, but sometimes, and we can
calculate how often theoretically. Z's
performance was sometimes poor, but
not often enough to mimic a random
source (.05 > p > .02). Since nothing
can be "more random’’than a "truly
random'' source, this must be a flaw in
Z.

It should be realized, though, that
these tests are very sensitive to minor
deviations from random source
behavior when such huge (850,000)
sample sizes are involved. Z does not
perform ideally, but its performance is
far from bad.

2) Frequency Tests
Equal frequency over the full period

is guaranteed in a full period generator:
one and only one of each number is
produced each time through the trillion
number series. But the fact that all
possible numbers will eventually
appear is no guarantee that they will
come in a reasonable order. It all too
often turns out that an RNG yields too
few, then later too many small (large,
whatever) numbers. We described the
Chi-Square test of frequency as a
special case of the Serial test.
(Historically, the Serial was an
extension of Chi-Square). A different
test requires no grouping of the
numbers and it is often more sensitive
to departures from equal frequency
than Chi-Square. This test, the
Kolmogorov-Smirnov test (KS test for

30 MICRO No. 72 • June 1984

short), compares the proportion of
numbers generated that are less than
any given number (across all numbers
between 0 and 1) with the proportion
that we'd expect from a random source.

A hundred such tests, for each
generator, were run on batches of 1,000
numbers, and the KS test was then used
to compare the distribution of KS
values from these 100 tests with the
distribution a truly random source
would give. X and Y passed (p > .20). Z
failed, even though it had already
passed Chi-Square. The problem with
Z, as before, was that its test
performance was too good, too often
(.05 > p > .02). This is a most unusual
problem for an RNG, but searching
techniques for "terrific'1 generators,
like the search we performed across
30,000 potential generators, are
becoming commonplace, so we can
expect this to arise more often.

3) Runs Tests
A run up is a succession of

increasing numbers (eg. .1, .2, .35, .36)
which ends when the next number
generated is lower than the last. A run
down is similar. In this case,
successive numbers get smaller. The
number of increasing or decreasing
numbers in a run is the length of the
run. Tests of how many runs, and how
many runs of each length, are further
tests of sequential trend in the RNG.
Both types of tests were run, for each
generator, on a sample of 50,000
numbers. All generators passed them
handily.

4) Other Tests
We developed these generators two

years ago (summer, 1981) and have
used them often since. Kaner has
mainly used them to simulate logistic,
triangular, normal, and geometric
distributions, and the behavior of
various functions of variables having
these distributions (such as the
kurtosis of weighted sums of a logistic
plus a triangular plus a geometric,
which is an important variable in a
theory of time perception that he works
with). Z was never used in these
simulations. X and Y performed quite
adequately. Numerous comparisons of
theoretically predictable values with
the simulation results were made along
the way, and none of the comparisons
suggested any problems with the
RNGs.

Vokey has conducted simulations
involving binomial, t, F, and various
other d istributions of common

hypothesis testing statistics, and of
m ultinom ial and hypergeometric
distributions and functions of these
involved in theories of choice and
category learning. X and Y have
performed well consistently. Z has
performed strangely: extreme values of
complex statistics are not as likely as
they should be with Z.

In sum, X and Y have passed all
tests, theoretical (full period) and
empirical (sub-sequence). Z's sub
sequence behavior has been less good
(i.e., too good), and the more of it that
we see, the more hesitant we are to use
it again as a "stand-alone" RNG. This
does not mean it's useless, as we shall
see below.

X and Y appear sufficiently random
for most needs, and they have
performed empirically beyond our
hopes for them. But they are not
perfect. We have minimized the lines
and planes problem, but we have not
gotten rid of it. For very precise
simulations, especially of events
correlated over time, this is not go
enough. However, if more than one
RNG is available (which is why we
provide three), we can do much better
than we have done so far.

Combination of RNGs

The graph of the last number
generated, R[N], against the number
generated this time, R[N 1), shows a
family of parallel lines when all pairs
(R[Nj, R[Nl]) are plotted (as illustrated
in Figure 1). This is the parallel lines
problem. If our goal is to break down
this linear structure, as we must do to
mimic the random structure produced
by a truly random source, why not just
randomly rearrange the order of the
numbers generated by the RNG, as it
produces them? This is George
Marsaglia's insight, and in practice it
works out very well.

Here's an example of the procedure
for wiping out the lines and planes
patterns. Generate 100 values from X
and store them in a matrix, say
XRAN[I]. Now sample a value from
generator Y and use this value to
determine which value you'll choose
this time from XRAN, i.e. set
RANDOM XRAN[Y * 100], Replace
the sampled value of XRAN with a new
value from generator X |XRAN[Y *" 100]
USR (II) and you're done.

A sequence of numbers, RANDOM
[I], will have the same good sub
sequence frequency properties as X
does, but the last remnants of

sequential patterning from X typically
disapper. Knuth gives examples of
quite poor generators which perform
surprisingly well when combined in
this way. All combinations that we've
examined in X, Y and Z have been
good, but we recommend that Z be
restricted to the role of selection
generator (the role played by Y in the
example above) due to its too equal
sub-sequence frequencies. We see no
problem in using Z as a selection
generator. Some people would argue
that Z might be a better selection
generator than X or Y. We're not sure.

A second approach is to sample
from X, then Y, then Z, in turn. This
triples the period and it can destroy the
lower-dimensional patterns (the lines],
but it will not do for all generators
combined in this way. In fact, Lewis'
Multi-RNG Theorem (pp. 18-19) states
that if any multiplier in a bank of equal
period RNG's is near sq.rt. m , the
problem will return with a vengeance.
(A sad result because the old generators
were often chosen to be near sq.rt. m
deliberately, and the older texts
recom m end this heartily). We
restricted selection of multipliers for X,
Y and Z to values far from sq.rt. m =
1,048,576 in order to allow this form of
generator combination. For these
generators, according to Lewis, the
technique should be very effective.

The last approach that we'll
mention is to use one generator (Z) to
decide which of the other two will be
sampled from this time. This only
doubles the period of the resulting
generator (if you need 3 trillion
numbers, use a different RNG), but it
does randomize the order of sampling
from the generators, which is not done
above.

It seems probably important for
each solution above that the different
generators' outputs be unrelated.
Otherwise, replacing a value of X with
one from Y, for example might make
little difference. Our final test of the
generators involved computing the
co rre la tio n (m easure of linear
relationship) between X and Y, Z and Y
and Z. A hundred correlations were
taken, on samples of 1,000 numbers
per generator. All were reasonably low.
The averages were 0.0003 for X and Y,
0.0038 for X and Z, and -0.0017 for Y
and Z, which should be low enough to
allow combinations.

Using the RNG
Once you have entered the RNG
program into your Apple (below), you

No. 72 ■ June 1984 MICRO 31

access it via the USR function. A
statement of the form
RAN USR(SELECT)

in either immediate or deferred mode,
will put a random number into the
variable RAN. SELECT must be a Real
or Integer number, variable or
expression. If it is less than 0, the
output will be from Z. If SELECT is 0,
the output is from Y. If SELECT is
larger than 0, output is from X. If
SELECT is a String, output is "?SYNTAX
ERROR".

Some of the locations of the
program hold the last values generated
by each RNG. Unless you are
debugging a program and want the
same number sequence again and again
(in which case, see below), you should
never use the same random numbers
twice. If you never have to reload the
program, this is taken care of
automatically. However, if you must
reload the program, it will start from
the initial values of 3, 99991 and
26407. It is easy to avoid this problem
by always updating your copy of the
program on the disk. At the end of
every program that uses an RNG, we
PEEK the contents of decimal locations
768 to 969 (the entire program) and
save them on the disk. (Equivalently,
BSAVE RNG, A$300, L$C9). At the
start of every RNG-using program, we
BLOAD the program from the disk.
This ensures that we always start with
the next random number in the
sequence.

To obtain a standard sequence
instead, keep another copy of the RNG
program, and deposit it into core as
needed, but never update it. This
downloads the same values every time,
yielding the same sequence every time.

The RNG Program

The program starts by determining
which generator is requested, and does
so by calling Applesoft’s internal SIGN
subroutine. Variable LOOKUP holds
the offset value, determined from the
sign variable in USR|), which, when
added to ADDBAS, yields the final
location of XADD (LOOKUP = $22),
YADD($13) or ZADD ($04). These are
the additive constants, c, of the
generators and the final locations are
used because our DO loops are most
conveniently done as 4 DOWNTO 0.

LOOKUP added to MULBAS
(m ultiplier base address) yields
XMULT, YMULT or ZMULT, the
values of a.

LOOKUP + LSTBAS points to the
last value generated from X, Y or Z,

XRAN, YRAN orZRAN, i.e. to theR[N]
ofR [N +l] = (aR[Nj+c) mod m.

By loading the appropriate value of
LOOKUP into the computer's Y
register, we access the appropriate
RNG. To avoid constantly worrying
about which generator we are dealing
with, we store the values in a set of
standard locations (freeing register Y
for other uses).

NEWRAN will hold the new value
generated. By depositing c into it
directly, we perform the addition of c
automatically. MULT and OLDRAN
hold a and R[N]. This is the function of
the program segment labelled TRNSFR.

The next section of the program
thoroughly confuses readers unfamiliar
with modular arithmetic. Remember
that the value of A mod B is the value of
the remainder of the division of A by B.
The quotient itself is irrelevant. Since
240 will divide evenly into any multiple
of 240, any number greater than 5 bytes
in length reduces to the least
significant 5 bytes (40 bits) directly.
Every bit more significant than the
40th (or 39th if you number from 0) is
an even multiple of 240 so it cannot
enter into the remainder of the
division. Combine this with the fact
that
(AB) mod C (A mod C B mod C) mod C
and you will see that we never need any
bits past the 40th. Thus we never store
them. The multiplication segment
calculates the least significant 40
binary digits and quits. The additions
always ignore the carry from the sum of
the highest bytes.

The multiplication algorithm is the
same as the one we all learned in
elementary school. Here is an example
of standard multiplication:

12 3 4 5 OLDRAN
X 11111 MULT

12 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 3 7 1 6 5 2 9 5 PROD

To multiply OLDRAN by MULT,
we multiply by the least significant
digit of MULT, shift OLDRAN left by
one, multiply the next least significant
digit, shift again, etc. If MULT held a
zero at any point, we would shift
OLDRAN for the next digit of MULT,
but not add anything to the answer,
PROD. In the RNG program, we do it
the same way, with register Y keeping
track of the bits of the byte of MULT by

which we are currently multiplying.
Index X and BYTCNT keep track of
MULT's byte. The difference between
our algorithm and the traditional one is
indicated by the vertical line in the
example. We need no digits past the
line, so we never calculate anything
past it.

The third section of code,
MOVRAN, is executed after the
multiplication and the addition are
done. We now have R[N +1], which we
store as is in XRAN, YRAN or ZRAN.
Which generator it goes back to is kept
track of by XYORZ. R[N + 1] is always
stored as a fixed-point integer, because
all computations are and always should
be fixed-point integer for the modulo
operation to work. Why store a
normalized value and have to decode it
each time?

(Note Bene: We now know of three
cases in which programmers have
''im p ro v e d ” on con gru en tia l
generators by doing floating point
computations rather than fixed integer
computations. More precision is better,
right? Wrong! Not here! The theorems
we reference above all assume fixed-
point integer arith m etic , w ith
tru n catio n not rounding. The
computational errors involved in
integer arithmetic are part of the
algorithm. Maybe floating point
calculations will be good for some
generators, but this is uncharted
territory. In our experience, this
"improvement” has always led to a
bad generator).

NRMLIZ puts NEWRAN into the
floating-point format that Applesoft
expects. To convert fixed-point to
floating-point, left-rotate the number
until its most significant digit (the first
set bit) is the leading bit of the number.
As long as we keep track of the number
of rotations performed (held in register
Y), we could convert back to fixed
point easily if we wanted to. Floating
point format, which stores an exponent
(reflecting the number of rotations)
along with the normalized digits,
allows a wider range of values to be
stored to high precision than does
fixed-point format.

Once normalization is done, we
either branch to BITSET if a set bit
(most significant digit) was found, or
fall through to it if R[N] = 0. At
BITSET we first load a 0 into a byte
reserved to hold the number's sign
(making it positive), then convert to
Apple's convention for storing
exponents. In this format, if the
exponent is $80, no rotations were
required and the number lies between

32 MICRO No. 72 ■ June 1984

0.999999999 and 0.50. If the exponent
is $70, one rotation was done and the
number lies between 0.5 and 0.25, and
so on.

To store our integer as a fraction,
we need only load the exponent with a
value no greater than $80, and less than
$80 by the number of rotations needed
to get the top set bit. This is exactly
equivalent to dividing R[N + 1] by 240,
except where R[N + 1] is 0. In this case,
the program returns 241 instead of zero.
This is close to zero but it removes the
chance of a "?DIVISION BY ZERO"
error if you divide by a random value.
This is probably academic anyway, as
the starting values ensure that 0 will be
the 1 ,099 ,511 ,627 ,776 th number
generated by each RNG.

Below are the parameters for the
Apple, Commodore, and essentially
any other 6502 machine that uses a
Microsoft BASIC. See Editor’s Note,
Page 34.

APPLE - to set up the USR function
- POKE 10,76: POKE 11,61: POKE 12,3
|These would be altered if you are
starting the program elsewhere in
Memory.)
MULTMP EQU $9D
RANEXP EQU $9D
NEWRAN EQU $9E
BYTCNT EQU $AC
SIGN EQU $EB82

COMMODORE - to set up the USR
function - POKE 785 and 786 with
address of RNG Subroutine.
MULTMP EQU $61
RANEXP EQU $61
NEWRAN EQU $62
BYTCNT EQU $02
SIGN - see below
FEXP EQU $61
FSGN EQU FEXP+5

The following is the Applesoft sign
routine converted to a form for the
Commodore. In line 0344 of the main
program there is a JSR to SIGN. The
location $EB82 is where the sign
routine is located in the Apple. For the
Commodore you can place the SIGN
subroutine anyw here as it is
completely relocatable.
Floating Point Exponent - FEXP
Floating Point Sign - FSIGN
C 64: FEXP EQU $ 6 1

F S IG N EQU $ 6 6
APPLE: FEXP EQU $9D

F S IG N EQU $ A 2

A5 61 SIGN LDA FEXP
F0 09
A5 66
2A
A9 FF
B0 02
A9 01
60 RTN

BEQ RTN
LDA FSGN
R0L A
LDA $FF
BCS RTN
LDA $01
RTS

Listing 1

0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300

0RG $300
* *

A BETTER RANDOM NUMBER GENERATOR
FOR APPLESOFT

COPYRIGHT 1984
THE C0MPUTERIST INC.
ALL RIGHTS RESERVED

* *

TO USE THE RNG SUBROUTINE, YOU MUST
SET UP THE USR FUNCTION.
SEE EDITORIAL NOTE

LOAD IN PARAMETERS FOR THE RNG'S

Z: RAN(3l4l5938565*OLD24607)MOD20

O

©

o
0300 00 00 00 ZADD BYT $00,$00,$00,$67,$27
0305 07 50 89 ZMULT BYT $07,$50,$89,$2E,$05
030A 00 00 00 ZRAN BYT $00,$00,$00,$00,$00 O

Y: RAN(84l3453205*OLD99991)MOD20

030F 00 00 01 YADD BYT $00,$00,$01,$86,$97
0314 01 F5 7B YMULT BYT $01,$F5,$7B,$1B,$95 ©
0319 00 00 00 YRAN BYT $00,$00,$00,$00,$00

X: RAN (27182819621*0LD3)MOD20

03 IE 00 00 00 XADD BYT $00,$00,$00,$00,$03 °
0323 06 54 38 XMULT BYT $06,$54,$38,$E9,$25
0328 00 00 00 XRAN BYT $00,$00,$00,$00,$00

ADD LOOKUP TO BASE L0CS FOR ©
PARAMETER ADDRESSES FOR CURRENT RNG.

032D 04 13 22 LOOKUP BYT $04,$13,$22 ; Z, Y, X

0330 00 XY0RZ BYT $00 ; WHICH GENERATOR ©
0331 00 YTEMP BYT $00 ; Y-REG ON ENTRY
0332 00 XTEMP BYT $00 ; X-REG ON ENTRY
0333 00 00 00 MULT BYT $00,$00,$00,$00,$00 q
0338 00 00 00 OLDRAN BYT $00,$00,$00,$00,$00

033D 08 RNG PHP ; SAVE EVERYTHING
033E 8E 32 03 STX XTEMP ©
0341 8C 31 03 STY YTEMP
0344 20 82 EB JSR SIGN ; SEE EDITOR'S NOTE FOR

; SIGN ROUTINE
; FAC HOLDS S OF USR(S)°

PUT FF IN A IF S0,
PUT 0 IF 0, 1 IF S0

03^7 AA TAX ; FROM THIS q
03^8 E8 INX) DECIDE WHICH RNG
034 9 BC 2D 03 LDY LOOKUP,X ; VIA LOOKUP TABLE AND
034C 8C 30 03 STY XYORZ ; SAVE IT FOR LATER

o

NOW THAT WE KNOW WHICH GENERATOR, MOVE
ITS CONSTANTS TO THE TEMP L0CS.

034F A2 04 LDX $04 ; LOOP TO TRANSFER °
0351 B9 00 03 TRNSFR LDA ADDBAS,Y ; RNG'S VALS TO

STANDARD LOCS, I.E.
0354 95 9E STA NEWRAN,X ; ADD CONST TO NEWRAN, ©
0356 B9 05 03 LDA MULBAS,Y ; MULT CONST
0359 9D 33 03 STA MULT,X ; TO MULT,
035C B9 0A 03 LDA LSTBAS,Y ; LAST RND VAL FROM
03 5F 9D 38 03 STA OLDRAN,X ; THIS RNG TO OLDRAN O
0362 88 DEY
0363 CA DEX ; 5 BYTES DONE

No. 72 ■ June 1984 MICRO 33

©

©

©

o

©

©

©

©

©

©

0364 10 EB BPL TRNSFR IF NO, DO NEXT
> IF YES, MULTIPLY.

0366 A2 04 LDX $04 INDEX OF BYTES
0368 86 AC STX BYTCNT KEEP TRACK OF BYTES

• DEALT WITH SO FAR
036A BD 33 03 NXTBYT LDA MULT,X LEAST SIGNIF BYTE
036D 85 9D STA MULTMP
036F A0 07 LDY $07 COUNT BITS
0371 46 9D MULPLY LSR MULTMP GET LEAST SIG BIT.
0373 90 0C BCC SHIFT BIT0 DON'T ADD.
0375 18 CLC BIT SET, SO ADD
0376 BD 38 03 ADD LDA OLDRAN,X OLDRAN TO NEWRAN.
0379 75 9E ADC NEWRAN,X
037B 95 9E STA NEWRAN,X
037D CA DEX ALL BYTES DONE
037E 10 F6 BPL ADD NO ADD NEXT
0380 18 CLC YES, SO PREPARE TO

SHIFT OLDRAN (IE
MULT * 2). DROP LAST
CARRY AS IT IS
0 MOD20 ANYWAY.

0381 A6 AC SHIFT LDX BYTCNT BYTES TO SHIFT
0383 3E 38 03 SHFTIT ROL OLDRAN,X
0386 CA DEX BYTE LEFT
0387 10 FA BPL SHFTIT YES, SHIFT IT.
0389 A6 AC LDX BYTCNT RECOVER BYTES.
038B 88 DEY MORE BITS LEFT

■ IN THIS BYTE
038C 10 E3 BPL MULPLY YES, MULT BY NEXT.
038E C6 AC DEC BYTCNT NO, DONE A BYTE.
0390 A6 AC LDX BYTCNT ANY BYTES LEFT
0392 10 D6 BPL NXTBYT YES MULT BY IT.

0394 AC 30 03 LDY XYORZ DONE. PUT THE
0397 A2 04 LDX $04 > NEW RND INTO THE
; RESPECTIVE RNG'S
039B 99 0A 03 STA LSTBAS,Y LAST RAN STORAGE.
039E 88 DEY
039F CA DEX J MORE TO MOVE
03A0 10 F7 DONE. NOW TO NORMALIZE FAC, ALIAS NEWRAN.

03A2 A0 28 LDY $2 ; $28 (40) BITS IN FAC.
03 A4 A5 9E NRMLIZ LDA NEWRAN FIND HIGHEST SET.
03A6 2A ROL : SIGNIFICANT

. 28 - NOT SET
03A7 B0 0E BCS BITSET \ LEAVE WHEN TOP

BIT FOUND
03A9 26 A2 ROL NEWRAN4 y NOT FOUND YET, SO
03AB 26 A1 ROL NEWRAN3 f GET RID OF THE 0
03AD 26 A0 ROL NEWRAN2 j BIT AT THE TOP.
03AF 26 9F ROL NEWRAN1 i Y WILL KEEP TRACK
03B1 26 9E ROL NEWRAN : OF OF BITS LEFT.
03B3 88 DEY : ANY LEFT
03 B4 D0 EE BNE NRMLIZ : YES, KEEP LOOKING

. NO, ALL DONE.
03B6 88 DEY . PROTECT AGAINST

. DIVIDE BY 0.
03B7 A9 00 BITSET LDA $00 > PUT 0 IN FAC'S
03B9 85 A2 STA NEWRAN4 i SIGN BYTE.
03BB 98 TYA . GET SIG BITS
03 BC 18 CLC . PUT IN FACS $80
03BD 69 58 ADC $58 J FORMAT: $58$28$80.
03BF 85 9D STA RANEXP . PUT IN EXPONENT

BYTE AND DONE.
03C1 AC 31 03 LDY YTEMP . SO, UNSAVE
03C4 AE 32 03 LDX XTEMP . EVERYTHING
03C7 28 PLP . AND
03C8 60 RTS . SAY GOODBYE.
03 C9 END

References

A b ram o w itz , M & Stegu n , I. A ., H an d book
of M a th e m a tic a l F u n c tio n s , N a tio n a l
B u reau of Stand ards, 1964 (R ep rinted w ith
C o rre c tio n s by D over P ress, 1972).

C arn ah an , B ., L u th er, H . A ., & W ilk es ,
J .O ., A pplied N u m erica l M eth o d s, John
W iley & So n s, 1969 .

G ood , I. J., T h e seria l test for sam p ling
n u m b ers and o th er te s ts for ran d om n ess,
P roceed in gs of th e C am brid g e P h ilo so p h ica l
S o c ie ty , 1953 , V o l. 4 9 , 2 7 6 -2 8 4 .

K an er, H . C . &. L y on ss , J .C ., T a b le s and
P ow er C o m p ariso n s for D iffe re n t V ersio n s
of th e K o lm o g o ro v -Sm irn o v and S ch u ste r
S t a t i s t i c s , T e c h n ic a l R ep o rt N o . 6 7 ,
D e p a r tm e n t of P sy c h o lo g y , M c M a s te r
U n iv e rs ity , 1979 .

K en d all, M . G . and S tu art, A ., T h e
A d vanced T h e o ry of S ta tis t ic s , V o l. 2:
In fe re n ce and R e la tio n sh ip (third ed itio n ,
19 7 3), V o l. 3 : D esig n and A n aly sis , and
T im e Series (third ed itio n , 19 7 5), H afner
P ress.

K n u th , D . E ., T h e A rt of C o m p u ter
P ro g ra m m in g , V o l. 2 , S e m in u m e r ic a l
A lg o rith m s. A d d ison :W esley , 1981 (Second
Ed ition).

L ew is, T . G ., D is tr ib u tio n Sam p ling for
C o m p u ter S im u la tio n . L ex in g to n B ook s,
1975 .

M a r s a g l i a , G . , R a n d o m N u m b e r
G e n e ra tio n . In A. R a ls to n 's E n cy clo p ed ia of
C o m p u ter S c ie n ce , V an N ostran d R ein h old ,
1976 , 1 1 9 2 -1 1 9 7 .

N ew m an , T . G . & O d ell, P ., L ., T h e
G e n e ra tio n of R an d om V aria tes, H afn er
P u b lish in g C o ., 1971 .

Editor's Note: When adapting this
random number generator subroutine
we found it to be essentially free from
machine specific code. The two places
the code differs are in the use of the
USR function which accesses the
program from a BASIC file, and in the
use of floating point notation, in
particular the APPLESOFT Sign
routine. After examining the available
documentation the USR function for
the Apple and Commodore we found it
wasn’t clear as to how parameters were
passed. The locations used were
different, but this was expected. The

34 MICRO No. 72 - June 1984

question was how the floating point
notation operated. To solve this
problem we wrote a small program (see
below) which allowed us to display the
floating point accumulator, PEEKing
the locations where the exponent,
mantissa and sign were stored in each
com puter. If they were stored
differently, then further modifications
would have to be made. Happily our
little program proved that they store
the parameters in the same form. Now
for the bad news - we found the Atari
didn't use floating point notation in its
USR function. This, combined with a
different convention for storing floating
point notation (com bining the
exponent and the sign), made easy
adaption of this program impossible.
Certainly if those readers with Atari's
wish to meet the challenge it can be
done. Bear in mind the different USR
function and the use of floating point
notation in the RNG subroutine, and
how it would have to be changed to
accomodate the Atari’s conventions.

JMCftO

10 REM PROGRAM TO DISPLAY FLOATING POINT
ACCUMULATOR

20 UV10 : REM USER VECTOR
30 PN3 : REM PAGE NUMBER
40 FA157 : REM FLOATING POINT ACCUMULATOR
50 MPPN*256 : REM MEMORY PAGE
60 POKE UV,76:POKE UV1,00:POKE UV2,PN
100 MPPN*256 : REM MEMORY PAGE
110 POKE UV,76:POKE UV1,00:POKE UV2,PN
120 MVMP:SV128:I0
130 POKE MV,165:POKE MV1,FAI
140 POKE MV2,l4l:POKE MV3,SV:P0KE MV4,PN
150 MVMV5:SVSV1:III
160 IF 16 THEN 130
170 POKE MV,96
200 INPUT VALUE ;A
210 BUSR(A):PRINT VAL ;B
220 PRINT EXP ;PEEK(MP128)
230 PRINT MSB ;PEEK(MP129)
240 PRINT ;PEEK(MP130)
250 PRINT ;PEEK(MP131)
260 PRINT LSB ;PEEK(MP132)
270 PRINT SIGN;PEEK(MP133)
280 GOTO 200

O

o

o

o

o

C64-FORTH/79
New and Improved

for the Commodore 64
C64-Forth/79T“ for the Commodore 64-$99.95
• New and improved F O R T H -7 9 im plem entation w ith

extensions.
• Extension package including lines, circles, scaling,

window ing, mixed high res-character graphics and sprite
graphics.

• Fully com patible floating point package including
arithm etic, relational, logical and transcendental functions.

• String extensions including LE FT S, R IG H T S, and M ID $.
• Full feature screen editor and m acro assem bler.
• Com patible w ith V IC peripherals including disks, data set,

modem, printer and cartridge.
• Expanded 167 page m anual w ith examples and application

screens.
• "SA V E T U R N K E Y " norm ally allows application program

distribution w ithou t licensing or royalties.

(Com m odore 64 is a tradem ark of C om m odore)

TO ORDER
-D isk only.
-C heck, m oney order, bank card, C O D 's add $ 1 .6 5
-Add $ 4 .0 0 postage and handling in U SA and Canada
-M ass. orders add 5% sales tax
-Foreign orders add 20% shipping and handling
-D ealer inquiries w elcom e

PERFORMANCE MICRO PRODUCTS
770 Dedham Street
Canton, MA 02021

(617) 828-12096 8

SOPHISTICATED TELE-COMMUNICATION IS HERE

THE COMMUNICATOR
for 4.0 Commodore Computers

JIM STRASMA’S REVIEW:
“ THE BEST TERMINAL PACKAGE I ’VE SEEN YET”

By April 1 (maybe sooner) It Will Be Even Better

SPEEDS UP TO 9600 BAUD
XON — XOFF

TRUE CTRL KEY (we do our own keyboard scan)

THE HARDWARE — A printed circuit board; easily installed in the CBM. It uses
no C8M connectors; gives a serial port with true RS232C standard.
THE SOFTWARE —
— Em ulates the ADDS Regent 100, ADM 31 and/or the

TeleVldeo 950.1 Or choose the VT100 model for use with DEC and VAX
computers.

— Runs coresident w ith BASIC program s; le ts BASIC
programs and program on host computer communicate to develop real
ly sophisticated communication and control capabilities.

— The program is on ROM at e ithe r address; no d isk loading
required. Uses only 512 bytes of RAM; will relocate itself around any other
machine language program at top of memory.

— W ifi upload and download and run BASIC programs. With BASIC
program wifl upload and download standard data files. 100 page manual
gives program listing for BASIC programs.

Excellent text editor designed to work with THE COMMUNICATOR
THE COMMUNICATOR $200

Text Editor $40
1200 baud modems beginning at low, low $365, and even less when purchased

with THE COMMUNICATOR

AMPLIFY, INC.
2325 Macbride, Iowa City, Iowa 52240 319-337-8378
1 trademarks Adds Regent, Inc., Lear Liegler, Inc., Televideo Systems, Inc.

No. 72 ■ June 1984 MICRO 35

le d & i£

CONTROL
by M itchell Esformes

Test your assembly code for efficiency, or adapt
the program for statistic, step/trace debugging
and more.

CONTROL is a machine language
program that runs your machine
language/assembly level program
instruction-by-instruction and allows
you to control its operation and/or
collect statistics about your program.
This could be used for as simple an
application as counting cycles in a
program (details shown in this
example], as a step/trace function with
disassembly of each instruction, as a
sophisticated debugging tool that traps
on specified instructions and/or
memory locations, and so forth.

The program works by setting up a
pseudo program counter, fetching and
evaluating each instruction from the
program under control, performing any
special operations that you define, and
then executing the instruction. It is
written in such a way that you can
easily add your own processing
routines. The demonstration process
shown here simply counts the number

of machine cycles used by a program.
While this can be useful in developing
optimally efficient code, it is only a
hint of what can be done with this
technique. CONTROL will run on any
6502 microcomputer. The only
requirements are four page zero
locations and about IK of program
space.

Program Description
EQUATES: These are the addresses of
locations used by the program for its
program counter, table pointers and for
saving the 6502 registers. PCTR is a
two byte page zero vector which
contains the pseudo program counter;
TEMPLO and TEMPHI are a page zero
pair of bytes used for vectoring to the
CONTROL tables. The 6502 registers
are saved in ACC (A reg), XREG,
YREG, STREG (status) and STKPTR
(stack pointer). These do not have to be

on page zero. TALLY is an eight byte
table used to hold the cycle count in
this particular example. If you design
some other function for the CONTROL
program, then this will not be needed.
START puts the address of a location
containing a BRK command, BREAK,
on the stack to be used to halt the
program when an RTI is encounted in
the test program, sets the status to 0 to
enable interrupts, and clears the
TALLY counter. If you are not counting
cycles, the TALLY counter does not
have to be cleared.
FETCH is the beginning of the main
processing loop. It picks up the first
byte of the current instruction, the
OPCODE, and converts it to the range
$00 to $0F to speed up the table lookup.
The table INST1 is searched for an
OPCODE match. If found control goes
to SERVICE. If an illegal opcode was
fetched, then it goes to ERROR.

36 MICRO No. 72 ■ June 1984

SERVICE indexes the CYCLE table to
get specific information about the
current opcode and then jumps to your
custom test/evaluate/count routine.
The OPCODE has been found. In this
example, the routine ACCYC is used to
count the cycles in the instruction
being executed.
PROCESS is the return point from the
custom service routine. It starts the
actual processing of the current
istruction. If, as indicated by a plus
value in the A reg (from the CYCLE
table), the instruction can be directly
executed, then the program goes to
TRANSF w hich com pletes the
instruction execution.
SUB through FORWRD are the
routines that service instructions that
may not be directly executed. These are
the instructions that modify the real
program counter: JSR, JMP, JMP (X),
RTS, RTI, and the conditional branches
BEQ, BNE, BCC, BCS, BMI, BPL, BVC
and BVS. Each of these instructions
requires special processing to calculate
the new program counter. This is
handled by the various routines
starting with SUB and ending with
FORWRD. Once the new program
counter has been calculated and set
into PCTR then the instruction has
effectively been executed! The program
now goes back to FETCH for the next
instruction at the new PC address. The
call to subroutine OVER is specific to
the TALLY cycle counting example and
increments the count to reflect the
extra cycle taken in crossing a page
boundary. If your custom routine does
not require special processing on page
boundary crossings, then simply
replace OVER with an RTS.
TRANSF to EXBUF are the real 'guts'
of this program. This is where all of the
instructions, except for the JMPs and
BRANCHes handled above, are
processed. The CYCLES table contains
important information about each
instruction. This is in the form:

Bit Use in Cycles

01 Number of cycles
02 used by the
04 instruction
08 Number of operand
10 bytes in instruction
20 If set add X reg to indexed address,

else add Y reg
40 If set check if page boundary

crossed
80 If set do not directly execute the

opcode

TRANSF m oves the com p lete
instruction to the three byte EXBUF
and
FILLED pads with NOP's if the
instruction is less than three bytes
long.
POINT calculates the address of the
next instruction.
OVERPG ch eck s for indexed
instructions and branches to RUN if
not indexed.
SCAN2 checks for mode and branches
to IND for indirect indexed mode.
ADDY,ADDX service a simple index
instruction by modifying the address in
the EXBUF and then go to RUN.
IND fixes up the address for the
indirect indexed mode.
RUN restores all of the registers that
were saved on entry.
EXBUF now contains the correct
instruction to execute. It is executed
and then drops through to the next code
which saves all of the registers and then
goes back to FETCH the next
instruction.
BREAK is a BRK command that is
executed when CONTROL encounters
an RTI instruction. This stops
CONTROL and returns you to your
microcomputer monitor.

Tables

TABIN contains index values into the
main opcode table. This considerably
speeds up the search for the correct
opcode during execution.
INST1 contains the values of all valid
opcodes.
CYCLES contains the significant
information about each opcode as
described in the table above.
INST2 contains the value of all
opcodes that require special service on
page boundary crossovers.
ADRMOD indicates the addressing
mode for each of the opcodes in INST2.
A $00 byte indicates Indirect Indexed;
an $FF indicates Absolute Indexed.

Utility Specific Routines

ACCYC is the basic cycle counter
mechanism used in the cycle counting
utility. It simply adds the number of
cycles for the current instruction to the
TALLY counter, an eight byte counter.
This is called by SERVICE. For your
own utility, write code to service your
requirements (disassembler, trace
mode, or whatever) and have SERVICE
jump to it. Return to the mainline
program with a JMP PROCESS.

OVER is an additional cycle counter
used for page boundary crossovers that
add one cycle to the instruction. If your
utility does not need extra service for
page boundaries, simply replace OVER
with an RTS.
ERROR is called when an invalid
opcode is encountered or when the
utility code detects an error. It can be as
simple as a BRK to abort processing and
return to the system monitor; it can
sound a tone and then BRK; it can
include an error correcting scheme,- or
whatever you desire.

Using CONTROL

A simple application of the CONTROL
program is that of counting the number
of cycles used by a machine level
program or subroutine. If you program
in assembly language there are times
when you would like to know how
many cycles your coding uses. This
information is useful for comparing the
efficiency of one algorithm to another
and when writing interrupt service
routines that have a limited amount of
time to perform their operations. Using;
CONTROL with the two cy cle
counting support routines provided
will compute the exact number of
cycles, including page boundary
crossover cycles, used by your
program. CONTROL runs your coding,
but slower since there are instructions
executed between each of the
instructions in your program.

To use the cycle counter you should
have a debugging monitor to display
and change memory locations. Load
CONTROL with the support routines
ACCYC and OVER. Load the program
you wish to test. Put the starting
address of your program in PCTR ($B1
in our assembled version, may be
different in your customized version).
The least significant byte (LSB) goes in
PCTR, the most significant byte (MSB)
in PCTR+1. If you need to initialize
the 6502 registers, do so by putting the
values in the storage locations ACC,
XREG and YREG (A, X and Y registers),
STREG (status register) and STKPTR
(stack pointer). These locations are at
$0BF8 to $0BFC in our version. Note
that when using this program to count
the cycles used by an interrupt service
routine, the operation of the service
routine is by CONTROL and begun by
you, not by an interrupt. After an RTI
instruction is processed, the BRK at
BREAK w ill be processed and
CONTROL will stop.

No. 72 ■ June 1984 MICRO 37

Now you can run CONTROL in the
cycle counting mode. When it stops,
display TALLY, the eight bytes starting
at $0BF0 in our version, to see how
many cycles your program used. The
LSB is in the highest address, $0BF7. If
an illegal opcode was fetched or there
isn't enough room in TALLY to
accumulate the cycles, then the error
handler at ERROR will cause a BRK.
See the separate examples for having
ERROR sound a tone on the Atari,
Apple and Commodore 64.

Adapting CONTROL

The original version of CONTROL was
written on an Atari. The version listed
here was run on the Apple II. The only

change required was the memory
location of the program itself. For the
Atari, change the origin to $0600 or any
other available IK RAM. The Page Zero
equates are okay. For the Commodore
64, $C000 is a handy origin for the
program. Since Page Zero on the C64 is
pretty full, the locations that you
choose may depend on what else you
are running. If you are not using the
cassette tape and RS-232 port, for
example, then the current equates of
$B1 to $B4 should be okay.

The best way to make the
adaptation is to key source into your
assembler, change the equates and
origin and re-assemble. This will give
you a working version of CONTROL
that you can then easily modify for
other services: trace, single-step,

disassemble, trap and so forth. If you do
not have an assembler, the listed code
can be directly keyed in. Make sure
that you change the instructions that
have direct references (generally the
instructions with a value of 08 to OB in
the third byte of the instruction], plus
the high byte address of BREAK that is
referenced in the very first instruction.

[E d i t o r ’s N o t e : T h is “ c y c le
cou n tin g ” d em on stration o f the
CONTROL program is only one very
lim ited use o f this powerful technique.
I f you find CONTROL useful and
extend its operation, MICRO is eager to
help you share your work with the rest
o f the world. We are reserving space for
C O N TR O L e n h a n c e m e n t s an d
guarantee extrem ely rapid publication.]

JMCftO

o Listing 1
08ID B1 B1 LDA (PCTR),Y
081F 48 PHAo ; Set BASE for IK program area 0820 29 F0 AND #$F0

0800 BASE EQU $0800 0822 F0 05 BEQ INDEX
0800 ORG BASE 0824 4A LSR A

; Equates. PCTR, TEMPLO and 0825 4A LSR A
; TEMPHI must be on Page ZERO 0826 4A LSR A

00B1 PCTR EQU $B1 0827 4A LSR A
00B3 TEMPLO EQU PCTR+2 0828 A8 TAYo 00B4 TEMPHI EQU PCTR+3 0829 BE 33 0A INDEX LDX TABIN,Y

; Other equates can be anywhere, 082C 68 PLA
; Including Page ZERO 082D E8 SCAN1 I NX

0BF0 TALLY EQU BASE+I3F0 082E DD 43 0A CMP INST1,Xo 0BF8 ACC EQU TALLY+8 0831 F0 05 BEQ SERVICE
0BF9 XREG EQU TALLY+9 0833 B0 F8 BCS SCAN1
0BFA YREG EQU TALLY+IA 0835 4C CA 0B JMP ERRORo 0BFB STREG EQU TALLY+$B Start service when OPCODE foundV 0BFC STKPTR EQU TALLY+IC Save info from CYCLES table on

; Entry and Initialization stack. The JMP ACCYC is for the
; Put BREAK address on stack for TALLY Counter. Other operationso ; call via RTI in user code could be used instead.

0800 A9 0A START LDA #BREAK/256 0838 BD DA 0A SERVICE LDA CYCLES,X
0802 AE FC 0B LDX STKPTR 083B 48 PHA

A 0805 9A TXS 083C 4C 9F 0B JMP ACCYCo 0806 48 PHA Now Process instruction. First
0807 A9 32 LDA #BREAK8c$00FF test if the instruction can be
0809 48 PHA directly executed. If so, goo 080A A9 00 LDA #0 to TRANSF to execute.
080C 48 PHA 083F A0 00 PROCESS LDY #0
080D BA TSX 0841 68 PLA
080E 8E FC 0B STX STKPTR 0842 30 03 BMI SUB0 ; Clear TALLY counter 0844 4C 8A 09 JMP TRANSF
0811 A2 07 LDX #7 Instructions that change the PC
0813 A9 00 LDA #0 counter must be individually

n 0815 9D F0 0B CLR STA TALLY,X serviced.. V 0818 CA DEX Test for JSR = $20
0819 10 FA BPL CLR 0847 B1 B1 SUB LDA (PCTR),Y

; Main Loop. Get 0849 C9 20 CMP #$20
© ; OPCODE of current instruction 084B D0 33 BNE ABSJMP

; Lookup in tables 084D A5 B1 LDA PCTR
081B A0 00 FETCH LDY #0 084F 85 B3 STA TEMPLO

38 MICRO No. 72 • June 1984

Listing 1 (continued)
0851 A5 B2 LDA PCTR+1 08CB AE FC 0B LDX STKPTR
0853 8D B4 00 STA TEMPHI 08CE 9A TXS
0856 C8 INY 08CF 68 PLA O
0857 B1 B1 LDA (PCTR),Y 08D0 85 B1 STA PCTR
0859 48 PHA 08D2 68 PLA
085A C8 INY 08D3 85 B2 STA PCTR+1 ©085B B1 B1 LDA (PCTR),Y 08D5 E6 B1 INC PCTR
08 5D 85 B2 STA PCTR+1 08D7 D0 02 BNE CNGPTR
085F 68 PLA 08D9 E6 B2 INC PCTR+1
0860 85 B1 STA PCTR 08DB BA CNGPTR TSX o
0862 A5 B 3 LDA TEMPLO 08DC 8E FC 0B STX STKPTR
0864 18 CLC 08DF 4C IB 08 JMP FETCH
0865 69 02 ADC #2 ; Test RTI = $40 ©0867 85 B3 STA TEMPLO 08E2 C9 40 RTINT CMP #$40 V /

0869 90 03 BCC STACK 08E4 D0 15 BNE BRANCH
086B EE B4 00 INC TEMPHI 08E6 AE FC 0B LDX STKPTR
086E AD B4 00 STACK LDA TEMPHI 08E9 9A TXS o
0871 AE FC 0B LDX STKPTR 08EA 68 PLA
0874 9A TXS 08EB 8D FB 0B STA STREG
0875 48 PHA 08EE 68 PLA /r\
0876 A5 B3 LDA TEMPLO 08EF 85 B1 STA PCTR ©
0878 48 PHA 08F1 68 PLA
0879 BA TSX 08F2 85 B2 STA PCTR+1
087A 8E FC 0B STX STKPTR 08F4 BA TSX ©087D 4C IB 08 JMP FETCH 08F5 8E FC 0B STX STKPTR

; Test JMP = $4C 08F8 4C IB 08 JMP FETCH
0880 C9 4C ABSJMF CMP #$4C ; Must be a conditional Branch
0882 D0 0F BNE INDJMP 08FB AD FB 0B BRANCH LDA STREG ©
0884 C8 INY 08FE 48 PHA
0885 B1 B1 LDA (PCTR),Y 08FF B1 B1 LDA (PCTR),Y
0887 48 PHA ; Test BEQ = $F0 A0888 C8 INY 0901 C9 F0 CMP #$F0
0889 B1 B1 LDA (PCTR),Y 0903 D0 05 BNE BR1
088B 85 B2 STA PCTR+1 0905 28 PLP
088D 68 PLA 0906 F0 49 BEQ TRUE ©088E 85 B1 STA PCTR 0908 D0 39 BNE FALSE
0890 4C IB 08 JMP FETCH ; Test BNE = $D0

; Test JMP I = $6C 090A C9 D0 BR1 CMP #$D0 o0893 C9 6C INDJMP CMP #$6C 090C D0 05 BNE BR2
0895 D0 30 BNE RTSUB 090E 28 PLP
0897 C8 INY 090F D0 40 BNE TRUE
0898 B1 B1 LDA (PCTR),Y 0911 F0 30 BEQ FALSE ©089A 48 PHA ; Test BCC = $90
089B C8 INY 0913 C9 90 BR2 CMP #$90
089C B1 B1 LDA (PCTR),Y 0915 D0 05 BNE BR3
089E 85 B2 STA PCTR+1 0917 28 PLP 0
08A0 68 PLA 0918 90 37 BCC TRUE
08A1 85 B1 STA PCTR 091A B0 27 BCS FALSE
08 A3 A0 00 LDY #0 ; Test BCS = $B0
08A5 B1 B1 LDA (PCTR),Y 091C C9 B0 BR3 CMP #$B0 ©
08A7 48 PHA 091E D0 05 BNE BR4
08A8 A5 B1 LDA PCTR 0920 28 PLP
08AA C9 FF CMP #$FF 0921 B0 2E BCS TRUE ©08AC F0 0B BEQ RESET 0923 90 IE BCC FALSE
08AE C8 INY ; Test

BR4
BMI = $30

08AF B1 B1 LDA (PCTR),Y 0925 C9 30 CMP #$30
08B1 85 B2 STA PCTR+1 0927 D0 05 BNE BR5 o
08B3 68 PLA 0929 28 PLP
08B4 85 B1 STA PCTR 092A 30 25 BMI TRUE
08B6 4C IB 08 JMP FETCH 092C 10 15 BPL FALSE o08B9 A9 00 RESET LDA #0 ; Test BPL = $10
08BB 85 B1 STA PCTR 092E C9 10 BR5 CMP #$10
08BD B1 B1 LDA (PCTR),Y 0930 D0 05 BNE BR6
08BF 85 B2 STA PCTR+1 0932 28 PLP Q
08C1 68 PLA 0933 10 1C BPL TRUE
08C2 85 B1 STA PCTR 0935 30 0C BMI FALSE
08C4 4C IB 08 JMP FETCH ; Test BVC = $50 O; Test RTS = $60 0937 C9 50 BR6 CMP #$50
08C7 C9 60 RTSUB CMP #$60 0939 D0 05 BNE BR7
08C9 D0 17 BNE RTINT 093B 28 PLP

No. 72 - June 1984 MICRO 39

Listing 1 continued) 09A4 4C 9B 09 JMP MOVE
093C

; If less than three bytes of
50 13 BVC TRUE ; instruction, pad with NOP's

© 093E 70 03 BVS FALSE 09A7 C0 03 FILLED CPY #3
0940

; Must be BVS = $70 09A9 F0 0A BEQ POINT
28 BR7 PLP 09 AB A9 EA LDA #$EA

I r, 0941 70 0E BVS TRUE 09 AD 99 1A 0A PUT STA EXBUF,Yviz ; On branch condition FALSE, simply 09B0 C8 INY
; set PC counter to next instruction 09B1 C0 03 CPY #3

0943 A5 B1 FALSE LDA PCTR 09B3 D0 F8 BNE PUT
© 0945 18 CLC ; Calculate address of next

0946 69 02 ADC #2 ; instruction
0948 85 B1 STA PCTR 09B5 68 POINT PLA
094a 90 2C BCC FCH 09B6 18 CLC

© 094c E6 B2 INC PCTR+1 09B7 69 01 ADC #1
094E 4C IB 08 JMP FETCH 09B9 65 B1 ADC PCTR

; On branch condition TRUE, calculate 09BB 85 B1 STA PCTR
© ; new PC relative to current address 09BD 90 02 BCC OVERPG
U 0951 C8 TRUE INY 09BF E6 B2 INC PCTR+1

0952 B1 B1 LDA (PCTR),Y ; Use Opcode info from table to
0954 48 PHA ; see if Page boundary check is

© 0955 A5 B1 LDA PCTR ; necessary.
0957 18 CLC 09C1 A5 B3 OVERPG LDA TEMPLO
0958 69 02 ADC #2 09C3 29 40 AND #$40
095A 85 B1 STA PCTR 09C5 F0 41 BEQ RUN

® 095C 90 02 BCC DIRECT ; Service indexed instructions
095E E6 B2 INC PCTR+1 09C7 AD 1A 0A LDA EXBUF

; Test branch direction 09CA E8 SCAN2 I NX
© 0960 68 DIRECT PLA 09CB DD 71 0B CMP INST2,X

0961 10 18 BPL FORWRD 09CE F0 02 BEQ MODE
; Backward branch service 09D0 B0 F8 BCS SCAN2

0963 49 FF EOR #$FF 09D2 BD 88 0B MODE LDA ADRMOD,X
© 0965 18 CLC 09D5 F0 IB BEQ IND

0966 69 01 ADC #1 09D7 A5 B3 LDA TEMPLO
0968 85 B3 STA TEMPLO 09D9 29 20 AND #$20

_ 096A A5 B1 LDA PCTR 09DB D0 06 BNE ADDX
Q 096C 38 SEC ; Add Y reg to operand

096D E5 B3 SBC TEMPLO 09DD AD FA 0B LDA YREG
096F 85 B1 STA PCTR 09E0 4C E6 09 JMP ADDY

© 0971 B0 05 BCS FCH ; Add X reg to operand
0973 C6 B2 DEC PCTR+1 09E3 AD F9 0B ADDX LDA XREG
0975 20 BA 0B JSR OVER 09E6 18 ADDY CLC
0978 4C IB 08 FCH JMP FETCH 09E7 6D IB 0A ADC EXBUF+1

© ; Forward branch service 09EA 90 1C BCC RUN
097B 18 FORWRD CLC 09EC 20 BA 0B JSR OVER
097C 65 B1 ADC PCTR 09EF 4C 08 0A JMP RUN

_ 097E 85 B1 STA PCTR ; Indirect Indexed Address mode
® 0980 90 F6 BCC FCH 09F2 AD IB 0A IND LDA EXBUF+1

0982 E6 B2 INC PCTR+1 09F5 85 B3 STA TEMPLO
0984 20 BA 0B JSR OVER 09F7 A9 00 LDA #0

© 0987 4C IB 08 JMP FETCH 09F9 8D B4 00 STA TEMPHI
: Move current instruction to 09FC A8 TAY
; buffer for execution. Use 09FD B1 B3 LDA (TEMPLO),Y
; Opcode information from table 09FF 18 CLC

© ; to determine number of bytes of 0A00 6D FA 0B ADC YREG
; instruction to move to buffer 0A03 90 03 BCC RUN

098A 85 B3 TRANSF STA TEMPLO 0A05 20 BA 0B JSR OVER
© 098C B1 B1 LDA (PCTR),Y ; Restore all registers

098E 8D 1A 0A STA EXBUF 0A08 AE FC 0B RUN LDX STKPTR
0991 C8 INY 0A0B 9A TXS
0992 A5 B3 LDA TEMPLO 0A0C AD FB 0B LDA STREG

© 0994 29 18 AND #$18 0A0F 48 PHA
0996 4a LSR A 0A10 28 PLP
0997 4a LSR A 0A11 AE F9 0B LDX XREG

_ 0998 4A LSR A 0A14 AC FA 0B LDY YREG
° 0999 48 PHA 0A17 AD F8 0B LDA ACC

099A AA TAX ; Execute direct instruction
099B CA MOVE DEX ; stored in next three bytes

© 099C 30 09 BMI FILLED 0A1A 00 00 00 EXBUF BYT 0,0,0
099E B1 B1 LDA (PCTR),Y ; Save all registers
09A0 99 1A 0A STA EXBUF,Y 0A1D 8D F8 0B STA ACC
09A 3 C8 INY 0A20 8C FA 0B STY YREG

40 MICRO No. 72 ■ June 1984

Listing 1 (continued)
0A23 0B

0B1A 8B 4D 0C BYT $8B,$4D,$0C,$0E8E F9 STX XREG 0B1E 02 54 74 BYT 2,$54,$74,$170A26 08 PHP 0B22 0E 0B 0B BYT $0E,$0B,$0B,$0B O
0A27 68

0B
PLA 0B26 02 02 14 BYT 2,2,$l4,$l4,$l4

0A28 8D FB STA STREG 0B2B 8B 0E 0C BYT $8B,$0E,$0C,$0C
0A2B BA

0B
TSX 0B2F 0C 02 15 BYT $0C,2,$15,2,$15 o0A2C 8E FC STX STKPTR 0B34 0A 0E 0A BYT $0A,$0E,$0A,$0B

0A2F 4C IB
; And back to Main Loop 0B38 0B 0B 02 BYT $0B,$0B,2,$0A

08 JMP FETCH 0B3C 02 14 14 BYT 2,$14,$14,$14
; Ccme here when an RTI is encountered 0B40 8B 4D 0C BYT $8B,$4D,$0C,$0C o

0A32
; in the User Program being tested 0B44 0C 02 54 BYT $0C,2,$54,2,$7400 BREAK BRK 0B49 74 54 0A BYT $74,$54,$0A,$0E

0A33 FF 08 10
; Index values to speed opcode search 0B4D 0B 0B 0D BYT $0B,$0B,$0D,2,$0A
TABIN BYT $FF,8,$10,$1B 0B52 02 14 14 BYT 2,$14,$14,$16 VJ

0A37 23 2D 35 BYT $23,$2D,$35,$3F 0B56 8B 4D 0C BYT $8B,$4D,$0C,$0E
0A3B 47 50 59 BYT $47,$50,$59,$65 0B5A 02 54 74 BYT 2,$54,$74,$170A3F 70 7B 83 BYT $70,$7B,$83,$8E 0B5E 0A 0E 0B BYT $0A,$0E,$0B,$0B o
0A43 00 01 05

; All of the valid opcodes 0B62 0D 02 0A BYT $0D,2,$0A,2
INST1 BYT 0,1,5,6,8 0B66 14 14 16 BYT $14,$14,$16

0A48 09 0A 0D BYT 9,$0A,$0D,$0E 0B69 8B 4D 0C BYT $8B,$4D,$0C,$0E o0A4C 10 11 15 BYT $10,$11,$15,$16 0B6D 02 54 74 BYT 2,$54,$74,$17
0A50 18 19 ID BYT $18,$19,$1D,$1E Opcodes that require page boundary
0A54 20 21 24 BYT $20,$21,$24,$25 crossover check
0A58 26 28 29 BYT $26,$28,$29,$2A 0B71 11 19 ID INST2 BYT $11,$19,$1D,$31 o0A5C 2C 2D 2E BYT $2C,$2D,$2E 0B75 39 3D 51 BYT $39,$3D,$51,$59,$5D
0A5F 30 31 35 BYT $30,$31,$35,$36 0B7A 71 79 7D BYT $71,$79,$7D,$B1
0A63 38 39 3D BYT $38,$39,$3D,$3E 0B7E B9 BC BD BYT $B9,$BC,$BD,$BE
0A67 40 4l 45 BYT $40,$41,$45,$46,$48 0B82 D1 D9 DD BYT $D1,$D9,$DD o
0A6C 49 4a 4C BYT $49, $4A, $4C, $4D, $4e 0B85 FI F9 FD BYT $F1,$F9,$FD
0A71 50 51 55 BYT $50,$51,$55,$56 Addressing mode table
0A75 58 59 5D BYT $58,$59,$5D,$5E 0 = Indirect Indexed addressing o0A79 60 61 65 BYT $60,$61,$65,$66,$68 FF = Absolute Indexed addressing
0A7E 69 6A 6C BYT $69,$6A,$6C,$6D,$6E 0B88 FF 00 00 ADRMOD BYT $FF,0,0,$FF
0A83 70 71 75 BYT $70,$71,$75,$76 0B8C 00 00 FF BYT 0,0,$FF,0,0
0A87 78 79 7D BYT $78,$79,$7D,$7E 0B91 FF 00 00 BYT $FF,0,0,$FF o0A8B 81 84 85 BYT $81,$84,$85,$86 0B95 00 00 00 BYT 0,0,0,0
0A8F 88 8A 8C BYT $88,$8A,$8C,$8D,$8E 0B99 FF 00 00 BYT $FF,0,0,$FF,0,0
0A94 90 91 94 BYT $90,$91,$94,$95 Service specific code goes here
0A98 96 98 99 BYT $96,$98,$99,$9A,$9D This version is a cycle counter O
0A9D A0 A1 A2 BYT $A0,$A1,$A2,$A4 0B9F A2 07 ACCYC LDX §7
0AA1 A5 A6 A8 BYT $A5,$A6,$A8,$A9 0BA1 29 07 AND #7
0AA5 AA AC AD BYT $AA,$AC,$AD,$AE 0BA3 18 CLC
0AA9 B0 B1 B4 BYT $B0,$B1,$B4,$B5 0BA4 7D F0 0B ADC TALLY,X y
0AAD B6 B8 B9 BYT $B6,$B8,$B9,$BA 0BA7 9D F0 0B STA TALLY,X
0AB1 BC BD BE BYT $BC,$BD,$BE 0BAA 90 0B BCC ACCEND
0AB4 C0 Cl C4 BYT $C0,$C1,$C4,$C5 0BAC CA ADDU DEX o
0AB8 C6 C8 C9 BYT $C6,$C8,$C9,$CA 0BAD 10 03 BPL PROC
0ABC CC CD CE BYT $CC,$CD,$CE 0BAF 4C CA 0B JMP ERROR
0ABF D0 D1 D5 BYT $D0,$D1,$D5,$D6 0BB2 FE F0 0B PROC INC TALLY,X
0AC3 D8 D9 DD BYT $D8,$D9,$DD,$DE 0BB5 F0 F5 BEQ ADDU o
0AC7 E0 El E4 BYT $E0,$E1,$E4,$E5 0BB7 4C 3F 08 ACCEND JMP PROCESS
0ACB E6 E8 E9 BYT $E6,$E8,$E9,$EA Specific service to count cycles
0ACF EC ED EE BYT $EC,$ED,$EE This increments the count when ao0AD2 F0 FI F5 BYT $F0,$F1,$F5,$F6 page boundary is crossed.
0AD6 F8 F9 FD BYT $F8,$F9,$FD,$FE Most routines could just put a

; Opcode information bytes RTS in place of OVER
0ADA 07 0E 0B CYCLES BYT 7,$0E,$0B,$0D,3 0BBA A2 07 OVER LDX #7 o
0ADF 0A 02 14 BYT $0A,2,$l4,$l6 0BBC FE F0 0B TAL INC TALLY,X
0AE3 8B 4D 0C BYT $8B,$4D,$0C,$0E 0BBF D0 08 BNE LEAVE
0AE7 02 54 74 BYT 2,$54,$74,$17 0BC1 CA DEX /H
0AEB 96 0E 0B BYT $96,$0E,$0B,$0B,$0D,4 0BC2 10 F8 BPL TAL o
0AF1 0A 02 14 BYT $0A,2,$l4,$l4,$l6 0BC4 68 PLA
0AF6 8B 4D 0C BYT $8B,$4D,$0C,$0E 0BC5 68 PLA
0AFA 02 54 74 BYT 2,$54,$74,$17 0BC6 4C CA 0B JMP ERROR o
0AFE 86 0E 0B BYT $86,$0E,$0B,$0D,3 0BC9 60 LEAVE RTS
0B03 0A 02 93 BYT $0A,2,$93,$14,$16 Machine and Routine specific error
0B08 8B 4D 0C BYT $8B,$4D,$0C,$0E handler. Can be just BRK.
0B0C 02 54 74 BYT 2,$54,$74,$17 0BCA 00 ERROR BRK o
0B10 86 0E 0B BYT $86,$0E,$0B,$0D,4 That's all !
0B15 0A 02 95 BYT $0A,2,$95,$l4,$l6 0BCB END

No. 72 ■ June 1984 MICRO 41

o

©

Commodore 64 Beeper

Note: There is not enough
room at the end of the main
program for this code since
0BF0 ... is used for storage.
Put a JMP ERRORX at the current
ERROR BRK location pointing to
this code which may be relocated
in any available memory.

0000 A9 00 ERRORX LDA #$00
0002 AA TAX
0003 9D 00 D4 CLEARS STA $D400,X
0006 E8 INX
0007 E0 19 CPX #$19
0009 D0 F8 BNE CLEARS
000B A9 09 LDA #$09
000D 8D 05 D4 STA $D405
0010 A9 0F LDA #$0F
0012 8D 18 D4 STA $D4l8
0015 A9 B1 LDA #$B1
0017 8D 00 D4 STA $D400
001A A9 19 LDA #$19
001C 8D 01 D4 STA $D401
001F A9 21 LDA #$21
0021 8D 04 D4 STA $D404
0024 A2 00 LDX #$00
0026 A0 00 LDY #$00
0028 C8 WAITS INY
0029 D0 FD BNE WAITS
002B E8 INX
002C D0 FA BNE WAITS
002E 00 BRK

y Atari Version of Beeper

0BCA A9 00 ERROR LDA #0
0BCC 8D 08 D2 STA $D208
0BCF A9 03 LDA #3
0BD1 8D 0F D2 STA $D20F
0BD4 A9 A8 LDA #$A8
0BD6 8D 01 D2 STA $D201
0BD9 A9 79 LDA #121
0BDB 8D 00 D2 STA $D200
0BDE 00 BRK

; Apple II Version of Beeper

0BCA 20 E4 FB ERROR JSR $FBE4
0BCD 00 BRK

M eZ B l S u r e

i t i s i n s u r e d ?
SAFEWARE™ Insurance provides full
replacement of hardware, media and

purchased software. As little as $35/yr covers:
• Fire • Theft • Power Surges

• Earthquake • Water Damage • Auto Accident

For information or immediate coverage call:

1-800-848-3469
In Ohio call (614) 262-0559

SAFEWARE, THE INSURANCE AGENCY INC.

Let
MICRO
Reflect

Your Com puting
Needs.

Fill out the
Reader Survey

and tell us
what you want.

(see page 64A)

42 MICRO No. 72 • June 1984

• » v t n i n

by Paul Lamar and Richard Finder

Two seasoned computerists share their insights
into the world of the 16 bit 68000 Supermicro.

Editor's Note: While we normally do
not publish articles that are essentially
“one m an ’s o p i n i o n ' we are m aking
an exception in this case because 1) it
touches on a very important area, the
68000, and 2) they are eminantly
qualified to talk about the issues.

It may have been a result of reading an
over-abundance of IBM PC ads that
caused people, without knowledge of
assembly language or microprocessor
architecture, to blatantly predict that
MS-DOS on the eight bit 8088 chip will
become the measure by which all
sixteen bit microcomputers will be
judged during the coming decade. That
view is simply wrong, and such
comments (especially by people who
should know better) may be the result
of an understandable impatience with
the performance of slow, memory
limited, eight bit microcomputers -but
to declare that the 80XXX is going to be
the de facto industry standard is short
sighted at best, and misleading at
worst.

For those preparing to buy a serious
microcomputer for the first time (not
just an elaborate toy), be aware that
even though the IBM PC and all its
clones use 8088 chips, they use them as
eight bit CPUs. (IBM claims the 8088
in the PC is sixteen bits, but it just isn't
so. The 1983 Intel Microprocessor and
Peripheral Handbook clearly states, on
page 3-79, that the 8088 is an eight bit
microprocessor, and they should know.
They invented the chip). IBM justifies
this claim by citing the 16 bit internal
registers in the 8088. The Commodore
6502 used in the Apple and the
Commodore 64 has one, sixteen bit
register (the program counter). The
6502 is not called a sixteen bit
microprocessor. The Motorola 6809
used in the Radio Shack Color

Computer has six, sixteen bit registers
and it is not called a 16 bit
microprocessor. Why call an 8088 a
sixteen bit microprocessor?

Watch Large Computer Corps.
(LCCs) carefully,- they take advantage
of ignorance every chance they get.
Rather than try to educate the user, the
LCC uses seduction to persuade the
buyer into a purchase not suited to the
individual's needs or desires. A
corollary of the business maxim "buy
low, sell high” is "sell as little as
possible for as much as you can get” . It
is the buyer's responsibility (in
computers, as well as cars, houses, and
health insurance) to learn something
about microcomputers before writing
out that first check. Any LCC ad which
doesn't set forth facts about number-of-
characters-on-the-screen, disk storage
capacity, RAM, ROM, megabytes and
megahertz is hiding something
(probably mediocre performance or
operational deficiencies).

There is a common myth that speed
and power in a microcomputer are not
really necessary when "all you are
going to use that microcomputer for is
word processing". A fast typist types
about 60 words a minute. If each word
is an average of five characters in
length; that means that one character is
going into the computer every 200,000
micro seconds. When you are typing
characters into a wordprocessing
program , it takes a ty p ical
microprocessor and program about
10,000 micro seconds to process that

character. The other 190,000 micro
seconds the processor is twiddling its
thumbs so to speak. Why not put that
time to good use by a fast and powerful
microprocessor. How many characters
of spelling or grammar could that micro
check in those remaining 190,000
micro seconds?

It's not a matter of being a
microcomputer speed freak, but of not
wanting to waste time while some
infernal machine which knows nothing
about time and couldn't care less does
something useful. "Disgruntled" is an
eleven-letter word for the owner of a
micro-word processor who has to look
up a word in a dictionary because
the human works faster than the
computer. There is nothing more
useless than a $150 spelling checker
which isn't used - because the
machine is too slow.

The dream word processing
program is one which checks the
spelling of the word as it's being typed
in. Ideally, it could not only check the
spelling of the word, but could finish
writing out the word. For example, the
writer would begin the word "spelli” ;
the computer would fill in "ng” and
the cursor would jump to the next word
position (there's only one word spelled
"spelling"). Of course, turning off such
a feature would be a necessary option.
As an alternative, a misspelling could
cause a word to be flagged or prompt
a beep, and optionally show the
suggested correction as part of a
dictionary in a window, along with the

No. 72 - June 1984 MICRO 43

definition(s) of the word.
Computers are tools to increase

p ro d u ctiv ity . An au to m o bile
manufacturer who designed a factory to
produce automobiles 20% slower than
that of the competition faces business
failure. As a writer, accountant, or
business manager, why buy an eight bit
8088 based microcomputer that is one
fourth as fast as a true sixteen bit 68000
based supermicro?

As was said by the philosopher,
Dionysius of Halicarnassus, "...history
is philosophy learned from examples".
The philosophical point espoused here
is the superiority of the 68000 chip for
state-of-the-art microprocessing. My
own history (which brought me to this
point of view), is that several years ago
I was part owner of one of the first
Apple peripheral and softw are
manufacturing firms. Our company
bought one of the first two hundred
Apple II processor boards made, which
was delivered with 4K of RAM, with no
keyboard, power supply or case.
Documentation consisted of a printed
color brochure and some photocopied
pages in a plastic-covered binder off a
drug store shelf. No system monitor
source listing came with the computer,-
a complaint to Steve Wozniak brought
a photocopy of it.

Before the Apple II, I wire wrapped
an Intel 4040 and RCA CMOS 1801
(not an 1802) microprocessors. The
4040 was a nightmare with many
different silicon technologies that
required voltage level shifting among
the various required chips. Intel's
promotion literature did not mention
this. Only after you bought the $100
chip and received the data sheet did
this become apparent. I bought an early
IK RAM, 2K ROM, MOS Technology
KIM-1.

The KIM-1 was a revelation and
very easy to use. I wrote a real-time,
m u lti-ta sk in g , in terru p t-d riv en
program on the KIM-1 using the
KIM-l's hex keypad and 6 digit LEDs.
That program required six months to
write, yet it was only 2K bytes in
length (I kludged on another IK RAM).
I designed and manufactured an
industrial microcomputer called the
SUPERKIM which we are still
manufacturing.

We bought the Apple II board
because we needed a more powerful
microcomputer than the KIM-1 to
w rite 6502 assem bly language
software. (Writing and assembling
programs is one of the most demanding
tasks you can ask of any computer.]

We attached a homemade power
supply, a surplus keyboard, and a used
video monitor to our new Apple II
board - and it worked. We wrote a
crude printer driver routine using the
built-in miniassembler for a South
West Technical Products PR 40 printer,
then designed a very simple printer
interface board for the Apple II. To my
knowledge, this was the first printer
interface ever sold for the Apple II.

We searched for a symbolic
assembler to use on the Apple. (We
where not sure at that time what a
symbolic assembler was, but our
friends assured us that it was
something we needed.) A symbolic
assembler allows you to jump to a
name (symbol) of a routine within a
program, rather than to its address.
(Jumping to the address of a routine is
what you do in BASIC when you say
GOTO 1010.) Unlike an address, the
name of a routine doesn't change
regardless of how much code you put in
front of it. Most symbolic assemblers
automatically calculate the branch
addresses as well, unlike the mini
assembler in ROM, in the Apple II.

Bob Bishop and I typed in a four
character symbolic assembler written
by Carl Moser (lately of Eastern House
Software], and Bob (later of Apple
Vision fame] made it work. Our
assembler was a big step above the
Apple mini-assembler, and we sold
many of those four-character symbolic
assemblers. This too was a first for the
Apple II.

So it went for several years until
other computers arrived on the market
and we slowly began to realize what we
were missing: eighty columns on the
display, a screen editor, larger disk
and RAM storage and speed. Eighty
columns was particularly missed when
writing assembly language text files
as there was no room for comments on
the right side of the screen. We needed
larger disk storage because a 2K
assembly language program occupies
about 32K of commented text file on a
disk. We did not want to utilize any
of the third party solutions to these
problem s due to p o ten tia l
incompatibility with our then present
software-and there was a tendency of
Apple II software vendors to copy-
protect their product, making their
software impossible to store on hard
disk or make back up copies.

By this time we had become
au thorized dealers for Apple,
Commodore, Zenith and Kaypro, in
addition to manufacturing and selling

our own CP/M, eight inch drive, Z80
system; all of these were too slow. The
Commodore 8032/8050 was the best of
the bunch thanks to the legendary
Chuck Peddle, designer of the 6502
(then working for Commodore). It had
an amazing 500K on each single sided
five-inch disk. Poor Chuck made a big
mistake on the Victor when he
designed in the eight bit 8088 rather
than the 68000 (he's now an ex
president of Victor-and Victor is in
Chapter 11), apparently a victim of the
IBM mystique. The Commodore 8032
lacked the speed or RAM memory
desired to justify switching from the
Apple II.

The imminent arrival of the Apple
III carried hopes that it would have a
68000 microprocessor, but it had
instead a 6502A microprocessor-only
143K on the disk, memory bank
switching, and a steep price tag. Several
computer store owners actually
shouted epithets at Apple's Barry
Zargoni when he introduced the Apple
III at the pre-release dealer's meeting.
Apple management ignored their
dealers.

While the Apple III had a few
hardware problems when it was first
announced, those were not the main
reason for its disappointing sales. In the
very early days of the Apple II some
wordprocessing programs—horribly
slow- were written with interpreted
integer BASIC. An operating system, a
high level language or a wordprocessing
program written with a high level
language (an HLL, such as BASIC)
results in very slow performance. The
only proper way is to use assembly
language. Thus, the Apple III BASIC
ran about the same speed as Applesoft
on the Apple II despite the fact that the
processor was twice as fast.

The Apple III BASIC was written
with a HLL and compiled. There were
no schematics or source listings
provided for the Apple III, nor even
instructions for using the built-in
system monitor. How could we design
peripherals or write assembly language
software (or even fix it if it broke)?
When the wonderful Apple II came out,
it was accompanied by all these
am enities. Furthermore, for the
assembly language programmer, the
Apple Ill's memory bank switching was
a horrible feature. Memory bank
switching stemmed from Apple's
choice of the eight bit 6502A. Since the
6502A could directly address only 64K
bytes, memory bank switching was
necessary, and meant that the

44 MICRO No. 72 ■ June 1984

programmer had to keep track of which
bank his subroutine was in (the one
that he would like to call) and which
bank he himself was in, when he called
that subroutine to return to the bank in
which he had been working. Such
systems limit the practical size of a
non-bank switched program to just
64K~but the Apple III had 256K of bank
switched RAM!

Assume m om entarily that a
controlling operating system program
is 16K bytes long. It can never be
switched; that would be like jumping
to an undefined area of memory with
no meaningful program stored in it.
Another 16K bytes is allocated to
program modules which do different
things, whether in the control system
or elsewhere, and can be switched as
needed. This leaves only 32K in a
standard 64K system for text files. To
search through a large dictionary, one
must bank-switch that dictionary in
from the disk or from another bank of
RAM memory, 32K bytes at a time.
The larger the program modules, the
smaller the text files must be. Imagine
the frustration of sorting something
larger than 32K

Thus, the statement that memory
bank switching was ''horrible''; it's a
piece of hardware designed to give an
assem bly language programmer
nightmares, besides being slower than
storage in a large linear address space,
such as is available on the 68000. If
only Apple had used the 68000 in the
Apple III and had written the system
software in assembly language they
would now be in an unassailable
position, instead of second place and
dropping. (Significantly, they now use
the 68000 in their Macintosh, but have
yet to introduce an operating system
with any significant amount of
software to match the chip... but that's
a different story, having to do with the
P-System).

In Motorola's sixteen bit 68000
microprocessor, the assembly language
instructions set is similar to the 6502,
but immensely more powerful. The
68000 is about one fourth as difficult to
program in assembly language as the
6502, yet about four times faster to
program for any given application. The
68000 was designed four or five years
ago with thirty-two bit internal
architecture, while Intel and Zilog were
designing th e ir s ix te en bit
microprocessors with sixteen bit
internal architecture. Because the
68000 has thirty-two bit internal
registers, including the address

counter, it can address sixteen
megabytes without memory bank
switching.

A thirty-two bit address bus implies
four gigabytes (four thousand
megabytes) of address space, though
only twenty-three address lines and
upper and lower byte address strobes
are brought outside the chip; hence
sixteen megabytes. All of the following
microprocessors can only address 64K
without memory bank switching: eight
bit Intel 8088, 80188; sixteen bit Zilog
Z8000, or Intel 8086, 80186, 80286,
80386.

Intel advertises one megabyte-plus
addressing on these last-mentioned
chips because they built in that
horrible bank switching circuitry. Intel
calls it "segm enting” , but the
programmer still has to do the dirty
work. The longest internal register
these chips contain is sixteen bits,
therefore, the most memory they can
address is 64K bytes. For this and other
reasons their assembly language
instruction set is unorganized and
inconsistent compared to the 68000.
[Besides, the 68000 is twice as fast as a
sixteen bit 8086-not to mention the
much slower eight bit 8088 IBM uses in
the IBM PC).

A fifty dollar 12.5 mhz 68000 is as
fast as a $150,000 Digital Equipment
Corporation (DEC) VAX 11/780 CPU.
Furthermore, the VAX 11/780 can only
address eight megabytes; the 68000
addresses sixteen megabytes. It may be
hard to believe, but it's true. A sixteen
megahertz version of the 68000 is in
the sampling stages already.

Hardware floating point operations
on the 68000 are three times faster than
the 8086/8087 combination because
National Semiconductor's 16081, high
speed math chip (sixty-four bit floating
point multiply in twenty three
microseconds) works faster with the
68000 than with National's own
sixteen bit microprocessor.* Software
written for the present 68000 will have
a long and useful life because it is
upwardly compatible with the full 32
bit address (4 gigabytes) and data bus
version of the 68000 (the Motorola
68020). Not only that, but the 68020 is
four times faster than the 68000.
Consequently, the 68020 has a three or
four year head start on software
compared to any other full 32 bit

* DTACK GROUNDED, The Journal o f
S im p le 6 8 0 0 0 S y stem s . I s su e 24,
October-1983. DTACK GROUNDED 1415
E. McFadden, Ste. F, Santa Ana, CA 92705

microprocessor. No other 32 bit
microprocessor on the horizon is
sufficiently better or faster than the
68020 to overcome the software lead
the 68020 enjoys.

Unfortunately, greed is still around,
and getting worse. Most large software
houses think like this; “Knock it out
with an HLL—nobody will notice how
slow it is until after we make a
k illin g ". Such software houses
therefore need increasingly faster
microprocessors so they can justify
writing new word-processing programs
and operating systems in a new HLL,
that was written in an old HLL.

About two years ago we read an ad
in "Byte" for theSAGEsupermicro and
co n tacted SAGE Com puter for
inform ation. We were in itia lly
impressed because it came with the
P -System , w ordprocessing,
spreadsheet, PASCAL and a 68000
macro assembler, along with an
assortment of other software. When we
saw the extensive documentation, the
schematic, the memory map, the
powerful system monitor in 16K byte
EPROM, and the monitor source
listing-in other words, a completely
open system-we were sold.

The experience was like that of a
few years before, when we were first
introduced to the Apple n, except that
with the SAGE we were given an
extensive assortment of software and a
built in printer interface just to start up
our acquaintance. In short, we bought a
SAGE and have been pleased with the
supermicro to this day; it has proven its
reliability and speed.

We use it with a 6502 macro cross
assembler to write all our software for
other uses, and for wordprocessing. We
were even able to upload 6502
assembly language text files to the
SAGE and cross assemble them after a
few changes with the editor. (An
unexpected bonus, most welcome).
BASIC and PASCAL text files were also
uploaded. The secret to doing this is to
use the Apple II serial printer interface
and a free utility on the P-system called
"TEXTIN". The P-system, program
editor's replace function is easily used
to change 6502 assembly language
pseudo-ops and Applesoft BASIC
commands to conform to P-system
language requirements.

Floppy disk access and load time
(20K per sec) execute on the SAGE
about ten times faster than on the
Apple II disk operating system (DOS],

(continued on page 51)

No. 72 ■ June 1984 MICRO 45

C A D /C A M ! D O N 'T S P E N D 2 5 k , 5 0 k

o r $ 5 0 0 , 0 0 0 B E F O R E Y O U S P E N D $ 7 9 °

OBJECTIVES
This book will provide managers,
engineers, manufacturing personnel
and any interested persons an
understanding of the fundamentals of
Computer Aided Design [CAD] and
Computer Aided manufacturing [CAM]
applications and technology.

PROGRAM
DESCRIPTION
The program will expose you to the
various CAD/CAM terminologies used.
Hardware and software comparisons
will be explored with heavy emphasis on
their advantages and disadvantages.
Cost justification and implementation
are presented using case studies.

WHO SHOULD
PARTICIPATE
The course is designed for but not
limited to:

— Those managers, engineers and
research professionals associated with
the manufacturing industry.

— Personnel from Product, Tool
Design, Plant Layout and Plant
Engineering who are interested in
CAD/CAM.

ADVANTAGES—
END RESULT
This program will enable participants to:

1. Learn basic CAD/CAM Vocabulary.

2. Better understand the various hard
ware and software components us
ed in a typical CAD work station.

3 .Select the existing CAD/CAM
system most appropriate for cur
rent and projected needs.

4. Make an effective cost justification
as to Why they SHOULD or
SHOULD NOT implement a
CAD/CAM system.

5. Apply and use computer graphics as
a productivity tool.

PROGRAM
CONTENT
1. Introduction

a. History of CAD/CAM
b. Importance of CAD/CAM

2. Graphics work station peripherals
a. Input
b. Output
c. Advantages and disadvantages

of input and output devices.

3. Computer Graphics Systems
[Hardware]
a. Micros
b. Minis
c. Main Frames
d. Turnkey Graphics systems

4. Software
a. Operating systems
b. Graphics Packages
c. Graphics Modules

5. Computer Aided Design
a. Geometric Definitions

[Points, Lines, Circles, ETC..]
b. Control functions
c. Graphics Manipulations
d. Drafting Functions
e. Filing functions
f. Applications

zB

CONTINUING EDUCATION FOR BETTER

J
CAD / CAM:

A PRODUCTIVITY
ENHANCEMENTTOOL

6. Implementation
a. Determining needs
b. Purchasing and Installing
c. Getting Started

7. Cost Justification and Survey
a. Cost comparisons of two and f

work station systems.
b. Presentation of recent survey

CAD system users

ZANIM SYSTEMS MAKES THIS SPEC
OFFER: IF YOU BUY CAD/CAM:
PRODUCTIVITY ENHANCEMEI
TOOL BEFORE APRIL 15TH, WE W
INCLUDE FREEOFCHARGEJHESE T\
PAPERS PUBLISHED NATIONALLY
ZANIM SYSTEMS CAD/CAM EXPER

1. “Creation of a Large Data Base
a Small Graphics System”

2. “Shortest Path Algorithm Usinc
Computer Graphics"

Of course you could spend as much
$495, $595 or $695 for a similar 3
seminar even though this book is nc
computer program.

We tell you April 15th for a spe
reason...this product may be ■
deductible depending on your field
needs. This 170 page course will sat
any of your CAD/CAM needs. '
guarantee it.

Please send $79 to:
ZANIM S Y S T E M S
CAD/CAM GROUP
P .O . BO X 4 3 6 4
FLINT, M l 4 8 5 0 4
[3 1 3] 2 3 3 - 5 7 3 1

QUANTITY DISCOUNTS AVAILABLE FOR COLLEC
UNIVERSITIES AND/OR SEMINAR USE.

P r o g r a m m i n g

w i t h

M a c r o s

by Patricia Westerfield

You can make your assembly language more
efficient, cleaner, easier to debug.

Introduction

The techniques and examples described
in this article use the ORCA/M Macro
Assembler for the Apple II, from
Hayden Software Co. The ORCA
assembler has its own specific macro
language, explained fully in the
manual, which allows the programmer
to write macros tailored specifically to
his needs. But, because the system sup
plies over 150 macros with complete
subroutine library support, the typical
assembly language programmer will
probably never need to write a macro.
For this reason, this article will focus
on the ways in which macros can be us
ed to enhance and simplify assembly
language programming, and not the
symbolics of the macro language.

Replace HEX Addresses

The first, and perhaps simplest, reason
to use a macro is to replace an easily
forgotten address. The Apple monitor
contains 32 subroutines, documented
by Apple, for use by the assembly
language program m er. T hese
subroutines range from generating a
carriage return to drawing a horizontal
line of low resolution graphics blocks.
To access these routines, the correct
memory location or 6502 registers are
loaded, followed by a jump to
subroutine instruction and the hex
adecimal number which is the
subroutine's starting address. The Ap
ple monitor will then perform the
desired functions and return to the in
struction immediately following that
from which it was called.

The COUT macro is used to il
lustrate this point; it prints out the
character contained in the A register.
Without a macro, the code to initiate
this subroutine would look like:

LDA # 'A ■

JSR $FDED

In this example the A register is
loaded with the character A '. This is
followed by the jump to subroutine
call, which goes to the memory loca
tion $FDED where the subroutine in
the Apple monitor performs the
necessary instructions to print out the
A ' character.

To circumvent the problem of hav
ing to remember the 32 hexadecimal
addresses needed to access the monitor
subroutines, a macro can be used to
replace the address with a short name
which describes the function of the
subroutine. This name is more easily
remembered, saving the programmer
time and reducing the chance of error.
When using a macro to call the
character out subroutine, the LDA and
JSR instructions are replaced by a single
macro:

COUT §'k'

Replace Repetitive Code

Another use of macros is to replace
repetitive bits of code that are too small

Key to Understanding

Macros are a group of commands in
assembly language assigned a
mnemonic which can then be used
alone in a program. When the
program is run, those commands
assigned to the Macro mnemonic are
processed in a manner similar to a
subroutine. Macros become a
tremendously powerful tool for the
programmer when the way that they
can be used is understood. Assembly
language programming is often
avoided because of its simplistic and
tedious nature. But for many
programmers it has become a
necessity because of memory
limitations and the requirement for
fast programs. Maintaining a
program or system written in any
language can be difficult and time
consuming. Problems encountered
are compounded when the program is
written in assembly language. Macro
instructions change this by enabling
the programmer to retain the
efficency of assembly language while
providing the capacity to emulate
some features of higher level
languages.

Macros also alleviate debugging
and other problems by bringing about
a standardization of code. Operations
used repeatedly throughout the
program are handled in the same
manner, and are, therefore, easily
identified. The code is much shorter
with mnemonicaily named macros
and considerably easier to read. This,
combined with the basic comment
structure all assembers provide, puts
structured programming within the
reach of every assembly language
programmer.

No. 72 - June 1984 MICRO 47

to require w riting a separate
subroutine. Suppose a program re
quired getting the characters from a
line one at a time. The code needed to
get the next character from a line of in
put and load it into the A register would
need to be duplicated in several places
throughout the program.

Below is an example of what the
code to perform this function might
look like:

INC CCHAR
LDX CCHAR

LDA L IN E.X

A line of input can contain up to
255 characters. In this example
CCHAR (current character] is the index
number of the position in the line the
computer is looking at. The first in
struction increments CCHAR so it is
now pointing to the next character.
Next, the line position of the character
is loaded into the X register and then
the character X is pointing to is loaded
into the A register. A desirable alter
native to writing these 3 lines of code
numerous times in the program is to
define a macro NCHR (next character)
to perform this function. By using this
macro each time a new character is
needed, the number of lines of code the
programmer will have to write, and
later wade through when debugging,
will be decreased significantly. The
code to execute this would look like:

NCHR

Define New Instructions

New instructions can also be written
with macros to eliminate the require
ment for many different instruction se
quences to handle variations of an
operation. The ADD macro is a case in
point. Not only can variable parameters
be passed, designating different
numbers and locations to be operated
on, but the macro will optimize the add
by skipping unnecessary instructions.

The following code illustrates a
typical two byte add in assembly
language:

CLC

LDA NUM1

ADC NUM2

STA NUM3

LDA NUM1+1

ADC NUM2+1

STA NUM3+1

The first step in performing the add
operation is to clear the carry flag. In
this example, the low bytes of the
numbers contained in NUM1 and
NUM2 are added together and stored in
the location designated here as NUM3.
This is followed by an add of the high
bytes of the numbes contained in
NUM1 and NUM2 which is stored in
the high byte of NUM3. The total
number of bytes needed to perform this
add is 19 (assuming that no variables
are in page zero).

The ORCA assembler provides an
ADD macro which replaces these 7
lines of code with one while
duplicating the above operation:

ADD NUM1,NUM2,NUM3

The macro performs the same 2
byte add and stores the result in
NUM3. The macro also required 19
bytes.

The ADD macro in ORCA will
always do a 2 byte add, but when ad
ding a 1 byte immediate number to a 2
byte number, the standard shortcut is
automatically taken.
• What follows is the code needed to
add 4 to NUM1 without macros:

CLC

LDA NUM1

ADC # 4
STA NUM1

BCC PAST
INC NUM1+1

PAST ANOP

After the carry flag has been cleared
the 4 is added to the low byte of the
number stored in the location NUM1.
The next step is to increment the high
byte of NUM1 if the first add resulted
in an overflow. Notice that in this ex
ample the sum of the two numbers is
returned to the location NUM1. The
total number of bytes required to per
form this operation is 16, assuming no
zero page locations.

To illustrate the fact that the ADD
macro will take the shortcut when ap
plicable, the same ADD macro is used,
this time with the GEN ON directive in
place. This directive is provided with
the ORCA assembler. When it is turned
on at the beginning of the program all
the lines generated by the macro expan

sion are printed in the output listing.
These lines of code are preceded by a
1 + '. Notice that the following lines of
code are basically the same as those
above:

ADD NUM1.#4
+ CLC
+ LDA NUM1
+ ADC # < 4
+ STA NUM1
+ BCC SL2
+ INC NUM1+1

+SL2 ANOP

If the carry flag is clear after the low
bytes of the two numbers are added
together, the high byte of NUM1 is not
incremented. Instead the assembler
branches around this instruction to the
label SL2 which is a ANOP (assembler
no-operation). Because the ADD macro
was able to recognize and use the stan
dard assembly language shortcut, a sav
ings of 3 bytes resulted. At first glance
this may not appear to be a significant
savings, but when the number of times
these macros are used in a large pro
gram is taken into account, the savings
in space and the speed up during
assembly time become significant.

Notice that the two previous ex
amples used the same ADD macro to
perform two different types of add:

ADD NUM1.NUM2.NUM3.
ADP NUM1.#4

The ADD macro, like many other
macros in ORCA, allows variable
parameters to be passed to the macro.
In the first example the result of the
add is stored in NUM3. If a destination
is not specified, as in the second case,
the result is stored in the first location
by default, in this case NUM1. This
feature alone saves the programmer
from having to code many different in
struction sequences to do basically the
same operation, thereby adding to the
efficency of assembly language pro
gramming.

Shorten Code

Macros also shorten the number of
lines of code in a program, making it
easier to read and less prone to error.
This also speeds up program develop
ment: an oft quoted result of several
studies on programming is that a pro
grammer programs a constant number
of lines of code per hour, regardless of
the language. By reducing the number

48 MICRO No. 72 - June 1984

of lines of code, program development
speeds up.

The following statements load the
address of a two byte number AD2 into
ADI least significant byte first:

LDA # < AD2
STA ADI

LDA # > AD2
STA AD1+1

These 4 lines of code can be replaced by
the load address macro, LA:

LA AD1.AD2

thus performing the same function
without extra lines of code.

Hide Confusing Code

A major advantage to programming in
Pascal or another high level language,
rather than in assembler, is the ability
to give a function or procedure a name
which clearly describes the operations
being performed. Because of the
simplistic nature of assembly language
the purpose of even a few lines of code
can become difficult to discern a very
short time after the code has been writ
ten.

The ORCA PRINT macro hides
what can be confusing lines of code
while at the same time stating clearly
the procedure to be performed. The
macro is straightforward, emulating its
BASIC counterpart by writing out the
characters contained in ticmarks:

PRINT 'A LINE OF OUTPUT'

would result in
A LINE OF OUTPUT

printed out to the CRT or the printer,
whichever was specified by the pro
grammer. The expansion of this macro
would look like:

PRINT 'A LINE OF
OUTPUT'

+ JSR SRITE

+ DC H ' 8 0 1, I 1 ' L : S L 2 1

+SL2 DC C'A LINE OF
OUTPUT'

The macro statements generated,
the ones preceded by the ' + ', show the
steps the PRINT macro takes to per
form its task. First a jump to
subroutine call is made to SRITE,
which is contained in the system
library. This is followed by two DC
(declare constant) assembler directives.

These statements tell the subroutine
the length of the output and whether or
not a return needs to be generated after
the line of output is printed. These
three lines handle a number of tedious
coding steps the programmer would be
required to code if this macro was not
available. The efficency of assembly
language is retained, while at the same
time it is possible to achieve some of
the advantages of a higher level
language.

Standardize Code

A great deal of confusion can be
eliminated through standardization of
code using Macros. Consider Fig. 1 and
Fig. 2. Both of these subroutines per
form the same task, that of printing a
menu on the screen and accepting user
inputs. Fig. 1 is written in straight
assembly code, while Fig. 2 uses
macros and and implements a simple
commenting structure. An experienced
assembly language programmer would
be required to decipher the purpose of
the code in Fig. 1. The macros and com
ments used in the example in Fig. 2
enable the main points of the
subroutine to be understood even by
programmers unfamiliar with assembly
language.

Alternate Instruction Sets

Another feature macros provide, useful
to the advanced programmer, is the
ability to write alternate instruction
sets. An excellent example of this is a
cross assembler which would allow
code written using the ORCA 6502
Assembler to be run on another
microprocessor such as the 6809. The
gap between these instruction sets is
bridged with macros.

The only major problem that arises
when writing a cross assembler in
volves handling identical instructions
which assemble differently on each
microprocessor. To get a better idea of
the problem, consider the RTS (return
to subroutine) instruction on the 6502
and the 6809. The RTS on the 6502 is
equivalent to a hex 60 while the RTS on
the 6809 is the same as a hex 39. In
order for the assembler to distinguish
which RTS is meant to be used at a
given time there must be a way to
separate the instruction sets. The first
way to solve this problem is to code all
6809 instructions in lowercase and
leave all 6502 instructions in upper-

Another way is to precede each 6809 op
code with an identifier, such as a 1.1:

.RTS

Macro Libraries

The ORCA assember’s macro library
provides a collection of standard
macros which can be used to perform
common functions. Because these
macros come with the system, they
need need not be recoded for each pro
gram.

To use the macros effectively, the
programmer builds a small library of
the macros used in a particular pro
gram. This file takes very little time to
colate and speeds up the assembly of
the program. With a separate macro
library the assembler only has to search
through the macros needed by the pro
gram, and not the entire 150 macros
provided with the system.

Subroutine Libraries

In order for macros to be of optimum
use to the programmer they must be
backed up with subroutine libraries.
The reason for a subroutine library
becomes apparent when the SUB (sub
tract) macro is compared to the MULT
(multiply) macro. With the GEN ON
directive in place at the beginning of
the program the code the subtract
macro would generate would look like:

SUB NUM1,NUM2

+ SEC

+ LDA NUM1

+ SBC NUM2

+ STA NUM1

+ LDA NUM1+1

+ SBC NUM2+1

+ STA NUM1+1

Compare this with the multiply macro:

MULT NUM1.NUM2

+ ANOP

+ LDA NUM1 move NUM1 to

+ STA MIL m u lt r e g

+ LDA NUM1+1

+ STA M1H

+ LDA MUN2 move NUM2 to

+ STA M3L o t h e r m u lt r e g

+ LDA NUM2+1

+ STA M3H

+ JSR SMULT p e rfo rm

m u lt ip ly

+ LDA MIL move an sw er t o

+ STA NUM1 NUM1

No. 72 ■ June 1984 MICRO 49

Listing 1

©
GT5 RTS

A KEEP MENU,V10 MSG1 DC C'MENU'
w SMENU START MSG2 DC C' 1) CATALOG'

PRBL EQU $F94A PRINT BUNKS MSG3 DC C' 2) LOAD A FILE'
HOME EQU $FC58 MONITOR MSG4 DC C' 3) QUIT'o HOME ROUTINE MSG 5 DS 0
RDKEY EQU $FD0C READ KEYBOARD END
CROUT EQU $FD8E DO CARRIAGE

RETURN KEEP MENU,V10
© BELL EQU $FF3A RING BELL MCOPY MENU,MACROS,V10

**
JSR SINIT * *

O m i JSR HOME WRITE MENU * SMENU - PRINT MENU ON SCREEN AND *V LDX 20-(MSG2-MSG1)/2 * ACCEPT USER INPUTS *
JSR PRBL * *
LDX MSG1 **

© LDA MSG *
LDY MSG2-MSG1 SMENU START
JSR SRITE j
JSR CROUT j WRITE MENU

© JSR CROUT j
LDX MSG2 JSR SINIT
LDA MSG2 MN1 HOME

© LDY MSG3-MSG2 PRINTC 'MENU'
JSR SRITE CROUT
JSR CROUT PRINT ' 1) CATALOG'
LDX MSG3 CROUT

© LDA MSG3 PRINT ' 2) LOAD A FILE'
LDY MSG4-MSG3 CROUT
JSR SRITE
JSR CROUT PRINT ' 3) QUIT'

© LDX MSG4 CROUT
LDA MSG4 CROUT
LDY MSG5-MSG4 j

© JSR SRITE ; GET AND INTERPRET USER INPUT
JSR CROUT j
JSR CROUT GT1 RDKEY CRS GET A LEGAL INPUT

CMP '1'
© GT1 JSR RDKEY GET A LEGAL BLT GT2

INPUT CMP '4'
CMP '1' BLT GT3
BLT GT2 GT2 BELL ERROR FOUND

© CMP '4' JMP GT1
BLT GT3

GT2 JSR BELL ERROR FOUND GT3 CMP '1' CATALOG THE DISK
© JMP GT1 BNE GT4

JSR SCTLG
GT3 CMP '1 ' CATALOG THE DISK JMP MN1

BNE GT4
© JSR SCTLG GT4 CMP '2' LOAD A FILE

JMP MN1 BNE GT5
JSR SLOAD

n GT4 CMP '2' LOAD A FILE JMP MN1
BNE GT5
JSR SLOAD GT5 RTS QUIT

0
o

o

JMP MN1 END

50 MICRO No. 72 ■ June 1984

+ LDA M1H
+ STA NUM1+1

Both of these macros generate these
lines of code in the program at the place
where they are use. Notice however
that the SUB macro completed the en
tire operation in 7 lines of code. On the
other hand the MULT macro merely
set up the numbers given it in a stan
dard format and called the multiply
subroutine [JSR SMULT) to perform
the calculation. The fact that a
subroutine library was called from a
macro means that the dozens of lines of
code in that subroutine are not
generated each time the macro is call
ed; instead it is stored in one place in
memory, thus cutting down the
amount of memory the program re
quires in order to run.

The beauty of subroutine libraries
lies in the fact that they are

Supermicros

(continued from page 45)

and BASIC programs run four times
faster than on IBM 's Personal
Computer. It is as fast to program in
high level compiler languages as using
interpreters on 8-bit machines. Our
6502 assembly language programming
productivity doubled.

With an unexpanded, 256K SAGE
II, you can plug in your own 64K bit
dynamic RAM chips for 5 12K bytes and
your own second Mitsubishi floppy
disk drive; sockets, cables and
connectors are provided with the
unexpanded machine. One hundred
and fifty nanosecond, 64K bit RAM
chips cost about six dollars each at the
present, and 36 chips make up 256K of
RAM memory.

The video display and keyboard
aren't built-in on the SAGE, unlike the
Apple II; a separate RS232 serial

preassembled, and therefore never need
to be assembled again. The subroutines
required by the program are
automatically linked in at assembly
time by the link editor. For this reason
no assembly time is lost on these
subroutines.

The concept of subroutine libraries
can be invaluable to a programming
shop involved with software develop
ment. Only a central shop is required to
develop and maintain the system
libraries. Because not everyone has the
source code to these libraries it
becomes difficult to alter code, which
is (presumably) known to be error free.
At the same time interfacing with these
routines becomes standard, thereby
making the finished program easier to
maintain and update.

Conclusions

The macros supplied with the ORCA
system effectively extend the 6502

terminal is required. However, not
having a built-in display and keyboard
can be advantageous, because the user
only pays for what he needs. Separate
19.2K baud serial terminals are also
faster than most built-in hi-res bit
mapped displays. This is due to the
dedicated CPU in the terminal that has
nothing else to do but update the screen
while bit mapped displays are usually
updated by the main CPU. (Multi
processing if you will). It has 640K on
each floppy disk drive, 512K of parity
RAM and 24 bit address, 16 bit data
bus, expansion connectors. It comes
with a built-in Centronics parallel
printer port, an IEEE-488 port and two
RS-232 serial ports, one which is used
with the terminal, the other already set
up for a modem. Options include hard
disk up to forty megabytes and a six-

assembly language instruction set to
over 200 instructions. Many instruc
tions not commonly found in the 6502
assembly language, like PRINT and
HOME, are now available to the pro
grammer via macros. Areas where the
processor was inadequate, including
I/O and arithmetic, are handled with
ease. Because of these added instruc
tions, assembly language is no longer
tedious and difficult to use. Instead, it
approaches the simplicity of a higher
level language.

Through macros, the full potential
of programming in assembly language
is reached. Macros enable the program
mer to write fewer lines of code to ac
complish a given task, and to do so in a
precise and straightforward way. For
this reason assembly language need no
longer be feared by the average pro
grammer; instead, it becomes a
language within the grasp of everyone.

JMCftO

user system with 1 megabyte RAM.
Several other operating systems will

run on the SAGE, including CP/M
68K, Mirage, PDOS, BOS/5, MBOS/5
and Idris (a UNIX-like operating
system). Languages that run under the
standard and optional operating
systems are several versions of
Fortrans, BASIC, ADA, Forth, Cobol,
Microcobol, APL, Modula II and
several "C "s .

Here's the most serious advice to
anyone con tem p latin g w riting
software: write it in assembly language
for the 68000. The 68000 and its
derivatives will become the de facto
standard microprocessors for at least
the next ten years, despite IBM's
temporary lead with the 8088.

JUCRO

No. 72 - June 1984 MICRO 51

U a tu z e

Useful Functions
by Paul Garrison

Editor’s Note: The following program
is given in its entirety to illustrate one
way o f setting up a program to easily
access various defined functions. In the
next two issues, programs 2 and 3 will
be published in their entirety. We
invite you to send in any defined
functions you m ay be using that are not
m en tion ed . T he su bm ission s we
receive w ill be collected and published
in a future issue.

Save time and mathematical aggravation with this
compilation of defined functions in a very friendly
program.

Many of us, depending on what we do
for a living, find that we must use a
variety of arithmetic formulas, and
more often than not we’re faced with
the task of looking them up in some
book or other research material, after
which we must key them into our
computer or calculator making sure
that they're exactly correct. That can,
on occasion, become quite a task when
the formula involved includes a half
dozen pairs of parentheses or other
complicated combinations of fixed and
variable values. A typical example of
such a formula is shown below. Such

lengthy arithmetic expressions simply
invite errors.

The programs that make up the
main portion of this article are designed
to simplify the task. They are made up

61 DEF FNDENALT(PA,F)=(145426*
(1-(((288.15-PA*.001981)/288.15)
15.2563/((273.15+F)/288.15))

t.235))
of 60-odd user-defined functions
representing all of the arithmetic
expressions that I have ever needed in

the more or less technical writing that I
have done.

In addition, all three include a group
of three subroutines and an END line
(lines 130 through 160) that I
automatically put in all the programs I
write. My reason for dividing the
functions into three separate programs
is based on the need to keep them
within a 48K limit, or rather the
14-plus K limit that is available with a
48K RAM when MBASIC is loaded into
the computer.

The programs consist of the actual
functions (lines 1 to 99), where the line

52 MICRO No. 72 - June 1984

numbers are not duplicated in the three
programs in order to be able to merge
portions of the programs into new
programs without getting involved
with a confusion of line numbers, the
subroutines (lines 130 thru 160), a
menu (lines 200 thru 400) plus a means
of using all of the defined functions in
order to perform a given calculation
with optional variables. The three
programs are recorded on a disk that
also contains the CP/M system,
MBASIC and the CP/M PIP program
which simplifies the task of copying
them onto another disk where they can
then be merged with a new program.
Since it is unlikely that all of the
functions will be used in such a
program, it is then a simple matter to
delete those functions and other
material not applicable to the program
being written.

The programs are written in the
Apple version of Microsoft BASIC-80
(MBASIC), using the WordStar
wordprocessor. The changes that must
be made in order to translate them into
other versions of BASIC are described
below.

Other BASIC Dialects

VARIABLE NAMES: BASIC-80, TI
BASIC, TI EXTENDED BASIC, Atari
BASIC and some other versions will
recognize 40 or more characters in a
variable name, while Applesoft,
TRS-80 and several others recognize
only the first two characters (plus the $
in case of string variables). Therefore,
variable names that exceed two
characters may have to be examined in
order to avoid inadvertant duplication.
For instance, Applesoft and TRS-80
would look at BOLD and BOLT and
read both as BO.

MULTIPLE STATEMENTS PER
LINE: In most versions of BASIC,
multiple statements on one line,
separated by a colon (:) are permitted.
In TI BASIC, multiple statements per
line are not accepted. In TI
EXTEN D ED BA SIC, m u ltip le
statements must be separated by two
colons)::).

INPUT WITH PROMPT
STATEMENT: Most versions of BASIC
accept INPUT followed by a prompt
statement in quotation marks. In
BASIC-80, the prompt statement may
be followed by a semicolon, resulting
in a displayed question mark (?), or by a

comma eliminatingthe question mark.
In Applesoft and TRS-80, the prompt
statement must always be followed by
a semicolon. In both versions of TI
BASIC, the prompt statement must be
followed by a colon. Atari does not
permit a prompt line after INPUT.
Instead, the prompt must be used as a
PRINT line, followed by INPUT and
the variable(s).

DEFINED FUNCTIONS: BASIC-80
uses DEF FNABC(X) with no space
between FN and the function name
ABC(X). In Applesoft, it can be typed
without a space, but the computer will
insert a space automatically, resulting
in FN ABC(X). The two TI BASICs do
not use FN. Instead DEF ABC(X| is
used to define ABC. In the reference
books for TRS-80 and Atari, I have been
unable to find the DEFine command.
The way to get around that is to simply
assign an arithmetic expression to a
variable name,- ABC = 1/A would,
when ABC is PRINTed, display the
reciprocal of the value assigned to the
numeric variable A. In that case no
variables in parentheses can be used
because the computer would recognize
that as an array, and would respond
with a SUBSCRIPT OUT OF RANGE
error message if the variable in
parentheses exceeds the maximum
allowable number and no prior DIM
statement was encountered.

TO CLEAR THE SCREEN:
BASIC-80 and Applesoft use HOME to
clear the screen. TRS 80 uses CLS for
the purpose. With computers that do
not include a clear-screen command,
use FOR X = 1 TO L:PRINT:NEXT X
where L is the number of lines
displayed on the screen. The two TI
BASICs use CALL CLEAR for that
purpose.

TAB(X) and VTAB(X): In the TI
BASICs, the TAB(X) statement must be
followed by a semicolon. In some
versions of BASIC TAB and/or VTAB
are not available. In that case, spaces
within parentheses can be used to
effect the TAB position and FOR X = 1
TO Z: PRINT: NEXT X can be used to
move the text to a given vertical
position on the screen, represented by
the value of Z.

There are other differences between
the versions of BASIC used by different
computer makes and models, but these
are the only ones used in the programs
reproduced here.

PROGRAM #\
T h is program co n ta in s the
mathematical formulas for all versions
of SINE, TANGENT, and SECANT that
are not built in functions [such as
SIN(X), COS(X), TAN(X) and ATN(XJ)
au tom atically available on all
microcomputers. In addition, it
contains conversions of degrees to
radians and vice versa which are
frequently needed in conjunction with
the others.

Lines 2 and 3 assign standard values
to PI and RAD. Lines 16 through 37 use
the DEF FN statement to create the
user-defined functions. Lines 100
through 160 are the lines that I use at
the beginning of all my programs. Lines
200 through 400 contain the menu that
allows you to use any of the defined
fu n ctio n s to perform a given
calculation, using your own variables.
Line 420 sends the computer to the
appropriate line number based on the
selection made from the menu. And
lines 690 through 1560 are used to
perform the different calculations.

PROGRAM #2
This program includes the formulas for
trigonometric ratios, two formulas
dealing with matters related to aviation
(the effect of wind on ground speed and
density altitude), the formulas for
con v ertin g tem p eratu res from
Fahrenheit to Celsius and vice versa,
plus the formulas that comprise Ohm's
Law and determine the resistance
factor of electrical wires, and finally
the formula that determines future
values based on compound interest,
present value and the time span to be
examined. The structure of the
program is identical to the one
described above. See editor's note.

PROGRAM #3

This program contains a variety of
formulas, such as those used to
determine the lesser, greater or average
value of two variables, rounding off
figures to a given number of decimals,
polar-to-rectangular and rectangular-to-
polar conversions, figuring roots of any
variables (square root, cube root and so
on), determining the reciprocal of any
number, and determining the surface
areas and volumes of cubes, rectangular
shapes, spheres, pyramids and
cylinders. Beyond that the program is
structured like the others, except that
the menu is at the end (lines 2000 and
up). See editor's note. MuroG'

No. 72 • June 1984 MICRO 53

©

©

©

©

©

1 REM FUNCTIONS (DELETE THOSE NOT USED IN A PROGRAM)
2 PI=3.14159
3 RAD=57.2958
16 DEF FNARCSIN(A)=ATN(A/SQR(-A*A+1)):
17 DEF FNSINH(A)=(EXP(A)-EXP(-A))/2:
18 DEF FNARCCOS(A)=-ATN(A/SQR(-A*A+1))+1.5708:
19 DEF FNC OSH(A) = (EXP(A)+EXP(-A))/2:
20 DEF FNC0T(A)=1/TAN(A):
21 DEF FNARCCOT(A)=ATN(A)+l.5708:
22 DEF FNTANH(A)= EXP(-A)/(EXP(A)+EXP(-A))#2+1:
23 DEF FNCOTH(A)=EXP(-A) / (EXP(A)-EXP(-A))#2+1:
24 DEF FNSEC(A)=1/COS(A):
25 DEF FNCSC(A)=1/SIN(A):
26 DEF FNARCSEC(A)=ATN(A/SQR(A#A-l))+SGN(SGN(A)-l)*1.5708:REM ARCSECANT
27 DEF FNARCCSC(A)=ATN(A/SQR(A#A-1))+(SGN(A)-1)#1.5708: REM ARCCOSECANT

Listing for Program 1

REM ARCSINE
REM HYPERBOLIC SINE
REM ARCCOSINE
REM HYPERBOLIC COSINE
REM COTANGENT
REM ARCCOTANGENT
REM HYPERBOLIC TANGENT
REM HYPERBOLIC COTANGENT
REM SECANT
REM COSECANT

28 DEF FNSECH(A)=2/(EXP(A)+EXP(-A)):
29 DEF FNARCSINH(A)=L0G(A+SQR(A#A+1)):
30 DEF FNARCCOSH(A)=LOG(A+SQR(A#A+l)):
31 DEF FNARCTANH(A)=LOG((1+A)/1-A)/2:
32 DEF FNARCSECH(A)=LOG((SQR(-A#A+l)+l)/A):
33 DEF FNARCCOTH(A)=LOG((A+l)/(A-l))/2:
34 DEF FNARCSCSH(A)=LOG((SGN(A)#SQR(A#A+l)+l)/A):
36 DEF FNDEG(A)=A*(PI/180):
37 DEF FNRAD(A)=A/(PI/180):
120 GOTO 200
130 ?"--

REM HYPERBOLIC SECANT
REM HYPERBOLIC ARCSINE
REM HYPERBOLIC ARCCOSINE
REM HYPERBOLIC ARCTANGENT
REM HYPERBOLIC ARCSECANT
REM HYPERBOLIC ARCCOTANGENT
REM HYPERBOLIC ARCCOSECANT
REM DEGREES TO RADIANS
REM RADIANS TO DEGREES

REM TESTING FUNCTIONS

140 HOME:VTAB(10):RETURN
150 ?:INPUT "Press > RETURN< (Q to quit) ",R$
155 IF R$="Q" THEN 160 ELSE RETURN
160 GOSUB 140:GOSUB 130:?TAB(33)"End.":GOSUB 130:END
190
200 GOSUB 140:?"Menu: ".-GOSUB 130
210 ?1,"Arcsine"
220 ?2, "Hyperbolic sine"
230 ?3,"Arccosine"
240 ?4,"Hyperbolic cosine"
250 ?5, "Cotangent"
260 ?6, "Arccotangent"
270 ?7,"Hyperbolic tangent"
280 ?8, "Hyperbolic cotangent"
290 ?9, "Secant"
300 ?10,"Cosecant"
310 ?11,"Arcsecant"
320 ?12,"Arccosecant":GOSUB 130
322 ?"To choose one of the above, press > RETURN< "
324 INPUT "To see other choices, press > Y < ",Z$
326 IF Z$="Y" THEN GOSUB 130:GOTO 330 ELSE GOSUB 130:GOTO 410

-":RETURN

330 ?13,"Hyperbolic secant"
340 ?l4,"Hyperbolic arcsine"
350 ?15,"Hyperbolic arccosine"
360 ?16,"Hyperbolic arctangent"
370 ?17,"Hyperbolic cosecant"
380 ?18,"Hyperbolic arccotangent"
390 ? 19, "Hyperbolic arc'cosecant":GOSUB 130
392 ?20,"Convert degrees to radians"
394 ?21,"Convert radians to degrees":GOSUB 130
400 ?22,"Exit program":GOSUB 130
410 INPUT "Which? ",WHICH:GOSUB 140
420 ON WHICH GOTO 690,730,770,810,850,890,930,970,1010,1050,1090,1130,1170,1210,

1250,1290,1330,1370,1410,1490,1530,160
690 ?"Find the arcsine of a number":GOSUB 130
700 INPUT "Enter any number ",A
710 X=FNARCSIN(A):GOSUB 130
720 PRINT "The arcsine of ";A;" is »;X:G0SUB 150:GOTO 200
730 ?"Find the hyperbolic sine of a number":GOSUB 130
740 INPUT "Enter any number ",A
750 X=FNSINH(A):GOSUB 130
760 PRINT "The hyperbolic sine of ";A;" is ";X:G0SUB 150:GOTO 200
770 ?"Find the arccosine of a number":GOSUB 130
780 INPUT "Enter any number ",A
790 X=FNARCCOS(A):GOSUB 130
800 PRINT "The arccosine of ";A;" is ";X:G0SUB 150:GOTO 200____

54 MICRO No. 72 • June 1984

0

Listing 1 (continued) 810 ?"Find the hyperbolic cosine of a numberGOSUB 130
820 INPUT "Enter any number ",A
830 X=FNC0SH(A):GOSUB 130
840 PRINT "The hyperbolic cosine of ";A;" is ";X:G0SUB 150:GOTO 200 O
850 ?"Find the cotangent of a number":GOSUB 130
860 INPUT "Enter any number ",A
870 X=FNCOT(A):GOSUB 130
880 PRINT "The cotangent of ";A;" is ";X:G0SUB 150:GOTO 200 V
890 ?"Find the arccotangent of a numberGOSUB 130
900 INPUT "Enter any number ",A
910 X=FNARCCOT(A) .-GOSUB 130 O
920 PRINT "The arccotangent of ";A;" is ";X:GOSUB 150:GOTO 200
930 ?"Find the hyperbolic tangent of a numberGOSUB 130
940 INPUT "Enter any number ",A
950 X=FNTANH(A):GOSUB 130 °
960 PRINT "The hyperbolic tangent of ";A; " is ",-X:GOSUB 150:GOTO 200
970 ?"Find the hyperbolic cotangent of a number":GOSUB 130
980 INPUT "Enter any number ",A q
990 X=FNCOTH(A):GOSUB 130
1000 PRINT "The hyperbolic cotangent of ";A;" is ";X:GOSUB 150:GOTO 200
1010 ?"Find the secant of a number "-.GOSUB 130
1020 INPUT "Enter any number ",A ©
1030 X=FNSEC(A) .-GOSUB 130
1040 PRINT "The secant of ";A;" is ";X:GOSUB 150:GOTO 200
1050 ?"Find the cosecant of a number":GOSUB 130
1060 INPUT "Enter any number ",A
1070 X=FNCSC(A):GOSUB 130
1080 PRINT "The cosecant of ";A;" is ";X:G0SUB 150:GOTO 200
1090 ?"Find the arcsecant of a number":GOSUB 130 Q
1100 INPUT "Enter any number ",A
1110 X=FNARCSEC(A):GOSUB 130
1120 PRINT "The arcsecant of ";A;" is ";X:GOSUB 150:GOTO 200
1130 ?"Find the arccosecant of a number":GOSUB 130 ®
1140 INPUT "Enter any number ",A
1150 X=FNARCCSC(A) .-GOSUB 130
1160 PRINT "The arccosecant of ";A;" is ";X:GOSUB 150:GOTO 200 Q
1170 ?"Find the hyperbolic secant of a number":GOSUB 130
1180 INPUT "Enter any number ",A
1190 X=FNSECH(A):GOSUB 130
1200 PRINT "The hyperbolic secant of ";A;" is ";X:GOSUB 150:GOTO 200 ©
1210 ?"Find the hyperbolic arcsine of a number":GOSUB 130
1220 INPUT "Enter any number ",A
1230 X=FNARCSINH(A) .-GOSUB 130
1240 PRINT "The hyperbolic arcsine of ";A;" is ";X:GOSUB 150:GOTO 200 0
1250 ?"Find the hyperbolic arccosine of a number "-.GOSUB 130
1260 INPUT "Enter any number ",A
1270 X=FNARCCOSH(A):GOSUB 130 O
1280 PRINT "The hyperbolic arccosine of ";A;" is ";X:GOSUB 150:GOTO 200
1290 ?"Find the hyperbolic arctangent of a number":GOSUB 130
1300 INPUT "Enter any number ",A
1310 X=FNARCTANH(A):GOSUB 130 ©
1320 PRINT "The hyperbolic arctangent of ";A;'' is ";X:GOSUB 150:GOTO 200
1330 ?"Find the hyperbolic arcsecant of a number":GOSUB 130
1340 INPUT "Enter any number ",A —
1350 X=FNARCSECH(A) .-GOSUB 130
1360 PRINT "The hyperbolic arcsecant of ";A;" is ";X:GOSUB 150:GOTO 200
1370 ?"Find the hyperbolic arccotangent of a number":GOSUB 130
1380 INPUT "Enter any number ",A ©
1390 X=FNARCCOTH(A):GOSUB 130
1400 PRINT "The hyperbolic arccotangent of ";A; " is ";X:G0SUB 150:GOTO 200
1410 ?"Find the hyperbolic arccosecant of a number ".-GOSUB 130
1420 INPUT "Enter any number ",A ©
1430 X=FNARCSCSH(A):GOSUB 130
1440 PRINT "The hyperbolic arccosecant of ";A;" is ";X:GOSUB 150:GOTO 200
1490 ?"Convert degrees to radians":GOSUB 130 q
1500 INPUT "Enter number of degrees ",A
1510 X=FNDEG(A):GOSUB 130
1520 PRINT A;" degrees equal ";X;" radians":GOSUB 150:GOTO 200
1530 ?"Convert radians to degrees "-.GOSUB 130 ©
1540 INPUT "Enter number of radians ",A
1550 X=FNRAD(A):GOSUB 130
1560 ?A;" radians equal ";X;" deprees":GOSUB 150:GOTO 200_______________________

No. 72 - June 1984 MICRO 55

< ifi£ c C a l £ e a tc v ie = =

Apple lie Supplement
to

What's Where in the Apple
by Phil Daley

A .l
Overview

The latest Apple II, called the “ //e" for
"en h an ced ", has several features added that
m ake it more standard and versatile. The
keyboard has been improved and w ill now
generate all 128 ASCII key codes, including
screen display of lower case. The RESET key now
r e q u ir e s p r e s s in g th e C O N T R O L k ey
sim ultaneously and rebooting can be accom plish
ed by pressing CTRL-OPEN APPLE-RESET, sav
ing wear and tear on the on/off sw itch, always a
weak point. A CTRL-CLOSED APPLE RESET
initiates a built-in self-test. The screen display
has been improved to allow either 40 or 80 col
umn display under software control. There is also
a full cursor control in all four directions. The
16K language card has been made a built-in
feature and slot 0 has been elim inated. Inter
national versions are available for European and
Asian buyers w ith sw itchable character sets.

D esp ite a ll th ese ad d itio n al fea tu res,
com patability was kept w ith m ost of the previous
software. All of the standard m onitor entry points
were preserved so that, unless software uses un
documented m onitor entries, it should run on the
//e. The only other problem that m ight arise is
the utilization of one formerly unused page zero
location. A program that used that location will
probably not function properly on the new Apple.

Another new feature is the addition of a 64K
expansion available as an enhanced 80 column
card, w hich w ill m ake additional memory
available to sophisticated programs such as
Visicalc.

A.2
A Third Apple Monitor

There is now a third m ajor version of the
Apple m onitor to go along w ith the Auto-Start
and (old) System m onitors. W hile all of the
documented entry points rem ain the same, m ost
of the routines jump to the new ROM in the
$C100-$CFFF range. These new routines check
on the availability and status of 80 colum n and

extended 80 colum n cards, and use this additional
hardware for enhanced displays and cursor
control, when available.

The major differences between the II + and the
//e are as follows:

a) RESET, OPEN APPLE and CLOSED APPLE
keys: The Control key m ust now be pressed to
in itiate the RESET cycle. This w ill elim inate ac
cidental RESETs as the keys are on opposite sides
of the keyboard. The APPLE keys are paddle
button extensions to the keyboard and can be
used in conjunction w ith the RESET cycle to in
itiate the self diagnostic tests (CLOSED) or
power-on reboot (OPEN).

b) EDITING : In addition to the I, J, K, and L
diamond cursor control pattern, there are four ar
row keys that can also be used to move the cursor
on the screen. Pressing ESC to enter the editing
mode changes the cursor to an inverse 11 + " to in
dicate editing mode. Additional commands are
also available. ESC-R enters upper-case restrict
mode, which allows only upper-case letters
during keyboard entry except after typing a
when both upper and lower case are allowed for
PRINT statem ent. Typing another " " returns to
upper-case only. ESC-T exits this mode. ESC-4
displays a 40 colum n screen sim ilar to the II + ,
while ESC-8 shifts to the new 80 colum n screen
display. ESC CTRL-Q exits the new made entire
ly, returning to the old 40 colum n display, and
turning off the 80 colum n card.

A.3
The New Display

In order to m aintain com patability w ith the
old II and II + , it was necessary to design a screen
display that utilized the old screen memory
($400-$7FF). This was insufficient for 80 column
display, so Apple designed an 80 colum n card
w ith its own memory mapped into the same ad
dresses. The hardware alternates its scans from
one set of memory to the other when in 80 col
umn mode. Characters are stored alternating
from one address to the next, w ith all the odd
screen locations in m ain memory and all the even
ones on the auxiliary card.

56 MICRO No. 72 ■ June 1984

There are routines in the new m onitor areas
that can convert an 80 colum n screen to 40 by
moving the alternate characters to the m ain board
and throwing away the last 40 characters in each
colum n. The opposite sw itch is accom plished by
a sim ilar move to the auxiliary card, using only
the leftm ost 40 colum ns for the characters
previously on the screen.

A.4
Hardware Locations

O n th e o ld er A pples, th e ad d resses
$C 000-$C00F were equivalent addresses and were
only partly decoded by the hardware. This m eant
that reading any of those would yield the same
result (reading the keyboard), which was also true
of $C 010-$C01F (clearing the keyboard strobe).
These addresses are now fully decoded and pro
vide a set of soft switches/status indicators for
the new 80 colum n card and extended 80 colum n
card (with 64K memory expansion).

The sw itches include options to read and/or
w rite either the m ain board locations or the aux
iliary card locations, to set the standard zero page
and system stack (main board) or the alternate
zero page and system stack (auxiliary card), to
turn on or off the $C X00 ROM s, to enable or
disable the 80 colum n display, and to turn on the
norm al or alternate character sets (normal has
upper case flash instead of lower case inverse).

Additionally, there are a group of locations
that can be read to determine the current sw itch
settings so that any program changing the
sw itches can save the current settings and restore
them at the end. States that can be determined in
clude READ/WRITE status, language card bank
status, 80 colum n status, page status, and text
mode.

A. 5
Software Status

Apple has always reserved some unused loca
tions in the text page RAM as scratch memory for
the 7 hardware slots (1-7). Several of these loca
tions are now permanently assigned to the new 80
colum n cards, when they are in use, and are used
to store the current cursor location, I/O status,
and BASL/BASH in Pascal.

One particular location ($4FB) is the software
M ODE status. Each bit is indicative of the cur
rent state of operations: BASIC/Pascal, interrupts
set/cleared, Pascal 1.0/1.1, norm al/inverse
video, G O TO X Y in progress/not in progress,
upper case restrict/literal mode, BASIC in
put/print, and ESC-R active/inactive.

These locations enable a program to deter
m ine the current state of the m achine more easily
than before, and m ake it sim pler to utilize the
new hardware configurations in programming.

A .6
Programming Considerations

The standard Applesoft G ET and IN PU T (and
associated m onitor routine KEYINJ were not
designed to work w ith an 80 colum n display and
using them while in 80 colum n mode can cause
loss of data or erasure of program in memory, but
this can be overcome by a routine explained in
Appendix E of the new Applesoft Tutorial.
Reading the keyboard directly ($C000) functions
the same as before.

Do not assume an Apple //e or 80 column
card when writing programs; one of the first
routines should check for the type of m achine be
ing used. Apple supplies a program that w ill do
this on "T h e Applesoft Sam pler"; and Call
A .P .P.L.E. has also published a routine for this
purpose. HTAB w ill not function beyond the 40th
colum n. W hile POKE 36,PO S works m ost of the
tim e, Apple recommends POKE 1403,POS (0-79)
for the //e. T h is routine w ill not work at all for
an old Apple.

It is the programmer's responsibilty to turn off
the 80 colum n card at the end of a program. Do
not quit the card w ith the cursor beyond the 39th
colum n, as this can cause unpredictable results
including program erasure. In case of accidently
executing this command, pressing RETURN im
mediately will usually recover the cursor to the
left margin. It is also necessary to turn the 80 col
umn card off before sending output to printers,
modems, etc.

VTAB no longer works when a window is set
(by POKing 32,33 etc.). The solution is to VTAB
to the location -1, and then do a PRINT prior to
PRINTing the actual data. This causes the
firmware to recognise the new VTAB location.

These cautions are a sm all price to pay for the
increased versatility and flexability of the new
Apple //e.

Editor’s N ote: This m aterial is intended to
be used in conjunction with the original
version o f What's Where in the Apple which
did not contain Apple He material. The 1984
edition o f WWA is now available for $19.95
from your local bookstore, com puter store,
or by m ail from MICRO, P.O. Box 6502,
Chelmsford, MA 01824 (add $2 shipping)

No. 72 - June 1984 MICRO 57

HE
X

LO
CN

(D

EC

LO
C

N
)

[N
A

M
E]

\

U
SE

-T
Y

P
E

\

-
D

E
S

C
R

IP
T

IO
N

i

i

58

CO
o
o

c
$
0»k_
o
w
*c
0»
co
3
c
3

0)
co
0)
.c

*o ac <D cWW i<D oO —
COO — u*o (0 o

cnO /-N<c <D U GDa» £ _ w• k. c > +—! cn*o 0) ro flj < CO<D £ £ o —CD<0 k_ 03 w a3 •— a> (T3 O 3a a Q W W k. <D3 o (0 C (0 k. > <Do ij l_ *o — Q_ a (D Oc o c "O (T3 'W3 (0> 0) o k. O k. C O0) w ■ — o W <D k. 03 k.• — 0) 0) <D o AS *D <D.c o ^ (T3 <T3 Q_ O *o B
£ . (T3 •w O 'W£ C <D C
o k. o •—k. LL —
•— u. o — *o 0) as
.c o 4-t (0 o *o c <D o
* (fi r: 0) u. £ o <D(D—

a o £ k_ CO O“D Q> <x> <T3 (0 a <T3<D a k_ o k_ 3 c — a k_ u. _ _
<0 <T3 (T3 w O •— as w (D <D (TJ 03k. •w k_ £ c — O O

O W o 0J k_ (0 —> — (0 CO> (T3 k_ o k_ 03 03 (0 <Q— CO r: 0) > <D z t - u u a. a.l_ a k_ a
<D > (0 0) o£ k_ 0) a k_ w c C cu. (T3 Q o o o o o o oO k. « 0 a x c

0 a u. £ u <D o © © o 1—
a o 0) k_
£ +—! *o u. •i—l

o 0) X w — 3c \— o (D < c u B B B B B B

+—! u.
CO
03 Q>* .il W

3
£03 C

£ . • —CM4—1
w Oc c ao o flj— — a / /

+—! +—! r* /CO (T3 w Q. Q. i—
o y O / / Q_
o T - O /

Q_
/

(/>
Xo

COr .
o

Q.UUJz o o
a> u. •— LU _l O
Cb > £ . > - 0 2

< >
a CO

>
0)
w 0)i— t—1 c0 •— ^ r-.

co ✓—S, u. T—CM
•—

CO
3
0

r*'W'W'W
a? 'W <D k_
k- 00 GD GD
a> u_ a? > r- h- ll
£ . T— c r̂ r̂ r̂
\ - h- < * * * *

CO— CO
r c o
o co
CO 03
<* Q.

o
O CD
0) *o

<D
*D
O
e -

<_> « ® ® — <j
"D <n tj\ <n
O « < «
£ o m o.

□ m o ®
O w — J
k- 0} k_ O 0) 0)
o . k. — o o

a w s. n a ®
C C- ® k. 3 3 >— k. k. ® a o — ®

a a c c t - t - - w >
® a. « « z D o —to 3 ------a_
« a: Z c (Jo — — - «

« c c
® ® <_> u cc a:i_ ---------i i

cn cn <_> <_>

o
c

<D

X X - (t o o ® o
> (— (— a ~£V_ _ _

o c o o a - d 3 < < co cn

a»
c

3
o

>
X
o
h-
o
o J I

»- (/)(/)
— <D C < < — GD CD<QO O

x — as
u

* - C ■*- C ■*- C ■*- c c •*- c

<D *0 TD
(J) (J)

»- 03 <S > >
c ® r c s «£ > u - M id
3 -O
O O 3 O <fl «
o w O O u o

i - s. o co in
0 3 C « «
00 <_> — X CL CL

/ / a. a.
1 - / CL / /

cl cl i- /
y y cl <— —

/ - j i
^ ^ a cn cn
X > •—■ cc < <
U O CC O CD D
C K O Q D 3 D I U J J
G O O X O O

co y - <T> t"~ in co
o n u i oo i - v

in CD o) o

m m m m m m
r- ll r- u_ h- llin <o <o r*- r--^ if* & 4* 4* ^

cn
<

cc
LU
2
r>
z

0)
s
s

a
a
<
a>
jr

CD
r .

oj
r :

0)
.o
.o
CD
3

Ol_
a.

r--
o

o
o
o
o

MICRO No. 72 • June 1984

n
u

JZ ■
J

2 -

<D -C
(0 CO
re re
u —

CO
<D

-C
o

<s *D

* o XD 2E
(0 o w_ re O
\ w re o CC
CO CO o n
c c c 1 3 ©
o £ C c TD — k- ©

— 3 E •— k . re 03 X
— 3 re re E O u

03 O — E u
U o O c c —

O o c c o o cc
— © o o c

CO © z 2
a> 0 0 z z < < <D
i . 0) < < GC CC 4—1
0! — <D GC CC c

n — 0) 0) •—

*C re -Q -C 4-1 4-»
(0 03 re re • —
— C a> Q> w <D

X a UJ GC GC ^ ^ cn

l. 0)
X <D o —
o a c -Q

O re a 03
re 3 • CM C
4—> CO <D <D
w \ £ to X
\ <D o CO 03 C S
CD O <D O 03 U 03 <
o re TD <D — i 3 GC
03 a z — •o H—

<D
O N
N

a> co
4->

03 O
C O
w CO
<t> u

(0
- a>
03 —

-Q

0) <D C
cn co u j

> —
>

c

§ i
— 3
O —
o o

o
©
00 o

00
0)
— 0
-Q —
03 n
(0 03

— c
C i UJ

« }£ L. k . 4-> W
<D O 01 03 03 03
(0 — O O
<« CO CO
O <D <D

CO O
v- v- 03
0) 0 3
£ > o
o c c
- - 0J

0)
O Q h O re < oc u
3 UJ 3 * o
a a c ^ oo
C J 2 K
re < < UJ

03 <D
C * o
O O
- £
(0

_J X
CD ®

\ ---------QC CD cn > h -

0 ! 03 CO CO CO CO CO
£ £ *0 *0 *0 *0 *0
w k . 03 0J 0J 03 03
O O <0 <D a> <D <D
z Z cc cc cc cc cc

/ / /
/ / / f T - T-
X 1 - 1 - X X X
/ X X / / /

/ /

CO — 2 z
00 «J _J < < <
t - O O C C Q C C C
O U U Z Q Z
^ O O - £E - I 00 00 < < <
C J 0 C I - Z U Z
in j u j u o oc
t - c j tn ac gc ^

/

/ X
▼- /
X
/ —

2E
— O z cn
< x
cc u
O » -
cc z< -
u j-
c r u j
^ cn

/

X
/

/ / / /

X X
/ /

CL CL
rsi m
Q t -

Z X X
O / /
CC
CO *
u a a

o > >
V— - J « J o ©
cn < cn oo oo

k - C C h -
UJ —I UJ
cn u cn

UJ UJ
cn cn

/ /

X X /
/ / 1 -

X
r-n ^ /

CC cc
< < - ,
X X 04
U U ^
*“ *“ z
-J -J CD
< < <J
GC -J
J LU O
U (/) GC

/
/ / T - /
T— T - x T—

X X / X
/ / /

1—->
1—1 «—' t— 1—1

2 a
< cc
a : Z
o <
-J cc
a c:
GC GC

cc -J
S o
S u
< o
GC 00
a a
GC GC

(0 CO
• o *o
03
<3) <0
GC GC

/

X /
/ 1 -

X
— /
GC
<
CD h -
_J X
CD UJ
> t -
a a
GC GC

^ o >•
w cc <D rere•— © O— © o -o

— 00 —
— LL c oX o3 a — CDn £.o-a cc c 3 CDre •— LL L.

re-a <b •
c © C.0

re •— © <po T— c3 u •—
c O 4>J
£ o 3 CO3 X2 O— 3 u. CDO CO CO
o CL ; COX Z *—
© u - 5 LL a
00 o ; Q>J— "O
<P O c£ O re >>>4-> re •

<b • S <<D JZ CO— 4—> Z W
* o O <D <Dc £ GC C COre 0n © <x>•4— © r: «

o X 4—»O4̂ *D u GC<D a>—
CO <u u.

<9 <Dn re *D
C 4—1 C■— c CO re4—> <D c <D
3 o c ̂
O CO •— c
u . — CA M re

CO ID c 3 ^ 33 3 k_ o
4—1 CO — 3 u. v—

re 4—> o
4—> <4— « s
CO o CO . CO

CO CD 3
CM Q ̂ 4—> 4 ^ :
\ — <D o a reT— > CO — 3 * . 4—•

© (0 <D CO<D CO J
CM — ® c a> O if)
re UJ c •— 4—* z rea CO c n

< > •
CO (0 o x*o T3 / o CO <D CJ
03 03 CD E 4—> l. 03<D 0) cn a> <D 4->
GC GC / E CO > cn

a
. c

CD
y
c

CO
<K ®

TD
0)
«
3

O CO
0J <1
* - >

0)
a)
c

o
a
TD

a z *-
* - — 3
c > o
— UJ »-

"O
o -o o
0) *— a
> v 4 - W
j-> co

> £
J
<X>
c

Q QJ ■*—
<n .C
- ~ X
£ o o
^ c a i
<D 03 . c

u
. c •
^ >

i c

o
c

co
<D
c

UJ
cn

ore
03
.C
U

CO
a>
•o a.
o c

U UJ
GC

C _ l
o u

o
c
3

a . o

0)
a

GC 03
u

j j n «b cn
-J O -J Z LU

u j O u j O i- -
2 GC GC UJ — > X
O U J J 2 LU -
x c n u u - ^ i L

o
Z CO
5 -
t—
UJ ®
cn • -

0)

T3 — w t <
u. 0) 1
re a CD 1 <D
o C 'O <D 1 ^

0) O C
n u. <J I

<D <D 1 C
1 —

4—> 1
o --- 1 <D
4—> * ■3) 1 ~

c CO 1 <D
a CO 3 i r
c a> i B
o CO c -■ i

•— 4—> 1 0)
CD 4-> c 1

ID o 3 it CD
O > CO 1

CO CO ai I £ .
c X u. I B
o TD — • — a i :

• — — — •4— i
4—> o 03 •4— i w
re > <D --- i «•

o re ■_ a | 4mJ

o O re • 1 ^
— o •4— u T3 1 01

4»> CO w- 1 £ i
0) 4—> UJ re 1

«— ■o o i at
o 0) 1 3
r * 4 ^ o o •«. i ^

re Q o)
<- a •4—
5 — > Js: 1
CD — o 4—» 1 o
k . ■p. 4_* 0) CO 1
O 3 c j * <D 1 CL

*o —-----

re

Z
o
GC
o
o
X

/ / u

X X ~
/ / Z-'

CM Q CM
UJ — CO
a > in < © i
CL 00 00a a ©
GC GC ^T
— — <7)

^ -C M C O ^ T in C O f^ O O — W O U J U h

/ /
UJ UJ

/ co cn
UJ / /
cn

^ UJ
— z z
U CJ o
z z z
3 D 3)
U . LL LL.

C7) © T“ CO ^ in co o © T- CM CO
1/5 CO CO CO CO CO CO CO COy—T~ T“ r* T“ T“ T“ y—y—T—
C7) G) a) o C7) CD C7) CD C7) 0) 0 0) O)

V ^r ^ ^ ^ ^ ^ * r ^ r ^r
w s ./ s*/ s>/ s ./ s»/

00 a> CD U O l U L L r cm co ^r oo
© © o © © © © © 1- T—T—T“ T—
© © o © © O © © © © © © ©
u CJ u U U U U U U u u u u
1* 4* 4* i * 4& if* 4& 40

CD QD CD

00 i/5 OJ © t- CJ
(J) <J) (J>

O S UJ
© © ©
C J u u1A <& 4&

aa

No. 72 • June 1984 MICRO

UJ
©

o

©
©
©
o

59

H
E

X

L
O

C
N

(D

E
C

L

O
C

N
)

[N
A

M
E

]
\U

S
E

-T
Y

P
E

\
-

D
E

S
C

R
IP

T
IO

N

X
<J

c
o

a
3

CL
3

a E . o a
c o a a

•— a» <D •—
jc 4-< C — JC
o o •— <d o
o £3 > - c o
— o c

o
O CO N

ID » CD —
• — <D i_

l_ 3 O o
1 <D <J X 1

c
c * c CD V. c
o • o * a o o
•— <D o O a» 43) CD a CO • —
4-1 a T3 C O £ d
o <T3 4-1 C o CD ■ — <u (D 3 CJ
c Q •— CO c — CD a C CJ c •
3 CD CD — c co •— 3 0) CO

s*— C — T3 — s«— •— s«— * » 4-1 c c
O CO C o — o o CO c •— E

CD 4-1 a o <T3 CD *o o 0) CD 4-1
.C D T3 o •— r~ *o (D T3 c CD CO 3 —

O c CD 5 c c • — i- o o
<D Q ■Q OD •— CD — 3 3 CJ

s*— o (TJ O a CJ CJ
o o CD w E o C O w O o o

4-1 o 4—> <D X w w 4-1 00
CO i_ a — <D 3 CD CO N
co cn o cn — 4-1 *-> a a co CO o
CD * - O CO o — o CQ CQ cd <D a> » -

cn 4-1 •— 0) a 4-1 CO ■Q 7D cn
*o o — — — £ c t :)
T3 <D U o « r~ « o o CJ CO w 5 <d T3 4) O

o a» — 4—> A j / 73
<Q CO w • c o o o o o o o <d H C

CD CD 43) •— « • 0) 4-1 w 4-1 a 0) <d —
w 3 cn C a» CD 4—> a w $
> CO o — C <D 0) a> 0) CD CD Q > CO

<D • — i •— cn c c c c C c —
O CD 0) o J — •— •— — — ■_ •— w o o X

S 'O £ . X 43) o w 4-1 w 4-1 *-> X o * "O CD
O w c C T3 — CD CO 3 3 3 3 3 3 <D n M
— c (TJ O c CD o o o o O o 4-1 o — c

CD E — a» — •— c k- CO OD —
73 O 13 a (TJ w z •— CD T3 -C cd
C J— 3 o E C CE 4-» k- .C c C t - E
<Q o w CD 3 D o o o o o o 4—> o cd

4—> — o h - o w 4-1 4-1 4—> 4-1 <D . o
» > - l_ — c UJ •— ■ — — • — • — •— JC — > - c

JC <Q o cd Cfl GC c c c c c c rt CJ O JC
O > CD o 43) 4—> CD * $ o o o o o o CD <D H o w
<Q — *a o — CD — UL <D E E £ E E E — .c c <TJ ID CD
4-» O c CO CJ CO CJ C CJ o CD CO
CO X3 •— o l_ u •_ <D 0) 73

CD O * o o O o 4-1 o o O o o o o o o w CD o
r* X 4-1 4-1 M M M M 4-1 4—> CJ X w
5 CD — CD CO o <D

T3 CC _ GC GC GC GC c 4-1 4-1 4-1 4-1 GC GC ■Q GC
C \ o N N N N • — c c c c c c c N N c C N

u — cn cn cn cn cn 4—> ■ «. — •— •— •— cn cn • — CJ ••— cn
o D o Q o Q o o

LU V. 0) w o a a Q a a a a X LU
0) _) O o o O O o O CJ <0 _ | o
<D CD M 4—> w > > > > > > 4-1 <D CD 4-1

H < • — <Q • — — •— •— 4-1 i_ v- ■— 0) r < —
CO \— c CD c c C — 4—> 4-1 4-1 4—> 4-1 4-1 c > CO J—
3 . o — o o o o X c £ c c c £ c o o 3 » o

CL LL z O Z Z Z Z L U L U L U L U lU liJliJliJZ Z cnC L C D z

CO
<D
O
73 co

j c $ o
CO ®
— H
a» cj

*-» jc
y~ CJ
cd <d

73 O
— w
O
o c

s
•- o
O 73

CO
cXco X

> L L 3
® CD <-»
JC CD

E *-
: o

— c
Q Cfl
Q >

< »- »
: o o

E c
® —

O £ ~
s*— 4_f

0) O)CO W CO
j C V) <D O <fl >- <D —
.C ID CO
CJ T3

*
» <A ®

E o c
® -
~ w Zo) co o
> o cn
0) c

o x
<d c j

® -
CO T3 **-
0) —
u . *->

3 CD
O O CD

.C «

c
<D
E
0)
>
o
E

o
CO

3
cj

I

o

c

T3
c
Cd

0) * <
cj ^- I c
<0 <
o - ■-C I <B
O v w

Cd CJ
- X3 Cd

X3 C >-
Cd cd

cn .c
N E o
co -

jc
>- * o
o

*1 - £
c o
O Q >*-
£ rt

E T3
—

o o o

a>
r

• •-<
JC ^
CJ > i-
a u j as
^ * a>O Q -

cn o
— o

O

0)
c
o

CO —
> ^
CD Cd
JC —

CO
J c o «

cd cd
w O
0) ID

O -----
o

— e o
Cd o
£ CO

4-1 CC ^
C N —

o t n >
a - co

o c
> ^ k.
-------- 3
4-1 C ^
C O ®
LU Z CC

o •
z

cd •
—
.a *
« ->

CO 73 • 4-< a
3 — • CO

O a ID
<d '—■ CD T3 <d

C CO
co > cd —

-1 < 73
V a A

> c CO o
cd u j •— 4-» N

a —
3

X Q 0) a
CJ 4-1 4-» c

o CD —
CD GC cd w >
> cn C cd
<d *> cd CD
CO r

- CJ a
o c c

CD J •— CD
43) JC .C

CO C CJ CO
c O CD c —
o CO 0) H o CD
•— .c CJ •—
4-1 c 4—> 4-1 CO
• — o o <TJ a>
■Q 4—> CO CJ c
T3 2 D — o ■ —
<d Ll a cd —

LL D
5 ^ • » p o
CD • t o o
C CJ 0) CD 73

cn 4—> a» c Z
^ < o cd o
w cd — E cn
•— o

o cd CJ CD X
« n ^ CJ

> CJ o 4-1

<D w > Ev o c <D - o
0) c JC X

<d 0) a
CD l_ 3 cd Z

73 c o 4-1 cn w
cd CO CD 4-1 •—
CD 4-1 <X) 73 X

3 — a c CD
Q cd 73 cd

o c C o O
4-1 * • — cd 4—> - I 4-1

CO o o
CD 3 •— <D Z CD
c 4-1 c cn C
— cd o O ■— —

4—> 4-1 o M
D CO 43) w 3 c 3
Q .c CO O — o
s.. 4-1 w 4—>

a t : c
3 0) w <D

0 u- cd o E Q
M o Q w 43)
• — CD 4-1 — • —

w CO c CJ c
o C 43) <D o C o
z • — X Z — z

a
GC

CO
JC
(J
a»

o

jc
CJ
cd

E
o

>

1“ Z '
O f-------- t
c Z
---------CO —— w <tj
X) co <d cj
< « « ® «
c cd — Cd
cd co c j o_

cn
<
_ i

a
GC
ID
z
3
z

<D
N
N

a
a
<

CD
H

Cd
H

<DID
CD

O

CL

60

/ /
LU / / / / / / / / / / / UJ / / / / / /
cn UJ UJ UJ UJ UJ / UJ UJ LU UJ UJ / U J / / cn lu LU / UJ LU LU / UJ
/ c n / c n c n c n c n / u j c n c n c n c n c n u j / c n u j u j / cn cn / UJ / cn co cn / co cn

/ u j / / / / _ i c n / / / / / c n i u / c ^ c ^ / / / / cn LU / / / CO CL /r—< cn / / / (/) / / i—« UJ TT Q_ / cn CL /
CJ 1—1 / ■—11—' r - . i—i ^ ^ ^ / 1—' x ~ CO — CL / / *—> r-, / r-,
Z CL _l _l Q M — — _l _l M CL Q ^ GC'-' — O X / X / — Z \—
3 O - J O Z J i - O J O J O Z H ^ O X ’- Z K — Z cn Z 3 — CL Z
LL L U L U 0 L U B 0 L U U 0 L U 0 L U 5 U J I U H U U B LU r— LL i—11— — > 3 — O H Z UJ
a a r z c n c n » - i u a : z a : a : i u c c i “ c /) z u » - z j- cn 01 <J Z 3 > -1 t - CJ CJ CL “ > CJ
- i J 0 C J J L U J 0 3 C J J J J L U L U 0 L U L U 3 LU LU a cn — O UJ Q UJ ------LL * —
o c j x c n c j c n c j (5 L L c n c j c j c j c n c c x > c D L L cn cc < UJ <J CJ > GC CO CO CO CO CO• — » cn cn * UJ • < < < CM <
CD l l l l l l l l i l i l i l g o c d c d c d c d c d c o c d c d q q c d CD CD O CD UJ UJ CD LL CD CD CL t- CD
UJ UJ l__l UJ UJ U.I UJ l__l l__l w-̂ •—/ •—1 •—1

>—s >—s >—s >—s >—s >—s >—s
0) a) i n i /) c o c o ^ ’ O O J c o o u o c o a) C i i /) e o © '» - O) co T- TT CJ CO o CJ a> O S ^ S C O
CO ^ r i^ c o c o T rc D c o h - '» - '» - r> J c o c o ^ rT rc o r>- c o 00 <0 CJ) 0) o CO O) CJ OJ CO CO TT

^ ^ ^ m m u o i n i n t o c o c o t o c o c o c o c o c o c o <0 h - h - CO CO 00 0) O) 0) 0) 0)
0) 0) 0) 0 0) 0) 0) 0) 0) 0) 0) 0) 0 0) 0) 0) 0) 0) 0) O) 0) O) 0) O) O) 0) 0) 0) O) 0) 0) 0) 0)

^r ^ ^
w ’w ' ’w ' ’w '

ll 0) C O Q Q < U ^ ^ Q C O 0) r S < Q L L l U T - O) i - UJ O CO <0 CD O S C D ^ - N
T— C s j T T T } - S C 0 a) < < U Q Q l U l U L U L U L L O T - •»- CO CO <0 CO CO CO <J LU O O O y - T -
T— CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CO CO CO CO CO
CJ < J < J < J < J C J C J C J C J C J C J C J C J C J C J C J C J C J C J CJ CJ c j a CJ CJ CJ CJ CJ u u u u u^ ^ ̂̂ 1A ZA 1A 1A iA 9# w sjr 9# w V" sjr Trr Trr vT ^7 SJT v " VF wT VT vT if* 4& *0 4 * & if* « * if* if* « « » « » « » « »

MICRO No. 72

N-

COt i

I

LL

<J
<s*

zo

GC
CJ
co
lu
Q

/
LU
CL
>
J—
1
LU
cn

05
a
£D

T3
C
0J

a

o
©

CO
CJ

CO
oo
<J

©
<0

OS
©
- z
« O

GC
oo
<J CO

<J
a
c c
0)
D <J

CO CO
~ <
O CD
CO *o
> o
c o rt
M- O

o E
y> «
c)
k_
D O

A
a
4- co

LU 3
a t - Q h h
£ - < - <
^ Z U J G C K
— ' — CC B CO

<Q <Q 03 (C (Q
O O CJ CJ CJCO <0 to « O)
<Q 03 (Q (*C 03

flj 0) k-
4—1 • — k-
CO

UJ CJ
<D LU o
O CO • w

<* *o ©
D 1 k. N
o * Q CO
CO TJ LU a ■o

l_ CO k_
II <n 4* o 0J
CJ *oT- < c

< o <TJ k. «
J** CO ©k_ CO
c © CO .

— > c © X
0J <0 CA o
2 © D 0J

— o J**
— k_ •— CO CO
<n o > CO c \
CJ c ©

03 © o
4-> o © E flj
© £ a
CO *o k_

k_ 4-* o
0) > <n © © .
JC o O) — © J—
c k- o N o
<TJ <fl o > _l
r) u 4—1 u. o © COu. 4>J 00> * *o 03 — 03 ’. u4̂ k_ a C ̂
O <Q k_ c c
£ 03 O »> © flj •—
<D r) k. A
E CO © •— CO

c *o <n C CJ
to c •— CO k_ o 4#
CO o <n c 03 ©
O E 0J o CO CO

*-• rj 3 <Q ©
o CQ E C
0J c c o c CO o— k_ c c> 4-J 03 o 0J 03 CO cnk_ CO Z a £ © ©
o © — D £ •
E Q O o o —
<D 4—1 k_ TJ c • o
E II 4—1 © © — GC O

■O c CO CO O
© ̂ T w o D © UJ ”) 4-J
> < 03 (J O OUJ O
o CJ © to 03 CO 4-> k_
E • E X c — o a

■o <TJ © <TJ 1 c
o c o a o
4—1 © o © > UJ 0- o

o A CO 2 00
GC © w w to • -> CJ
\ u <n a O C X
cn w © a a CO 03 a

3 — $ <Q © — cc
o o © CO £ *-> CO > —

O CO to to 3
. 4-1 > to © \ »- a
■— M c <TJ © o © D
c k_ « “C © a CO 4—1 4—1

; o cm 03 *o — — c ©
2 < U h 0J o a < lu co

CO
CL

<n
O
<TJ
CO
cj
©
a
o
*o
c
<T3

<TJ
<J

X
a)

a)
05

■o
c
CO

2
o
GC
CO
<J

a)
a

■o©

<D

CO
<
GD

> i-
*- ©
*- aOJ ©U 4- ,

c ©
<n — *d
*- O
<tj ©
© to — <o
cj cj

< c
cc

- zUJ
2 u
O —
GC CO

<
CO GD
©

O
a «-»
o
o 4-.

©
>

z
o

*- GC
C 00
— LL
O 0) • -C

CL CJ

O
• a
E
0) o
4-J -W

CO
to co

©
.C TJ
4- c
CO

O B
c cn <n <j
n

c
■O
o o
o \
a —
4- (J
o —
C CO
<

— CD
— a
«- DCO

<J)
— in

®
■C

>-
r a
o o
a o
_i ®
o >-

e >
o

o
«
k-
0J
.c
a

OJ
X

•3
CJ

<J

E -
c
E
o

c —
— o

CJ
©
w. o
O 00

O I
c ~

©
<0

*0
c
<T3

c
0)
0)
k- CO C I -

*o
c
OS 4-»cj rt

0) *-
^ <0

£
cj

o
CO c

E *o
»- D *D
« — O
0) O
— O *-
u —

o
*00 •
© c
*0 W <D
O © >
£ CO ©

<o
03
c
0)
*0
c
<T3

<D
*0
O

jc e
o
o c
j: £

3
V) *-• —

> 3 0
o a o
•a c
c — o
— oo
J o

• U
CO T- o
CJ «-
A <c x
a a o
«s co ©
^ G A
q c l u

<D *0
C0 C 0)
OS OS £0 O

a? —
»- T3
(D O *-11 e x
O ®
— X C

o
— ® o ® £ ~
</) O

XO O h
4-f O
a> © a
c c z 3

O
o

0)> 4-J
o

4- c
CJ
<D

- a
>- t
o o *-
U C 03

<TJ <P
*- H —
O CJ

*D
C C

“O « O

<TJ C *
0 — >

« *-
Z O *-
< <n oj
GC o

X1 U i
u a> o
® ̂ a>
a o A
o u
o o
4-> ^ ■*-<

cd <n <d
C CJ c

- _J c
^ h (!)
- <J ®
J3 Z *-

CL U
JL. GD CO
a>
- o <s>

~ r .

sfl ^
Z *- Cfr c
— <TJ 3 O
OC -® o
Q_ — »- *-
GD CJ £ . 03

4- r .
o • u
4- CO —

I — <s>
.C _] flj «c
a c e **“ *-
D H*
O U - 4-
»_ 4- C
n *- o -
4- O C »-

a
co *4-— & — *a
— JC c
03 O - 0 3

*4- a> c
IZ *- •“

* CJ D 4-i
O 4- —
C - 0) -Q

— OC *-
~ < r .
C X * 04-
- u c c

03
a c 4-j

- CO 0)
<J to o
— W O
cn a> o o
< *■* o *-*
03 o u. w

os a
O U- GC
+* os * ̂

£ co X
u j y - u
Q
O 4-J ^
2 3 • * 03

a o

*o •
~ k- (J
tn <tj co
< o LU
GD GC A o

< » z
O X <D
~ <J X O

c *o a>
»- C £ CL
3 « 4 - 2
4-< -5
a> - £
»- c o c

o a>
*0 — ^

*o
c
0J

> >
CO •
O) X CO
<D 0)
o »-
a> o
C 4-

to

to « <J
o A CO
a u uj
k. <q w
o oCO 4_ C

<D
D O
o —
0) c •

r o co
m •— (D

4- a
4-» — 01
0) to CJ
a o co

a uj
4-> 4-j a

* d c c
c a © — o c TJ
--- - d

D —
- <J O CJ CO — c
O CO 4 - -
a < os

CD

O O flj 03 co r r
o o

D UJ
o a

0) 2 -̂
©
>
c

0) CO
to CO

0)
O 4 -
4_> (J)
co co — a

« 3 — ®
(a O >-

3 W
O TD
1- c

3
O

O O V> o >-
3
o

<D ®
C C

Z «-■ <fl
3 < 3 CC (X £ cc
O DC O N X O N
i- i- <s) i/> in

O _l
i - *■> t— f f i -
o o o o t- o
4—1 J 4—1 4—1 CJ
— o -------------- -
C C C C C C i - C
O f f l O O O O O

o o o

o
w
D
u

<D
>
o
E
CD

3 l / 3 / 1
/ 1 UJ “ 5 UJ

I CO CL / CO / 1
\ / 1—■ / / LU / / / / / / / / / UJ 1

>—> | UJ UJ CO UJ / LU UJ / -J _J UJ UJ / LU CO
UJ 1 ^ c n cn / cn / / UJ CO — CO _] / / / CO CO _J co / 1
Z I CM 00 / / / UJ UJ CO / »— / — / / / / LU / / / / I
< 1 1 - i - — cn cn / — o — _J _ l _ l CO I
Z i z O UJ ■—' / / — z I— ' —»1— <J / / / / — I— 1— * <— > 1“ 1
l__l j LU O 1— Q H“ 1— (— » T~ — ▼" CM --------- 1 - -J 1 - I - 3 1

1 (J in — < — < « - /—i oo J - CJ 1 - Q 1 - OC 01 (—> r— — ^ Z UJ 3 CL 1
/■> 1 ~ 1 Z UJ GC 1 - UJ GC CJ — — — < — < < CJ CO I------------ CJ GC CL Z 1Z I CO in — gc B cn > UJ t— Z co z UJ z UJ GD CD CD CD 3 GC z O Z -
CJ 1 < O) CL CL CL CL O LL UJ — < — CC — —1 00 00 oo O O O Q . CL 1O i GD O) “5 “5 “5 2 X CO a gd CD a GD CJ CJ CJ CJ CJ CD CD CD CD GO CD 1
_ l 1

1
u~l '—, '— ' — ■— 1— 1 I— . M I— 1— 1 '— ' *— 1 1 1 1

CJ 1 W z- ' /■ > / - S / - V / - H / “ V / - N / - H / - S / - V / - N / - H / “ \ / - n y“s / - V /“ \ /-H i in
UJ 1 m •»- co <j> CO in O CO CJ CM O CO CM CO CO o T - ^r CO C£5 T 1 o
Q I (\ l O) O O r r <J> in o o CM n c c a) o ’r - CM in co o CM ^ CD 1 O)

' I CD CO O) o o o o o i— CM CM CM CM CM CM CO CO CO CO CO CO ^r i a
1 O) co a) o o o o o o T“ 1— " r - i — r — i — t— r - 1“ ■»— i - i - 1 4ft

Z 1 ^r c j -^r in m in in m in in in in m in m in m in in in in m in m in i
U 1
O 1

4 * W w W V # > -» W W i i

_ l 1 CD CD CD ^ r^- Q CO o CD O CO co CD O Q CO ^ UJ O CO •»- C J cm cd in 1 CO
1 CO in m in co CD UJ o o t— t in in <o O) O) < u U J L L O 1 CO

X » CO CO CO CO CO CO CO CO CO 00 00 00 oo oo ao oo 00 00 00 oo CO 00 00 00 O) I CO
U J I CJ u c j a c j c j c j CJ <J c j a CJ u u u u C J C J C J U C J C J C J C J C J 1 c j
X 1 4 # 4 0 4 * 4P> 4& 4 f> 4 f> 4 * 4 * 4 * 4 f* 4ft 4A 4& 4ft 1 4 f t

to
<

<J

cc
LU
z
3
z

a
a
<
0)
A

as
n
B

CD
A
A
4)
D

O

CL

No. 72 • June 1984 MICRO 61

zo

CCCJ
cn
UJ
o

CL
>-

cn
3

CO
0CJ
c
03
o*
0)CO

: <&) u j

> - ;
* h- c

k_ 0 z
0) • D
a 4—' k_ 4—'
a o 0 0
D £L H— — k_

4-J —
O • — X <9 0
*—> 5 CJ CJ O)
c 0 ■—

•— < £ O J
o 4—»

0 T) (D
CO <9 •* c £L

O 4—' 4—'
O — o D o

c 4—'
• 0 »

0 0 0) a
£ 4—» z
O 0 • — * —

— £ . 4-* CL
4-f o <

CO • — c cn
CO CJ

• 0) UJ
a

0 O
»» <9 4—' 4—'

> LZ o
® CJ <9 •— c
x .

0 <9 ► D
T3 . c . c CO 4—'
c O <n <D

0
P —- o
£ — O O •
O
o * 4—' a a>

c (/>
<9 0 o * o

4—< o c 4—'
0) cj <9 • —

h— <* ® r)
LU CO
a <* 4—< c x :

. c o Cft
» o J —
c 4-* 4—< £ .
0) T3 c o
® — c Q)

— D
cj <9 a * « - 4—'
CO > :

— 0)c <* * o <9 <9
o c — £

k_ <9 CJ
o 0 >

o • a U-
0) c r 0) 4—'

CD < c
3 < X ; 0)
O h U O

CJ CJ 1 GC
0 cn co _i <
a l u u j c r x

h— CJ
CJ ® O U CJ «
cn .c 4—< j cn
UJ 4—< c UJ 0

*o —
0) CO c _
0 JC X <9 <«
cj CJ ® * * U
<9 0 * o ;
— £1 c CC H— O
Q_ o •— j --- 4—'

0T3
O
E

p. <
4—» >*—

0) c —
O 0 > o H— 0
t - 0) o c ----- E T 3

k_ ' — - 0 0
<9 CJ 4- a ► 0 c 03 k- 0

w c TD 13 0) CJ **-
* - T3 0 0 <9 »- O D 0 c
£ 1 <D 7 3 T 3 £ L « E w CJ - QJ
O * - O U CJ 0 O c

— CJ E 0 k_ • —

O o •* <*-----k. <*} <U
— — a. 0) CJ CJ
C C Z * - 0) 0)
O O UJ •— flJ flJ

2 2 I------- CL Q .

C UJ CJ 4—' _ u 1 C/>
o 0) 4—* 0 X

c 0 o cn CJ 4—> — 1 ***’
C O a 0 c a 1
3 z y— .C o 0 1 0

N-> 0 D CJ N 1 -O
— a ■— 1 ^

O) O a x • 1 0
o II c D > o > 1 D

X “O c O £ 1 _ l
c •— <Q 1

a c (Q — — 40 0)
D <Q ; <« CO o 0) 1 <4—i

D 0 U CO u 0 0) 0 1 o
4—< 4-» E <0 CJ <0 CJ U 1
0 0 o <Q <Q 0 D 0 1 CL

cn Q.
:

CL c o C 1
1
1

/ 1 / / /
1 UJ / h- / / / _l UJ UJ
1 cn h- t- UJ _l - J / / CO CO
| / a . cn / / / / / - J / / / / / LU

UJ 1 CL / / UJ UJ _J — / LU -J LU cn
Z 1 / CO CO r— / •—< c r — '—1 CO / CO /
< 1 C 3 r—* i—i / / z »- < — c r o / /
Z i z — c r cn < « - I h O r—« i—i
>—i i — GD < o r—« CJ CL —1 CJ UJ — i - «—i CM i—i UJ

I Q. < i h ac <j X — Z X CC GC Q h—
i < f— CJ < O to I J < » Z Q . -------— < —

Z 1 <J CJ CJ f— O u j CJ IL CJ IL — 1- z z z LU c r
CJ 1 cn cn co co x oUJ c rO I UJ UJ UJ CL CL Z m m m m m to CL CL CL CL CL_J ii — m m M ^ M M M M M M *— M ta-‘
<J i /-s /-s /-s /•“*» /-s / - s /•“*» / - s / - s / - s /—H /-S /-S / - s /•“*»
UJ 1 o O S ^ T 04 a> a> CO CJ 00 •»- CC T - CO CO
a i CD N CO O w CO r - o •»- cm in 00 05 05 CM in

■*T in in <o < 0 CO s0 N N S S S h- h ' h- CD CD
i T “ 1“ T “ T “ T “ T “ T “ T “ T “ T “ T “ T “ i- ▼“ ▼“

Z 1 m m m in in in m m m m m m m m in in
<j i
o i ^ w w w w W W W W W > w / w w ̂"O 1 -J 1 CO OJ CO < 0 h - LL N CM < S < u_ ^ UJ

\ i— r^- oo 05 < CD Q LL O O CM CM CO
X 1 CD 05 CD 0) 0) CD 05 CD < < < < < < < < <
UJ 1 U CJ cj U CJ cj CJ cj CJ CJ CJ CJ U U CJ CJ o
X 1 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * ^ ^ <* <0

a
a
<
0

UJ
CO
<u4*
I

CO

CO
CJ

62 MICRO No. 72 • June 1984

zo

cc
o
cn
UJ
a

/
UJ0.
>h-
I
UJ
cn
r>

a*
c

<u
*

aUJ
GD

0 CO
— c
•— k_
.c 3
5 4—<

0
03 k_
c .
o >

— > a
4-* * 0C

< 3
o O
o CO

— > o
c o c

E k_ k_ —
o 3 4—1 CO
*D 4-1 to 3
C 0 0

k_ "D 0
k_ C

-o * —
0 c T3 —
£ <T3 k_
4-1 « c

0 <J 0
a .Q 0
c O c k_
— k_ e CJw 4—* D CO
c 03 —
0 o w
£ -o o O
0 k. •*-
k. o
CJ O 00 CO
c n 0>
• — »•*- 0

0 o k_
•X 2■O 0k. 0 O fl5

<T3 c
O ■w 0 0
n 0) 0)
> k. 0 .
0 ra k_ • XI X

jc 0 a 4—1 to— o 0 <
0 o k_ c 4_> GD
.c o 03 \
4—* ►U—•*- — _l

< — D to
■a 4-f o <
03 o 0) UJ — GD
0 0) Z fl
k_ c 4—1 GD CJ C
O o „ O
4—1 k_ 4—» 0 4—1

CQ k. __
cc n cr 0 GC 3
\ CJ s \ i/i
tn cn 4-> cn 0

0 k_
l. £ k_ 0) l.
o 4—< o •— o CO
4—1 4—1 0
--- *o *o — k_
c 03 c k. c O
o O o o 4-»
Z — z o Z cn

O00V
©

»- o
o 0 «- .c

o0)
^ oO «-*
0
r O
o cc

CO
03
0
o
o

to
CO0k_
T3
*a<Q
0)C

D
O

<Q <Q
> >
c c

II II

o ©

c
)
o■O

a
D

O
03

3
'J

010

TD
CD
T3•U_ o O _ 0 0 1> u. 4~> k_ CO CO o 0 0 1O — 4—1 0 0 k_ k_ c 1

z < c c C <J 1
o to o 03 03 •4— 1c c o 4-< _ 1• — 0) •— D 3 c 10) 0 O o o o 0 1n 0) k. o W 0 ■O 1D <« •4— a> o I
0 £ D c CJ o £ 1c • CJ * h- 0) (0 — 4—1 1•—— T3 o — "O o CO ■O I— a • C 03 < 0) w) c 4-1 k_ o — 1

o 0) 03 4—1 k_ 0 o 0 0 00 o { 0
c 0) k_ ff 0) 0 4>̂ ■O a h- 1 \
0 03 0 £ •. 4—1 o c 0 > 0 4—1 o 1 \
0 O. 4-* O o •*—CD o 0 0) T3 • £ 1k_ u O 4—< _l LL 03 w c c) w X 03 0a c <TJ c i k. 0 •— £ > T3 1 0to — — o UJ 0) c — 0 0 03 03 C k_ 1 ““<TJ o GQ 03 £ O — CO — > C •— a o 03 i aw n k. _J ■a o — 0 c o •—— > a O i ao o o 4—1a • 0 c 0 — c £ u — J - A i <•4— c c < 00 £ k. 0 — o 0 o o V; o > i— O _l LL D 0 •4— J o k. c —■ © 03 E C ■O o 0 1 003 ■O 0 O »“ to o 0 ; o k. o c O o k. c -a X 1 -C
0) c k. (j 0) 0 03 C O 0 c * CO c 4—1 D c
0 a 4—' 4-J 03 • k. a •— 0 *0 c o a o c k. £ 4—1 0 0 ■a J -o fk. c o *o < 0 CO— T3 o o 3 T3 O £ <J> o Q 0 c k_ c I c
*0 -O o c c 0 o 0 0 ■— > o 00 D £ — 03 X 0 0 <x c 03 1*o 0 o 03 £ c 03 a- c *o 0 > k. C c \ — 4*-> o a — 0 TD *0 o £ C Ia) — •*- 03 o a 03 ■— k. 0) 0 k. o "D 0 0 O o o o k. • C O O D £ O 1 0

jo T3 •—X 0) CO — 03 k. _ CO o •*- 0 0 0 ^ o o •4— k. •*— £ £ c _ D 0 1 k.
0 <n c Q a _ * k. 0 k. ■4— 0 k. k. 0 O o O o _ £ O T3 1 00) c 03 tO < * c o k. k. k. > £ 0 CO a k. o ^ a 0) c C D CJ O i r .
03 0 £ (J -J k. •— 03 UJ 03 o 0 k. > CO 0 0 CO CO o o . *o L_ ■a 0 P E _ o > t B
X) £ CD H- 0 T 3 D o Z 0 k. O C 0 CO C > a c 3 c k_ D 3 O O i0) o (J c o — c •— CO0) — 0 0 — — — 0 0 — — O 00 o I v>
0 — <j * 0 03 « X O aj « ; ; 0> 0 — £ r . — — c k_ < 4—1 O O 04-» *0 £1 • 0 a 0 k. 4_>4-J o o o o 03 U O 0 O c CJ a o — CO I«3 o 0) 0 o) cn a 0 0 0 0 0 0 0 0 0 k_ T3 0 0 k_ k. 0 tn 4-J £ -4-» 0 00 — 0 0 I &— GC 0) 4—< D h- CO*o 4-* 4—14-* 4-1 4-̂ *o -O -- -- £: u — < o o D k. k. 1 £1—• 0 D a a c 2 D D D 3 3 J D T3 (0 D —- — o CO 0) — O GD k. k. k_ ao 4S •4—o 1 B<J (J U a +-> o O O O U O o O 03 O o O o 03 0 03 03 — 4̂ » I :
— •4— o 0 o 0 0 — 0 0 0 0 0 0 0 0 0 0 k. k. o o o k. O 0 £ 0 0 4̂ D CO k. i03 k. X 4-» 0 03 X X X X X X X X 0 4̂ X o o 4-J 4-1 u — o — — 0 0 a 0 0 0 1 ftO a 0 rt n 5 0 0 0 0 0 0 0 0 4-» > 0 CO CO 0) > o H a O CO CO CO k—C i *

-O • 0 > ,o 0 0 0 0 o k.
O c CO o >*- C o O o O O o O O o o n O o o c c c o C k_ o o o o o O 4—< o o o i k.
4—1 03 4—1•— 4-< 4-> 4-* 4-< 4-t 4—S 4-> x: 4-t 4̂ — •— 0 4_> 4>̂ 4—1 4>̂ 4_> 4̂ o i a>

a * o w 4-» D CO \ 1 £i
cr 0 3GCU 3 0 GC GC GC GC GC GC GC GC GC GC o —GC GC GC 3 D 3 GC GCXGCXGCCCXGCCC 4—1 1 -O
\ JJ k_ \ (J O 4—1\ \ \ \ N \ \ \ \ \ — x: \ \ \ O o O V O \ \ \ \ \ \ \ s •*- l 0
cn o k_ to CD k_ D to cn cn cn to tn tn cn to to tn to to k_ k. k- to k_ o cn tn to to tn cn to to to 0 1 3

£ 0 u **- +-» 1 —1w 4-t CO k. 0 k. k. k_ k. k. k. k. k. k. o o k. k_ k_ k. k_ k_ k_ k_ k. k_ k. k- k. k. k. 1
O c c o C o X o o o o O 0 O o o o o o o o o o o o c o o o o o o o 0 o p

£ 4—1 k. 0 4—1 4—' 4-J 0 0 4>̂ 4—1 k. 4—1 4-J 4̂ 4-J 4—>■*-> o t •*-
i o

c _ k. C
Zj

c *c c c c c c c c c C C -Q -O c c c c c c c c 4-̂ c c c c c c c c c
1 W 1 k.

o o o o 0 o C o o o o o o o o o O 03 o o o o o o o o 0 o o o o o o o 0 o o 1 CL
z o — z k. z (0 Z Z Z Z Z Z Z Z Z Z i - i - Z Z Z Z Z Z Z Z G C Z Z Z Z Z Z Z Z Z i D 1

/ 1 / y / I1 LU UJ y / / UJ UJ / / -1 UJ 1
1 cn UJ cn UJ y cncn/ / j u / to / 1

UJ / cn / tn -J uj / csjcm / / _ i _ i / c n / / / / LU 1
UJ 1 cn / / / / / / «— / / / LU UJ LU cn / 1
Z i / <— i i— < / U J L U U J U J t n U J U J U J U J / / U J — — — J- ujujuj — tocncn/tu {< 1 Q i— i N i— i r~i tncncncn/tntntntn tncLZ — — o — lu c n c n t o r s j / / / to 1
z 1 <— i CC <j (J X cr — / / / / s s s s / D Q i - c \) o D m i r / / / _i — / I
•—* (> < -J < LU _1 — * J I _1 _l _1 _1 _J 3 _: o — — — o 1

1 UJ CJ < < X LL J r —i 1— .C D 1—. r - i r - i 1—. Q Q r ^ J J J J J ^ C C «— —'«—' uj •»- Csi ̂ ao '—1 1y—\ | »— <j CJ CJ X u j » - t n x z D t n c n o — < < l l 0 0 0 0 0 _jo t - L L c n c /) u o < j k 1
Z I h- cn tn cn - J -1 GD — G D C J U J C n i L 3 C 0 C n j . J J G C G C G C G C G C G C t n > L L O O Q a Z j - 1
U 1 UJ UJ < < »— »— • <J - » - - u u u u u u •3 Z> 1
O i
_J i

a *— CD CD o (J x ^ x x x x x x x x o c j x t n c n c n t n c n t n x x x x x x x x n a 1
1i

<J I ŷ S /~s /—s ŷS y—S /*N N y>-s ŷS y«> ,rs y"-s /—N ŷs s ŷs ŷ s y-̂ /"» y>-\ /*s s ys y's 1
1 <

UJ I 0) TJ- 0) Cj o c o i n r ^ ^ r ~ o < M C o r ^ c o o 5 ' V C 7) o o ' V f l o o o c o c r) r ^ mcDOJC0 05 0 5 ^ r m o 1 <
a i CO O m Cj m i r j r ^ f l o o c o i n c D r ^ o o ’- ^ r c o o o O T O T O ’- c o o) •»-^rmin<£}O5OJ00in 1 o
^ i 05 o o o i - t - i - OJOJCMCMCMCMCOCOCDCOCOCOCO'V'V'V'V i n i n m m i n m c D C O C D 1 o

! CJ CM 04 04 04 o j o j o j o j c j c m c m c m c m c m c m c m c m c m c m c m c m c m c m c m C J CM C\J Cv) C\) Csl CM Csl Cs) 1 <*Z I m in m m m m ininmininininininininioininioininioinin i n i n i n m i n m i n i n i n 1
(J 1 O 1 w w w 'w' Vrf- W N_/ 'w' W »w' N_/ 'W %_✓ W "W %_✓ <W W %_✓ \y< w >«/ w Sy1 1 1
vj 1 -J 1 in Tf r - O) CO C J L L Q D C J Q < C D ^ 0 5 C sI L L 0 0 ^ ^ J * < U J C 0 O ^ ^ C00l00UJ05r^-OGD< 1 m1 C4 m in 05 CD C D U Q L U O i - M C O ^ i n i n N O) < < < C D U Q i - C M ^ ^ ^ - i n r ^ 0 5 0) < 1 ^
X 1 GD GD CD CD CD 03 GDGDGDGDCJCJCJCJCJCJCJCJCJCJCJCJCJCJCJO Q Q O Q Q O Q Q O 1 GO
UJ 1 (J a cj cj CJ CJ CJCJCJCJUCJCJCJCJCJCJCJCJCJCJCJCJUCJO < JO<JCJCJCJ<JOCJ 1 O
X I 4* * * 4* ^ ^ ^ ^ 1 * *

No. 72- June 1984 MICRO 63

c c
< j
CD

Q_
>
I—

I
UJ
CO
3

O

03
o
£

co
0)
>

*
o

o
-C

CO

<D
>
O
z

c

£
3

O
U

O
0 3

a
3

CO
0>
>
o
£
CD
CO
<*
u

J I
u

>
< j

X
u

<0
c

3
4—'
<D

C
<D
<D
k_
U
CO

£ '
o

o
00
z
UJ
LL!
a :

c a
o cn

> —

c 4-
o c

— o
4 - N

03 k-

CO O
o r 0 3
a a a :

3 O
X O h-
< J k_ CO

-Cii o
4—'

> co
— J I

— cj

CD
CO

<D
. c

o
^ r
a .
o
i—
cn

c
0)
<D
k_
U
<0

c
o

<D
CO

c *o c k_ — — o o i i 0) c u u.
0) c 0) u o JI a - c <J u. •4— <0 c 0)
0) • — 0) 05 4—> 5 c O k_ « >
k_ k_ <D — II “O 4—' o A > k_ c
o o c CO 0) c <D <0 CO 00 C A
CO o 0) £ 03 c 4—' — k_ 4— > 03 k_

03 r̂ 3 C £ 0) O c k_ k_ » 4-> 3 ► , 4—'
c C c — £ 03 3 CO * 03 o c o o 0) 4—> c 4—' C 3
£ £ o £ O 3 0) — 03 N o k_ •4— r̂ 03 03 <D 0) 0) a
3 3 4— 3 o — o o <s> c 4—' — •— o Z k_ 03 03 0)
— — — O <* u *o • — c k_ 4-> < UJ > k_ k_ “O
O O 5 o o o a o — 03 o • — c LL! *o U > u c
u u o o 00 o £ ii 03 0) c cc •4— c 03 03

*o o c ^r •4— k_ o 03 •— <J •4—
o o c o c ^ 03 c o 3 c a 01 03 -- c 03 ccr̂ ^r — GO o 03 o £ U 03 u u. *o c i: k_ A <

O 4—' 3 *o 03 c CO 03 o c 0) 4— *o 3 4—' X
O O O 03 4-> U — c 03 0) 4—> 4- t 03 c 4—' <J
4— 4— o 4— c 03 o o 03 JI U 03 c u c <0 03 c

0 0 0 o 0 0 o 4— CO k_ o <0 CO » u o o c
c o c — 0 0 H £ u k_ 03 0) 03 »
07 CO £ 0) 4—' 4—' £ o o 4-> 4-> 03 k_ <0 r a k_ c *o u.
03 o 03 • — £ 0 o k_ <0 <0 0) -C CJ 03 03 0 c 0) u.

£ k_ 03 o .a k_ 4— 4—' u c a a 4-̂ « 4-̂ 0)
u o ■4— o o k_ c u. < <0 o 4—' u 4-̂ o 4-̂
CO k_ CO a ■4— ■4— — 0 0 03 <0 k_ A <0 ■«. c <9 u

k_ 0 u. +» c u. k_ 03 A £ CO 03 <0
c 0) c o 03 03 > c U — 03 <0 u. — O <0 0 03 <0 k_
£ 03 4—' £ C 4—' X <0 « 4—' i: O O r k_ ii a ii <n
3 c o 3 •— — a <j ii k_ k_ u o 4—' ^r ? u u C3 i:
— •— — 4—> — 4—> 03 <0 CO k_ 03 u
O — k_ O CO ii k_ JD ii u. 03 • 0) k_ 03 o 03
o O O 03 c 03 C3 u <0 k_ <D 4-̂ 03 ii CO 0> A 4—'

03 -C £ C 4-> ii <0 CO JI o o *o <0 4—> 4-̂ k_ A 4-̂ c
o c C3 o o i i o 03 03 k_ o •4— O — o 3 4-1 03
GO o tT 4—' o X — i i 03 £ 3 <0 03 U 0)

Q •4— 4-> • — 03 <J 4—> ii 0) 4—> C3 u £ k_ u.
4—> T- +- C 4—' 03 k_ k_ c cc CO C3 ii 03 u. — <0 o 4—' O o 3
k_ UJ k_ o k_ — 03 O 3 CO 4—' 03 CO O <0 i i 4-̂ 0) 4—' C3
0) o <J> 03 > u. o 03 k_ 03 ii •4— C3 U 03 C3> ii_ 03
> < > 0) > O C <0 03 — 03 “O 4—' > 03
C CL c > C o 03 > 4—> c > o • — 03 o 03 O O u. O > 1—
O h- o o o o — o 0) 3 C ■*-> 0) 03 X 4—' i: 4-̂ 4—> 03 4—' rt u j
C3 X o £ C3 c CJ £ 03 • — 03 u. X C3 4 -t 03 CC

1— 03 o O o O <D 03 0) 03 O 0) <J
o o o O 03 4—> o o O o O o < 4—' — A c *o c C « c O 01
4—' o 4—> 4—> 4—' w 4-̂ 4—> o 4—' a C3 •— (C •— •— k_ UJ

4—' C3 s 4—> c s 4—' 03 4—> 4—' <0 4—'
CC cc cc cc 03 ac cc cc cc CC CC CC — cc k_ 3 3 3 A 3 CC
s 05 s s s s s s s 03 X s s X o C 0 o O C3 O s ___
01 k_ oi cn 01 k_ cn cn cn cn 4—' £ L 0 1 cn 0 1 k_ 01 •4— <0 k_ 03 k_ u. k_ 01 >

03 03 03 a 0) 03 03
k_ k_ k_ k_ k_ k_ k_ 03 — u. k_ k_ > u. u. i: u. k_ CO
o u o 0 o o o 0 o o o o o C3 o 0 0 o 0 o c

<T5 4—' 4—' 4—> <9 4—' 4—' 4—' * ■*-> « 0) 0) 4—' u. 4-̂ 4—> 4— 4-̂ k_
k_ • — •— — k_ • — •— 0) k_ •— — • — k— •— — 0) 03 *o 3c <0 c c c <0 c c c c *o c c c « c C3 > C A c c c c

O -C o o O -C o o o o o 03 o o o ii o <0 G 4—> o o 03 O o 03
C3 z z z C3 z z z z £ C Z Z Z C3 z > cn z o 1 1 k_ z z CC

* o
<D
>
<U
0)

CO

J

. c

<D

CO
c

03 f i j
CD k-
03 4->

3

>

“O CO
C
co c

X -O

« z
> <
O CC

\

z
co O
<D CC

* a
C CO
u . • 4— <
3 *o a> ~ cn •
0) 03
k- CJ •

k_
"D <D <D
c a —
<U CU 03

3 C
C O
<D C »- <D <TJ ~
U
0) 0)

J l
c « -
o

o

<b
. k_

o

<D

1 a

03
4—>
<S
4—'
05

05
3
O

>
0)
k_
a

05

<* c c
c <j

— 0 1
O LD

0) A
u a
<0 3

— o
a >-
<D A

03
I

cj O
r t CC
k_

GO
A IL
o

<D
4- A
3 4-
a

CD 03
CO k_
4-J
<D
03 y <
• o

1
01 ti tic ll. ll.p <J CJ
3 4*
O 4—
o
o 03 0?
00 0) 03
o u
TT 4—

c c
0? LU UJV
o .
03 03 0)

*o *c
a O o

£ £
c c
o £ £— 3 34-1 — —.
« O Ok_ • o o
03 o
a c o o
o — tT 00c— k- c c
(3 3 —
U *-»01 0) 01
* • - c
CL O

<D —

0)
c

O O O *-
c cn
3 3
4 - 2

O o)

CC <0
X IL
c n

»- cc o <
4 - X
— CJ
c
o c
z -

> . 4 ^

a —
o
cj . c

cj

o - *- .c
J

01
03 ̂
a
r t x
a c o

<
O GD k- \
<D _ l
n c n

<
a gd3

CO
4-J (J)

3 CC
O X
»- cn

o o

c C B
o o c n2 2 U

03 (TJ
* o

o a
~ 3

c c * o
» s c

a c o r t
c

— U. *
C 0 (5

3 — LL
< - C >
<D O Z
‘- Z -

0) £
a c n
r t 3

c j _ j
c n a .
UJ

it
k_
o —

« - CD
A

o) rt
<D _J0) w
0)
0) _ l
k- _ l
•o o
*o c c
<U CJ

0 3

O > .
A

<D
— -O
£ <D (TJ 0)
I— 3

GD
<B <
Q h
<u a

a Z
c/) B
UJ

II
w

o —
»*— <D

. o
03 (TJ
OJ _l
CO W
03
0) _J

_ l
■a O •o cr(TJ <j

cn
o >

A
03— 13

A 03
<3 03
I— 3

/ I
1
1 / / /

/
/ UJ

/
UJ

/ 01

/
UJ
cn

/
_ l

/
_ l /

/
UJ /

/
0)

/
0)

UJ 1
Z I
< 1

UJ
</T
/ \S

E
\S

E\ \S
E u j cn /

01 / UJ
/ / cn

— _ i /

UJ /
cn /
/ ■—1 UJ

CC 01

/

i—

/

o

\L
\

0]

\

\L
\

\S
E\

UJ
cn
/

/ 01
_ J /
/

LU
cn
/

CL
/

CL
/

Z 1 <—i '—• <—i ■— IL / — < / — 00 — TJ- i—i i—. — Z i—. UJ UJ
^r CC — GO UJ _ J — 1 - X z z o z o — u_ ►“ o CL

1 00 O ^ 1 - < — X H CJ '—1 UJ UJ 00 UJ Z Ll UJ cc 32 £ CD1 z IL 00 Z < X GO CJ UJ c c ^ UJ UJ cc UJ OC O O oc > 1— < <
Z I c r UJ 1 - CC m r ^ H > O o cc cc o oc O u < J < J CL LU i— h-
< J 1 < j H UJ U C J O UJ Z I-------- <J <J 1 - <J i - cn cn 01 O 01 . .
O I 01 < o cn i L u o c n — cn cl cn cn o i cn cn u j UJ UJ <J CL LL GD
_ i :

i
,— , i— i—i fc— •— •— •— fc— .—. i U—l W-J

< j i /*•» ^ ^ ^ ^ ^ y—S y—s ^ ^ /-S y—N / « . /« . y—N y-^v r~ \
UJ 1 05 CO O CO m ■»- cn ■»- r- co co 00 CO r - <o CO CM CM CJ CO in
a i CD r- co CO CO 0) t“ 1/5 h - O) 0) o co co r- 0) o ■»- 0) CM CO

CO r - r - r - GO 00 00 0) 0) 0) 0) 0) o o o o o o CJ CJ
i OJ CM OJ CM CM CM CM CM CM CM CM CM CO CO CO CO CO CO CO CO CO CO COz l m m m m m m m m m m m in in i/i in in in in in in m in

CJ 1
O 1
_ j i

w 'w ' Vw' >_✓ Vw' 'W' '•w ' '•w ' s—y

CD < CM CM CO T - CO u_ a cm t - <0 UJ < N < CnJ UJ 00 03 < CO
i a O CM CO CO 0) < < Q U_ O o o CM CO CO <0 Is- CJ LU IL

X 1 o UJ UJ UJ UJ UJ LU UJ LU LU Ll u_ u_ LL LL u_ u_ u_ u_ u_ IL U_ u_
UJ 1 < j < J CJ CJ CJ < J CJ CJ CJ CJ CJ u <J U <J U <J c j u u a CJ CJ
X 1

64

* ** ** ** **

MICRO

* * * * * * * * * * * * * * * *

a
a

<

j i

CD
Q
a
a
4 *

No. 72 • June 1984

MICRO SURVEY: JUNE 1984
HELP YOURSELF! To keep MICRO in touch with the rapidly changing computer world so that we can give you the information
you need, please take a few minutes to fill in this questionnaire and mail it back to us. THANK YOU for your time.

DEMOGRAPHICS
1. What is your age?

□ -1 9 □ 20-29 □ 30-39 □ 40-49 □ 50-59 □ 60 +

2. What is your occupation?
□ Programmer/analyst
□ Professor/teacher
□ Business person
□ O t h e r ___________

Engineer
Lawyer
Student

□ Technician
□ Doctor
□ Self Employed

□ Associate degree □ Bachelor’s degree □ Para-professional degree
3. What is your formal educational level?

□ Fewer than 12 years □ High school graduate
□ Advanced degree

4. What is your annual household income before taxes?
□ Less than $20,000 □ $20,000-29,999 □ $30,000-39,999 □ $40,000-49,999 □ $50,000 +

COMPUTER INFORMATION

5. What microcomputer(s) do you use?
□ AIM □ Apple II □ Atari (Model) ____________ □ Commodore 64 □
□ PET/CBM □ SYM □ VIC □ TRS-80 Color Computer □ Other 6502
□ Other computers/processors _______________________________________

□ Macintosh □ OSI (Model)N_
_______ □ Other 6809 _______

6. Where do you use the above computer(s)?
□ Home □ Work □ School □ O th e r __

7. Approximately how much have you spent on your computer hardware so far?
□ -$500 □ $500-999 □ $1,000-1,999 □ $2,000-2,999 □ $3,000-3,999 □ $4,000-4,999

8. Approximately how much do you expect to spend on your computer hardware in the next year?
□ -$500 □ $500-999 □ $1,000-1,999 □ $2,000-2,999 □ $3,000-3,999 □ $4,000-4,999

9. What additions have you made to your basic system?
□ Disk Drives □ Modem □ Serial Interface □ Parallel Interface
□ Hard Disk □ Graphics Tablet □ Printer (type) _________________

□ $5,000-9,999 □ $10,000 +

□ $5,000-9,999 □ $10,000 +

□ RAM cards □ 6809 card □ 68000 card □ Z80 card

10. What additional hardware changes or upgrades do you plan to make to your system?
□ Disk Drives □ Modem □ Serial Interface □ Parallel Interface □ RAM cards
□ Hard Disk DGraphics Tablet □ Printer (type) _______________________________
□ Other hardware__

□ 6809 card □ 68000 card □ Z80 card

11. Have you ever constructed a computer, computer board, or major computer equipment?
If yes, describe___

□ Yes □ No

12. Have you switched from one computer to another?
If yes, explain _______________________________

□ Yes □ No

13. Approximately how much have you spent on your computer software so far?
□ -$200 □ $200-499 □ $500-999 □ $1,000-1,999 □ $2,000 +

14. Approximately how much do you expect to spend on computer software in the next year?
□ -$200 □ $200-499 □ $500-999 D $1,000-1,999 □ $2,000 +

15. How do you use your computer equipment?
□ Business □ Software Development □ Hardware Development □ Telecommunications
□ Hobby □ Graphics □ WordProcessing □ Database Management □ Other ________

16. What languages do you use?
□ BASIC □ Pascal □ Forth

□ Entertainment □ Education

□ 6502 Assembler
□ C □ COBOL □ APL □ LOGO

□ 6809 Assembler □ 68000 Assembler □ Other __
□ LISP □ Fortran

17. In an average week, about how many hours do you spend on a microcomputer performing the following operations?
0-2 2-4 4-8 8-10 More

Programming for fun or self-education □ □ □ □ □
Programming professionally □ □ □ □ □
Using packaged programs in business □ □ □ □ □
Using packaged programs at home □ □ □ □ □
Using packaged programs for education □ □ □ a □
Playing games □ □ □ □ □
Other □ □ □ □ a

18. If you write programs, what type of programming do you spend most of your time developing?
□ Business applications □ Games □ Software development utilities □ O th e r_______

19. In an average month how much time do you spend with MICRO?
□ Less than 2 hours □ 2-4 hours □ 4-8 hours □ More than 8 hours

20. How would you rate your present microcomputer knowledge?
Software: □ Elementary □ Intermediate □ Advanced
Hardware1. □ Elementary □ Intermediate □ Advanced

Magazine Information

21. How long have you subscribed to or read MICRO?
□ Less than 6 months □ 6 months to 1 year

22. How did you get your current issue?
□ Subscription □ Computer store

□ Over 1 year □ Over 2 years □ Over 3 years

□ Newsstand □ Bookstore □ Borrowed □ Library

□ From the beginning

23 To what other computer publications do you subscribe?
□ BYTE □ Commander □ Compute! □ Creative Computing
□ Kilobaud Microcomputing □ Nibble □ Personal Computing
□ 80 Micro □ 68 Micro □ Other(s) ---

□ Dr. Dobbs □ In'Cider
□ Popular Computing □ RUN □ Softalk

24. Please rate the following parts of MICRO as to their interest, with 5 being very interesting and 1 not at all interesting.
5 4 3 2 1 5 4 3 2 1

News □ □ □ □ □ Advertisements □ □ □ □ □ Hardware & Software Catalogs □ □ I— □ □
Articles □ □ □ a □ Columns □ □ □ □ □ System specific information □ □ □ □ □
Reviews □ □ □ □ □ Editorials □ □ □ □ □ New Publications □ □ □ □ □

25 Please rate the following kinds of articles as to their interest, with 5 being very interesting and 1 not at all interesting.

5 4 3 2 1 5 4 3 2 1 5 4 3 2 1
Hardware tutorials □ □ □ □ □ Applications □ □ □ □ □ Review articles □ □ □ □ □
Programming techniques □ □ □ □ □ Games □ □ □ □ □ Programs □ □ □ □ □
Utilities □ □ □ □ □ News & Information □ □ □ □ □ Languages □ □ □ □ □

26. Is MICRO □ too technical □ not technical enough □ just right?

27. What new areas would you like to have MICRO cover: ___________________

28. Do you key in the longer programs published in MICRO? □ Yes □ No

29. Would you be willing to pay extra to receive MICRO'S programs in diskette form? □ Yes DNo

30. Overall, how do you feel about MICRO? How useful is MICRO to you?

Fold Here

31. What are your favorite software packages in the following categories:

Software Package First Choice Second Choice Third Choice

Data Base Manager ___________________________ ___________________________ ___________

Word Processors ___________________________ __________________________ ___________

Editor/Assembler ___________________________ ___________________________ ___________

Spread Sheet ___________________________ ___________________________ ___________
Monitor/Debugger ___________________________ ___________________________ ___________

Communications ___________________________ ___________________________ ___________

O t h e r ___ ______________________________ ___________
For the _____________________________________ computer.

Please feel free to write comments, suggestions and so forth on an additional page of paper and attach it to this form.

Fold Here

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

A lC ftO
P.O. Box 6502
Chelmsford, MA 01824

Tape Here

HE
X

LO
CN

(D

EC

LO
CN

)
[N

A
M

E]

\U
S

E
-T

Y
P

E
\

-
D

E
S

C
R

IP
T

IO
N

CJ ©LU • wO o a
© cn o © o© o a: x tr0 a <j L_o o > ® ©c r~ a♦ ■o o c © © a

73 a: •— T3 Dcn c o T3 4̂
o ~3 w © E C O(j d n cd 4-1
c CO CO ^ o CM <dC p © CO o ® z JC r~

E 5 o ^ ■a 4̂ D3 — a II CO >- r>

cn
<
f-
<
CJ
cr
LU
2 3

, z
X sz ^C W 3
rt Q

■ ® > UJ _ „ _O U • »— Q. 'O ^ o —
O M 3 O 4_- 3t C

o >. < w o c o o ®
O !C (D UJ u ® *-> OC "O «
<o j £ < (* a) c •_ x ® «

■ i- i T U T J o
D O ®
O 3 0) <D

o r : c ®
® ■- *-> J
c. c. >- o4-« 4«j CO © —

© aco u c ~
o — o o *-© — 4-» — © I OJ
,c rt « > in
o •*- © o c i \

h- »- Z oO u II o4-1 © >- 4-»
CO C& flJ <D O® ® c x r t) i a
to c o c_ " • > o i a
o — — o ® uj E "o i <
a ~ i - ® c y ®
- 3 O O c — O ® «
3 0 0) C O — " OC 03 3a •_ *-• j-> 3 i_

O Z O 3 O »- ® "
0 J 3 — ^ Q ■- O > «
C ® > >- c . <z
— C - U J Q O T J — ~
r ® n ' t ^ e) c « ’ i <dO < *-■ H II 3 ® — ® 1- •_ X I t-

CM C C >- >- Cfl — • C — •*-• O ® <fl ■ i ®ii <3 •• — ii — to ^ a> i .c
i > - > - ® x x > - o < r t C i - o £ E i 3f l T J i - U U " U ~ 3<H — ■ I

- - - - ^ - C X O O O O X " o >- Q ~ 03 I 01
Q.o o (j — j i - ^ i - u ' j a u ' > - h i - u ' o i i (D u « z c
a o n r ® ® o u o u o c o o o oi L r in ® r < ®
« Q f f l 3 Z) ' o c (3 ^ o - i - o o i m m h a ® " U J c u ~ « i «

t- Z « O - O " : >- O — ® o O c r i £
- UJ 3 > - Z > - C O O O 0 3 0 TJ ® O O O « OCC T5 3 <1 “ 13<n cn 1— cj uj o o 4-* 4-j 4-j ^ w — ^ 4 -j w .c x ■‘-1 ^ o cd

I^UJ UJ X 05 SC J 1- £ o o > o o o u o o m c o
«* cc in ® cn o uj ̂ o u r a i i " * ■ c. c. — o cn ~ tj — c

I I — o T 3 0 C 0 — 0 0 1-T30 0 *1-1— 01 C "C9
J ® > - Q ® l - ® — ® O C L C - t tX o c c c a w o c t t o . « * M >
O .C a ^ o r o ^ rt > « 0C E o * - ffl K (5 E z o tn o ~ .c -
C ~ X < *-' O O W ' - Q ' - 3 0 i - > _ 3 — C -) Z « " 2 0 D I ®

u ® a o . n o a - i- ' a n - ^ > £ ii zi i n
o i c o - ' c o c n - o z o o o ® ® hi o o o n i c o n - i n
— — i— i — ~ - 4-j o z ~3 o o * - o a * - o o o o ^ - ® " “ — SC o I ®O ^ 4̂ ^ ^ 4-J 4~< 4~< ^ CO (J I 3

.. © <rj »— © .e © « > *0 o : 0 — 0) > o © fi - ©
n. a, — a cj a — © — c ’o ' o < ’o ^ c j ’O ’O ’O — c *- o o o *•- :
Q C O C C C ^ u fll ® OI ® © cn G) ® © w w © C C * - C ' J C
< * r t ~ u j r t r t r t . c o © a c? a * a a. z a a c & © D £ } r t r t O r t © < «

n _ i . £ i - . e c j c j g t f l c — c c j c x o o c c c s * * .c .c « .c •- >. 1 0
« o a: cl u jd o — o - ^ i -
<* cn a. £ 0 0 0 £ 0 £ C C £ - x .c .c r o a: ac 3 o od t CL

£ II 4̂ cc 5 4 c •—
in

CJ
O 4-> cO <T3 CD © D
© o w •4—

© o "O
o c c II 01 «c © flj © (ft ©© 0) N ©
<S) © E N 4—'
© L_ 3

a V i 4»> cr
a — w ©© •—. CC© sr: 4—< •— ■ —o .

T3 CC (A© W © ;
00 u o O — 4m> o LU3 o ■*— ■4— r*> c CJ£ a © CL5 5 J < w o Q.

5 0 O w CO <a Q — — 3n —» — — O CJ L_ A
— o CJ

O "O © O CO 1_
O o c > 11 1 ii4—' — © > 1- >

X w "O <0
© © o x a> x

0) *o "O n O o CJ 1- u© "O O O o 4̂1 o o

J < -> Al A a < J - LL CCu z u : u < u u u u ll — A A o < u :
^ f-> o h-—> *—> ^ — 1- ^ X CE •— N — CNJr—• — a X a i~ cc - j cj — -I -I — — X r—1 cc|— UJ z CJ o a: —*o -i o il O O ZU LU cc oUJ _i a o L u > iu r o h l l uj lu — cn a CJ XCO i— h- h- occlzi- c e o - cc a: >- uj z f- HLU — LU o j o o d u o z J JL U Q D o / 3a: f- cn o cj cj x < cn x cn CJ CJ *£ cc LL z <1-̂ UJ uj t_i t_11_< t_i t__i t_i UJ l-J t—J t—1 t__> / CL —T- //-V y"N /•-N. Q.

CNJ 05 O CO r 0) CO 0) C S 0) O O 00 CO in / ^ in2 CNJ CO ~ r̂ 00 0) o O CJ CM CO C O S O O r CO X CJO CJ CO 1-̂ Z ^ LO LO CO CO CO CO CO CO CO CO 00 CO oo ^ — CJ
CC TT O ^ ^ ^ ^ ^ ^ ■̂T ^ ^ TT h- u_ cnCO CO CO g — co CO CO CO CO CO CO CO CO CO CO CO CO CO cn s co© 1 1 1 z cn i 1 1 1 I 1 1 1 1 1 1 1 1 1-̂ 1 i- 3 1o N* CO N CJ CC CO CO CJ O ^ ^ CO 0) 00 o CO ■»“ o CJ ^ cl cn i-cc ^ i— CJ CO 0*! UJ CO K 00 O O OJ CJ CJ (0 S fl) o o cn co < ^ C JLl C*“ T- CJ CO UJ > in uo co co co co co CO CO h*- 00 CO UJ CO CJ CJ CJ

tT •— ^ ^ ^ ^ tt ^ ^ ^ ^ ^ ^ — in© CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO<— /•"•N 'W 'W Nrf- /̂*v 'w' W <w> Ŝ * <w> V̂> ■w' 'w' /*—>. w
N- 0) in CO & 0?CO < Q Tr co o in N CD 1- ^ CD O N- O 00 O ■»- CO 0} 0) 0)TT h- O CO TT cj 'C cn cn co n n cd 05 < C-J OJ CM 00 ^ 00 y- CJ•— co < CD CD QD CJ CJ CJ CJ CJ CJ CJ o o o o o o in luCO LL Ll ll CO co ll ll LL LL LL LL LL LL u. u. u. u. u. co u_ CO CO LL0)fi) w iA 4* **1 1 4A 4A <* 4ft 4A 4* *f> *f> *f>1 1 1 1 1 ^ 4ft

wa Ll lo
1 1

< r" CO co 1 1 1 1 1 1 1
cj co co cj o cj cn

1 1 1 1 1
o uj m i- cn o CJ co u_ cnc IL h*» o < CD CD <T> 0) T- C>) CM co CO < CJrt Is- < CD CD CO QD CD a cj cj cj cj cj cj o o o a o o a a UJ UJr Ll Ll Ll ll LL iL LL ll iL Ll Ll Ll Ll ll U. IL U. U. U- Ll Ll Ll Ll llo «* v* ifi 4& 4& <& 4& <& 4& 4& 4ft 4ft 4ft 4ft 4ft

LL
LLLL
LL4ft

LL
LL
r̂
LL

No. 72 ■ June 1984 MICRO 65

z
o

Q_

cr
cn
id
Q

/
UJ
Q_
>
H-
I

UJ

T J •
- o

CO
O UJ
n o
> z
®

X O4-> ®
® X3
£ 1 O
~ 2 E

o
05

<fl c j a '
i ^ co ’—

CJ UJ

a
D
a
c

CO -

> o
o

z -
> >
uj n

05
0)

a-
0)

>
D
O

■OJ

£

■a *-
co o
D •X- £
5 E

o
a •-

O ®

CO —

a-
TJ

0 — 0rt 0)
0) c
a o
a
fij +->

®
a

— ® d —

•4- - 4- O
Q — O ^

C
■a ® -o ■-
c ■- c

- ® >
C C O 'O
*J l l 4J C

 ̂ ft flJ *■
ai ® ® ^

o o o *
-*—• -*—• -*—• i

® ® ®
C C C T)

4_' 4 J 4-1

D 3 D
o o o E
u . u . u . *•

X

C O O —'

- ®

T- T31 —
o o O'4—r~
— 5 »

4-1 ■— 4-J
05 4-' o

® <J c4-J - — c .
• — ■4- D ® ■4-
-- C —

- ® I
a c

- « o
co c j c
o ui
a u j c

a ®
C C - "D
® - ® o
- 73 4-. S
- 3 0 D — —
CJ CJ •-

C -
^ — c. ®
f t CJ 4_-

- ■- a? — <3 .c.c .c ®
cj o . c

v
O ® 4-1 *
« £ 3 «
£ w O ®
a *- c • ^ —
> O O

^ D
c 05 o
— 05 01

® h-
® ■- cr £T3 73 ®
O 7 3 ® C
y rt

®
^ ' j i '*_ r

05
*

®
®

O
CO

T3
C
aj

®
73
O
£
a
cr

— > .

5 jo
cn
* <D

4-> 4-> ® Q
0) —
C ®o
rf c
® oj
^ o
01 o
c ^
>. ®• - c c o o o o c

- ® D
00 > <
N- C
W O X

o o
J -
o o cr£ 4-, CD — — *- •*- '4-. 4J

o o o a
£ £ £ g

® CO
CO CO - .c

® £ o
® O CO 4->
> o \ —
c a £
- a d co

0 - 0 0 0
^ 4-J 4-J
aj

® ® ®
c c

o
T J

®
CO

CR®
c

_ \s
— cj
03 *

4-J
05

' >- »-

« cr- \ •
oi

^ j
Q O
4ft 4-i :

CO c
O I

^ 2

C O
aj 4-(
> — •
■— c
GD 5
: Z

4-» 4-i 4-» r r
C C C \----- co
O O o
a a q •-

o
> > > ^

c c c o
UJ UJ LU Z

O -t—1 4—>
3 05 D D
0 ^ 0 0
- D ^ -

<J

o ® o o
4—' ^ 4—' 4^

o - — c ^ c c
o ® o o
2 - Z 2

C N-
® II
05 >®

X
a —

>.
£ l ■*- I

— ®
■o a
® • aj o
X "O <j ® ^ CO

aj uj —
c o c

3O ®
u . —

o
2 r
®

— t >
o ̂ 5-6a yj o h-

« J ■*-
> ® CD
•- < 4-1 o
*-< W h 05 0) 4-1 >
C D • ® C
UJ CL CD \— U UJ 01

O
a x

(J
>.
•- ®

05 05
® ® X o a
o <J o cr E
T3 05 ■w CD — D

\ ■ —>
o >- c ® O < c © 05
® UJ — CO ® i 0 ^r 73— .c <d • — a C
o a a ® o LL 4-> o ®

cr D LL — o ®
•• »• <J 05 '4—.c a ►

05 T3 a- 4-J o o a
D — c a Q 05 r. aJ4-J o — 4-1 y o —

4-J 4-J (Q — O 4-J f j '4—
4-1 Q 05 CO ®05 > o CO 4-J . r~ a J-l h—

_l — T3 o ® f—> CJ cr 05 —
j / o — 4-J ■ — O <J z> > o N QC . IL P
s UJ (j c 4-1 > LL oIQ 2 £ o 05

w o LU z '4—
X o 1 O T3 X a a co O
CJ 4-> ■4— 05 • c CL ®r~ X /— ® — _ 05
® cr o 05 X !_ ■o o 05 05 ® 05 o
> cn • — >U - D o 05 D 05 _
* “ 5 4-1 ® CD 4-1 5 D —
05 o V* ® ® D ® ® CO• c E c c CJ r~ ►. a CJ
o c D ® ; o • — 05 E • — • — —
4-> ® <*— C ® 73 — J c D 4-J — — aJ ►

CD -— — *- C o E — c o Q_ oor ® 4-> a aj ® ■o D O ® £ C 05 4-J
o .c D a > c c a ® ® <T3 734—> o 05 4—> O < > o O ® ® CL £ h—

D ■— : o a- J o o D aj oa c <*— E c a 00 U O c _l
c — o o o ® •— o 4—>o 05 05 m CO—73 4-J o £ 4-J X CO c 4-J X 00

73 : 0) •A— 4-J — ® \ — ® ■w 4—> u
E CTJ LL 05 CO 05 ® — 4—>o a- o o o *
0 U- ® K OJ w Oi o ^r 05 ■4— c > 05

5 <* 'w cr 05 ® •_ 4-J 73‘4- ® ; ■o M •— (> •* ® Q £ 05 CO■o ®t t "O ® ® — 05 05 o ■«— CO 05 £ < 05
CS j/ r- S3 05 *o ® ®

® r < i j ■a o o c o ® — »-
-- 4-< ® «• ® 4̂ •— c 01 73 73 ■o QC OJ— *. 05 ® D . D 73 73 ® < ®
rt J o > 05 o £ ® ® >"“v. & — X 2o 05 j3 <s 5 •— c c 4-1 CD — n <J >» OJ O

>, o 4—> -—— X ® < O ® ® rt — cr
o ® D 3 73 05 05 O ® a h- O 05 05 c 05 ® CD

a O > o n D D 4—> « Q . <T3 ® ® <J 00— c 05 o O U Z o ^3 x £ i > OJ CJ
c aj 5 ® a x i_ — CO 5 00 01 05 OJ o

® "O OJ o LU ® < ® • — 05 c c
D T3 c C H- ® — E M c 4-J CD 4-J a • ——
4-J •!TJ 05 ■a o o o OJ \ oj O > o 05
® ® 4-J CD — 4-J 4-1 o o — — _l — cr 4-J _̂ 3 <J

D > _̂ ■— — c «+—® X D CO D — c a —
a ^ D ® c c £ i o o < O .— a 05 CO

o O o >. O O ® o o 4—> 05 ® — CD — o <«3 4-J <
4-< «• OJ ^ 4-J 05 £ £ ® ® _ l SZ OJ — a O CD

05 4-J 4-J 05 CO■w o o £ o ■J) —
® ® D 05 TJ ® • — O 05 -o , >. w 05 ■a
c 4-> ® o o O ® j o o o c 05 ® —
— — OJ C X - — ’i—<*—4—> 'm- _l 4̂ 4-J 4-> OJ 4-1 05 > o4-> 4-> o ® 4-! 4-> 73 73 O -- a c c u
D D 05 D l_ 4-> 4-1 cr T3 cc cr cc cr ® D ® T J OJ
O O T“ c O <T3 £ £ N rf CJ \ \ CO\ 73 i_ C-*-> <J •— O ■ —CO cn co CO ® CO O o OJ o

a <ft 05 J3 o Q '4- £ ® \
UJ ® a a •_ o > 4̂ >— .. O E

o Q 05 _l o — o n o o CO o r* c 05
4-> ® CD 4̂ O >, >. 4̂ ® 4̂ 4-> 0) 4̂ £ — CJ D 05 rt— ■ — E o — — 73 — •— — 5 — w C 5

c 4~' 05 1— £ £ ® r~ o r- — l_ CD OJ i_
0 o c D • 5 o 3 05 5 4̂ 0 O O < 3 o
z z — CL U- 2 5 0 0 L U U J 2 H- D 2 2 u i 2 o CD 05 H- 4->

t- cn
CD U
U UJ
U- I

CO I
XI 1 1 i / / / / / / /

/
LU /

/
/ / UJ / / /

/
UJ

/ 1 u in / / uj lu Lu uj / _i / UJ UJ / / / cn UJ UJ LU CO / LU / UJ UJ CO
1 / i n o _ i _ i c o c o c o c o u j / / LLl CO CO LU LU / UJ / CO CO CO / CD CO LU 01 CO /

z 1
<J 1

U J U U J / / / / / / C 0
CO LL IL /
/ <fttft — — — A

]
\

L
\

\
S

E
\

S / / CO CO _l CO
/ / / /

LL

/ / / CL
/

^ * 0)

/ CO
/

/ /

CD
O 1 i— i— CMLl COCD-’- U J ' — o — lu r̂ - — -—- ■—• T— r̂ Q N f u_ ^ r̂ r- CO
_J \ O D Q Q liJ CD UO < ^ — 1- O O ^ UJ ^ CO T- CO CJ LU CJ CO ll ▼- in T- CO

1 < C) ' r "T “ T“ C'JO O N O r r- 1- < © 0J Q0 CJ CJ 1- 1- O LL in CD co CJ
X 1 o co uo c j c j c j <j c j c j fJi 4ft LL O C-J U U r c-J < CJ 4ft CJ CJ CJ 4ft LL CJ CD t 1 4ft
LU I LU O C-J 4ft 4ft 4ft 4ft CJ ' 0J CJ 4ft 4ft CJ (J CJ CJ t__i 4ft 4ft 4ft CJ 4ft CJ 4ft 4ft i—i
X 1

1

CJ CD CvJ ■—11—- ■—1 ■—1 ■—1 ‘—'
^ LH ^

U_ CD CD **~v
CJ CJ
4ft 4ft ^

OJ '

^ i— 4ft ^ 4ft 4ft
t—J L—J

CO

u-i ^ 4ft
K-J

o

4ft

*<r
1 LL 1 I ^ O O m C O ^ * ^ Cvl ^ CJ lO ■̂ ,s- ^ CO CD CO 05 00 ^ C-J CO i^

Z 1 r«-T— CvJC0N--»- r - ^ OJ T- C-J 00 OO o ^r ▼- co cd in CD CD in CD
CJ 1 U-CDOOJr^CDCDCDCD^CD ▼“ CO 00 00 ^ ^ r̂ - ^ © CD CD CD CD CO CD ''T © CD CD
O i « co cj t- t- 'C D O C D O ^ t in o o cd o a) in cd oo CD 0) 0) * CJ O © CvJ CD
—J I ^ 0) -̂ r CD CO T- O) •w ^ w co CJ in r̂ 'W'

i
CJ 1
UJ I

c j c o c o w w w w w w i n
m w w w

1 ^ ^ J— Z —1 fsi Q_ X

t- a
cc m t w
< w w

w w tj- ^ m •’T

UJ ^
CJ
z X

w w in
X w

J Q Q

w i n

cr M h—
CM
H-

a i a0 T-OJ — < 0 - 1 0 — h- X T- z z o x z 3 1— _J Z Z UJ O c j CJ z zi , r t r a : a : _ i u i u o i u i L D u n u u U CJ u CJ LU — LL LU O B ^ —• h- —I _i UJ UJ
i n o o o z ^ t r u J c u Q . x - z z z z z i - c r > - a 01 CC H- I - CD CJ < < o CJ

UJ 1 b i l x k i j j j w z - J D D D n D L U Z l U _l UJ CJ UJ LU < LU <J CJ — —
Z I ^ t U I - l - U U U U U t l] - Ll U. Ll Ll U_ Ll Ll C9 — ^ o QC CO 01 CO 1- > 01 CO 01 CO
< 1 i - 3 n • < < < <
Z 1 ■ > ' < < < m c D C O C D O D m m CD

66 MICRO No. 72 • June 1984

GC
C J
CO
LU
O

01
C
E
3

OO
o

c j
» U J

> a
h - er CO

OJ ; c c
r : 3 :
4-* 4-< OJ o

O CD 0) * o 4-J
£ *—— L_ o4—> — E o c
• — X <33 CO
J o <J 01 <D “5

CD ■ — a
< -C o « 01

CJ 4-f C J «73 <D CO o
CD £ r" U J a
a o 4_i 4-i— O 3 o c .

c j <D c 4—1 oi
CO a - CD * > ,
U J n o i VD c 0)3 •_ Z • — j:05 <S— * —
0) O .C CL E $o ■*-» 4-1 O < a> oA c • —e' CO l.—• —0) u :

CL 01 LU

oi <D— o o 73
rt j—' 4-/ Sfc. Co .C O <3

O <« — c t-J
k- k_ <D E0) 0) * 3 CO
) £ £ 01 4—1
O <J 01 CD 4—1 ..— CD k_ • —

— cj .Q «
01 — o o * •—k_ 4-1 <-
3 • a CD aa L_ c CO •— o<D O 73 r: *_
* O c 4—1 i>, CJ -- oi $<D 0) n « oJI 0) 73 ~

<d 4-» <“ <- Q —
73 .c 5 a O «ra

o o

a' a> .c
a ----- n o.O .Q O -
o rt rt .c
~ »- H- < 5

<D a < 1 UJc- I UJ•— CO 1 h-4̂ > a t J—T” ' — o c 1 UJ* 4—1 CD L_ — 1 N*o c O c- 4—1 a 1 <a CD O ai u_ 4̂ 05 c 1 CD> CD —Ll 0) a> 1CO i- 73 (J 7D — 73 r. i _J05 o <D <- •— o 1 <</) — o (0 ii < 1 <J'J) 4—14̂ > •—
c 4-‘ u o l t—J o 01 o 01 cc I UJ— n 03 5 <- 3 1 GO4-J 73 0) £J o O *0 1 <+ • — CD 1 X.C : O o 2 4-1 • 01 1 CL*-> \ 05 4—1 O X 3 I _JCD •— c CC J M CJ 1 <c fji 3 UJ X o 5 cc . ICD %— 01 a O CJ 73 — Z) 4—1 1CD CD £ c C c o o 1> 'w— ••<D CD •—c k- c 1cj C o > 5 73 ii $ o 3 05 I0) — CD o <« O O 4̂ 73 4-« a Sfc. 1• a- CD 73 0) o £ 0) 01 _ 14-) C <d 4-1— C c 01 Tf k- \.c D L_ a — c E <D UJ 1a 3 CD k_ E 3 0) O 73 . z 14—1 — <D 3 — u. O 4—1<S C GO 1c 73 0) o £. 0) — O a) 4-.’ ii <d o 1 ©o c a 4—1 o O o 4-i 01 * 4-1 05 « 1 \

73 o • — —o <P <D o 0) L_ CD<D 1 \7D C 4—1<D O £ 73 a n 3 4—14-1 1CJ cc C a) a o TT <d C c O O o o 1 :
< « o O) <«Tf u. 4—1 3 3 1 <Dn X a) 4—1<D O $ 4_l 0) CJ CJ 1 —u c n C a C a c COii i a<x> 4-« — • — 4—1 • o $ 0) <D i a<D c <D o c o ? <D 00 73 _ — i <4—1 • — o <JQ3 o 01 00 o <s c <n 3̂ n \o o 4-1 u O • —c 73 c •— E D 3 i ©<« •— 3 4-) o £ C 4—1 o a O o O O 1 SZ• !_ O 3 • — o ■ — 3 n 73 73 i ^C <D o 2 — 4—1 y-N J 3 O •4— >. CD io o C Aad O ' O o T” •4— O <d rj 01 rt I co — o cc « CO c u k_

t— L_ — 0) 3 cn c a 3 ZD <D£ a ® 73 u 1—UJ o <D c <J X —■—•4— Z c 3) 4—1 <p 0) CD 1 ©acc sz u 4—1 •4— • — •u > — — — D o r 4—1 <D> 1 L—
o o o — <D ® 2 — O C — o 4-> o 4—1 O 1 CD•—C/) <TJ V E 4—1 <Do Q CO o — L_ O 1 iiau j w 73 <D<*-» C o c £ — <TJ D <D < <TJ u. k— a 1 B•— c C <Do -i C o o r: <S) <d c 1o <D o <3 •— E — —tn cl O CO • • o ^ 0) r: rt 1 v>o L_ o 4—1 o z ^ c a H3 UJ a> <D o ii oO c t—cc o 3 E ii 4—1 — ii <D<Do o « 1 m

® r: D CO <S) o • — L_ L_ — <D C £ . 0) a I <*o a <J c 3 <A *— 4-1 X 01— o o — <D 13 r: o w r: 0) 1 ^<« 3 o a 0) k- UJ 0) rt — c •4— <D> O < 4_l i B
— O <D ■— 73 H3 rt cc J J O n c X <D7D o i :a L_ > t— 4—1 o O 0) 0) <D • o o L_ 4—1 01 o 4-1 u > H3 o H3 i<d n ffl LU <TJ 4—1 u —— —LL 73 u ® J <J (DOW O <3>4-< <D UJ ^ I oico CC — o O <J •—01 01 CO 0) t—h- E c amu CO<D0) o — <S) CO o o cc l Mo COo CO c C a o o o * c •4— o O (D _ l O CD o O o 05 • — | L—

— 4-1 UJ — H3 4^ 4-f •— — 4—1 4—1 -1 4-> c j-f i o
— u U 0) — ■O O \ r t 3 <D i ncc rt CC (TJ 4—1 3 cn cc cc cc — 3 CC CC 73 GC CC CC o CC GC r GC Q *0 1 £1\ IL N ■ — O UJ N \ \ • —o o • — \ \ (J \ \ u ai \ \ a \ O 1 <Dcn cn > I CO CO CO L_ CO CO CO CO CO CO CO CO 3 E I 3

• — •4— 3 o a o <D O 1 _JGC 01 * o L_ o CO c •_ O ■_ U. c •4— C. — 1o < o c o o o o o — o o o o u 0) o o 4-1 o cfl
4-1 X 4—1 «•4—1 4-1 4-1 — 4-f <s 4-1 4-J 3 .Q T— 1 <4—
• — o • — 3 •— — •— •— •— — • — — 73 •<— 4-1 •— *o — CL D 1 Oc c c n c c c ' — <Dc <3 c r> 0) c £ a> o c f - c Z 1 k_
o c o <s —5 o rt o o o X — o C o 5 01 o o CC CC o <n o O UJ _ 1 CL
2 —z cc : 0) I I H 3 I z —z z —z t- — I

UJ 1 r—1
CL 1 a
> 1 CM
t— l

1 1
c
LL

UJ 1
CO I
3 1 / / / / / / / / 0) /
/ 1 UJ N- / LU UJ LU LU UJ LU / OJ LU

1 C/) T” / I ^ C 0 C 0 C 0 / / C 0 co co cn / / a / CO
I—I 1 / / CL / UJ / T T / ^ - / / / _ I L U / / / 0 - UJ LU LL / UJ /
Z 1 LU / ^r cn LU q___ i c l y co / CO CO ^ lu cn
<J 1 CO / Ol y CO s s s ^ ^ ^ *—• —̂ / / ^ CO / f—>
O I / -J oo / / Q U O) " 02 O < "—1 / r-*
_J 1 / T“ CO " f—> •— — — a> cnj't— «—• uj oo < *—• /-» CnJ

1 CD ao 1—'CO LO r—> ^ r u j c \ i ’» - ’» - ’» - < c o c j 1- 1- UJ CO GD CO ^ in <
X t «—1 <J 0> o < CO C4 CO CD N U U U u U CJ tL CO O) y - CM T-
UJ I CO CO — M <J 00 cc LL to O J l L O J ^ ^ W U r W i * i * U uj a oo CnJ go
X I CNJ < o «—« ^ C i IL CJ U- ^ ^ CJ CJ TT LU CJ
>—< 1 CJ LU CO 1—'CJ w <J ^ ^ ^ i * ^ * * CO CJ * *

I a ^ > ^ «—» 1 .. I GC
y—V I ^ ^ u_ o L—1 k—< CO ^ 0) ^ O) LO CC ^ O) T- I o
Z I ^ 00 N- y—>-vy-vCOCO^’ 0 > ^ 0) oo co ^ O m —-
CJ 1 UJ TT 00 0) CO co cj o lo lo co in co 'f) c j <n in oo N- cc
O I y~ T~ C*4 ^ O) TT o o s o o o i n N a) O) <J) CM co co ^r o oo T— 1 CL
_J I CO <J) >-v 1/) t- (7? Tf o r^ N r - i n ^ T r T T O) T r T r tt co 00 CO CO cd in 1 t—

1 N* O) co ^ LO r-* TT CO o o) co —1 o) — LO CnJ CJ ^ r - *»- >«_✓ I LU
CJ 1 CD 03 T— w CP CO in CO TT LO LO ^ ^r m in cm in l CD
LU 1 cj oo o vn w ^ 1 N Q- '—' Z _J Q m CC 1
O 1 ^ lo Z cc — w O J O H GC _) Z LU — o 1 1
>«_✓ 1 V-' co — < 5 LL h- H QD HI O UJ LU UJ D O 5 _I LU O X > 1

1 C/) '-'CL x z o U_ Z 3 L u < o : L u a : a : Z H cc h- QD h- 00 LU •*r uj a: 1 COUJ 1 CD 00 < <J - z o o O C C H J J J O O U J <J UJ < < _) CJ co ^ Cl) o
2 i < cj cj CJ O CJ CJ CJ c j c j c j u u c j c d x c c CO CO t— CC _l Z h- h- h- 1 <
< 1 — O co co CO co co cn co CO CO C O 0 3 3 LU LU LU I —
Z I Q Q LU LU LU LU LU UJ LU l u u j u j u - l l l l l l l l l l F F F Ll l l l l O CD a 1 o

No. 72 • June 1984 MICRO 67

zo

ccoCO
UJo

/
UJOl
>

o a
o CD
x a :o

>
c
o c

>
u

t - <D *
3 .Q X
4-i c j

o
ft 4-J

w c
~ o Q
a * o
3 O 4-1

o (4
O

<D C O
*-f o —-
c —

•— *-l c
o 0)

^ c 0)
CD 3
0) cj

* to
to a>

to

0) »- c
4-J — CD
r t 3
m a
co a> 3

cc O
z
o • (D
GC « x :

—
*-» o
c o 4-1
CD <Q
1- o
- 00
3 (D
O i - 4-<

c o
Q SW t—
> Jf
r i <d > rt
to *o x :

O X o
o o a
~ O CD

^ *— .C
(D <D O
■ o c a
O •• 4-»
O o o

O 4-» CD
>

o u r : c
c o •—

to a
n o

CO t - 4-J
C LC L n
o z GC 1
Z - j o N

4-1 cn
> * o

— c *o
• - r t 3) o
® a 4—1
c U) c • —

2 (t co o x: o
U - cc a 2

CO
3 O I- < <

UJ I- CC CO

rt rt
o o
tn w
<fl «

a cl

•)
4-J o a>

<n
(4 H3
4-1 (4 O

— CO <D
— 4-J ■ a
■ — (D 01 4-J
4-i o a w

to o 4-1
CM 3 •— r t

TD z O *

C — CO T3 4-1 4_<

<Q > u «
UJ II r t (D

* * o 0to T— O c
■w O < o ■ a
a 4-1 4-« > * o
3 r~ a 0)
i_ 4-> c 0 * o

a •— •—' o 0)
O 3 J 0)
4-i O 2 o c
c *«. — o N
— r — SW SW

4-> H3 O SW CD
a O * — W o o
c W jc : c

■— — 4 ^ o w — o
— o o 3 --- —

o to H3 w a 03
<D c ■*— • o c O o.C o V) > — z
O JC • O

4-» <D c u . w — 4-1 •

o <Q a flj H3 03 0)
0) O c A O (D 0*0

— O o • 4-> CD c o
— — 4-1 > o 4-« • — E

0) 4-» — c
* £ o w O ~ 0)

Q o c £ 3 0)
GD * 0 «

s
4-« x : c 4-: •«.

C Z 4 ^ C CO o 0) 0)
— •— 3 !_ >

E > n w l<— — 4-1 c
o UJ 0) O aj * o •—

0) ^ o O — E o .
H— x : i . 4-/ u 4-/ 5

4-» & — o • o o 0)
> II * o <Q c c c w CC w 4-1

0) ft> ■— — a> < o
^ X o > * *-* tn 4-> X 3 03

Q X o CO z CO o a o
Z < J H3 O CD a> 3 03

GC O E Q O o a c CD
4-» 1- <D 4 ^ o '— £ . OCD * 0 O * 0 E ll <D 4 ^

a c a o ■a a — a JD
<a E <D ■q* c SW

o o > < H3 o 3 o 03
4-1 _ j 4-> a O a 4—1 O * o

o c E *• * o o 0) c
0) Z a •— *o <D 4 ^ CL
C GC E 4-1 o c o C ft in O 4->
— 3 01 4-* <D • — 4 ^ z w
4-J a •—. 4 ^ 3 o
3 c 0) GC <D 3 a o 03
O — O a n O H3 O c o 4->
i_ 4-J 4 ^ o c n 0) w •— SW in

c 3 — 0) CD—

<D T3 4-J O a w — . o a
o E 0? c o c n O c

; 0) o 0) 4 ^ > -w 4 ^ r t O
c • — ll — CD 3 r w

1 C o c c 4-J a o
i o c r 3 O C J H3 o • — c 3
z — o a 2 < o 2 — — < O

<B
x _ i w
t n t n d
< <CD CD t- Ov3 T3 »-
0) <D
> > ~
ft R 4)
« to tn

-------- X
« « <_)
o o0 <0 T3 « « — 0- CL O

1 CC
£ . 1 UJ

to 1 LU
■— 1 >—

1 h -
to 1 UJ

<J0 ft 1 (SI
* c - 1 <

* o *o to 1 <3
3 O 3 C 1w (4 E 4-1 E 1 _)
<P <P 3 1 <

<p — 1 CJ
to O

»• o 03 T— u 1 h -
—- o 1 UJ

T~ o 1 CD
4-J X 00 I- <
c o o ■*— I X
o ■ — o 1 CL
N x : o 1 _)

— o — ft I <
QC to 1

O • — < X 1
£ . <D 03 X CJ I

o E CJ <D I
il 03 . c X \

a o » c <J 1
> c C •— c 1

o 1
C 4-> 3 0) c 1
o 0) O 4-> o CO 1

— fsl CO o •— 1
4-» 4-» 4-t c 1 <D
• — • ft to 03 1 N
CO 5 T3 *o . 3 1 N
o O c ft a 4-« 1
a *D 01 01 4-1 a c 1 :

C o •— o — 1 0)
c c X) c
<D J c CD — ft i a

o <D 03 3 4-« i a
4-« o CJ 4-« 3 i <

<J O c o •— to CD a i
to to to x : <Q 4-1 1 <D

3 CL 3 1 £ .
to 4-» ►4-> c •n <X> O
CD 03 <D o > 1
c 0) *o ft Q O o 1 C

•— — O o £ ■*— * — o
4-» n CD E c o <D < <x> 1
3 oi 4—1 to CD X) 4—1 z 1 O
O 4-* <J to w C o 3 O 1 w

03 CD to 3 ►■— « X a — 1 CD
— to .— O a cn c t - 1 £ .

4-1 o 03 £ O GC < •— < < ^
<J .C * 4—1 < O CD GC I

o o o T— o — * _ 3 o x N t - LU I to
a 03 •— a 03 <J _J O CL
a o CD t- T— fsi cn O 1 ^
3 X -C CO y-v * 03 c < 1 03
CO a o 4-« c c <q u j c £ . a c D > _) i x :

o o O t L U CD O 3 o 3 * o < i ^
<D £ . * 0 — • — — a> * * o to « a

00 4—1 4—1 o > 03 CD 4-i <D ® LU i
CM 03 CD <Q <q C LU o O 4-> _) 1 CO
T— 3 fsl fsl •— Q to — ■*-> ■4-1 to 03 _J

— £ a ■— 4-1 •— c X) (D O 3 TD 1 4—1
03 o < — — — c o « <3 a O a — 'w ' 1 k_

o O •— 3 4-1 03 c 03 3 Z 03 4—1 T— c 4—1 3 I 0)
■*— X •— O c — — •— a> ■— X > 1 X2

u 4—1 CC • — •4̂1 4—1 — a 3 ft < r *o (J *D 1 X)
a> T— o N . . . o • — CD o E /0Xd

c 0) 1 t t
c CD » « cn c • c o ll 3 C « tn 01 . c 0) 1 3

X) £ > T— CD •— T— ■*— x *o — >— c T— o 1 - J
3 c . . . ft 1

— — o o —- — —- a c 03 — — — o a —
o O 03 4—1 03 03 03 03 3 03 ŝ3 ; 03 _) 03 o 1 ■*—

a o to o O -•» O u O 3 0) O <J CO O — Ll O c 1 o
£ to to c 03 to to to 4-1 E to to CJ to c > to 1
3 O 3 03 <Q o x : 01 01 <D CD o 03 4 * (0 o z <a *— 1 CL
“ 3 CO U Q . Q . 2 o Q_ Q_ CL tn .C Q_ CL : CL z a — 1

1

t— 1 O r-. CJ 1

1 1 CJ i—» o CO CO 1

UJ 1 CD CD CJ CO 1
cn i U- m Q Q CJ 1

3 1 V * CJ U- U- / 4* 1
/ i 1 U- / 4A / LU 1 / 1

i / / / / UJ / 1 1 CO / / tn CD / LU 1
<—» i CD 1 UJ UJ LU LU cn LU CD / CJ / CL CO / / LU / / / LU tn 1

Z I CD 00 cn cn cn cn / cn T— / LU T— T— / CL LU / LU cn _J CO LU tn / 1
CJ 1 U- m / / / / / o LU tn o CL CL / / / t n LU t n / i— i/ CJ t n i— i/ I

O i V * a U- y c n / U- / / T— i— iT— / c n / < 4* / CD i—i 1
-J t <__/ U- <— »i— »t—t i— » ¥ ¥ i — / 4 * Q_ T— Q_ 0 . i— » / i— i i— i i— i ■V i— i J

I V * Q CD Q m CO i—i CL i—* i— i 1—1i— i/ T— / / CD i— i i— io < T— i— i 00 00 CD 1
X 1 y-v I—I Q m in CO CJ / i— i h- GO CD CO o CO i— i U- o CJ in y-s CJ CJ CD 1
LU 1 OO UJ CO CO CO CM CO CD y-s LL h - i—i CJ i— i1—1CO < T— 00 4* < 00 V * U- CJ 1
X 1 y-v a a a CJ ¥ ¥ <J o •— •CO CD i n h - h - GO 4^ GO CD CJ CD o < CJ i— iCJ T— < CJ 4* 1| CO 4* 4* v > 4^ o CD CO CO 4^ V * h- h- U- 4* a LL CJ 4* 4* o CJ V * i—i 1

1 o i—i i—i i—i i—i i—i 00 U. <J oo i—i i n i n i—i 4* CJ 4* i—i i—i o V * y~vI—I i cn^ | CO CO 4 * i—i 4^ V * i—i 4* M <0 in 1—1 CM y-s 1 3
Z I 1 y-s /-V y-s h - y-V CO 4* i—i CO y-skw h - y-s y-s00 y-s i h - i t—(J 1 CO CO r ^ i n T— CO O CM 1 i—i y-s 1 CO in CO T— / N o h - CO i n ✓-N. CM CM o i <
O I CO 1 m CD o T— O CO i n CD T— CD / N CO CM y~v T— o T— CD CD 00 T~ CD CO i h -
-J 1 o CD CD o o o 00 CD y-sCD CO CO o h - CD CO T— CD CM CO CD CM i n h - CD CM in T~ T~ i c n

1 o CM CD o o i n CD h - i n CO oo CM o CO CD CO CD h - T— T— CD 00 'w'CO i n l CLCJ | CO CO i n i n i n 'w' h - O T— 'w' T— i n T— CD T— i n i n T— in 'w' i
LU 1 'w' "w*'w' 'w' CD CM o m CO T— T— T— i n CM i n o >»✓in o i i
a i CD LU 'w'T— i n 'w' 'w' X _J 'w'Q- 'w ' W 'w ' m w %-✓ • c n i
'w ' (X 'w' ♦— Q \— 1 - > t n c n Z \— 'w' T— T—CM c n CL 3 1 X1 CJ GC — < < — _J z CJ CC < < X - 5 X > CL ♦— ♦— CL a Q 3 h - 1 o
LU i o LU UJ z LU ♦— GC Q LU UJ t n CJ CD CD CJ CJ CJ U- o — -- — — z < < h- < I o
Z 1 H- z > GC c n > > O > LU t— a a Q 00 GC CC t n o CJ z z z z 3 UJ UJ UJ ♦— 1 h-
< 1 o o Z Q_ CL CL CL LU UJ o o o o _ j _ j _J CM 3 3 < X — — — — — —> CC GC c n c n I o
Z ! a X " 5 - 5 - 5 —> 'XL z z z z o o O •*“ O O CL CL CL CL CL Q_ CL CL CL CL CL CL I e>

68 MICRO No. 72 ■ June 1984

NA
ME

(D

EC

LO
CN

)
[H

EX

LO
CN

]
\U

S
E

-T
Y

P
E

\
-

D
E

S
C

R
IP

T
IO

N

cd
acd
co
xoCD
z.o
TD
Ccd

03
CJ

<QC

OQC
05
©
a
o
o

©

©0)

c03
Z
OQC
CO
o

©

c o c
— a —
oa »h-

- z>.■-< LU
'—COw 0 —
c crt
<D O < N CD
O - N O— CJ

O
tn
< CC CD <X oCJ —

T3 C
C L.
cd 3

o
©.C
O

01

C
©CD
0
01

© JZ

©
.c

* <D
C u *-»
O h-
- T 3 Z C
*-» c — oCd QC

CL u < CD 03
JZ

T3 O O
C *-»03 ©

-C .C O *■»3 >-
'J

«
O
a

— cj
.□ ZCL X -C CD Oa a
— O -l.c *-» o
« r £
* - 0 0 Cd 3 •-
© O *-

©.C

3
O — ‘ >- C

: £ —

>> h-
o

©

<p
3

03
01
01

a a i1
01 o
— T3 <D
— C C cd cd

0 il *-» «-
^ c —

©
CO — k_ *
1 - ®T3

—I cd «- c • cc «- Cd -*-» Q
o cd <D

O C —

c
o

"D
©

© cd
o —03 <J
v-
cd cj
.c —O (fj

< cd CD

3 ©
a a
c ©•— w •
i c ©

— TJ
© o oi © £

01
- cd c

o £3 C —
- Oo©
l. o
o oo

©05CdO
CO
c

©

o cn *-»
— < cCO CD -
< O

. gd o a
E© o o4-1 y) i-»

0) ©
>> 01 £ B
w © o cnr.

— © o i : c»4-» <d
C v-
0 co n— o
01 C "O^ cd c © ,c cd
>

c 2*cd
“Dn c
<d*o

c Bcd crt
o

> c
2 T 3 >
O O w OO <ncc o « N > oa a ------o o
eo <« u_ xs
Ll — (J c O

o Ll i- — — oo
c — cn 5

_ t - Z <
---------------CD « O

— Z O »-
0) --------<J1 a —

® —
— cn
n < <fl m
c® o
•D
C LU (« Q

O <D Z
■o
O •“
£ ©(0
c
£ o 3 *->

O —

v>
Xosfc- <d

* *-» o
O - •
c ^ CO

— QC k_ "O
<c — < ^

c o x -o 5- 00 w CJ
a

o
c *-
»- oD ~w 0)
©

O >
o*-» co

® <4-

cd
o

01 c
cd -

c
E -o
D TJ
— O
Oo »-

0)
o a *j « a ® —U OTI
•— c >- o tn o <fl ®
0) < 4-1

i- CD D
o o CC

« <® X
>- LU U
O Q
" O T J w Z rt

o r

o« X »- T3
o c« "O <fl</> —

ai c « c o ® o —O '- «>- >- z a
a d < <a

o cc
<o x x o
— o o ®

® ® £
£ O

— o o

ai
c « oo

®
— M Q}

>
cd

a o i cd © *a t j
a © »- i-
3 01 m o — —

3 ■4— 03 cd •
O © > > 054-̂ . o c c 01

> . > - -4- ©4^ U- © o
3 'O co 11 II Q
a cd C ^ cd
c o cd c w o o a

01
cd

X n
01

, , , , o
© 01 01 01
01 « Z 3 © ©

© > • < O c c <
o — O QC •— • — •—

o • \ > 4j 4-1 c
u. « z © 3 3
© *o o i O u O 0

c © QC a L. L.
O cd a £ n cd
— 01 01 3 3 i>~

c 01 ’ 4-1 01 01 o4^ © © 'O ©
© a *- cn >- 01 .

© L_ cd cd © 01
‘ > CJ a o • o 4^
c 01 L_ 4-J o ~ ©
o c © © cd o 4-<
o © 0 s* - T5 cd o

cd © cd oi L> cd t_ cd
o © k- 3 c cd ^ ca

— o a cd a o £ cd
01 C L o £Z

*o cd w © ; — o
© * £Z — a LU O —c 01
3

O CD oi a
cO "O k- £

c o *-»
cd

* cd >,
k- ® —

"Ocd o
o £

o ^ 01
cd
E

aT3
g

0)co
cd

o o o.O il M-

o o

o o a> <d
o o

X
<d a
c z

<o

CD CD
C C

a a> 01
o o

3
a
c

CD 01
cd
o

c n t o « -
- i i ii ii — Z
® >- >- >- (HO
a r . <r
a x x xD O O O " 00

o o o .c u.

<n
r
a c-S£ fll

O — On ®

_ i - o
CL
CL C
< oo
CNJ -
00 o1 »-

®
r. t- \- i- a
w O O O — ® >- c.

o o

o ____® # (3 (3 0
o -a —
4-i — *- o o o(I) > 4-14-1*-!

o w ® ® (0
c c o

®■C

_ (fl 4-1 4-1 2
3 D C C C C CC £ 3 3 <
O O N N W N O O O C C '- '-tn tO 'i-'tn i - i -

c _i o
— o o o o E o i - o o

j £ 4 - l L 3 £ ^ u u u u g) u | j u u 2o w « « a o — — — — t_ — — — o
® 4 - i ® 4 - i (f l ® c C C C O C » - C C C C

£ » - ® — ® » - £ O O O O C O O O O O O

® a ® ® m
C Z £ “O Z

c c
E £® 3 3

c -----
— o O

0 £ il
01 o o
<d c c o cd cd

3 01
O T3

c3L- o
O U4—1
- o
c 01
o —

(d 3 « O O
o o o

£ CJ •- CO 00o ^ ® ®

01 CD
0> 0)
> CD cd t-
01

'Ocd c
© a — cd — o
o o i : -

o 01
o o — ©4-1 4-1 ^

 ̂ >cc cr ^ .o
 ̂ _ _ O N N O « « « (/) (̂ I ©

B £"O "O "O 5- - co ^

o o

00 01 O © 01 y- 01 ©
01 01 © 01

(J *- © w*0 - : 7D TD
cd *o

^ cd£. ©
a *-» ©-->. 4-»
i- XJ >.
>> na -c
o a J

o £ —
o -

o * -
c o

C •*-' CJ o — — — © © © o O CJ
Cd 3 © •*-' .Q .O
£ O •- — cd cd
O N ^ C 01 01

C O O ----

O Of Q w w \ oi
c c
cd cd

c ---
cd © 3 --------

Q £ £ £ O O W

/ / / /
/ LU / UJ LU _ l
_ ! cn _ i / cn cn /
/ / / LU / / /

cn _ l _ l —I ~
•—«<—•»—« / »—i *—> / CO
O CO OJ o CO
in I L LU ^ o < (—> s — oo
oo oo 00 CO oo 00 TT UJ o o
O O o 0) o o h - 1^ <J) 4 *

00 ^ 4 * CO CO CO <—•
LJ I—I CJ 1 u O ' ' o

4 * ^
l - j LJ I—I •—»CsJ

o co co ^ r o
OO ^ OJ ^ o CO CO
CM TT O TT CO CO CO TT
1- T - i - I/) y - y— ^ CJ ^ in
in in in co in in CO CO CO w
Vw* W w ^ w Vŵ ^ 1“

in in in in o
CN 1— I— — _f J— w >»✓ —

J - 3 LU h - z cn
— CL QC t - O CJ CO ^ <Z Z o 3 z QC GD GD CD GD
-------------O CL CL 00 00 00 00
GD CD CD CD CD CD O O o o

/

a - cn a cp a o i i i i - s ^ i i i I H < < - u i Q Q Z u u u 2 j u § 2 z h h

~ h.
a < in
<j> o

/ U U . CJ
■»- l l ^ u ./ / / x ^ I ^

T - r r / | LU | / /
CL / X X U CD OJ U LU/ _ i/ / ^ a > U T r c o c n

CL / U J U L L U / /

r ^ T - < Q O O O ^ *—»■»” 00 c o o - L u v n o o ^ ^ o)
C O / U - O O U O ^ ^ C D ^ U J L L
o 05 h«- T - CJ (J
Ll ' - ^ C O C O O O 4 * 4 *
4 * cd <—* c o c o ^ v n ^ t a j
i—i h«. >»». y-s y-s CO ^ CO ^

CO 0) ̂ OJ ^ t” CO | CO ^
'-v ^ CD CO in CO 05 I O I y - OnI
O')*—>^“ O) i - t- - ^ ’ C 0 N - C 0 0 0 ' » _
C> l /) C ' J 0 5 0) >—1• CDCOf s- O O t -
oo ^ co ^ co^-mcNJco
TrcDwi .n^^cr^rco^r inm
C 0 u ^ ^ < CD W CD w W
W C 0 X _ l Q X w W

--------f - O — O N LL Z
1 - w l L — 0 > h - J J Q - J O
cn z cc o © j o o o < cc
t— C C 2 D < 0 0 0 0 < L U L U L U X > -
CL<c/)Luocxa:a:Qca:QCQ-
< 1 ^ —I —J J J —l _ l _ l _ l O
o o o o o o o o o o o o

/
UJ / /
cn UJ LU
/ cn in // / UJ
*—• C/)
CO <—• <—• /
o O h-
00 o o ^
o CO CO CO
4* o o y-
«—« 4* ^ 00

CO h—*
o O h-
CJ CJ CJ ^T— 0) 0) w
in 05 05 CJVŵ t t c j

1— in— 1— 1— W
z Z 3— — O y~
o O O h-

cn cn co z
< < < -
GD CD CD CD

0)
05 o
© •— c
t - —*o J■a 01
cd Z

> o >1© L. QC © cdc cd TD *•— •— O O
4^ — O O T3
3 «» 00 —O — U. c O

X O3 ©cd £Z
- ©

4^ C C 3 ©
C
oo

j*:ocd

cd

o
c_ 3

— U.

C
o

■a © ‘
W c o
cd - o
O 4-1 f—

3 O
c o
£ *- o3 0 -
— 3 O 01 01
a

x
o o
00 o

3 01
O »- ©

0)

- O

Q
C <
O _i O I—

O

") I l a
: © *o »-

c • cd >.> cd -
© • £ < © r. oi

© o

oo
T3
C« cn
§ o

CDO0 •
T3</> ®01 4-1

® D O O
O ® »- K
a ®
o »-

cn uN <J
tn cd

O T3
C C

— Xa
<

«
®
c

■O _ _c get c
a o 3c. ■- o ®»- o r. ■
O x ~ a
" T3 (J CC

® ® —
1_ ® !_
® £. rt T34-1 C
c
© c

o
01
— 01

c3 *-» *-
0 1 — 3O © i-i X

cd O co » •
* - 01 CD

0 ^
3

il • O01 CO U
3 i— n
acr

oi cd
©
c ^

c
cd n

©
- cd © o a
4-. 0 1 — 3
3 ©
o ~ ^
1- 3 ©O C

cd
01 © 01

o o CO u. © c 1“
© o c O X < > •— . •
o © © AW !_ © !_ o X w

•— — — •— 3 •— / o 01 © o Qw A A r" 4^ c *o CD £ cd
o cd cd 5 © o c cn © © 4^ CL
Z h h z - z cd / £ 01 >- O)

r-*
u.h- Ll

in II
o O
IL 4 0
4*
1 / / / O
CO ̂ ̂ LU / O
^ OJ CJ cn _ i T“
O CL CL / / o
IL / / 4 #

»—« r —«
i— i i— < 05 CO

CO IL 05 CD y—\
in CD CD h-

0) o o O o z
05 O O «» CJ o
in 4* ̂ u l_̂ CO cc^ t—̂ u in o
CD o
1 o CO X
OJ ̂ 05 CJ in o o
00 ^ 1- T—
in co co CJ CJ 05 1
TT CJ CJ in in V
co in in Vŵ w \—
Vw' W ---

CC cc Z z
J- X -1 < UJ o —
CC Q Q X IL cc o
>- < < o X o —
CL -1 -1 -1 -1 o CO
O H h 1— f- X <
o o o o o o CD

CC
LU
LU

UJ
N
<O

<
o

LU
GD
<X
CL

©N
N

aa
<
©r.

©r.

cdsz

©nn©3

No. 72 • June 1984 MICRO 69

z
o

cr
o
tn
LU
o

a
>

tn

cj
o

X
LU
X

z
< j

cj
LU
a

LU
2
<
z

4»< (U 0
4—< <4— « CO
c — 0) _

■4— 0 k_ 0 J
— E *o o O

0 0 (0 a 0
<ji k_ 0 k_ A
co u ^ 3 • 4—1
0 C o *a o
0 — 0
O C 4—< »
k_ »•— 0 o o
a c — CO r r
. 0 \ c X

*0 0 C *■ £ o
C »- *o 3 1—
« O 3 0 tn

0) ^ *o O
0 0 0 o o

*a c »- 0 4—1
o o C o
2 0 00 A

a a
>- - « •— c c
X (U (TJ
o o *- O 0 k_
I— >- k_ ^ *a .o
O O (d o o
O - ^ O o E

CO 4-J 0
o *a o 0

o 0 *0 o ~ c (0
0 CO 00 o 0
r — *o CO >
O 0 C o 0

4 - h *
0 II a ---

■4— 0 0 > *o >
■<- 3 T3 C *- 0 *a
O i- O o (TJ x A c

- £ • o O CJ 4—> 03
k_ C * A O

c0 •
© c
*- o
o —
CO

o
00
z
LU
LU
X
o
CO o

1 O 4—> > 1—
1 CO — c 3 o 0 O
1 »- 0 T3 X CD
1 3 «- k_ 0 C
1 O »- • — *o O
1 (d a 5 c
1 c ^ co *o OJ
1 k- CO c C c a
1 3 (d (U E o Ei ~ *a k_ 3 0 3 0
J c 4-> k_ — TD
1 * (U o O • —
1 0 CO o > O «
\ Cb> ■ — CM C
\ « X 3 O 0
1 Q.O X O 0 *a ^
1 I— o CO 0 c z
1 o o 0 0 0 0 a a <
1 «- o A H k_ c .o X
1 0 O 4—> o
1 N <4- 4—> ► n *a * a

0 X OS
tn u ^
1 0 c

~ .c oD U N
a -

— co
<u to
o
CO o
m 0
a c

o
0 (0

0 CO
O 0
(U k_

a o
0 *-> k_

CC • \
» tn

0
c
O _l
o O

< j
o

<*- oo
0 I-
— LU

tn
£
O <o
~ *o

O 0
n x

o »-
<*

*o - o
*- OJ

z ©— o
>- <*

3
x a

h- C
LU 5 > «
tn < ------

cr
<0
*a *a
m «
0 0
cr a:

a «
— o ■
>
O C I
oo o :

*0 CO
»- 3
(TJ 0 0
O <U +*
A +* 0J
C CO 4-
— CO

o
00
cc
o
)—
to

a
o
c

~ 3
0 •*—>
(f) 0
>

*a
*- c

. - a

l c 0
> (TJ 0
l k_

- O
0 CO

c *o o
o c « 0— aj a £
4-J 4^
— c r
<n <u u e
o ® — o
a >- r i-

o J ■<-
i- w
o a> >-
CO 0 ■*-* 0
^ a a ~
3 ~ — O
U 3 (TJ

£ u »-
- o — <U
0 *- <* .C
O '* - u o

0 ^ - 0 0
<3 QC in 0 ~ A

4-> 4-> --- (| 4-> 4-1

£ <a
O O
i- a

>4—

X
»- CJ
0
4-̂ it
o
« >

o

CO
o
E

c
£
3

O
O

o
oo

a
a
3
O

CO

O
H
5

CO
0
>
O
2

*
o

(U

o

0
*a
o
o

LU
tn
LU
cr in

0 (0
E *o
»- <*
O 0

cr

0 (TJ
O £
(U
3 C
o o
c
<* 2
- <

QC
CO
*G *0
« (TJ
0 0
QC QC

CM
\ a

<
LU

0 ac
« <
a a c
CO CO
*a *a
(U (U
0 0
CC cc

CO 0
*a

h- o
i e
X «-
Z X < 0
QD t—
CO CO
*a *a
03 (TJ
0 0
QC QC

<* 0 >
c r
o * - x- <j
CO c o

- J o
QD 0 <13
> a

c o
CO (TJ w
*o r
m o x
0 CO
QC < “>

0 O
C (*
— ^

3 H
o u

0

— *a
c m
c 0
z

0
C *0
- (TJ
4-̂ 0
3 w
O ». 0

<0
o i
— 0
c r

(TJ ► —
^ 0 <*
O

o
* 0 ^ 0
(TJ CO CO
0
U L. «

o o
4_ -4-
o z

< LU
C LU
0 C CC
0 — CJ
»- tn
o »-
CO 0 o

4—< 4—<

c o
O (U to

k- 0
»- OJ .c
« £ O
■*-' (J c
O (*
(TJ • k-

0 A
03 >_
r o o
u •*-- r̂

CO
0
k_ 0
0 0*0
4 ^ .4 - O
<n £
I- 0 *_
0 CO o
H
- >
— CO
0 - X

X O
O U 0~ — a

a o
\
ac *o
\ o c
CO -4- 03

»- 2 O

c
0
0
k_
<J
OI
c

o —
*o o
c u
5 o

CO
0
> o

o c
OJ 0

0
C W
£ O
3 co
o c
O E

3
o —
^ o

o
>
— o
c ^
o

— 0
o >
»- c
u o
CO <J

o o

ac ac
\ \
CO CO

o « o oW 0 CO *-• 4-J-------0 ----------
c u > c c
o m o o
Z > CO z z

co
0
>
o

C 2
0 0 .
*- C
O 0
CO 0
c o
E co
3
— C
o £
O 3

O O
CO O
C O
o r̂
co O
c ~
o
— c
4-^ 0— 0

0 0
3 CO
— (U

o
>

n
< o
o £
- *
CO c

0
CO

o c
£
3

CO O
o o £ o
*-> CO

0 4—<
— LU

0 O
O > <
4̂ c a

o h-
O X

co
c
E

o
O CO

c
o £
CO 3
\ —
o o
^ u

CM
II k- o

>- o
x —
O X —
O U OI— 0 k_
o r o

<J CO

0
c

0 C
*0 —
O — £

■4—

I- c o
O E

3 *0
C
0

C
0
0
k_
U
0)
0
H

0
C
o
a
3

C
0
0
k_
U
CO

0
H

tn
oo o
o u
c o

—

£.:
CO

CO c
CJ — CO

<3
0

CO x 0 o
o *o
^ c
tn (tj

c
0
0 Ok_ 4-f O
o
co ac

\ CO
tn *-

0 0
4—> ^ 4—>
u o o
OJ OJ
OJ C 03
r o r
0 2 0

— o
o o «-

O O O O CO
o
CO c

E
O 3

a 0 0
E c c3 — —

O
CO

3 3
O O O

* 0 ^ 4 -
0 O O o ^
c - -
m c c
r o o
<J 2 2

O
ac o
\
tn o

oo
O O O 0

— n
c «
o c
Z LU

o o
0
*a »-— 0
> 5o
c — £
3 0— </)
O *- O 0

>
o c
00 —

\
0 —
— «

E
« *-
c o
LU Z

JC
o
(d
4—>
CO
\ ■ X0 — (J
o o x
« O 3
a o o
o o ~ c
‘- ‘- 0 3
0 a co
N o

o o
0 0 - ^ 0 ■*-> 00 4-<
03 (J X
C \ <0 4^
»- O CO ~ A
O X 0 Q
■*-> — k_ <j) —
— O ^03 Q. 4-j

3 — 0 k_
+* C *o

0 0 O O 0
co co x E c

CO < h*CM CJ
/ Q / < Ii. T—
•*“ U_ / y - / U_ y 4^ XX 4» y— X / y - 4A LU y 1 / LU LU y— y— / T—

y T— T— / 1 X T- X y - ▼— X X X 1 tn UJ / / O _j tn tn x x XLU X X y— / X X X T- / in y CO LU LU h* _j _i y y y y y 1— 1/ ytn y / / ~ CM ^ / / X h* / tn CO CJ u. UJ UJ
y LU CO Q i— i CM / — < i— i i— i y / Ii. i— i i— i t—ii— i i— i o 1— 1CO COtn <— 1•— IO Ii. y— O ̂ <— I 0) u_ h* LU CD 4^ <— i i— io < y - Q o cn y

y CO Ll o w CM O CJ CO T- <— 1 4» CO O O T— i— i— i L U C O C J < < O O C J O
LU T- T- CJ — O T- u *- T- o < o •— Ii. Ii. Ii. a cm QD < QD cj CJ cj o o o 1— 1.— i
00 o o 4* u o w o o u T- CJ CJ CJ CJ CJ CO Q y—sCJ O CJ CJ CJ CJ CJ CJ CD LL< < CJ CJ 4^ CJ 4A 4A 4A CJ LU Q in cj cj 4* 4* 4* 4A 4^ 4» UJ <CJ < 4* 4* CO 4̂ 4̂ CJ — CM 4* CJ CJ CM 4* 4* y—S i—i CO UJ4* Q y-s O y-s. •_ 4* CM — 4* 4^ CD h* CJ CJU in co y—v y—s y—s T" y—s y—s y—s y~n y—S /*Sy—s y—sCD y—s4* 4^m cd y—vin ̂ y—sCM h* CD CO y—< CD y—s y—scd co co in T— y— 1»— CO CO y - CD CD O **“ o T— r̂ y—s cd O cn CO y~" y—s f 00 CO T- cn 00 in CD 05 CD XCO 0) 1 T- N 0) CD N CO 1 o o cn CO CD 0) <J> O TT CO CO i — y— T— y—sy—s CJin T- T- y - 0) T- •*- T- 0) r̂- a> r̂- CO CO CM co 0) CMCO^rCMCMCJOO) O) in 1— h-CO o 0) o W o a) ^ o o ^ T- t- in in in C4 h' CD c D C M C M i n m i n ^ ^ r in 1— UJtn CO ^T v-'0) >»✓ in cj CM in in sy X >»y cn i cntn CO v-'2 v >»y >»y w in in CD N«y >*✓ < o CM iw CM < CD 0 J < 1— X CD o o i— W w w o z o __ i a x a m m i iin j o i r ̂ X Z l C M Q X < w 00 — QD ^ CM CO 0 3 0 - CJ N iLU w o — a Z < Z LU X B 1 - QD Z z Z D CO _) J _ J _i_i_i <j > i— i— 1 UJ
1— CJ > X CJ QD X - 0 2 2 X _) 1- LU LU LU tn ^r CO _) _i_i_io o _) _) ao X i i—
— i— o o < c n c j u < < < < LU QD LU LU LU LU -J z z O O O O O O c o c o < < c j (j i —
X — c o c o u L U _ i _) 2 a x x 1 - > CO X X X X X X X X X X X X l — 1— 1— 1— 1— 1— l X

Z) Q O Q Q Q Q Q Q Q Q O O LU CJ CJ CJ CJ CJ CJ a cj cj cj u cj UJ UJ UJ UJ UJ UJ 1 B
a o X X X X X X X X X X X X X tn tn tn tn co tn tn tn tn tn tn co tn tn tn tn tn tn a

70 MICRO No. 72 ■ June 1984

to
CO

to
<D
O

O

m
o

c
E
3

O
o

o
CO

c
03

<D
<J
c
<D
05
<D

©
A

*
O

<D
*o
o
E

o
<D

c©

3
O

©
x :

x
o©

x :
o

<D
C

3
O

z
o

QC
CJ
tn
LU
C l

i

a .
>
h -

I
UJ
tn
D

Z
u
o

X
LU
X

z
u
o

U
LU
a

2
O 2
CC o

a :
o
0 ~
X o
C J —

CO

01 o
c o
k- CO © U
C © < -

A
+-> C5
© C

t n lu

a
UJ
CO

0)
c

>

c
<D
©

O
0)

©

C
o

co
o
a

m

• c
c o
0) N
<D ■-
k_ k—
o o
w r

© c
. c ©
4-̂ (J)

fc-
c o
o <o

Cl Cl (TJ

03

o

X
<J ai
m *o
4- o
co o
\
<D Q 00
Q Z H
<U ^ >
a h

lu x
o tn c j
»- O
© © f—

n x : o
4- e ,

*D
‘- C O
CtJ — *-*

T3
C
m

* 03 © i-
c « m

3 JZ
< 4 - 0

W
• • (J)
© co .C

“O 4-
O ~

U Q (D
D w

O i - O
© k_ *->

"O <D to

0) JZ
O O
c cco m rtj

r »-
~ o A
©

in < aj

> c o

o -O <1>
* - c c

co —
k- w
<d <d 3

o o
**- CJ w

CO
3

o <
03
k- c
m -

. c
O k-

0)
<D * -

a O
0J
k_

a) m
»- -C
o o +■*
to a)
o o
4—' 4^

co
©
C O

>

<

>
o

to
CD

“O

03
O

C
E
3

O
a

o
00

a ~
o
c

o

/
/ i -
^ x
X /
/

r-, CD
r - o
o o
O CJ
CJ 4f t

y—S CO
05 CO
m t -

05
05

2 O
o cc
QC CO
X c j
C J h -
h - O
Z - J
— to

^ r
1/5
CD
LL

/ ^

X *T-
/ 1/5

CD
— Li
ao 4f t
O —
O
CJ ^
4* O
—

CO
y-s r f
O CO
CO I
•»- r -
co co
^ co

CO
Q_ w
NJ
a a
I - z
0 5 3

C
cn

0 5
cn c c
- x

ur*̂
CD
05
CJ
U.

I
1/5
P -
CJ

0 O 0

4) 4_»
O to LU
cn © z
|- *-' Q3
O
4- o -
« 4̂ <D

k-
> Q C ©

« (/)
w-
O k- «
a o —
E - © — *o

C k-
O <d

< 2 0

00
CO

<
LU

II
+

CO
o
4* h -
II —
© <
\ B
\

« 00

~ <Ji
— 03

© ©
- e
a o3
a co

<

* - <
o

c
*o o
c- a
X c
-C “D
o c— a?

n a
£ ©

*o
c
o « -

c©
©
w_
o
to

03
©

O

o

LU
GD

00

X
o

© © — -C
a o
a

< »-

i
©

*o
LU O
- J O
a
a o
< -

0J
) -

OS
o o

c
QC O
s
t n 5

<
i - QC
O
4—' <])
•— 4—'
c —
o »-

X 3

05
0J ©
© o
E <u
<tj a
w to

x
- o

*- ©
<d
©
a ©
0)

D
a o
© © © x

©

c
k_
D

©

<d
O

10
c — n
<d
£ o

© © ©
a - "o
m o o

- £ £
k_
»- c c m £ £
0 3 3
m o o

o o
©
~ o o
3 00
o
Q ^ 4—I
X © ©
© tn to

0)
c ©
»- o
3 m
« - a ©
© « c

QC
*o —

i - m ^
o ^ o
to k-

UJ I - o *o
2 3 C O O ©
x m

© o © r © ~
3 3 » -
o © o m
© £ © ©
X O X — >
© -C © o

c
J
o

*o

a
3

Oto
c
o

a
c

*o
c
©
a
©
■o

©
c

£
o

©
C "O
- 0)

— ©

© ©
>- c

c
© ©

I - 3
m o
© ©
— x
o ©

o o o o o o o o o o

O C C Q C C C C C Q C G C C C C C C C
\ \ \ \ \ \ \ \ \

^ t n t n t n t n L O t n c n t n c o
<nr k_k_k_k_k_w_k_k_^

O O O O O O O O O

— c c c c c c c c c 1 - 0 0 0 0 0 0 0 0 0

QC QC
\ \
t n tn

“O
»- o
m n
o

k_
c o
£
3 a — o •
O +■' CJ
O -J

* - <
o m u
oo © tn

- <
~ O GD

3 o m
c r ~ —

>
o ©
~ C I-

— <D
\ 3 <f>
CC ^ 3
\ O
t n i - o

© 1 cc
w_ to 1 LU
TJ c X I UJ
TJ m CD C i i—
m © m m j h -

E — a 1 LU
0) 1 IM

•— w_ c 1 <
m > o «

UJ © — 1
LU — » 4—> 1 -J
CO o x m 1 <
4 ft o c 1 CJ
1 > m — 1 —

a w_ M 4—> I h -
LU w_ to to I UJ
CO m \ © 1 CD
4 ft o © "O 1 <

a> 1 X
• m c i a

m to a - i -J
0) i <
k_ 03 o UJ i
© O 1- LU i
> © CO i

o N 4 ft i
© 4—> 1 i
o tj a i

•— k- i- UJ i
> © m co i

TJ 4ft i
k- to c i
o c m to i

m ~ © i ©
"D k_ CO CO i \
k_ 4—> 3 i \
m © i
o w co O I :

c 3 CO i <p
o m — CO
4—> © to < © i a

*o E c to i a
© TJ « • o » <
© k_ 4—> © a j

m © £ a k_ i a>
© o to m 3 i r :
c a k_ 4-> a w 1 4—*
- 0)

— a
m

© a
to
k_ Q
© o c > —

m © ' o * -

> m
c »- ©

m m o
£ o

a
£ • m
o

<D
— O

©
a « -
c w

sz a
o ©
C k_
m
>- >

o o o o c
4^ *-» 4-< 4-« ^
— — --------- 3
c c c c « -
o o o o ©2 2 2 2 a :

c o © k- c 3 © 10 i
■— c — © o CO > N © 1 CO

: o m k_ — c a r
o o m - © c 4—> 1 4—>

© © © © > k- k_ TJ o i m
4-* +-> +-> X ■w k. m cc — k- i x :
3 3 D 3 k_ o c m c tn O i ^
O O o O m h- o c o “3 k- <*_ i :
© © © © © o o O A © o i
X X X X — CD a 4—> 4-> © 1 CO
© © © © o E 3 c --- o Cb

c m m C X m 1 4—>
O O o O o — k_ *o m CJ k_ 1 U.

*-> a © E © 0 - 0 o 1 <l>
© o co 2 I - 4>̂ 1 10

CC CC CC QC OC 4—> 3 o 3 - 3 0 CO (10
\ \ s \ \ m a O 4—i CD 1 a)
CO CO CO CO CO c © (0 m > 1 3

— k_ X k_ c •— O k- 1 _J
k- k_ k- k- *o © © © (C > m 1
o o o o o <«_ © w
■*-* *—> *—> o CO © CO £ w a o
•— •— ■ — • — o c 10 c © 2 a 1 0c c c c c o m m 4—> 4— —> E 1
o o o o o w o w © c © 1 CL2 2 2 2 2 X i— CO UJ < h- 1

/ /
UJ UJ
tn tn

/ / / /

— / /

tn tn tn tn

r -
co
co

CO
I

05

CO
V
to

Or
cc

z
tn

< <
eg

Ll . U -
c j c j
4 * 4 *

CO
CO CO
O O
CO CO
1/5 1/5

i—> / .—i
CM t- rr
Li- a. CM
UJ / CD
U CJ
4 *
- O D w .

r ^

00 4 * •'T
r - •— o
05 O
0 4 ^ CnI
in v m

s /

a
o
CD
U-
4 ^
I

<
O
CD

'C C t O
< ^ CC 1 X <
CJ T- (J
oc a. k-
o 2 tn

h - h - LU LU
tn to to i—i—

/ /
T“ 1“
X X
/ / /

UJ / /
/ / LU LU / / /

L u m ^ r / L U L u t n t n u j L U L u
t n o o t n t n / / t n t n t n

/ / /
CJ CJ CJ ^ ^

<—’ 4 ^ 4 ^ G D ^ ^ 0 5 r ^ ^ ^ ^
U - — — C D G D C J i n r ^ - Q C M C O
CJ C J O U J O O O T O)
0 D ^ ^ 4 » G D m c j C J C j Q C J
u s c o ^ u u w « u u u
W l O l D 4 » 4 ^ • •— 4 ^ 4 * 4 *

o o :
co <

QC QC
o o <

UJ

h - >

05
^ r r
1/5 'w '
r ^

2
CM <
m oc
w Q

cc
I - <
— c j
< c c
? 3

05 CO
m

V-/ T~
CM

2 m
< ~
QC
Z - I

✓“S 05 0 5 y—S
•’T CO 05 f^- CD CM

oo o m m c o co
■»- CM CM CM CM i n CM
o j cm m t o cm cm cm
m m w w m m m

CM
< i
2 CD l
QC •
B X X X X X X X X X X X X X

t n cc c j c j 2 l l t n
I GD CJ Q Q LU LL Ll

t n lu
/

a
(J

O O 4 *
•—

a
c j ^
4A 00
— m

m
^ CM
cm m
m w
m
CM N
m _ i
w o

LU
t n co
a a

/
- j
/

/
/ uj »-*
uj tn •»-
tn / i -
/ a

^ c j
^ 0 4^

05 — 05 Q CJ CJ ^
c j ^ r ^
4A a>
— -

CM
y-s m
05 CnJ —'
CO CO
CO CM K
cm m u j
m w cc

cc
L l < c j
- j Z tn

/
/ / M l / / / /
LU LU tn LU LU -T- LU
tn tn / tn tn a . tn
/ / / / / /

CM 05 f ^ CO GD O
m CJ CO CM LL 00CJ CJ (J CJ O CO CO CJ CJ 4* CJ CJ 4* CJ
4f t 4* •— 4* 4* ^ 4*

/—s y—s o ^
co r̂ - in co in oo co
O 05 C'j N S O) CO CM CM CM in v- o CM CM in CM CM —' O
in in —' in in in
w w w w Q w

cd a:
- O D t n h - o c
t n t n t n d > o u j

..............................c j l l
X X X X X X X

^T
r ^
c j

i
CM
r^-
c j
l l

^ /
00
CM 0- C0 /
^T
CO r—1
1 I L CO •»“ CM 4ft CO —

•<r
CO "-'s

1—
CO

x
u
O 1-
I - >
o <
a t n x >

(V
-C

>
<
t n
>

Z
o
cc
X

UJ
t n

fa ltU M

Insidelthe c ia
by Ralph Tenny

Last month we examined several programming modes
on the 6526 CIA used for I/O on the Commodore 64. The
shift register (SRJ on the CIA was examined briefly, in that
we learned to toggle the SR output (SP) by setting the
mode to input (SP high) or output (SP low]. This toggle
mode of operation is useful if you wish to output multiple
bytes of parallel data on the eight Port B lines of U2 (User
Port). That is, by using SP1 (Ul), SP2 [U2), PA2 and PA3
(U2) as clock strobes, eight bit values can be latched in
four different latches as shown in Figure 1. Simply
program all the port lines (PB0-PB7] as outputs, then load
the port with the output data. Pulse one of the four strobe
lines and the data will be transferred to the strobed latch.

You should note a few things shown in Figure 1. First,
all the 74LS374 latches are wired identically. Pin 11 is the
Clock pin which causes the input data to be captured on
the rising edge of the clock signal. Each clock line is driven
from a different strobe output on the port, thus allowing
different data to be saved in each latch. Pin 1 on each latch
is the Output Enable line; these lines are all tied low to
keep the latch permanently enabled (compare with Figure
2). Also note that output latches do not have to have tri
state outputs, but input latches (Figure 2) must be able to
disconnect from the bus unless it is a dedicated input.

□ h O
Oh 1

□A3
□ fit

□fit
OAT

0E3aet
OBSact□en

]D0 GO 1 •
□D £
□D3 □0*t
□05 □0&
ODT

If you want to use the port for input instead of output,
Figure 2 shows a tri-state latch connected for input. In this
mode, the port must be programmed for input. Also, note
that pin 1 (output enable) is separately controlled so the
programmer can select one latch at a time to input from.
The external hardware must load data into the latch by
pulsing INLATCH, and it is wise to have some method of
handshaking so the latch output doesn't change when the
port tries to read the data. If four latches are attached, only
one can be enabled at a time to avoid bus conflicts. If you
use care in programming, it is possible to have (for
example) two input and two output latches. This is what
must happen: The input latches must be enabled only
while they are being read, one at a time, and the port must
be set for input. When outputting data, disable the output
lines of the input latches, set the port for output, output
the data, and clock the destination latch. If you want to go
to extremes, one of the four output latches could be
designated as a controller, enabling up to (for example)
four inputs and four outputs, or any combination of eight
8-bit ports!

The CIA serial port is not a UART or ACIA, and
requires some understanding to use. If you want to
communicate with a computer, it is probably easier to

PBOPB1
PBZ
Pi5 USER PDRT
Pi*t
P65
PB6
pen
SP1
SP 2
Pfi2
Ph5

PBO
PB1
P B 2
PB3
P B *t

PBS
P B 6

PET
SP1

c-e.'t

USER PORT

♦5U

Z 3 - I NO
t 5 - I N I
* -| - I HZ
8 -5 - IN 3
12 13 - I N't
l*t 15 - IN S
i s n - INS.
IS - i r n
2 0 11 - IN L f iT C H
1 10

1

Figure 2. The 74LS374 latch can also be used for input if
data is strobed in by external hardware and the output
enable is controlled by the C-64 User Port.

Figure 1. For 74LS374 latches selected by four unique
strobes allows eight output lines to become the 32
output lines.

72 MICRO No. 72 ■ June 1984

write a software UART program which toggles a single line
for output and receives on another line. The specific
problems you will have using the SR for communication
are:

1. The SR outputs 8-bit words only - normal
asynchronous communication uses 10 bits minimum.

2. The SR inputs only 8 bits, so incoming
asynchronous data will be scrambled. In addition, reliable
asynchronous input involves an input clock 16 times the
data rate; the CIA Shift Register is a synchronous device
which depends upon the external source to furnish a
properly timed input clock, one pulse per bit.

So, what is the SR good for? This port can be used as an
I/O expander as shown in Figure 3. The output data from
the SR becomes valid as the CNT line switches low, so the
shift register used is positive-edge triggered and will accept
data directly as shown. Also, the SR outputs the MSB
(most significant bit) first, and assumes that incoming
data has the same organization. If you use a negative-edge
triggered shift register, the CNT line must be inverted.
The shift registers used in Figure 3 are CD4015 CMOS
parts, and are internally organized as two four-bit shift
registers. Each successive section is cascaded with the
previous one, and data is passed down the line. In order to
output data to the circuit of Figure 3, the CIA SR is loaded
with data for the output port B. This byte is shifted out;
then, when the data for Port A is loaded, the Port B data is
shifted into B and A's data is shifted into A. You need to
realize that if the changing data will affect the external
hardware, the scheme shown won't be acceptable. In that
situation, the CD4094 is a four-bit register which allows
data to be shifted in, then strobed onto the output lines
when shifting is done. To use the SR for input, the external
circuit must present data at the SR pin and then clock the
CNT pin a short time later.

Figure 3. Subject to the limitations discussed in the
text, the CIA ShiftRegister section can be used as an
output expander.

A major advantage of the SR is that it can operate
unattended in either polled or interrupt modes. Instead of
using software timing loops to drive the serial port, the
CIA uses Timer A in the free-running mode to drive the
CNT pin and shift data out. After data has been
transmitted or received, bit 3 of the Interrupt Control
Register (ICR) is set high. If the CIA has been enabled for
interrupt and the IRQ line is not masked, the processor
will be interrupted. If you are outputting data, writing new
data to the SR clears the interrupt bit and initiates the next
transmission. Polled operation of the SR on input would
require another CIA output line to be used for
handshaking; otherwise it is possible to lose successive
data bytes if the register isn't cleared in time.

This is an abbreviated step-by-step procedure for using
the Shift Register in the non-interrupt (polled) mode:

1. Write $7F (127) to the ICR ($DD0D or 56589). This
disables all interrupts from CIA 2 (U2).

2. Write $41 (65) for output mode or $01 for input
mode to Control Register A ($DD0E or 56590).

3. For output mode, Timer A must be enabled; this was
accomplished as part of step 2. The maximum bit rate will
be just faster than 250 kHz, which is set by writing 01 to
the Timer A low byte and 00 to Timer A high byte, in that
order. The Control Register setting (step 2) provided for
continuous square wave output from the timer, so the SR
will begin clocking data on the next rising edge from
Timer A.

4. Write a data byte to the Serial Data Register ($DD0C
or 56588) to start sending data. Eight data bits will be
shifted out, then Bit 3 in the ICR will be set. Poll this bit
until it goes high, then load the next byte into the Data
Register.

Input operations consist of initializing the Shift
Register and polling the SP bit in the ICR. Save the input
data and poll again until all data is received. As mentioned
above, some I/O line could be used as a status flag or
handshake.

All of our interface experiments so far have used either
the C64 User Port, any RS-232 Serial Port, or the Radio
Shack Color Computer printer port. All these computer
inputs except the User Port are clumsy at best, leading to
contrived or inefficient hardware. Expansion using the
User Port is possible as discussed above, with little
hardware penalty. The major tradeoffs are in operating
speed and software overhead, especially for expansion
beyond four 8-bit ports. One important advantage in using
these ports is that it is relatively difficult to bomb your
computer through these ports, compared to using the
expansion ports. The expansion port on most appliance
computers is unbuffered, which means a slip on your part
can allow you to crater the microprocessor itself, killing
your computer.

Since our next type of expansion will deal with direct
expansion from the microprocessor bus, we need to
discuss ways to avoid damage to the computer. Unless
specific machines are mentioned in the context of
hardware design, comments in future columns and the
remarks to follow will apply equally to the Color
Computer, VIC-20 and C64. Many will be applicable to
the Apple, and possibly to the Atari computers. However, I
have no documentation on Atari, and Apple expansion
using the Peripheral Connectors is a detailed and
complicated process.

No. 72 - June 1984 MICRO 73

Successful interfacing to a microprocessor bus involves
a detailed understanding of bus timing, bus drive
capability and characteristics of the devices connected to
the bus. I'll take it easy on the details, but there will be a
lot of explanation which you need to follow. Figures 4 & 5
show the two major m achine cycles of the 65xx
microprocessor - one of this family is used in C-64,
VIC-20, Apple and Atari computers. Note that these two
cycles are almost identical, except for the phase of the
R/W* (READ/WRITE NOT) waveform. In both cases, the
action takes place during the last half of the cycle. Early in
either cycle the Address lines come up with the memory
address being accessed, and either READ (Figure 4) or
WRITE* [Figure 5) comes true about the same time. In the
READ cycle (Figure 4), data comes from the memory or
peripheral (such as PIA or CIA) and must be available for a
minimum of time T4. That is, the 65xx microprocessor is
guaranteed to capture data available within that time
frame. You would need to make such a study when
choosing memory devices or designing hardware to use
with the processor. Similarly, Figure 5 shows that the
65xx processor is guaranteed to make data available for
memory or peripherals no latex than T4 seconds after
tADDRESS and R/W* comes true. These times are
important when designing peripherals for the processor
family.

Figure 4. Timing for the 6502 READ machine cycle. See text for details of operation and clock speed.

Figure 5. Timing for the 6502 WRITE machine cycle. See text for details of operation and clock speed.

The other times shown in Figures 4 & 5 are: T I - the
maximum time required for ADDRESS and R/W* to come
true; T2, T3 & T5 - the minimum time each signal will be
available after the end of the current clock cycle (one full
clock cycle shown). This kind of design study is called
w oist case design, because those times most likely to
cause a circuit failure are chosen from the manufacturer's
data sheets.

The following table lists the times corresponding to the
T times in Figures 4 & 5 for a processor clock rate of 1
MHz. At 1 MHz, the machine cycle is one microsecond
(1000 nSec) long. For slower clock speeds on a 1 MHz rated
processor, the times will be approximately the same,
which allows more time for the hardware to deliver or

• TIME Figure 4 Figure 5

T I 225 nSec 225 nSec
T2 30 nSec 30 nSec
T3 30 nSec 30 nSec
T4 650 nSec 150 nSec
T5 10 nSec 10 nSec

It will be helpful if you keep this latter portion of this
column handy for reference during future columns, since
this basic information will be needed for reference as you
read some future columns.

74 MICRO No. 72 - June 1984

c a tc d o a

BusCard II
Commodore 64

Name:
System:

Description: Allows any Commodore-
compatible disk drive, including hard
disk, and virtually any printer to be
added to your system. Mix and match
peripherals with no fear of software
incompatibility. BusCard is both
hardware and software invisible. The
cartridge mount allows cartridges to lie
flat and device allocation switches
remain in function mode at all times.

BusCard gives the added power of
extended BASIC as well as selectable
conversion of Commodore code to
standard ASCII. It comes with a full
machine language monitor including
assemble/disassemble commands. It
just plugs in to install and comes with a
one year warranty and documentation.

P r i c e : $200
Contact: Batteries Included

186 Queen St. West
Toronto, Ontario M5v
lz l Canada
416/596-1405

Name: BLAST (Blocked
Asynchronous
Transmission)

System: Over 60 micros, etc.
(not for Atari/Commodore)

D e scrip tio n : A synchronous
com m unications software which
allows any computer with BLAST to
talk to any other computer with
BLAST, using any asynch modems, or
directly linked at speeds from 300 to
19,200 baud. This package will already
run on more than 60 micros, minis and
mainframe systems. Unlike earlier
asynchronous software, this provides
truly bidirectional operation, allowing
a system to receive one file, while
sim ultaneously sending another.
BLAST operates through common
RS-232 serial ports and asynchronous
modems, over dial-up lines or private
networks, as well as from port to port.
It is menu driven, supports unattended
operation, perm its user-defined
function keys,etc.

Price: $250 (for micros)
Contact: Communications

Research Group
8939 Jefferson Hwy
Baton Rouge, LA 70809
504/923-0888

Name: The Consultant
System: Commodore computers

D escrip tio n : Form erly D elp h i's
ORACLE, this program lets you design
a "layout" for any kind of information
you want to file, then allows you to
search, sort, and analyze information.
The file structure offers expandable
record size up to 9 display pages (7,000
characters), with up to 99 fields per
record. Any field may be a key-field,
and a single field can be an entire
screen of information. The number and
overall size of the files is limited only
by disk storage capacity. Sorting and
searching is alm ost unlim ited,
including multiple-field and wild card
in non-keyed fields. Full Four-function
arithmetic is included. There is a
password security system. Output
functions include page numbering,
printer control characters and optional
line length. There are also built-in
routines for mailing labels and forms.

P r i c e : $125
Contact: Batteries Included

186 Queen St.West
Toronto, Ontario M5V
1Z1 Canada
416/596-1405

Name: MasterFORTH
System: Apple II/II + /He
Language: FORTH

Description: A complete professional
programming language which includes
a built in macro-assembler with local
lables, a screen editor and a string
handling package. The input and
output streams are fully redirectable
and make full use of the Apple DOS 3.3
file system. Floating Point and HIRES
options are also available. This meets
all provisions of the Forth-83
International Standard.

The package includes FORTH
Tools, a 200 page textbook, a technical
reference manual, and a complete
listing of the MasterFORTH nucleus. It
gives the user a view of input and
output from reading the input stream
to writing a mailing list program.
Numerous examples are provided.

P r i c e : $100-$160
Contact: MicroMotion

12077 Wilshire Blvd. Ste
506
Los Angeles, CA 90025
213/821-4340

No. 72 - June 1984 MICRO 75

Name: The Print Shop
System: Apple II + /Apple lie
Memory: 48K
Hardware: Popular printers such as

Epson, Imagewriter,
Apple Dot Matrix, C.Itoh

Description: Write, design, and print
your own greeting cards, stationery,
letterhead, signs and even banners. No
special knowledge of graphics is
required for this menu-driven software.
With keyboard or joystick you can
produce a finished piece in one of eight
different typestyles, in two sizes and in
solid, outline and three-dimensional
formats. There are nine border designs,
ten abstract patterns, and dozens of
pictures and symbols with which to
create. A built-in graphics editor allows
you to create your own pictures or
modify those provided. You can also
print work generated with other
graphics programs.

Text-editing features such as
automatic centering, left and right
justification and proportional spacing
give added help in design. Comes with
a colorful assortment of pin-feed paper
and matching envelopes, and a
reference manual.

Price: $49.95
Contact: Broderbund Software

17 Paul Drive
San Rafael, CA 94903
415/479-1170

Name: Romar D(xJ Computer
Memory: 64K (expandable to 192K)

Description: An Apple compatible
computer with detached keyboard and
dual capability featuring both Apple
DOS and CP/M operating systems.

Based on a 6502 with 64K ROM,
expandable to 192K, plus a Z080 circuit
card for running CP/M programs. The
separate fully encodedkeyboard
contains 87 keys, including both
special function and numeric keypads
with CAP LOCK and status keys. Built-
in command software allows most keys
to be pre-programmed for special
functions. The design accommodates
dual floppy disk drives and an 80 watt
switching power supply. It contains
eight expansion slots for Apple
accessories and add-ons.

The computer is designed to work
with Apple programs and accessories
without infringing on Apple proprietary
circuitry or ROM. Besides operating
with a variety of today's languages, it
can adapt to future software languages.

P r i c e : $695
Contact: Romar Computer

Systems
22110 Clarendon St., Ste
103
Woodland Hills, CA
91367
818/999-1083

Name: Video * Clear Interference
Cable

System: Commodore, Radio
Shack CoCo, any with
TV monitor

Description: An Interference Rejection
Cable designed to reduce or eliminate
radio frequency interference in
television sets that are being used as
monitors for home computers. It is
easy to in s ta ll , requ ires no
modifications to either the computer or
TV, and comes with all adapters
necessary to interface with a wide
variety of TVs. It contains a special RF
filter that is designed to reduce the
level of interference generated by the
computer. The cable comes with
90-day warranty.

P r i c e : $16.95
Available: Computer Associates

Box 683
West Fargo, ND 58078

__ -

Name: PerfectView
System: Virtually All

Description: Designed to fit virtually
all terminals, this is an effective,
simple and cost-efficient computer
screen filter with circular polarization.
It improves user comfort with glare
reduction and contrast enhancement,
cutting eyestrain and fatigue. It is
lightweight and durable, anti-reflective
coated polyester laminated to a circular
polarizer. PerfectView is available in
five screen sizes and mounts to the
CRT housing with no tools. This is
manufactured by Polaroid Corp.

Price: $49.95
Contact: PerfectData Corp.

9174 Deering Avenue
Chatsworth, CA 91311
213/998-2400

76 MICRO

Title: Microcomputer Communications - A Window on
the World

Authors: Barbara E. McMullen and John F. McMullen
Price: $14.95
Publisher: Wiley Press

Written in an easy, readable style, Microcomputer
Communications is a guide for using your personal
computer as a telecommunications tool. Methodology,
equipment, and the process of information transmission is
explained. It gives the essential information that is
necessary for setting up telecommunications links
between micros and such services as CompuServe, Dow
Jones and other information sources. Telenet, Tymnet and
Uninet telephone numbers for across the United States are
also provided.

Level: beginner to intermediate.

Title: Engines of the Mind - A History of the Computer
(hardbound)

Author: Joel Shurkin
Price: $17.50
Publisher: W.W. Norton & Company

This book presents a history of the computer from 'the
mad genius of Charles Babbage and the remarkable
Countess of Lovelace, through the invention of the first
electronic all-purpose digital machine, to the creation of
the chip and beyond.' ‘Engines of the Mind' covers more
than machines; it is really about people. Covering the
various controversies involved in the creation of the
computer, the history of the computer is painted in terms
of humanity rather than a list of dates and events.

Title: Commodore 64 Graphics & Sound Programming
Author: Stan Krute
Price: $15.00
Publisher: Tab Books

Through various programs the reader is instructed in
how to master the graphic and sound capabilities of the
Commodore 64. Written in non-technical terms the
programs use BASIC to produce effects that would require
assembly language on other computers. A total of 68
programs are included with many figures, charts and
diagrams interspersed throughout the text. Taking a
‘learning by doing' approach, each chapter has a summary
and exercises. Each chapter takes a similar format: a short
introduction, programming example, detailed discussion
of the example, suggestions for modifying the original,
short review questions and several programming
exercises. Answers and possible solutions to the problems
are provided.

Level: advanced beginner to intermediate.

Title: Experiments in Four Dimensions
Author: David L. Heiserman
Price: $17.50
Publisher: Tab Books

This is an introduction to fourth dimensional geometry
and its applications. There are experiments that illustrate
various theories and principles of one, two and three
dimensions, as well as time, matter and space. The
construction of four dimensional objects is explained
through the plotting of lines, plane figures and space
objects. Hyperspace objects, scaling and rotations in four
dimensional space are also covered. There are ample
drawings and examples throughout the text. Paper and
pencil are the tools that are necessary; drawing the figures
on your microcomputer is optional. For those with
micros, a program is provided to enable you to draw and
manipulate four dimensional objects.

Level: intermediate to advanced.

Title: Picture Perfect Programming in Applesoft BASIC
Authors: Dr. Thomas Mason, Steve Payne, and Barbara

Black
Price: $14.95
Publisher: Reston Publishing Company

This book takes the approach that programming in
BASIC can be learned more enjoyably through computer
graphics than business or math problems. Requiring only
basic math skills, the reader is guided through loops,
subroutines, interactive programming, high resolution
graphics, and business graphics. The basic premise the
book is built on is that there are only two key concepts to
mastering programming - loops and decomposition.
These and all concepts are demonstrated visually, using
the old adages - seeing is believing and a picture is worth
a thousand words.

Level: beginner.

Title: The Microcomputer Users Handbook 1984
Authors: Dennis Longley and Michael Shain
Publisher: Wiley-Interscience

Written for a wide range of business people, this handbook
address the problems of choosing and upgrading
microcomputer systems. Divided into two parts, the first
part explains what the role of microcomputers in business
is, the right way to buy a computer system, maintenance
and after sales support, planning for growth, project
planning and staff participation and questions to be asked
at a demonstration. The second part consists of over 200
reviews of business micros and several hundred
peripherals. The workings of a computer are explained,
with most every related subject (languages, operating
systems, telecommunications, etc.) being touched upon.
There are plans for a yearly update of this handbook to
keep material abreast with the market and industry.

Level: beginner to advanced.

No. 72 • June 1984 MICRO 77

Iq u e & tto a m x s iK t

Recently I received a long letter from Paulo C., a reader
in Mexico, requesting help from the other readers of
Micro. The following is excerpted from this letter:

"Approximately five months ago an archaeological team
from the University of Mexico at Quihexl made a startling
discovery while digging at the base of a pyramid in
Teotihuacan. As you may know, this site has long been
regarded as an area rich in artifacts and relics. This
particular expedition, headed by Drs. Jose Ferra and Juan
Cortese sought to discover a burial chamber in the lower
levels of the pyramids, in hopes of finding similarities to
the pyramids at Giza, Egypt.

After excavating an area 10' by 12' to a depth of 7', a
solid stone table was struck. At first thought to be a fallen
slab, it was soon realized that the stone was the top of an
entrance way. Further digging revealed a wooden door,
covered and sealed with gold panels. It was carefully
examined by Drs. Ferra and Cortese and determined to be
authentic. After being removed, the door was shipped to
the Museum at Mexico City where it underwent carbon 14
tests, its age - the same as that of the Egyptian pyramids.
Following removal of the door, the team worked to clear
the passageway of dirt and rocks; at last entrance was
gained. The inside walls were polished smooth and the
floor was made of smaller stones, cut and laid cobblestone
fashion. Travelling some 8 feet down the passageway
another door, similar to the first, was found tightly sealed.
This door was also removed and shipped back to the
Museum where it underwent many tests, including a
carbon 14 confirmation. Behind it, a wider corridor ran
about ten feet, then turned sharply to the right and quickly
narrowed. It is perhaps best to directly quote Dr. Cortese's
description of the next part of the expedition - 'There was
much excitement as we walked around the comer of the
corridor. When I saw that it narrowed I was particularly
excited as this was the construction used in Giza
preceding a staircase. So, I was not surprised to indeed find
a staircase at the corridor's end.

With great anticipation I slowly descended the steps,
almost falling once as the generator faltered, momentarily
flickering the lights. Could some angry, disturbed spirit be
at work? I continued with Dr. Ferra close behind me. As
we cautiously descended, we could hear a faint rustling,
rushing noise, becoming louder the further we went. I
shone my lantern down the stairs and, unexpectedly, it
was reflected back. We reached the bottom to discover
rushing water flowing over the last steps and filling the
connecting passages within a few feet of the top. With the
depth measured at over five feet, it was obviously too deep
to negotiate without a boat, especially given the strength
of the current. Alas, we had to resign ourselves to going
back for the time being.'

As the team wandered back up the stairs and returned
to the campsite, it was decided that canoes would be the
best solution to exploring the water-filled passageway,
being light and easily maneuvered. Arrangements were
made to have two canoes sent immediately by the
University. Two days later, equipped with canoes,
lanterns, photographic equipment and excavation tools
the team once again descended the stairway. The canoes
and equipment were carefully placed in the water, with

Drs. Ferra and Cortese in the first canoe and two of their
assistants following in the second. The rest of the team
remained behind. Again Dr. Cortese comments, 'We
carefully got in the canoes so as not to upset them and lose
our equipment. Drifting with the current, we noted an end
to the passageway some forty yards further on. As the
current slowed near the end, an arch top became visable.
Ducking our heads low, with a few good strokes of the
paddles we were through the end and out the other side. It
is so hard to describe moments like this. Dr. Ferra and I
both gasped. We had found the burial chamber. The ceiling
was quite high, particularly when you considered we were
already elevated five feet by the water. As our assistants
entered, their extra lanterns illuminated the chamber
more clearly and they expressed equal astonishment. We
were most impressed by what appeared to be a large altar
rising up out of the water against one wall, being
somewhat reminiscent of the old Catholic wail altars.
Next to it, on the left, was a pedestal with a large falcon
type bird carved out of what appeared to be black onyx. It
looked very much like the Egyptian god Horns. On the
altar top, leaning against the wall, was the most
interesting object of all. A large, carved, circular stone; Dr.
Ferra's first impression was that of the Rosetta stone.'

The two canoes returned, cameras filled with pictures
of the chamber. The exploration and retrieval of the
artifacts proceeded well, the wheel being removed and
sent back to the Museum. It is still under investigation
and being subjected to further testing. Underwater divers
photographed a carving on the front of the altar. It depicts
an ancient warrior who is sitting above an illuminated
rectangular box.

Unfortunately at this time there isn't any more
information regarding the stone. After examining a
drawing of this stone, I felt perhaps one of Micro's readers
could possibly ascertain its hidden meaning. Included for
you is a rendering of the stone's carvings."

Well readers, good luck and please send any theories to
me, as Micro would like to be able to contribute to, if not
provide, the solution. We will acknowledge whoever is the
first to solve, or lead to the solution of, this mystery.
Thanks,- if anyone can do it, I'm sure it will be one of you.

78 MICRO No. 72 - June 1984

MICRO Program Listing Conventions

Commodore
L I S T I N G C64 KEYBOARD

Commands

(CLEAR; □ ' CLR

(HOME! HOME

(INSERT} !« ■ INST

(DOWN) a CRSR DOWN

(UP) □ ' CRSR UP

(R IGHT) Ii CRSR RIGHT

(LEFT} 19 A CRSR LEFT

C o l o r s

(BLACK} ■ CTRL 1 BLK

(WHITE) 4 CTRL 2 WHT

(RED) CTRL 3 RED

(C YN> W. CTRL 4 CYN

(PURPLE) il CTRL 5 PUR

(GREEN) hi CTRL 6 GRN

(BLUE) r m
ub CTRL 7 BLU

(YELLOW) IU CTRL 8 YEL

(RVS) a CTRL 9 RVS ON

(RVSOF F } ■ CTRL 0 RVS OFF

(ORANGE) = 1

(BROWN) IS = 2

(GREY I) s = 3
(GREY l) so = 4

(GREY 2) = 5

(LT GREEN) ii = 6
(LV BLUE) □ = 7

(GREY 3) ■i * 8

F u n c t i o n s

(F l f ■ i 1
(F2) a f2

(F 31 9 n

(F 4 } K ' f 4

(F5) i l f 5

(F o) Si '' f 6

(F7) 11 f 7
(F 8) i " f 8

S p e c i a l C h a r a c t e r s

{ P }
{POUND}

(UP ARROW}

(BACK ARROW

tr ' P i Char

£ Pound S ign

t Up A r r o w

*r Back A r r o w

Atari
Conventions used in ATARI Listings.

Nor#al Alphanuneric appear as UPPER CASE:
SAMPLE

Reversed Alphanumeric appear as lower case:
yES (y is reversed)

Special Control Characters in quotes appear as:
(conAandl as follows:

Listing Cotaand ATARI Keys

{UP} Cursor Up ♦ ESC/CTRL -
(DOWN) Cursor Down * ESC/CTRL =
{LEFT} Cursor Left *■ ESC/CTRL +
{RIGHT} Cursor Right * ESC/CTRL *
{CLEAR} Clear Screen * ESC/CLEAR
(BACK) Back Space 4 ESC/BACK S
{TAB) Cursor to Tab ► ESC/TAB
(DELETE LINE} Delete Line □ ESC/SHIFT DELETE
(INSERT LINE) Insert Line H ESC/SHIFT INSERT

(CLEAR TAB) Clear Tab Stop □ ESC/CTRL TAB
(SET TAB) Set Tab Stop B ESC/SHIFT TAB

(BEEP) Beep Speaker □ ESC/CTRL 2

(DELETE} Delete Char, U ESC/CTRL BACK S

(INSERT) Insert Char. 13 ESC/CTRL INSERT
{CTRL A} Graphic Char. h CTRL A

where ft is any Graphic Letter Key

Non-Keyboa rd Commands

(D IS ='
;
(LOWER CASE)

(UPPER CASE i
(‘RETURN}

(DEL)

(SPACE>

N o t e s :

C H R I (8 i

CHR*i 9 1

CHR$ i 14)

C H R I (142)

CHRI (142)

C H R I (20)
C H R I (160)

1. A r e p r e s e n t s SMlf : T KEY

2. * r e p r e s e n t s Commodore Key i n

l o w e r l e f t c o r n e r of k e y b o a rd

3. CTRL r e p r e s e n t s CFRL Key

4. G r a p h i c s c h a r a c t e r s r e p r e s e n t e d

i n L i s t i n g by k e y s t r o k e s r e q u i r e d

t o g e n e r a t e t h e c h a r a c t e r

5. A number d i r e c t l y a f t e r a {SrM&Ol..

i n d i c a t e s m u l t i p l e s o + t h e 6 i M ti 0 L.:

(D0WN6) wou ld mean DOWN 6 t im e s

. 72 ■ June 1984 MICRO 79

Advertiser's Index
A m p lify .. 35
B a tte r ie s In clu d ed .. 75
Broderbund Softw are ... 76
C o m m u n ica tio n s R esearch G roup 75
C o m p u ter A sso cia tes ... 76
C o m p u ter M ail O rder ... 4 ,5
F. A sh to n .. 8
Lazerw are ... 1
M IC R O M agazin e 1 6 ,In s B a c k C vr
M icro M o tio n ... 75
M icro w are D is tr ib u to rs ... 42
P erco m ... B a c k C ov er
P erfe ctD a ta C o rp .. 76
P erfo rm an ce M icro P rod u cts .. 35
P ira tes H arbor ... 19
P ro te cto .. 1 2 ,1 3 ,1 4
R om ar C o m p u ter S y stem .. 76
Sch n ed ler S y stem s ... 8
Sk y les E le c tr ic W orks In s . F ro n t C vr
S p e cia lty E le c tro n ic s ... 9
Z an im S y stem s .. 4 6

More Fun
Than The

French Foreign Legion
Join the elite corps of authors—Join MICRO!

We are looking for a few good writers who have
what it takes:
• a technical understanding of computers
• innovative techniques and programs
• good writing skills
• a desire to- participate in an exciting and

growing field
• the ability to take old ideas beyond

themselves
• the willingness to contribute and make a

difference.
Don’t wait-send for your Writer’s Guide today.
Send a S.A.S.E. to:

Mike Rowe
MICRO INK

P.O. Box 6502
Chelmsford, MA 01824

rni in i in i in i ~ in i in i im — ■ ira in i in i irn im i im i in i icm------- 1n 0

Next Month In MICRO
0

Features

The Dvorak — A look at the alternative to the
3 standard QWERTY keyboard, one which can

speed up your typing unbelieveably.

h Compression — This p ro fess iona l quality
Applesoft program will save large amounts of
storage space by eliminating unnecessary data

? and redundancies.

HiRes Printer Dump — The beginning of a three-
part series on dumping graphics from the
Commodore 64.

Flight Simulator — An in-depth look at the new
Flight Simulator II program for armchair pilots
which includes a WW II dogfight, as well as
realistic instruction in flying a Piper.

n i— in i im i in i in i - ini inr inr

Hilister — The first of a two-part series covers
the highlighting of text within a program for
emphasis. Part 2 will cover moving around within
a program listing.

Commodore to Apple Cassette — Transfer files
from Commodore to Apple and learn, in detail,
how the Commodore tape is generated.

Plus More...

Departments
Reviews in Brief
Software/Hardware Catalogs
New Publications
Interface Clin ic

0

im i m ~im ~ i n i i p m = i r i i n t ^ = ^ = i

80 MICRO No. 72 ■ June 1984

This famous book now contains the most comprehensive description of firmware
and hardware ever published for the whole Apple II family. A new section with
guide, atlas and gazeteer now provides Apple lie specific information.

• Gives names and locations of various Monitor,
DOS, Integer BASIC and Applesoft routines and
tells what they’re used for
• Lists Peeks, Pokes and Calls in over 2000

memory locations

• Allows easy movement between BASIC and
Machine Language
• Explains how to use the information for easier,

better, faster software writing

This expanded edition is available at the new low price of only $19.95

For the 35,000 people who already own previous editions,
the lie Appendix is available separately for just $5.00.

Please send me:
_________ What’s W here in the Apple @ $19.95 ea.

(Plus $2.00 per copy shipping/handling)

Apple lie Appendix @ $5.00 ea. ___
(includes shipping charges)

Mass residents add 5% sales tax $ ___

Total Enclosed $

For faster service
Phone 617/256-3649

Name

Address

City

Signature .

Aoot # .

State Zip

□ Check □ VISA □ MasterCard

Expires.

MICRO, P.O. Box 6502, Chelmsford, MA 01824

L

ATARI COMPUTER OWNERS:

Pick the positively
perfect, practical,

printer-port peripheral
package, from
PERCOM DATA!

That's right the positively perfect PERCOM DATA 5’/4". floppy disk drive with a BUILT-IN
PRINTER-PORT, for your A ta rr 400/800 is now available!

Until now. Atari computer owners who wanted to hook a printer to their computer had only one
choice spend about $220 for an interface device. THOSE DAYS ARE OVER PERCOM DATA has
built a parallel printer-port right into its new AT88 PD model. Now you can add a quality disk drive

system AND have a place to plug in a printer WITHOUT BUYING an interface.
The AT88 S1 PD” disk drive operates in both single density (88K bytes formatted) and double

density (176K bytes formatted)
What more could you want? NO INTERFACE a high quality PERCOM DATA disk drive AND a

built-in PRINTER-PORT . all with a price of $599
Pick up a positively perfect PERCOM DATA disk drive, with

printer-port pronto!
For the name of an authorized PERCOM DATA Dealer near you,
call our TOLL-FREE HOTLINE 1-800-527-1222 NOW, or write

for more information

W 7 .

Perfectly Priced

$599.
PEHXM OAR
C O R P O R A T I O N

Expanding Your Peripheral Vision
DRIVES NETWORKS SOFTWARE

11220 Pagemill Road, Dallas. Texas 75243 (214) 340-5800
1-800-527-1222

Atari is a registered trademark of Atari, Inc • AT8B SI PD is a trademark of Percom Data Corporation. • COPYRIGHT PERCOM DATA CORPORATION 1983
Prices subiect to change without notice.

