
NORTHWEST COMPUTER NEWS
Dedicated to Norm Deletzke and the Orphaned Computers he loved

$04 faverrary DeerfieU, ft M015 (708)808-7000

HELP FOR 8050 SPEED PROBLEMS by Chris Burgbacher

Some time back I got in
volved with the speed prob
lems of the 8050 disk drives
when one of mine started act
ing up. The first indication of
the problem was the drive de
claring disks bad that it was
supposed to be formatting. I
felt sure something was odd
when the other drive format
ted them just fine.

I talked to Norm, I bought
a copy of Physical Exam for
8050. After adjusting the
speed of the drive, it ran fine
again. This was not the end of
my problems. I discovered
that the speed varied with
both the season of the year
and the amount of access time
of the drives. With an increase
in heat, the drives slow down.
With a decrease in heat, the
d riv es speed up. T his
launched me into a full scale
investigation of the problem.

The drive motor that turns
the disk has a small generator
built into its end. It is referred
to as the ’tachometer’ and its
voltage output is referred to as
the ’tach feedback’. When the

motor spins the disk, the tach
feedback goes back to the cir
cuit board on drive 0. A diode
on the board converts the tach
feedback AC voltage to DC.

A Zener reference diode
is used to establish a fixed
reference voltage. A com
parator circuit compares the
reference voltage with the
tach feedback. The output of
the comparator controls the
drive transistor that supplies
operating power to the drive
motor. If the tach feedback
should fall a little, the com
parator kicks up the power to
the motor to maintain its
speed. A control is provided
to adjust the amount of refer
ence voltage seen by the com
parator to allow us to adjust
the motor speed.

Now, here is where the sys
tem goes astray. The diode
used to convert the tach feed
back is very temperature sen
sitiv e . All diodes are
sensitive, to some extent, but
this one is bad. Adding insult
to in jury , Com m odore

(Continued on page 11)

Table of Contents
Help for 8050 Speed Problems by Chris Burgbacher............... 1
Superbase Programming by Bruce Faierson............................1
TTL Video Monitors and the B-128 by Tony Goceliak.............2
Editorial by Bruce Faierson.. 2
Re-define Your Function Keys While In SS2 by Alan Bouvier.3
Library Disk Reviewed by Bruce Faierson.............................. 3
SuperPet 9000 by Bruce Faierson.. 3
One - line 60 % - Floppy speedup by Gerd Schumacher.......... 4
Fas I-Bus by Dennis Jarvis...4
UK Diagnostics Fix by Tony Goceliak......................................5
Backup! Backup! Backup! by Roy Sherman............................5
8050 / 8250 File Unscratch by Tony Goceliak...........................6
Using The 4023 by Alan Bouvier.. 7
Library Disks Reviewed by Bruce Faierson.......................... 11
spinningYour 80xx fora Controlled Time by Tony Goceliak.. 11
Yell For Help by the Experts.. 12

Superbase Programming
by Bruce Faierson

Though promised several
years ago, the need for a se
ries of articles on Superbase
and SuperOffice program
ming still exists. Several peo
p le have m ade negative
statements regarding Super
base such as it is not very user
friendly or easy to utilize. It
is time to lay these fears to
rest, for both the intimidated
computer user and the more
skilled Basic programmer.
This series of articles is de
signed with the inexperienced
though well read program
mer. I will try to add concepts
that even an experienced pro
grammer might be unaware
of.

This is the fifth article that
I have written on Superbase.
The first two examined gen
eral database information and
the Superbase menu func
tions. The third article dis
cussed methods of recovering
data from Superbase and how
Superbase stores data. The
fourth article appeared in the
first issue of this newsletter
regarding m ulti-indexing
schemes. If you do not have
access to the previous arti
cles, they could be reprinted
for a modest charge. It is im
portant to read the first two
articles or read the Superbase
manual if you do not have
much database or program
ming experience. Warren
Swan’s Basic tutorial in the
CBUG Escape or on library
disks is also a very useful tool
in understanding Superbase
Basic programming. The Su
perbase language is both an

extension and reduction of
standard Basic.

It is recommended that you
use the current version of Su
perbase 2 which is 2.06 or the
SuperOffice version 2.08.
These versions are several re
visions and quite a few bugs
removed from the Superbase
1.0 that was distributed by
Protecto. Please understand
that bugs, as unfortunately as
it may seem, are a normal
byproduct of software devel
opment for any computer sys
tem. I beta tested a major
database that had thousands of
bugs that had to be docu
mented and fixed. The num
b er o f bugs p re sen t in
Superbase 2 is minimal.

Superbase is still a viable
product for small database ap
plications using from a few to
several thousand records. It
does have the capability of
accessing more data but due
to our lack of massive disk
storage the 8050 floppy drive
sets the limit. For those of you
lucky enough to have a hard
drive or an 8250 drive, this
amount is increased substan
tially. Among the many fea
tures that Precision Software
pioneered is the record design
screen. Incidentally,this has
just been added to most data
base packages in the last two
years. The Superbase design
screen is still easier to use.

Superbase or SuperOffice
can build any type of applica
tion ranging from the simplest
name and address list to the

(continued on page 8)

June 1991 1

TTL VIDEO MONITORS AND THE B-128
Remember that article I wrote about squeaky wheels? Well

this is a direct result of a request for information. If you are
looking for something regarding the B, write!

The standard B-128 can provide either composite video or ttl
video. There are some remarkable composite monitor bargains
to be had from closeout companies, but if you have a ttl monitor
on hand there is no reason why you shouldn’t connect it to your
b. The original Protecto package had a video cable with 4 Rea
plugs on the ’monitor end’.

The white plug provides composite video for connection to
the dreaded Zenith monitor. Have you ever wondered what the
other three plugs were for?

First dust off your Commodore B-128 programmers refer
ence guide and turn to the back of the book. Thumb forward
past the software advertisements to the schematics. We will be
referring to sheet 13 of 14. The schematic is virtually self-ex -
planatory, although there are three really neat jumpers of interest
to anyone contemplating ttl monitor use. I’ll return to them in a
few paragraphs.

On my Protecto-supplied monitor cable, here are the connec
tions (you should double check your cable with an ohmmeter)

pinl - ttl video - red plug
pin2 - ground - all plug shells
pin3 - vert sync - black plug
pin4 - composite video - white plug
pin5 - horiz sync - yellow plug

Composite monitor users need connect only one plug, the
white one, to their monitors. TTL monitors however, need three
connections instead of one.

(If you intend to wire up your own din plug to Rea cable,
please make sure you look carefully to ensure that the cable is
wired correctly! Din plugs are counted by the random-walk
method.)

Having plugged in all three TTL connectors and the Din plug,
turn on your B and the monitor. If the screen looks ok after
adjusting the monitor controls, quit while you are ahead. How
ever if all is not perfect in paradise, here we go with those
jumpers I promised to get back to. Each TTL signal is individu
ally invertible by moving the jumper connecting the relevant
7486 pin from +5 to ground. (I hope I made myself clear. DO
NOT connect +5 to ground, unless you want to troubleshoot
your power supply! The 7486 pin which was connected to +5
is disconnected from +5 and instead connected to ground)

How do you know which jumpers need to be changed? Look
at the following chart:

Bright characters on dark screen - correct

Dark characters on bright screen - move jumper going to
ul3 pin9

Left hand of screen on the left - correct

Left hand of screen in center with less than 80 characters
visible across - move jumper going to ul3 pin2

Top of screen at top - correct

Top of screen in middle with less than 25 lines of text
visible down- move jumper going to u l3 pin 13

The jumpers are located between R46, a lk resistor, and Y1
the 1.8432 MHz crystal. In relation to the drams on the front of
the board, they are located behind and to the rear, but in front
of the 60- pin expansion port. The jumpers from left to right are
connections to pin 13, pin 9 and pin 2. Note that the third jumper
is located to the left under Y l, the crystal.

And thats all there is to it. The 7486 is the hardware
equivalent to the eor instruction in machine language, so either
normal or inverted output is available, in exactly the same way
that eor #00 would leave what was in the accumulator alone, but
eor #ff flips each bit. Enjoy TTL video!
Mr. Anthony J. Goceliak
RFD #2 - Box 433
Lancaster N. H. 0358407
Sep 91

EDITORIAL
Firstly, let me apologize if there was any confusion

regarding the advertising we sent out recently. This was not
an issue of the newsletter! The subscription notice inside was
directed at former members and customers that had not
subscribed to the newsletter. If you paid previously, your
subscription is still in good standing for the next two issues.
If you paid again, my apologies, your subscription has been
extended until the end of 1992 or four issues after your
current subscription expires. Starting with the next issue we
will have an expiration date on our labels.

The issues will contain between eight and twelve pages
of articles and programs, which will depend upon the amount
of material we receive. Please send in articles that you think
can help anyone. The membership is growing little by little
and I can say that we have a lot of the major contributors left
in the group.

May I request that articles be submitted in Superscript II
with absolutely no formatting commands. It would be nice
if there was one space between sentences and only one
carriage return between paragraphs. This will reduce the
amount of labor in getting these files to the typesetter.

I have decided to lower the price on all library disks except
commercial software and royalty bearing disks to $5. I have
also decided to set a minimum of $10 for each disk order
unless other merchandise is purchased with them. This is
meant to keep overhead to a minimum and to give the
subscribers a better deal. Remember, library funds help
support the publication .

Well, that’s it for this issue. I hope you enjoy it as there
are so many good articles to read. The next issue should be
out in early to middle November. See you then.

Northwest Computer News Ru<dn<><u Office
Editor Bruce Fiicncc

Publisher BmoeFtltmon

Contributors T, Good!**. D. Juvk,

A. Bouvior, G. SctmmMtkor, R. Sherman

Northwest Mask Cent«r.Inr.

404 tnverraiy Lane Deerfield 11. 60015.

404 bnctn iy Lae Deerfield, ii. 6001 J,

Phone:.
(708) 806-7000

Vice-President Fuoncu

MatarW In UiU puMkallon h copyright 19*1*

All RJgbU Rmrvtd..

President B n » Faietson

N.W. Mutir CanUr, Inc. w i m no Itabllty

for Uw MxunKy of tlw naurfela pkmuM L.

2 Northwest Computer News

RE DEFINE YOUR FUNCTION KEYS WHILE IN SS2
By Alan Bouvier

FNKEY is my solution to what I felt was one of Superscript
IPs biggest deficiencies. To me, definable keys ought to be able
to be defined at will. Especially within a program involving a
lot of typing. Many times I decided that I wanted a different
set of key definitions. Rarely was it worth leaving Superscript,
changing the loader program, and re-loading Superscript.

So I did something about it. I found a way to get into the
Superscript routines and make the function keys programmable
again. It is even easier than setting the definitions from BASIC.
No more chr$(xxx) codes. I also did something about the
carriage return erasing the end of a line. A by product of all
this is the program that links my program to superscript. It
makes an unprotected copy of Superscript onto a blank disk
and copies my routines on it so you can SHIFT/RUN it. Just
watching this program in action could prove interesting. It
should have no problem working with an already unprotected
copy. The last part of all this is a patch for the cursor hesitation
we’ve all experienced. Since this fix is to Superscript instead
of the computer’s operating system, I believe that it will work
with the B-128 serial bus.

I left a lot of room for expansion within Superscript. Anyone
with the slightest idea of something they would like should let
me know. Even if it seems highly specialized. It could be the
spark to yet an other useful program.

The programmability of the function keys is similar to the
’soft keys’ of SS3. As I understand it, the ’macros’ of SS3 are
just a chain of normal editing functions. In this respect, a
properly programmed function key could perform the same
’macros’ available in SS3. Ever since I got the first version of
my enhancement working, I have found more and more uses
for it. It has not become one of those cute functions rarely used.
There is a good demonstration of the usefulness of this function
as well as an explanation of hew to use it on the disk. Just get
a blank disk, load and run "unprotect ss2" and follow the
directions on the screen.

My fix for the carriage return problem was simple. I
swapped the actions of the RETURN and the SHIFT/RE
TURN keys. This proved quite more disastrous to my editing
than I expected. It took quite a while to get used to this. Now
I like it. This feature is easily turned on or off at will. Press
escape and then hold the control key down while pressing x.
I suggest picking one mode and staying with it. Constantly
changing modes would probably cause more confusion than
anything.

For anyone interested, all of the source code for my routines
will eventually be made available. They are well documented
so they shouldn’t be to difficult to follow. They are quite
lengthy, though. I will not include the source code for Super
script which I modified. It is copyrighted material.

Any questions or comments, please write. You can only
benefit from i t

(Editor’s Note: Alan’s deprotected Superscript does work
with the fast bus implementation. We have tested it.)
Alan F. Bouvier
815 Lake Vermillion Ct.
Slidell, LA 70461-8587 _______

LIBRARY DISK REVIEWED
Alan Bouvier 1.0: Here is a new contributor with some

amazing discoveries, useful information and innovations that
most B-128 users should find fascinating. Alan, has found a new
method of deprotecting Superscript II. He has added a software
routine to Superscript itself which eliminates the doubling of
characters. He also developed a routine to define function keys
within Superscript, without having to use the chr$0 function for
certain types of input. His method is similar to a programmable
macro where you press the escape key and the function key, enter
your keystrokes for carrying out the operation and then storing
the function key definition. This disk is for legitimate owners of
Supersript II and for making archival copies for the original
purchasers use only. This is a disk we have all been waiting for.
This disk includes the following.
Price $5-00* Freeware. Shipping $2 any quantity.

1.) Unprotect SS2
2.) Function keys description
3.) IRQ linking description
4.) Clk/IRQ/Restart puts clock on screen
5.) Set top of Form program
6.) 4023 Error codes
7.) Sneak Previews, source code and more.

* ALL DISK ORDERS MUST BE A MINIMUM OF $10..

SUPERPET 9000 bv Bruce Faierson
I have often been asked, "What is a SuperPet?". Giving a

simple answer is not easy, as it was Commodore’s flagship model
with more standard equipment than other computers to date.
Waterloo University developed this computer, in conjunction
with CBM for their computer program. Their strategy was to
have several languages available on mainframe, mini and micro
computers. The languages were designed to be portable so pro
grams could theoretically run on any of them without change.

The SuperPet was built upon the 6502 based 8032 model.
The SuperPet can utilize all the Commodore drives such as the
8050 and all the IEEE printers like the 4023p. It runs all 8032
diskbased software without modification. Software that requires
a rom for operation can be utilized provided the user download
the rom and load it into the bank-switchable ram at $9000.

A second processor, the 6809, was added to compliment the
8032 section and to be utilized with the Waterloo languages. The
6502 and the 6809 operate independantly of each other. Both
processors have a 64k address space plus access to 64k of bank
switchable memory. This memory is switched in 4k segments
into the address space at $9000. The Waterloo Software loads
into the bank switched ram leaving the low memory for actual
user programming.

The SuperPet was the first Commodore computer to have a
built in DB25 type RS-232 interface. This port is mounted
internally on the 6809 board. There is an opening to feed a cable
to the port on the left side of the machine. There is a simple
terminal emulation program built in and a communication
program called PetCom is available.

Finally, the languages included are interpreted forms of ANS
Minimal Basic, Fortran, Cobol, IBM/ACM APL and Pascal.
The system also includes an editor, assembler and linking
program. A monitor program is included which supports the

(Superpet 9000 continued on page 11)

June 1991 3

ONE-LINE 60 %-FLOPPY SPEEDIIPfcv Gerd Schumacher
There is a way of speeding up floppy-operations a bit, that

most of all CBM-users know, having been described in the
Escape before. It is simply to program another time-constant
between drive-motor on and data-transfer. Of course, it saves
nearly one second per disk-operation, unless the drive was not
yet spinning before, but, unfortunately, it sometimes might
produce errors during write-operations.

As we are rather unhappy with the CBM-diskhandling - like
the directory and the slowness of all disk-operations - as well as
with most of all disk-utilities, my friend Dirk Seifert and I
thought out a lot of improvements. One result of our investiga
tions was determining the best block-interleave on the disks .

You know, there are two processors in the 8050, 8250, and
SFD. One of them is the bus-controller, communicating with the
computer, doing all calculations on files, say, doing all of the
more "intelligent" things. It tells it’s "slave", the disk- controller,
what it has to do. The disk-controller only provides data-transfer
from the disk into a common RAM of both processors and the
opposite way.

The DOS-controller reserves two 256-byte buffers in the
common RAM for every opened file, if they are of the prg- usr-
seq- or dir-type. Both of the processors use these buffers by
turns, which means, while, for example the disk-controller
transfers it’s data to buffer 6, the DOS-controller transfers data
from buffer 7 to the computer. When buffer 6 is full, and buffer
7- transfer finished, the disk-controller writes the next block of
the file’s data into buffer 7 while the DOS-controller gets buffer
6 to the computer, and so on.

Normally the data transfer to a computer lasts longer than
reading the data from a disk. Therefore the blocks of a disk are
not used in their numeric order, but with an interleave of some
blocks, for example 0,5,10,15,20,25,1,6,11,16,21, and so on.
The time, the disk rotates to the next used block ideally is long
enough to transfer the data to the computer, but not much longer.
If the time is too short, the next actual block cannot yet be read,
as there is no reserved buffer free, and the next opportunity to
read it, comes after a whole revolution of the disk, and one
revolution lasts 0.2 seconds.

I found out, that the DOS 2.7-block interleave does not suit
the timing-requirements described above. It provides an inter
leave- factor 5 while I found 12 to be best.

UP TO SIXTY PERCENT SPEED UP !! !

If you use the new block-interleave, saving a file, it will be
about 30 % faster. Every prg- usr- or seq file, saved with the new
interleave, will be loaded 60 % faster. All you have to do, is to
change one disk-RAM-address before you save a file using the
following program:

openl5,un,15
print#15,"m-w"chr$(244)chr$(16)chr$(l)chr$(l 2)
dose 15

We keep on improving the CBM-disk-handling. We have sent
two pre-releases that use the "load*"-routine for reading the
directory in less than 5 seconds (even if it contains 224 entries).
One of them is the first step to a menu-program second to none.
Another favorite project of mine is writing a diskmonitor con
taining some features, I have never seen before, but most of all
I hope, our improved DOS will be available soon.

FAST-BUS by Dennis Jarvis.
Jim and I are proud to announce that we have completed the

ROM version of fast bus (version 3.0). How simple - up to ncrw
you were required to buy Gary Anderson’s RAM/ROM expan
sion cartridge which cost $75.00. With our fast bus ROM
version you will no longer be required to obtain this cartridge;
however, you will need Gary’s RAM/ROM socket. Along with
this you are no longer required to purchase the FAST BUS
SOFTWARE DISKETTE; however, we still recommend that
you obtain this disk as it contains massive documentation as well
as many useful EXAMPLE programs on using fast bus.

If you are planning on doing any software development on
the B series and wish to use our internal routines you will need
to obtain this optional RAM version of FAST-BUS 3.0 DISK
ETTE. Also, if you were one of the many people who bought
one of our previous fast bus versions that was on diskette and
you would like to exchange it for the version 3.0 DISKETTE
(not the rom version) we will give you 50% credit off the new
diskette. To obtain this discount, just return the label from your
old version of fast bus diskette to us along with your order.

I have included two changes in the new version of FAST-BUS
3.0. We solved the problem involving SUPERSCRIPT, and to
circumvent the problems with LIZ-DEAL’S software patches we
have come up with a method of turning off the FAST SERIAL
BUS part of the serial bus. When you first activate your fast bus
software (described below) just hold down the ESCAPE key.
When this is done you will still be able to use your serial bus
devices, but they will revert to the SLOW SERIAL bus. Also,
if you are a software developer, you will find the next feature a
life saver. From time to time you will find yourself having to
reset or turn off the B series computer several times and you will
get tired of seeing our startup screen over and over and over
again! To prevent this just hold down the RUN/STOP key and
we will not display the startup copyright notice.

INSTALLING FAST BUS:
RAM VERSION - Insure that you have GARY’S 24k

RAM/ROM cartridge installed.

Now, insert the FAST BUS into DRIVE 0 of DEVICE 8 and
then press the SHIFT and the RUN/STOP keys at the same time
and‘FAST-BUS will auto load and install for you!

ROM VERSION - Follow GARY’S installation procedure
for the ROM chip in his cartridge. Now turn on your computer
and fast bus will come up all byitself!

As you can see, we are still making improvements in the
FAST-BUS stage and will go on doing so as we continue to make
the B serial a pioneer into the future!

Currently the B has two COMMODORE firsts.

1) The B series is the first IEEE computer to become SERIAL
BUS COMPATIBLE.

2) The B series is the first COMMODORE computer to give
you the ability to turn off the FAST SERIAL BUS operation.
This option was not included in the C-128 computer which
prevented many software and hardware packages from working
correctly.

CONCLUSION:With a continuing effort from ALL of
CBUG’s members we will have everyone stand up (or pass out)
and take notice of this quiet little machine!

4 Northwest Computer News

Dennis Jarvis
30 Louisiana Ave.
St. Cloud, Florida 34769

Editors Note:
Dennis wanted the group to know that he has reduced the

prices on the fast-bus materials drastically. He is doing this to
promote more interest in this project, which has been dormant
for almost two years due to the lack of communication with the
CBUG Membership. Please contact him directly regarding these
materials and all upgrade information. He has many new ideas
in mind, he just needs to know that there is some interest.

During the two years since this article was written, Alan
Bouvier developed a new method of deprotecting the original
Superscript. He added some new features including a software
modification eliminating the doubling of characters. This patch
allows Superscript to run unaltered with the older and I presume
current fast-bus routines. Go Alan!

UK DIAGNOSTICS FIX by Tony Goceliak
Some time ago, I modified the entire series of 8032 based

diagnostic programs provided by Norm to allow them to run on
the B computer. I did not fix many of the bugs in the programs,
intentionally so. However, recently a member wrote to me
complaining of the results produced by the "uk diagnostic" test.
The test as published will report that your (u.s.) basic low rom
is bad, with a checksum of AO, when this is perfectly normal
for the ’standard’ u. s. machine. The test will also report that
your keyboard is bad, because, as explained in the introduction
to the test, jumper plugs were expected to be connected to the
main board instead of a keyboard.

The member had a valid point. Since this is a computer
diagnostic test, and since presumably when you are trying to run
it you are in doubt of whether your B is working correcdy, I have
provided the following procedure to eliminate the incorrect ’bad’
reports from the Uk test.

1. make sure that a ram cartridge is installed on your b. If
not, power down before installing it!

2. now type in the following, (with a c-retum at the end of
each line), and the B-ieee diagnostic disk in drive #0 of unit 8.

load"uk diagnostic",d0,u8,bl5,p8192
banklS
poke8788,160
poke8944,0
poke8994,0
scratch"uk diagnostic"
y
bsave"uk diagnostic"+chr$(160)+" + ",d0,u8,bl5, p8192
to pll264
?ds$

Provided that the ds$ message was 00,ok,.... etc., you will
now have a copy of the Uk diagnostic which will only report
’bad’ on one of our u. s. machines when there is indeed
something bad. The keyboard test is compromised, but you can
test all that you need to know from basic. If the Uk diagnostic
gave your machine a clean bill of health and you see the wrong
letters echoed to screen when you attempt to type from basic,
your keyboard circuitry is highly suspect.

BACKUP! BACKUP! BACKUP! by Roy Sherman
Another case of inaccessable data was brought to my attention

recently. In this case it was a read error on the directory track.
There were no backup disks, many weeks work down the drain.
Some of the data was no doubt gone forever.

Please! Backup your disks! And don’t think that this is just a
B128 problem. The IBM and compatible community is abso
lutely paranoid on backups. PCDOS/MSDOS can trash a disk
quite easily, with no warning whatsoever. While I’m on the
subject, the B, at 2 mhz, is much faster than the XT at 4.77 mhz.
In feet it compares quite favorably with the Turbo XT.

Returning to backups, always store the disk you made the
backup FROM, your current disk, as the backup disk. Use the
disk you backed up TO, the copy, as your current disk.

There is a very good reason for this. You are reasonably sure
the disk you were using is good. At least, you’ve been using it.
You have absolutely no idea if the copy is any good at all until
you use it! Believe it or not, there could be nothing at all on the
copy.

Another thing, never backup a disk on your only backup copy.
If something goes wrong in the backup process you could end
up with . . . nothing. So, what I’m saying is that two backups
are an absolute minumum. Remember, more is better.

Everyone knows how to backup on a dual drive (8050/8250).
But, how do you backup a single drive such as the SFD? You
can use Jim Butterfield’s Copy All, it’s on Liz Deal’s disk, IF all
your files are PRG or SEQ. Superbase is another matter since
the database itself is essentially random files which CopyAll
won’t copy.

To be able to backup Superbase data on an SFD the first thing
is to never use more than half the space on the disk. This is to
leave room for the export file. Superbase cannot export to
another unit, only to the same disk or the other drive in a dual
drive unit.

When you are ready to make a backup export all Database
files. Format a disk. Create your database(s) on it. (data-
base'filename" return answer y to the ’create it?’ prompt.) Do
not, repeat do NOT copy the Database file, the one in all capitals.
Exit Superbase and run CopyAII. If you have two drives the
process will be easier because you won’t have to keep swapping
disks.

When CopyAll is done, reboot Superbase. Call the database.
Call each file. Superbase will say ’File does not exist. Create
it?’. Type y . Now import the file you exported above. When
you have done this for all databases and files your backup is
complete. This will become your current disk. You get a fringe
benefit from all this. You will find that it accesses the data much
faster than before. The original disk is now your backup.

There is a program called ’Unit to Unit’ in die library that
will transfer the data directly from one single drive to another,
but I don’t recommend it unless your database is very small. It
works the disk drives exessivily and is very slow.

That’s all for now. Hope this has been of some help to you.

June 1991 5

8050 / 8250 FILE UNSCRATCH by Tony Goceliak
This article describes how to accomplish file unscratching by

disk drive programming. In particular, it illustrates one effective
use for a parameter - passing ampersand file. Without the ability
to send filenames, variables, etc, to your drive, there is a limit
to how much you can ask a drive to do. Although it could be
programmed to unscratch the first filename it came to that had
a zero filetype (indicating a scratched file), what filetype would
you like to assign the resurrected file? Will it be the proper file
to resurrect? Will it create an effective mess with ’y’ shaped files
sharing the last n sectors? Remember you may have scratched
two files last week, then expanded some data files until they
wrote over the file blocks which the scratched files used to own,
and now that you scratched an important file today, which file
will a ’mindless’ program attempt to re-activate? TTiere are two
solutions, both of which I have explored, but this is the better
way.

One way communication
Parameter passing lets us instruct the ampersand file to skip

any number of active and dead files until it sees the EXACT
filename which you sent with the print# 15 command which
invoked the ampersand file in the first place. Assuming the file
can be found, (by the way, both ’? ’ and ’*’ pattern matching are
allowed), it will be resurrected with the filetype you select, (even
an intentionally wrong type), with everything in english (If you
accept rel, del, prg, usr, or seq as english!). Rel files may be
unscratched, with both main and side sector chains tracked down
and re-allocated on the bam. All files when resurrected, will be
traced and their blocks protected, with success guaranteed unless
you have written to the disk between the time the file was
scratched and now, when resurrection is being attempted.

This does not mean immediately, or even within the same
computing session, since the code does not rely on anything
other than what is written on the disk. The bam is updated by
allocating the chains FROM THE STARTING POINT OF THE
BAM ON DISK, so md files, machine code designed to be b-e’d,
etc. will not need to be exposed to the dreaded collect command,
and not incidentally, so we will finish in a reasonable time. Both
8050 and 8250 bam formats are supported automatically, with
the exception that an 8250 disk with a file on the ’far side’ of
the disk cannot of course be traced with an 8050.
How to use the code

The syntax used to activate this disk program is both more
exacting and curiously more flexible than the syntax used to run
a simple ampersand file. The choice of syntax was more or less
natural due to limitations common to both the drive and com
modore computers, so here goes.

1. The whole kit and kaboodle must fit into the command
buffer.

What good is a file like this if you need to spend 5 minutes
’m-w’ing the filename somewhere? The ampersand command
AND filename/filetype designators must all be sent with one
print #15 command to the drive.

2. Accepting #1, the command must be unambiguously
allowed by both computer and drive.

Some special characters can cause premature termination of
the string, or incorrect transmission at least. Obviously, the
filename for resurrection carried none of these or it wouldn’t
have been allowed in the first place, but watch the parameters.

Many characters are not allowed when you are running perhaps
a wordprocessor or a similar ’take over the whole machine’
program. Therefore filename and filetype must both be english.

3. The syntax, although exacting, must not be impossible to
remember or use.

FAIR ENOUGH!!! None of those 50 page manuals needed
here. No need to simultaneously press shift, esc, Ctrl AND reset
before pressing ’a’. Just type. All right what is the syntax? First
one no-no. openlS, (whatever), 15, "&unscrat......" (theeasy way
to invoke an ampersand file) will not be acceptable for two
reasons, (briefly due to some cbm computers limitations) that
will not be gone into here.

openl5,(whatever), 15 : print#15,"&unscr*ab?de*,rel" is
the correct method to allow the ampersand file to load itself from
drive #0 and attempt to find and unscratch a rel type file named
ab?de* on drive #1 (wildcards as defined in the drive manuals).
The first asterisk must be placed far enough along to uniquely
identify the ampersand file &unscrat.nam.typ but is RE
QUIRED to notify dos that the following characters are not part
of the ampersand files’ name. Then continue by typing either the
full or pattern matched target filename, and separate it from the
filetype with a comma.

The asterisk is acceptable with common meaning to dos and
your commodore computer, so its choice as the marker dividing
ampersand name from filename is a natural, as is the choice of
the comma for its use, since it is rarely allowed within a filename
(never say never). The code assumes that whatever is sent after
the first asterisk is the filename to search for. Syntax of
print#15,"&uns**,u" is perfectly acceptable, yielding resurrec
tion of the first file with scratched filetype as a usr file. I do
recommend, however, the use of minimal pattern matching,
since it is probably what got you in trouble with a scratched file
in the first place. That horrible realization sinking in that scratch
"a*" yielded TWELVE scratched files!

Here is a good place to note that my implementation of the
asterisk is slightly different than commodore’s since only one
scratched file at a time is resurrected, even when further matches
are available. It was a conscious decision, since not all the files
may have had the same filetype. Run the ampersand file using
the same pattern "a*" until the drive error led turns red to return
to your starting point. When in doubt, just pick a filetype. You
can always straighten it out later, after you’ve seen the whole
directory.

The Inevitable Warning
It cannot be stressed too much that you should not write to

the disk between the action of scratching and the attempt to
unscratch. The ampersand file does not demand you to sacrifice
whatever is in your computer’s memory, or even care much what
language you are currently using, as long as you can open the
command channel and send the proper string, so there is no
worry about lost text or programming being dumped just to
rescue a scratched file. During the time the file is scratched, all
its blocks are unallocated, and dos is ever too eager to overwrite
them and permanently poison the file. Don’t give it the chance.

The action of unscratching must not be performed with blind
faith, because there are potential pitfalls. The main failure case
is as follows.

1. original directory had three files

6 Northwest Computer News

a prg
b prg
c seq

2. file a is under development, and you, fearing save@, save
the better version as a + , scratch a and then rename a+ to a.

3. At this point, you inadvertantly scratch file a.

A virtual directory would show the following filename en
tries;

’a’ scratched
b prg
c seq

’a’ scratched

The first ’a’ will be the file resurrected, but the file is not the
one you desired. Run the ampersand file a second time and the
second ’a’ gets resurrected, but dos will ignore it until you
scratch (USING NO PATTERN MATCHING!!!) ’a’ once more.
This will finally result in the correct file becoming accessible
to dos (and you!). If you rename files in this manner, run an
ampersand file like ’&no hole dir’ to keep the pitfall from ever
being set up.

Stop blabbing, where’s the Code?

*** (the article on my disk has fully commented source code,
my actual assembly file inserted at this point as well as a listing
of the basic language file generator program. To conserve space,
it has been eliminated here) ***

To sum up, first type in and run the ampersand file generator,
save it if you wish, but the ampersand file itself can be copied.
Whenever you need to unscratch a file from basic, put the disk
with the ampersand file in drive #0, the target disk in drive #1,
and type open 15,8 (or whatever the unit address of the drive
is),15

(From other than basic go to the disk mode or open the
command channel, and type all after the print#15,)

Next type print#15,"&unscra*XXXXXXXX,seq" - where
the X’s are replaced with the filename you wish to resurrect,
with or without pattern matching, ending the filename with a
comma and then typing del - seq - prg - usr - rel - or zero (z-e-r-o
not "0"). You MUST include the first pattern matching asterisk
to inform dos where to stop looking for the ampersand file name,
there must be at least one character for a filename, (* is
acceptable), and SOME filetype must be specified. If you don’t
know it beforehand, just guess (but don’t guess rel unless it is a
rel file, or the drive will look for a side sector chain on track
#0)

When the ampersand file is done, take a gander at your error
led. If green, a file has been unscratched, red indicates not, due
to improper syntax, no match found, or a disk fdc failure. If bam
conflicts have not occurred, the bam has been updated and
rewritten to disk, but if only partial recovery was possible, the
activity leds will be blinking, the bam has been left as it was,
and the drive will not respond to anything (to alert you that the
partial file is still at risk of being overwritten) until you pull the
disk partially from the drive. Read or load the file as appropriate,
salvage what you can, and when you are ready to jettison the
unprotected filename, re-run the &unscratch utility again, as
signing filetype zero. DO NOT SCRATCH a file which left the

leds blinking, or you will expose the ’other owner’ of the blocks
in conflict to possible corruption.

USING THE 4023 hv Alan Bouvier
There are things that Commodore forgot to tell us. The

following involves the Commodore printer. I am sure it holds
true for the 8023 as well as the 4023 since both printers are based
on the same operating system.

By now, most of us have found out that turning on paging also
sets the top of form. And likewise, turning paging off does a
form feed if the paging had been turned on first. Once I found
that out, I went wild turning paging on and off to get my printouts
to look neater. Now I have a better way. It seems so obvious now,
but I just never thought of it.

Back in college I had to learn about the American Standard
Code for Information Interchange or ASCII for short. This code
had many control characters for printing. One of these com
mands is the FF or Form Feed character. Although never
mentioned in the printer or programmers manuals, sending a
form feed character to the 4023 causes the paper to advance to
the next top of form. Just as if the paper advance button was
pressed! And better yet, it works with paging on or off. No more
switching paging on and off.

From basic, the form feed character is chr$(12). It can also
be included in a text string by typing CTRL-1 while in quotes
mode.

There is one thing you must be aware of: the form feed is
executed immediately after being received. Anything still in
the printer’s buffer will be printed on the next page when it
receives a carriage return. All you have to remember is to send
a carriage return before sending the form feed.

(The carriage return is also an immediate command. To the
printer, a carriage return means: print the line stored in it’s
buffer, advance the paper one line, and reset all temporary
commands, (enhance,quotes mode,case changes,& reverse
field).

The shift-ret ’chr$(141)’ prints the buffered line without
advancing the paper. Reverse and case shifts are reset. Enhance
and quotes mode are not. Any following characters will be
printed starting at the first column. This will print on top of the
already printed line.

A line feed ’chr$(10) or CTRL-j’ will act as if it were a
carriage return.

I would also like to correct the ’uppercase’ and ’lowercase’
character definitions as in the manual. Chr$(145) will switch
the printer from the case selected by secondary address to
the other. When turned on, the printer is in graphics mode.
Therefore, printing chr$(145) to the printer will cause any text
following it to be printed in lower/upper case. Chr$(17) will
only switch the printer into graphics mode. These changes
only remain in effect until a carriage return is received by the
printer. It then returns to the case selected by secondary address.
Because of the way these control characters act, if you want to
switch back and forth between cases on one line, it is best to
start off in graphics mode. Otherwise, you will find it impossible
to return to lower case by these characters.

I hope this helps make it easier for all of us to make better
looking printouts.

June 1991 7

(Superbase Programming continued from page 1)
most complex accounting or data entry system you can imagine.
SuperOffice goes a step further and can manipulate text files,
automate mail merging and anything Superbase and Superscript
can do. The limitations are the designer and the storage medium,
not the program.

Before we begin the programming tutorial, we will cover
some information helpful in setting up a database. The following
hints, tips and general information will help you get you off to
a good start and help avoid future problems that may occur due
to inadequate planning. So, here we go!

Superbase is different from most database systems in that it
sets up a control file that will store the important information.
The database files, number of records and locations for the start
of the files are controlled by this master file. While they call this
file the database file it really is only an umbrella for the real
database files.

The Superbase database file allows you to relate other files
under the same umbrella name to each other. If a file called
orders and a file called customers resided in the master database
file accounting, you could access data from both if they had a
field in common. One of these fields must be the key field. You
can not relate two files in different database structures. The
common definition of a database is a file or group of records
containing related information. Superbase confuses this issue by
using the term database in a general sense. There can be
unrelated files under a common Superbase database name.

The normal Superbase startup routine follows:

1.) Load program by pressing shift-run.

2.) Program prompts you to enter a data disk or create one.

3.) Will create a data disk if requested or executes step 4.

4.) Program attempts to load the start program.

5.) Start will execute if found and asks for database name.

6.) If start program is not found it will exit to menu 1.

The start program initializes the system parameters, sets up
the function keys, displays the name of the program, asks for the
database, the file name and in SuperOffice’s case will ask for
the printer type. The start program can be modified like a normal
program and can do anything that you would like, such as
displaying a menu or loading an application. We will examine
the SuperOffice start program after we have some programming
experience.

Let us assume you want to create a simple mailing system or
a list of all your friends and relatives addresses. The first step
is to decide what specific information you need. Try to keep
your files concise and do not add superfluous fields with data
that you will never use.

Put information in separate files that would cause redundancy
in records. For example, if a customers name and address is
entered in the order file, every time you enter an order you would
duplicate the name and address. Result fields should be avoided
because they require disk space. It is more efficient to write a
simple formula to do your calculation.

Since Superbase uses a minimum of 128 bytes per record,
care should be taken to keep your character count below 123
bytes. If you need more space per record you might as well set

up a second file. Use a key field with the same name as a text
field in the first file. This allows you to use the multi-indexing
scheme mentioned earlier. Use this concept only when your
database is reasonably small and can afford the 256 bytes or
more per record. The multi-indexing scheme can work on up to
15 files but is limited on speed, if you have to keep opening new
files to use it. Three open files are the maximum allowed with
certain limitations.

When you are determining the length of a key field, keep in
mind that a longer key field will use more disk space. So keep
your key field as short as possible. It is advisable to use only
unique keys unless you have a strong reason for duplicate keys.
Duplicate keys can not be accessed using key lists or hlists which
are integral to many Superbase options.

Field lengths can be adjusted after entering data provided that
the size of a field is not decreased below the largest entry to that
field. Put your most used fields or forced fields at the top of the
form and fields that do not require data entered often at the
bottom. You can store the record without entering data in all of
the fields, providing all the forced fields have been entered.

For those of you that have used Superbase, the form design
screen may be taken for granted. For those of us that have used
other database programs, it is a marvel. This screen designer
resembles material found in the JCL Workshop. As a matter of
fact there are so many resemblances between the two packages,
it makes one wonder if Precision Software incorporated mate
rial from the JCL Workshop to make Superbase.

The form designer allows you to literally paint the screen with
your file format. You may use reverse video and graphic
characters for effect. The fields and descriptive text can be
placed anywhere on four separate screens. I have never used an
easier form designer. To understand all of the options, please
read the Superbase manual starting with page R-7 regarding it.

For this tutorial, we will design a record form to work with.
Load your Superbase disk and insert the data disk when re
quested. Type test when asked for the database name. You should
default to the file menu after the database has been created. Enter
addresses for the name of the file and the format screen should
appear.

Enter the following fields in any manner desired. Experiment
with different screen layouts and use the inverse screen functions
where desired. Press escape-k for the lname field and escape-t
for all of the rest. Cursor to the right for the desired number of
characters per field. They are displayed on the upper right.
Escape-e will erase a field the cursor is on if necessary, though
the field name must be deleted manually.
field name length tvpe of field

lname 5 characters key
name 10 characters text

address 30 characters text
city 15 characters text

state 2 characters text

zip 5 characters text

phone 12 characters text

Press escape and then the stop key to finish your screen
format. When asked if you want duplicate keys press y for yes.

<S Northwest Computer News

Please enter a few practice records so we have some data to work
with when we start programming. Press 1 to enter the record
appending function and enter at least ten records. Press return
after the last field of every record to store a record. If you want
to store the record without entering all of the fields you may
press shift-retum. The key field and all other forced fields must
be entered for the record to be stored.

After you have designed your format for data entry, the next
step is to write a program to manipulate your database. A menu
program to control entry of new records, adding new records
from existing records, replacing or editing records and deleting
unwanted records would be nice. Why should we do that? I can
do it all from the Superbase menu!

That is true but you can’t control what the user does from the
Superbase menu. There are safeguards which can be pro
grammed to ensure that a user can not damage or modify your
data files. You can control access to files and deny the user the
capability to make modifications to different files. The question
arises as to how to program this menu. There are two methods.

The first method is to code display statements for everything
you want displayed on the screen. This is a lot of fun and
everyone who wants to program should have to do this at least
once. The difficulty with this method is that you have to
determine what looks best by trial and error. Now all the manly
or womanly hardcore programmers are probably snickering,
because they know that is the only way to create a menu. There
is an easier way but I will give you a couple of examples of
display statements first.

The first step in creating a program, in both Superbase and
Basic, is to enter a line number. The line number will help you
refer to different routines or groups of commands in your
program. It also labels the statement at that location. It is
preferable to start with a number such as 100 and go up in steps
of 10. An example would be 100,110,120 and so on.

The display window has 80 columns and 22 rows to display
text, graphics and fields on. The display command consists of
several parts which include the @ sign, followed by the column
and row that you want to display on. You will see that I use a
rem statement after each line. You use a rem statement to enter
a comment for the line or routine. When the program interprets
the rem, it will not execute anything after it. Type the following
examples of display commands. First press return and 5 for
program writer from menu 2.

10 display @ l,l"H ello world":rem displays at column 1 rowl
20 display @40,9"My name is":rem displays at col. 40 row 9
30 display @75,20@ + "Bruce":rem reverse at col.75 row 20.
40 wait: rem wait for user to press key
50 display @0@13,15@+"Bye world!”:rem Reverse.at
col. 13 row 15.
60 wait: rem wait for user to press key
70 display chr$(147):rem clears screen

Press esc and then the stop key. Upon return to menu 1, press
7 to execute the program.

line 10,20 - The results of line 10 and 20 are obvious, the
@column,row command displays the appropriate text at the
column and row specified.

line 30 - In line 30 we have a new command @ + . This
command reverses the video for the string or variable displayed
following, it and including concatenated strings.

line 40 - In line 40 there is a new command called wait.
Without the wait command the display will flash before your
eyes and be covered by the menu 1 screen.

line 50 - In line 50 a new command @0 is implemented. This
command will reset the screen to allow you to write to an area
above a previous display statement. If you do not use it you will
force a new screen display and erase the previous one. As long
as you have your display statements following from left to right
and row after row you do not need this command.

line 60 - same as line 40.

line 70 - you can display a chr$ code which will perform its’
function or a string or variable.

Now that you have seen the normal method of setting up a
screen display, I will show you an easier and far faster method.
Not only will you be able to draw a screen faster, but it will
display fester and save you programming space. The limitation
of this method is you will have to reserve one open file for screen
displays.

It is advisable to save programming space in all areas of
Superbase. You have 8k of programming space including strings
and variables and another 8k for arrays.This is odd, due to the
large amount of memory available on the B computer. It appears
that since Superbase was ported from the 8000 series, they made
no attempt to increase the programming area. You will be
amazed at how fast you can use up memory using display
statements. If you set up your screen display with display
statements, then store those statements in an array. If you store
them in a string, they will use the bank 1 programming area.
Arrays are stored in bank 2, which won’t be used otherwise.

As stated previously, Superbase will allow up to four screens
per file and a maximum of three files open at one time. If you
use less than the maximum number of fields, you can use the
extra screens to draw menus. How is this possible? Superbase
requires that you enter at least one field per screen. Therefore,
you can set up a screen of menu choices in any manner that you
desire, but you must insert a minimum of one letter for descrip
tive text and a one character field on the screen. You will then
cover the field entry with a prompt, displayed immediately
following the calling of that screen.To implement this unique
feature, access the main menu and type , file "screen"

You may use the same layout features that you used for the
address file to set up your file display. I will give you the
coordinates and data for a menu to use with programming
examples that follow. You will have to count by using the cursor
keys, as there is no means of telling your location on the screen.
I usually press escape-s key to invert the screen and then type
the menu heading and the numbers. Then press escape-s key for
the normal screen display and type the menu selections. This
has a more professional look to it. Type the following at the
positions indicated. Do not type the column and row informa
tion.

Data Column Row

EDITING MENU 33 3
1 Enter 33 6
2 Replace 33 8
3 Add 33 10
4 Delete 33 12
5 Exit to Menu 33 14
s < > 33 17

June 1991 9

To create the last entry type s and press escape-t for a text
field and allow only one character. Remember, it is a require
ment that a minimum of one field be on any screen format used.
Press the escape key and the stop key to store the screen and
continue.

Now, press return for menu 2 and press 5 for the program
ming mode. We will type in and examine a simple program to
make use of our menu format.

5 sp$="":for c = l to 50:sp$=sp$ + " ":next
10 database "test",8,0
20 file "address"
30 file "screen":select c
40 file "address"
50 display @0@29,17@+ "Enter Your Choice Now (1-5)"
60 wait a:a$=str$(a)
70 if a < 1 or a > 5 then 60
80 display @0@56,17@+&l,0a
90 display ®0@ 29,17"Enter Your Choice Now (1-5)"
100 for c = l to 3
110 display @0@20,19sp$:for y = l to 100:next
120 display @0@30,19@+"Is Choice" +a$ + " Correct"?
(y/n)"
125 for y= 1 to 250:next:next
130 wait y$
140 if y$ = "n" then display @0@20,17sp$;@20,19sp$:goto
50
150 if y$="y" then 100
160 on a goto 200,210,220,230,240
200 enter: goto 240
210 select f: select r:goto 240
220 select f: select a: goto 240
230 select f: select d
240 menu

Rems for the previous lines.

5 - initialize variable sp$ to 50 spaces. This method saves
programming memory by appending a space to sp$ each time
the for-next loop executes. This variable will be used to erase
screen prompts. A for-next loop executes a loop for a number
of times as specified in the for statement. The for-next can be
used for a delay loop, a counter, building a string or repeating
an operation.

10 - opens the database on unit 8 and drive 0.

20 - open the address file.

30 - open the screen file and select the current record. The
select c statement displays the menu screen we developed
previously.

40 - make the open address file the current file.

50 - display the statement at column 29 and row 17 in reverse
video which is symbolized by @ +. Note the @0 before the
column and row statement resets the screen display. This is
necessary if you set a display statement above a previous display
statement. This prompt covers up the field displayed on the
screen that we entered to design this menu.

60 - Wait for numeric user input. The user must press a
number key. The next command converts the number into a
string variable.

70 - if a is any number from one to five then proceed to the
next line. If a is anything else, then goto line 60 and execute

from there. If an if-then is true, it will execute the next statement
on the line, if any. If it is false, it will fell through to the following
line and begin executing from that point.

80 - display a as a one digit number without any decimal
places and in reverse video.

90 - display the prompt at the same location as in line 50 but
in normal video. Note that you could have saved programming
space by storing the prompt to a string variable such as ch$. You
can utilize this anytime that you need to use the same display
statement more than once.

100 - start of a for-counter.

110 - displays spaces at column 20, row 19 for the duration
of the for-next loop that follows. A delay loop for 100 repetitions
helps set up the flashing prompt routine.

120 - displays a prompt at column 30, row 19 and displays it
for the duration of the for-next loop that follows. The last next
refers to the for in line 100. This loop is repeated three times.

125 - determines the length of time for the previous prompt
to display on screen.

130 - wait for the user to press a key. In this case any
recognized character that can be entered into a string variable
can be pressed.

140 - if the entered character is "n" then clear the prompt
lines with the space variable sp$ and goto line 50.

150 - if the entered character is different then "y" then return
to line 100 to get another entry. With just two lines we have
limited the character entry to "y" or "n" and cleared the prompts.

160 - since a must be an integer from 1 to 5, the line number
that corresponds in position will be executed. Therefore, if a=2
then the program will jump to line 210. Though we allowed for
an input of numbers from only one through five, the following
would happen if we had not specified a range of values. If a= 0
or a5 then the program would execute at line 200. If a was
negative you would receive an error message.

200 - the enter statement will bring up the record entry
screen. You can save the record at any time by pressing shift-re-
tum or press return after entry to the last field. If you want to
exit without saving press escape-q. After the record or records
have been entered, the program will jump to line 240 and reenter
the Superbase menu system. The key field must have data entered
into it before a store operation is allowed.

210 - selects the first record and allows you to replace data
in that record. The record will reflect your changes after storing.
You may not alter the key field. If you need to alter the key field,
then you would use the add record command which follows.

220 - selects the first record and allows you free control to
change any data. The original record will remain intact after the
add command.

230 - selects the first record and deletes it without any
prompt. If all the records have been deleted or none are present
to start with, the current file will be deleted from the database.
The only way this statement can be used safely under program
control, is by entering the record to delete into a variable. Then
display the variable contents and prompt the user to determine
whether the record should be deleted. NOTE: If you specify the

10 Northwest Computer News

select d command in a program line, it will delete the current
record without warning.

240 - enter the menu system.

For easier comprehension, I usually put one statement per
line in this tutorial. Practically though, in order to squeeze as
much as possible into our small memory area, you should put
as many statements as will fit easily on the two lines allowed.
Remember, every line number takes up space so it is smarter to
use as few as possible.

Though commenting source code by using a rem statement
is intelligent programming, it is better to print your program and
pencil in the rems to avoid the memory loss. If your programs
do not require much memory then by all means program
properly and rem each line. NOTE: If you were using a compiler,
it would ignore the Rems when compiling.

Well that wraps it up for this issue, I will expand upon this
short program in a future issue. If you have any suggestions or
input please write or call me at:
Northwest Music Center, Inc.
404 Inverrary Lane
Deerfield, n. 60015
708-808-7000
Superbase is a registered tradem ark of Precision Software
Ltd.___
SPINNING YOUR 80XX FOR A CONTROLLED TIME

I frequently advise CBUG members who write to me of
intermittant troubles with their 80xx drives to check and see if
the heads are clean. Many members are reluctant to open the
case on their drives, and considering the potential for damaging
some sensitive components by static electricity, their reluctance
is probably well advised. For them, there is no alternative to
commercial head cleaning kits except shipping off their drives
to a repair shop.

Following this article is a short basic program which will spin
an 80xx drive selected by you by unit number and drive number
for as long as you wish. No ’bumps’ whether the unit contains
a disk, no disk, or a non-disk such as a cleaning disk.

Some of the commercial cleaners are a bit too abrasive for
my own liking, but as a one-shot alternative to several weeks
without your drive and a repair bill, the commercial products
become quite acceptable.

Dload and run my program titled ’spin 80xx’, and after
identifying the unit number and drive number at the prompt
questions, the selected drive will spin. It will remain spinning
until a few seconds after you press ’return’. One reminder, don’t
leave a cleaning disk in the drive for longer than the manufac
turer recommends! by Tony Goceliak

Superpet 9000 continued from page 3)
loading of linker produced program files. Complete manuals
with tutorials examples are included for each language.

This is the optimum environment for a B-128 or other CBM
IEEE user if they desire to learn other languages. They do not
have to buy any new equipment such as drives, cables or printers.
They can utilize software in the TPUG and CBUG library plus
any commercial software still available.

For further information call N.W.M.Inc. at 708-808-7000.

LIBRARY DISKS REVIEWED
Goceliak 1990: Does this guy ever stop amazing us with his

new discoveries. If you want to learn what the B machine is capable
of, Tony Goceliaks many disks are the way. His understanding of our
system is astonishing. One has to wonder whether he sleeps at night
or just has his B-128 do it for him.This disk is a must for Goceliak
collectors. This disk includes the following.
Price $10.00* Royalty paid. Shipping S2 any quantity

1.) One disk - two directories
2.) Alphabatize your directory
3.) Unscratch programs leaving memory intact
4.) File locking program - prevents scratching.
5.) Obliterate a file so no one can resurrect i t
6.) 80xx spinning program for cleaning drives.
7.) Prime Factoring program and much, much more.

Goldcoast Gambit: Fred Peterson one of the many fine
contributors to the CBUG library has done it again. After you
shift/run your eyes are treated to an interesting video creation for the
B. Fred includes not only a complete description of all the programs
on the disk but a menuing system to access them. His disk includes
his SSII Financial Spreadsheet. Fred states this a satisfactory though
simple method of keeping a record of all receipts and disbursments
for a small business. This disk has many different types of programs
from utilities to games to science and mathmatical challenges. Fred
really spent some time putting this one together.
Price $5.00* Freeware. Shipping $2 any quanitiy.

1.) SSII Financial Spreadsheet.
2.) Normopoly - a properties buying game runs on 8432e.
3.) Backgammon - 8432 emulator.
4.) Chessmate - 8432 emulator.
5.) Games - Utilities - Disassembler etc.

• ALL DISK ORDERS MUST BE A MINIMUM OF $10

(8050 continued from page 1)
mounted this diode very near
the motor power transistor
which can get fairly hot. This
heat spreads over the circuit
board to the diode. The Zener
reference diode chosen by
Commodore is overly sensi
tive to temperature. When the
comparator circuit looks at a
feedback and a reference that
vary with heat, the motor may
end up at most any speed.

Now for the technical part.
I do not recommend that any
of this be attempted by some
one not skilled in the repairing
of circu it boards. I have
changed the tach feedback di
odes (CR20 & CR24) to
1N4148 and stood them up on
long leads to be 1/2 inch above
the board. I installed the pre
c ision reference diodes
(LM329), mentioned in an
earlier Escape article, to re
place CR21 and CR25 and
changed R49 and R59 to 2700
ohms as necessitated by the

reference diode change. Look
ing at the front of the board, I
lifted the left end of R52 and
R63 and soldered the anode
end of a 1N4I48 diode to the
hole the resistor lead came
from and soldered the cathode
end to the now free end of the
resistor sticking up in the air.
This diode is the same as the
one put in for the tach feed
back, but is in the other leg of
the comparator circuit. The
drives were then recalibrated
for speed. The net result is that
the drives now vary very little.
The stood-up diodes are not
affected as much by the tran
sistor heat as the old ones were
and when they are affected by
the heat of the general area, the
diodes placed in series with
R52 and R63 are also affected
about the same amount and
trim the reference voltage
counteracting the tach change.
I still check the drive speed
regularly, but I have not had to
adjust them in the past year
and a half.

June 1991 11

YELL FOR HELP!
The people listed below have graciously offered their expertise and time to help

fellow CBM computer users. I applaud their generosity and want to thank them for
their willingness to share their knowledge.

1.) Please call them only during the hours listed and don’t call collect.
2.) Please don’t abuse this privilege and only call them when their help is genuinely needed.

NAME , - AREA OF EXPERTISE TIMES AVAILABLE PHONE OR ADDRESS

Louis Black Calc Result - Paperclip 7:30-11:30 PM EST 416-728-3244
J. Boyle Electronics Forth - 65xx ASM Sat. 7-10 EST 904-539-0506
Alan Bouvier SSII, ASM,Basic M-F 6-10 S-S 12-8 CST 504-649-5772
Edwin Bcrwerman Basic - SSII Mail Only w/S.A.S.E. 47 Parsonage Ln Topsfield.Ma. 01983
Art Chick Basic.SSII.SBII T-Th 7-10PM PST 916-674-7006
Dennis Jarvis ASM,B-MSDos,Fastbus M-F 9-12 AM EST 407-957-2840
Vem Kempfer General Info Evening & Sat-Sun CST 608-244-3353
Bob Loeffler CABS GL-AR-AP T-W CST 414-294-6412
Fred Lovejoy SSII M&W 7:00-8:30 PM 602-946-0202
Dan Mikesell Basic 7-10 PM EST 616-842-4205
Carter Pawlus Calc Result 9-9 PM CST 414-457-6100
Fred Peterson SSII,SBI,SBII M-F 7-5 PM PST 805-492-0066 Will call collect if you leave

a message
Tom Rehm Superbase M-F 7-9pm CST 708-851-6528
Don Wolf SSII,Basic M-F 6-9PM S-S 9-5CST 816-524-8491
Robert Walther ssii.ssm Mail Only w/S.A.S.E.

Phone in future.
20209 150th Dr. Sun City West, Az.
85375. Just moved here so I’m not sure.

John Wright CP/M-MS Dos for B-128 M,T,TH,F 7-10PM CST 402-339-5728

Anderson Communications Engineering
2560 Glass Rd. NE. VERY IMPORTANT.
Cedar Rapids, Iowa 52402 READ THIS!

This is a plug for Gary Anderson. This man has single
handedly developed most of the publicized add on boards for
the B-128. Among his many accomplishents are the 1 meg add
on board, 24k memory cartridge, the alternate operating
system board and he developed a prototype v-2 or suped up
8088 board. Due to his supplier discontinuing production of
circuit boards for outside firms, Gary has decided not to retool
and has discontinued the manufacturing of these boards. This
is it folks, if you need them, you better buy them now!

At the time o f this writing he only had a few boards left.

The following products are available while supplies last.
24k ram cartridges @$75.00
B-1024 Expansion hoards @$329.00

Northwest Music Center Inc. reports that their supplies of
B-128 computers and 8050 drives are rapidly decreasing. At this
time there are less than 60-B-128 computers left and approxi
mately 25-8050 and 8250 drives remaining. It is suggested that
if you use your B-128 often and for business applications that
you back your system up now.

Fred King of King Communications has announced that he
will still performl meg upgrades on B-128 & B-256 computers.
Contact him directly at 715-341-1149.

Northwest Music Center Inc. still does repairs on B-128
computers, 8050 drives, 4023p and 8023p printers. Call for
details. 708-808-7000

12 Northwest Computer News

